UMF23N [ROHM]

Power management (dual transistors); 电源管理(双晶体管)
UMF23N
型号: UMF23N
厂家: ROHM    ROHM
描述:

Power management (dual transistors)
电源管理(双晶体管)

晶体 晶体管
文件: 总5页 (文件大小:71K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EMF23/UMF23N  
Transistors  
Power management (dual transistors)  
EMF23/UMF23N  
2SA1774and DTC114E are housed independently in a EMT6 or UMT6 package.  
zExternal dimensions (Units : mm)  
zApplication  
Power management circuit  
EMF23  
( )  
3
( )  
2
( )  
1
( )  
4
( )  
5
( )  
6
zFeatures  
1.2  
1.6  
1) Power switching circuit in a single package.  
2) Mounting cost and area can be cut in half.  
ROHM : EMT6  
UMF23N  
Each lead has same dimensions  
Abbreviated symbol : F23  
zStructure  
Silicon epitaxial planar transistor  
zEquivalent circuits  
1.25  
2.1  
(3)  
(2) (1)  
0.1Min.  
DTr2  
Tr1  
ROHM : UMT6  
EIAJ : SC-88  
R1  
Each lead has same dimensions  
R2  
Abbreviated symbol :F23  
(4)  
(5)  
(6)  
R
1
=10k  
=10kΩ  
R2  
zPackage, marking, and packaging specifications  
Type  
EMF23  
EMT6  
F23  
UMF23N  
UMT6  
F23  
Package  
Marking  
Code  
T2R  
TR  
Basic ordering unit(pieces)  
8000  
3000  
1/4  
EMF23/UMF23N  
Transistors  
zAbsolute maximum ratings (Ta=25°C)  
Tr1  
Limits  
60  
Parameter  
Symbol  
Unit  
V
Collector-base voltage  
VCBO  
VCEO  
VEBO  
50  
V
Collector-emitter voltage  
Emitter-base voltage  
Collector current  
6  
V
I
C
150  
mA  
mW  
C
Collector power dissipation  
Junction temperature  
P
C
150 (TOTAL)  
150  
Tj  
Storage temperature  
Tstg  
55 to +150  
C
120mW per element must not be exceeded.  
DTr2  
Parameter  
Supply voltage  
Symbol  
Limits  
50  
Unit  
V
V
CC  
Input voltage  
Collector current  
V
IN  
10~+40  
100  
V
1
2
I
C
mA  
mA  
mW  
C
I
O
50  
Output current  
Power dissipation  
P
Tj  
Tstg  
C
150(TOTAL)  
150  
55 to +150  
Junction temperature  
Range of storage temperature  
1 Characteristics of built-in transistor.  
C
2 120mW per element must not be exceeded.  
Each terminal mounted on a recommended land.  
zElectrical characteristics (Ta=25°C)  
Tr1  
Parameter  
Symbol Min. Typ. Max. Unit  
Conditions  
Collector-base breakdown voltage  
BVCBO 60  
V
V
V
I
I
I
C
=50µA  
=1mA  
Collector-emitter breakdown voltage BVCEO 50  
C
Emitter-base breakdown voltage  
Collector cutoff current  
BVEBO  
6  
E
=50µA  
I
CBO  
EBO  
CE (sat)  
FE  
0.1 µA  
0.1 µA  
V
V
CB=60V  
Emitter cutoff current  
I
EB=6V  
Collector-emitter saturation voltage  
DC current transfer ratio  
Transition frequency  
V
0.5  
390  
V
I
C
/I  
CE=6V, I  
CE=12V, I  
CB=12V, I  
B
=50mA/5mA  
h
180  
V
C
=1mA  
140  
4
MHz  
pF  
f
T
V
V
E
E
=
=
2mA, f  
=100MHz  
0A, f 1MHz  
=
Output capacitance  
Cob  
5
DTr2  
Parameter  
Symbol Min.  
Typ.  
Max.  
0.5  
Unit  
V
Conditions  
V
I(off)  
I(on)  
3
V
CC=5V, I  
=0.3V, I  
/I =10mA/0.5mA  
=5V  
CC=50V, V  
=5V, I =5mA  
O
=100µA  
Input voltage  
V
V
O
O=10mA  
Output voltage  
Input current  
V
O(on)  
0.1  
0.3  
0.88  
0.5  
V
mA  
µA  
I
O I  
I
I
V
V
V
I
Output current  
DC current gain  
Input resistance  
Resistance ratio  
I
O(off)  
I=0V  
G
I
30  
7
O
O
R1  
10  
1
13  
kΩ  
R
2
/R  
1
0.8  
1.2  
Transition frequency  
f
T
250  
MHz  
V
CE=10V, IE=−5mA, f=100MHz  
Transition frequency of the device  
2/4  
EMF23/UMF23N  
Transistors  
zElectrical characteristic curves  
Tr1  
-35.0  
-10  
-8  
-100  
-80  
-50  
Ta = 25°C  
V
CE = 6V  
Ta = 25°C  
-31.5  
-28.0  
-24.5  
-21.0  
-17.5  
-14.0  
-10.5  
-7.0  
Ta = 100°C  
25°C  
-20  
-10  
-500  
-450  
-400  
-350  
-300  
40°C  
-5  
-250  
-200  
-6  
-4  
-2  
-60  
-40  
-20  
-2  
-1  
-150  
-100  
-0.5  
-50µA  
-3.5µA  
-0.2  
-0.1  
I
B
= 0  
-2.0  
IB = 0  
0
-0.4  
-0.8  
-1.2  
-1.6  
0
-1  
-2  
-3  
-4  
-5  
-0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4 -1.6  
BASE TO EMITTER VOLTAGE : VBE (V)  
COLLECTOR TO EMITTER VOLTAGE : VCE (V)  
COLLECTOR TO EMITTER VOLTAGE : VCE (V)  
Fig.2 Grounded emitter output  
Fig.3 Grounded emitter output  
Fig.1 Grounded emitter propagation  
characteristics  
characteristics ( Ι )  
characteristics ( ΙΙ )  
500  
500  
-1  
Ta = 100°C  
V
CE = -5V  
-3V  
Ta = 25°C  
Ta = 25°C  
25°C  
-1V  
-0.5  
-0.2  
-40°C  
200  
100  
50  
200  
100  
I
C/I  
B
= 50  
-0.1  
20  
10  
50  
-0.05  
V
CE = -6V  
-0.2 -0.5 -1 -2  
COLLECTOR CURRENT :  
-5 -10 -20 -50 -100  
-0.2  
-0.5 -1  
-2  
-5 -10 -20  
-50 -100  
-0.2 -0.5 -1 -2  
-5 -10 -20  
-50 -100  
COLLECTOR CURRENT : I (mA)  
C
IC (mA)  
COLLECTOR CURRENT :  
IC (mA)  
Fig.5 DC current gain vs. collector  
Fig.6 Collector-emitter saturation  
voltage vs. collector current ( Ι )  
Fig.4 DC current gain vs. collector  
current ( ΙΙ )  
current ( Ι )  
1000  
-1  
20  
10  
Ta = 25°C  
CE = -12V  
lC/lB = 10  
Ta = 25°C  
V
f
I
I
= 1MHz  
E
= 0A  
= 0A  
500  
-0.5  
C
200  
100  
-0.2  
-0.1  
5
2
Ta = 100°C  
25°C  
-40°C  
-0.05  
50  
0.5  
1
2
5
10  
20  
50 100  
-0.5  
-1  
-2  
-5  
-10  
-20  
-0.2 -0.5 -1  
-2  
-5 -10 -20  
-50 -100  
EMITTER CURRENT : I  
E
(mA)  
COLLECTOR TO BASE VOLTAGE : VCB (V)  
EMITTER TO BASE VOLTAGE : VEB (V)  
COLLECTOR CURRENT : I  
C
(mA)  
Fig.8 Gain bandwidth product vs.  
emitter current  
Fig.9 Collector output capacitance vs.  
collector-base voltage  
Fig.7 Collector-emitter saturation  
voltage vs. collector current ( ΙΙ )  
Emitter input capacitance vs.  
emitter-base voltage  
3/4  
EMF23/UMF23N  
Transistors  
DTr2  
10m  
5m  
100  
50  
1k  
V
O
=0.3V  
V
CC=5V  
VO=5V  
500  
Ta=100°C  
25°C  
40°C  
2m  
1m  
Ta=100°C  
25°C  
40°C  
20  
10  
200  
500µ  
100  
50  
Ta=−40°C  
25°C  
100°C  
5
200µ  
100µ  
50µ  
2
20  
1
10  
5
20µ  
10µ  
5µ  
500m  
200m  
100m  
2
1
2µ  
1µ  
0
100µ 200µ  
500µ 1m  
2m  
5m 10m 20m 50m 100m  
100µ 200µ 500µ1m 2m 5m 10m 20m 50m100m  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
OUTPUT CURRENT : I (A)  
O
OUTPUT CURRENT : I  
O
(A)  
INPUT VOLTAGE : VI(off) (V)  
Fig.1 Input voltage vs. output current  
(ON characteristics)  
Fig.2 Output current vs. input voltage  
(OFF characteristics)  
Fig.3 DC current gain vs. output  
current  
1
lO/lI=20  
500m  
Ta=100°C  
25°C  
200m  
40°C  
100m  
50m  
20m  
10m  
5m  
2m  
1m  
100µ 200µ  
500µ 1m  
2m  
5m 10m 20m 50m 100m  
OUTPUT CURRENT : I (A)  
O
Fig.4 Output voltage vs. output  
current  
4/4  
Appendix  
Notes  
No technical content pages of this document may be reproduced in any form or transmitted by any  
means without prior permission of ROHM CO.,LTD.  
The contents described herein are subject to change without notice. The specifications for the  
product described in this document are for reference only. Upon actual use, therefore, please request  
that specifications to be separately delivered.  
Application circuit diagrams and circuit constants contained herein are shown as examples of standard  
use and operation. Please pay careful attention to the peripheral conditions when designing circuits  
and deciding upon circuit constants in the set.  
Any data, including, but not limited to application circuit diagrams information, described herein  
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM  
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any  
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of  
whatsoever nature in the event of any such infringement, or arising from or connected with or related  
to the use of such devices.  
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or  
otherwise dispose of the same, no express or implied right or license to practice or commercially  
exploit any intellectual property rights or other proprietary rights owned or controlled by  
ROHM CO., LTD. is granted to any such buyer.  
Products listed in this document use silicon as a basic material.  
Products listed in this document are no antiradiation design.  
The products listed in this document are designed to be used with ordinary electronic equipment or devices  
(such as audio visual equipment, office-automation equipment, communications devices, electrical  
appliances and electronic toys).  
Should you intend to use these products with equipment or devices which require an extremely high level of  
reliability and the malfunction of with would directly endanger human life (such as medical instruments,  
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other  
safety devices), please be sure to consult with our sales representative in advance.  
About Export Control Order in Japan  
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control  
Order in Japan.  
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)  
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.  
Appendix1-Rev1.0  

相关型号:

UMF23NTR

Small Signal Bipolar Transistor, 0.1A I(C), 50V V(BR)CEO, 2-Element, NPN and PNP, Silicon, UMT6, SC-88, 6 PIN
ROHM

UMF24N

Power management (dual trnasistors)
ROHM

UMF24NTR

Small Signal Bipolar Transistor, 0.1A I(C), 50V V(BR)CEO, 2-Element, NPN, Silicon, UMT6, SC-88, 6 PIN
ROHM

UMF250

IEC 60127-4 · 250 VAC · 125 VDC · Quick-Acting F
SCHURTER

UMF28N

Power management (dual transistors)
ROHM

UMF28NTR

暂无描述
ROHM

UMF316B7102KFHT

High Reliability (Automotive) Application Multilayer Ceramic Capacitors
TAIYO YUDEN

UMF316B7102MFHT

High Reliability (Automotive) Application Multilayer Ceramic Capacitors
TAIYO YUDEN

UMF316B7103KFHT

High Reliability (Automotive) Application Multilayer Ceramic Capacitors
TAIYO YUDEN

UMF316B7103MFHT

High Reliability (Automotive) Application Multilayer Ceramic Capacitors
TAIYO YUDEN

UMF316B7104KLHT

High Reliability (Automotive) Application Multilayer Ceramic Capacitors
TAIYO YUDEN

UMF316B7104MLHT

High Reliability (Automotive) Application Multilayer Ceramic Capacitors
TAIYO YUDEN