K4D551638H-LC500 [SAMSUNG]

DDR DRAM, 16MX16, 0.65ns, CMOS, PDSO66, ROHS COMPLIANT, TSOP2-66;
K4D551638H-LC500
型号: K4D551638H-LC500
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM, 16MX16, 0.65ns, CMOS, PDSO66, ROHS COMPLIANT, TSOP2-66

时钟 动态存储器 双倍数据速率 光电二极管 内存集成电路
文件: 总18页 (文件大小:238K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
K4D551638H  
256M GDDR SDRAM  
256Mbit GDDR SDRAM  
Revision 1.3  
April 2007  
Notice  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
- 1 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
Revision History  
Revision  
Month  
Year  
2005  
2005  
History  
- Target Spec  
- Defined Target Specification  
0.0  
July  
0.1  
September  
- Preliminary Spec  
- Changed CL from 4clk to 3clk of -LC40  
- Added current spec  
0.2  
November  
2005  
- Added IBIS data  
- Final Spec  
- Deleted -LC33/36/60 spec.  
1.0  
1.1  
1.2  
1.3  
January  
April  
2006  
2006  
2006  
2007  
- Deleted CL4 option in MRS table according to deleting high frequency bin(-LC33/36).  
- Added CL2.5 option(-LC50 can support 166MHz@CL 2.5)  
- Changed VDD(min) spec from 2.5V to 2.35V.  
April  
April  
- Corrected typo on page 14.  
- 2 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
4M x 16Bit x 4 Banks Graphic Double Data Rate Synchronous DRAM  
with Bi-directional Data Strobe and DLL  
1.0 FEATURES  
• 2.35V ~ 2.7V power supply for device operation  
• 2.35V ~ 2.7V power supply for I/O interface  
• SSTL_2 compatible inputs/outputs  
• 4 banks operation  
• 2 DQS’s (1DQS / Byte)  
• Data I/O transactions on both edges of Data strobe  
• DLL aligns DQ and DQS transitions with Clock transition  
• Edge aligned data & data strobe output  
• Center aligned data & data strobe input  
• DM for write masking only  
• MRS cycle with address key programs  
-. Read latency 2.5, 3 (clock)  
-. Burst length (2, 4 and 8)  
• Auto & Self refresh  
-. Burst type (sequential & interleave)  
• All inputs except data & DM are sampled at the positive going  
edge of the system clock  
• 64ms refresh period (8K cycle)  
• 66pin TSOP-II lead free package(RoHS Compliant)  
• Maximum clock frequency up to250MHz  
• Maximum data rate up to 500Mbps/pin  
• Differential clock input  
• No Write-Interrupted by Read Function  
(WIR function can be supported only for 200/166MHz)  
2.0 ORDERING INFORMATION  
Part NO.  
K4D551638H-LC40  
K4D551638H-LC50  
Max Freq.  
250MHz  
200MHz  
Max Data Rate  
500Mbps/pin  
400Mbps/pin  
Interface  
VDD & VDDQ  
Package  
2.35V ~  
2.7V  
SSTL_2  
66pin TSOP-II  
3.0 GENERAL DESCRIPTION  
FOR 4M x 16Bit x 4 Bank GDDR SDRAM  
The K4D551638H is 268,435,456 bits of hyper synchronous data rate Dynamic RAM organized as 4 x 4,194,304 words by 16 bits, fab-  
ricated with SAMSUNGs high performance CMOS technology. Synchronous features with Data Strobe allow extremely high perfor-  
mance up to 1.1GB/s/chip. I/O transactions are possible on both edges of the clock cycle. Range of operating frequencies,  
programmable burst length and programmable latencies allow the device to be useful for a variety of high performance memory system  
applications.  
- 3 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
4.0 PIN CONFIGURATION (Top View)  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
VSS  
1
VDD  
DQ0  
VDDQ  
DQ1  
DQ2  
VSSQ  
DQ3  
DQ4  
VDDQ  
DQ5  
DQ6  
VSSQ  
DQ7  
NC  
DQ15  
VSSQ  
DQ14  
DQ13  
VDDQ  
DQ12  
DQ11  
VSSQ  
DQ10  
DQ9  
VDDQ  
DQ8  
NC  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
66 PIN TSOP(II)  
(400mil x 875mil)  
(0.65 mm Pin Pitch)  
VSSQ  
UDQS  
NC  
VDDQ  
LDQS  
NC  
VREF  
VSS  
VDD  
NC  
UDM  
CK  
LDM  
WE  
CK  
CAS  
RAS  
CS  
22  
23  
CKE  
NC  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
A12  
NC  
A11  
BA0  
BA1  
AP/A10  
A0  
A9  
A8  
A7  
A6  
A1  
A5  
A2  
A4  
A3  
VSS  
VDD  
PIN DESCRIPTION  
CK,CK  
CKE  
CS  
Differential Clock Input  
BA0, BA1  
A0 ~A12  
Bank Select Address  
Address Input  
Data Input/Output  
Power  
Clock Enable  
Chip Select  
DQ0 ~ DQ15  
RAS  
Row Address Strobe  
V
V
V
V
DD  
CAS  
Column Address Strobe  
Write Enable  
Ground  
SS  
WE  
Power for DQs  
Ground for DQs  
DDQ  
SSQ  
L(U)DQS  
Data Strobe  
L(U)DM  
RFU  
Data Mask  
NC  
No Connection  
Reserved for Future Use  
VREF  
Reference voltage  
- 4 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
5.0 INPUT/OUTPUT FUNCTIONAL DESCRIPTION  
Symbol  
Type  
Function  
The differential system clock Input.  
All of the inputs are sampled on the rising edge of the clock except DQ’s and DM’s that are  
sampled on both edges of the DQS.  
*1  
Input  
CK, CK  
Activates the CK signal when high and deactivates the CK signal when low. By deactivating  
the clock, CKE low indicates the Power down mode or Self refresh mode.CKE is synchronous  
for Power down entry and exit, and for Self refresh entry. CKE is asynchronous for Self  
refresh exit, and for output disable. CKE must be maintained high through Read and Write  
accesses. Input buffers, excluding CK, CK and CKE are disbled during Power down. Input  
buffers, excluding CKE are disabled during Self refresh. CKE is an SSTL_2 input, but will  
detect a LVCMOS low level after Vdd is applied upon 1st power up. After Vref has become  
stable during the power on and intialization sequence, it must be maintained for proper oper-  
ation of the CKE receiver. For proper Self refresh entry and exit, Vref must be maintained to  
this input.  
CKE  
Input  
CS enables the command decoder when low and disabled the command decoder when high.  
When the command decoder is disabled, new commands are ignored but previous operations  
continue.  
CS  
Input  
Latches row addresses on the positive going edge of the CK with RAS low. Enables row  
access & precharge.  
RAS  
CAS  
WE  
Input  
Input  
Input  
Latches column addresses on the positive going edge of the CK with CAS low. Enables col-  
umn access.  
Enables write operation and row precharge.  
Latches data in starting from CAS, WE active.  
Data input and output are synchronized with both edge of DQS.  
For the x16, LDQS corresponds to the data on DQ0-DQ7 ; UDQS corresponds to the data on  
DQ8-DQ15.  
LDQS,UDQS  
LDM,UDM  
Input/Output  
Input  
Data in Mask. Data In is masked by DM Latency=0 when DM is  
high in burst write. For the x16, LDM corresponds to the data on DQ0-DQ7 ; UDM correspons  
to the data on DQ8-DQ15.  
DQ0 ~ DQ15  
BA0, BA1  
Input/Output  
Input  
Data inputs/Outputs are multiplexed on the same pins.  
Selects which bank is to be active.  
Row/Column addresses are multiplexed on the same pins.  
Row addresses : RA0 ~ RA12, Column addresses : CA0 ~ CA8.  
A0 ~ A12  
Input  
V
/V  
Power Supply  
Power Supply  
Power Supply  
Power and ground for the input buffers and core logic.  
DD SS  
V
/V  
Isolated power supply and ground for the output buffers to provide improved noise immunity.  
Reference voltage for inputs, used for SSTL interface.  
DDQ SSQ  
V
REF  
No connection/  
Reserved for future use  
NC/RFU  
This pin is recommended to be left "No connection" on the device  
*1 : The timing reference point for the differential clocking is the cross point of CK and CK.  
For any applications using the single ended clocking, apply V to CK pin.  
REF  
- 5 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
6.0 BLOCK DIAGRAM (4Mbit x 16I/O x 4 Bank)  
16  
Intput Buffer  
LWE  
CK, CK  
Data Input Register  
Serial to parallel  
LDMi  
Bank Select  
4Mx16  
4Mx16  
4Mx16  
4Mx16  
32  
16  
x16  
DQi  
CK,CK  
ADDR  
Column Decoder  
Latency & Burst Length  
Data Strobe  
Programming Register  
LWCBR  
DLL  
LCKE  
LRAS LCBR  
LWE  
LCAS  
CK,CK  
LDMi  
Timing Register  
UDM  
CK,CK  
CKE  
CS  
RAS  
CAS  
WE  
LDM  
- 6 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
7.0 FUNCTIONAL DESCRIPTION  
7.1 Power-Up Sequence  
DDR SDRAMs must be powered up and initialized in a predefined manner to prevent undefined operations.  
1. Apply power and keep CKE at low state (All other inputs may be undefined)  
- Apply V before V  
.
DD  
DDQ  
- Apply V  
before V  
& V  
REF TT  
DDQ  
2. Start clock and maintain stable condition for minimum 200us.  
3. The minimum of 200us after stable power and clock(CK,CK), apply NOP and take CKE to be high .  
4. Issue precharge command for all banks of the device.  
5. Issue a EMRS command to enable DLL  
*1  
6. Issue a MRS command to reset DLL. The additional 200 clock cycles are required to lock the DLL.  
*1,2 7. Issue precharge command for all banks of the device.  
8. Issue at least 2 or more auto-refresh commands.  
9. Issue a mode register set command with A8 to low to initialize the mode register.  
*1 The additional 200cycles of clock input is required to lock the DLL after enabling DLL.  
*2 Sequence of 6&7 is regardless of the order.  
Power up & Initialization Sequence  
0
1
2
3
4
5
6
7
8
9
10  
11  
12 13  
14  
15  
16 17  
18  
19  
CK,CK  
tRP  
2 Clock min.  
tRFC  
tRFC  
2 Clock min.  
tRP  
2 Clock min.  
Command  
precharge  
ALL Banks  
MRS  
DLL Reset  
precharge  
ALL Banks  
1st Auto  
Refresh  
2nd Auto  
Refresh  
Mode  
Register Set  
Any  
Command  
EMRS  
200 Clock min.  
Inputs must be  
stable for 200us  
* When the operating frequency is changed, DLL reset should be required again.  
After DLL reset again, the minimum 200 cycles of clock input is needed to lock the DLL.  
- 7 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
7.2 MODE REGISTER SET(MRS)  
The mode register stores the data for controlling the various operating modes of DDR SDRAM. It programs CAS latency, addressing  
mode, burst length, test mode, DLL reset and various vendor specific options to make DDR SDRAM useful for variety of different appli-  
cations. The default value of the mode register is not defined, therefore the mode register must be written after EMRS setting for proper  
operation. The mode register is written by asserting low on CS, RAS, CAS and WE(The DDR SDRAM should be in active mode with  
CKE already high prior to writing into the mode register). The state of address pins A0 ~ A12 and BA0, BA1 in the same cycle as CS,  
RAS, CAS and WE going low is written in the mode register. Minimum two clock cycles are requested to complete the write operation in  
the mode register. The mode register contents can be changed using the same command and clock cycle requirements during opera-  
tion as long as all banks are in the idle state. The mode register is divided into various fields depending on functionality. The burst length  
uses A0 ~ A2, addressing mode uses A3, CAS latency(read latency from column address) uses A4 ~ A6. A7 is used for test mode. A8 is  
used for DLL reset. A7,A8, BA0 and BA1 must be set to low for normal MRS operation. Refer to the table for specific codes for various  
burst length, addressing modes and CAS latencies.  
BA1  
BA0  
0
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
BT  
A2  
A1  
A0  
Address Bus  
*1  
*1  
DLL  
TM  
CAS Latency  
Burst Length  
Mode Register  
RFU  
RFU  
Burst Type  
DLL  
Test Mode  
A3  
0
Type  
A8  
0
DLL Reset  
No  
A7  
0
mode  
Sequential  
Interleave  
Normal  
Test  
1
1
Yes  
1
CAS Latency  
Burst Length  
BA0  
An ~ A0  
MRS  
A6  
0
A5  
0
A4  
0
Latency  
Reserved  
Reserved  
Reserved  
3
Burst Type  
A2  
A1  
A0  
0
1
Sequential  
Interleave  
Reserve  
2
EMRS  
0
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserve  
2
0
1
0
0
1
1
4
4
* 1 : RFU(Reserved for future use)  
should stay "0" during MRS cycle.  
1
0
0
Reserved  
Reserved  
2.5  
8
8
1
0
1
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
Reserve  
1
1
0
1
1
1
Reserved  
MRS Cycle  
0
1
2
3
4
5
6
7
8
CK, CK  
Precharge  
All Banks  
Any  
Command  
Command  
NOP  
NOP  
NOP  
MRS  
NOP  
NOP  
NOP  
tMRD=2 tCK  
tRP  
*1 : MRS can be issued only at all banks precharge state.  
*2 : Minimum tRP is required to issue MRS command.  
- 8 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
7.3 EXTENDED MODE REGISTER SET(EMRS)  
The extended mode register stores the data for enabling or disabling DLL and selecting output driver strength. The default value of the  
extended mode register is not defined, therefore the extened mode register must be written after power up for enabling or disabling DLL.  
The extended mode register is written by asserting low on CS, RAS, CAS, WE and high on BA0(The DDR SDRAM should be in all bank  
precharge with CKE already high prior to writing into the extended mode register). The state of address pins A0, A2 ~ A5, A7 ~ A12 and  
BA1 in the same cycle as CS, RAS, CAS and WE going low are written in the extended mode register. A1 and A6 are used for setting  
driver strength to normal, weak or matched impedance. Two clock cycles are required to complete the write operation in the extended  
mode register. The mode register contents can be changed using the same command and clock cycle requirements during operation as  
long as all banks are in the idle state. A0 is used for DLL enable or disable. "High" on BA0 is used for EMRS. All the other address pins  
except A0,A1,A6 and BA0 must be set to low for proper EMRS operation. Refer to the table for specific codes.  
Address Bus  
BA1 BA0  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Extended  
Mode Register  
*1  
*1  
1
D.I.C DLL  
RFU  
RFU  
BA0  
An ~ A0  
MRS  
A1  
0
Output Driver Impedence Control  
A0  
0
DLL Enable  
Enable  
0
1
Full  
100%  
60%  
EMRS  
1
Weak  
1
Disable  
*1 : RFU(Reserved for future use) should stay "0" during EMRS cycle.  
- 9 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
7.4 WRITE INTERRUPTED BY A READ & DM  
A burst write can be interrupted by a read command of any bank. The DQs must be in the high impedance state at least one clock  
cycle before the interrupting read data appear on the outputs to avoid data contention. When the read command is registered, any  
residual data from the burst write cycle must be masked by DM. The delay from the last data to read command (tCDLR) is required to  
avoid the data contention DRAM inside. Data that are presented on the DQ pins before the read command is initiated will actually be  
written to the memory. Read command interrupting write can not be issued at the next clock edge of that of write command.  
< Burst Length=8, CAS Latency=3 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
Command  
NOP  
WRITE  
NOP  
DQSSmax  
NOP  
NOP  
CDLR  
READ  
NOP  
NOP  
NOP  
t
t
DQS  
5
t
WPRES*  
CAS Latency=3  
Din 7  
Din 0 Din 1 Din 2 Din 3 Din 4 Din 5 Din 6  
CDLR  
Dout 0 Dou
DQ  
s  
tDQSSmin  
t
DQS  
5
CAS Latency=3  
t
WPRES*  
Din 6  
Din 0 Din 1 Din 2 Din 3 Din 4 Din 5  
Din 7  
DQ  
s  
Dout 0 Dou
DM  
The following function established how a Read command may interrupt a Write burst and which input data is not written into the memory.  
1. For Read commands interrupting a Write burst, the minimum Write to Read command delay is 2 clock cycles. The case where the Write to Read delay  
is 1 clock cycle is disallowed  
2. For Read commands interrupting a Write burst, the DM pin must be used to mask the input data words whcich immediately precede the interrupting  
Read operation and the input data word which immediately follows the interrupting Read operation  
3. For all cases of a Read interrupting a Write, the DQ and DQS buses must be released by the driving chip (i.e., the memory controller) in time to allow  
the buses to turn around before the GDDR drives them during a read operation.  
4. If input Write data is masked by the Read command, the DQS input is ignored by the GDDR.  
* This function is only supported in 200/166MHz.  
8.0 ABSOLUTE MAXIMUM RATINGS  
Parameter  
Voltage on any pin relative to Vss  
Voltage on VDD supply relative to Vss  
Voltage on VDD supply relative to Vss  
Storage temperature  
Symbol  
VIN, VOUT  
VDD  
Value  
-0.5 ~ 3.6  
-1.0 ~ 3.6  
-0.5 ~ 3.6  
-55 ~ +150  
2.0  
Unit  
V
V
VDDQ  
TSTG  
V
°C  
W
Power dissipation  
PD  
Short circuit current  
IOS  
50  
mA  
Note : Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.  
Functional operation should be restricted to recommended operating condition.  
Exposure to higher than recommended voltage for extended periods of time could affect device reliability.  
- 10 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
9.0 AC & DC OPERATING CONDITIONS  
9.1 POWER & DC OPERATING CONDITIONS(SSTL_2 In/Out)  
Recommended operating conditions(Voltage referenced to VSS=0V, TA=0 to 65°C)  
Parameter  
Device Supply voltage  
Output Supply voltage  
Reference voltage  
Symbol  
Min  
2.35  
2.35  
Typ  
2.6  
2.6  
-
Max  
2.7  
Unit  
V
Note  
V
1
DD  
V
2.7  
V
1
DDQ  
V
0.49*V  
0.51*V  
DDQ  
V
2
REF  
DDQ  
Termination voltage  
Vtt  
V (DC)  
V
-0.04  
V
V
+0.04  
V
3
REF  
REF  
REF  
Input logic high voltage  
Input logic low voltage  
Output logic high voltage  
Output logic low voltage  
Input leakage current  
Output leakage current  
V
+0.15  
-
V
+0.30  
-0.15  
V
4
IH  
REF  
DDQ  
V (DC)  
-0.30  
-
-
-
-
-
V
V
5
IL  
REF  
V
Vtt+0.76  
-
V
I
=-15.2mA  
OH  
OH  
V
I
-
Vtt-0.76  
V
I
=+15.2mA  
OL  
OL  
IL  
-5  
-5  
5
5
uA  
uA  
6
6
I
OL  
Note :  
1. Under all conditions V  
must be less than or equal to V  
.
DD  
DDQ  
2. V  
is expected to equal 0.50*V  
of the transmitting device and to track variations in the DC level of the same. Peak to peak noise on the V  
REF  
D
D
Q
R
E
F
may not exceed + 2% of the DC value. Thus, from 0.50*V  
, V  
is allowed + 25mV for DC error and an additional + 25mV for AC noise.  
DDQ  
REF  
3. V of the transmitting device must track V  
of the receiving device.  
REF  
tt  
4. V (max.)= V  
+1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.  
IH  
DDQ  
5. V (mim.)= -1.5V for a pulse width and it can not be greater than 1/3 of the cycle rate.  
IL  
6. For any pin under test input of 0V < V < V is acceptable. For all other pins that are not under test V =0V.  
IN  
DD  
IN  
9.2 DC CHARACTERISTICS  
Recommended operating conditions Unless Otherwise Noted, (TA=0 to 65°C)  
Version  
-40  
Parameter  
Operating Current  
Symbol  
Test Condition  
Unit  
Note  
-50  
Burst Lenth=2 tRC tRC(min)  
IOL=0mA, tCC= tCC(min)  
ICC1  
ICC2P  
ICC2N  
ICC3P  
ICC3N  
ICC4  
160  
140  
mA  
mA  
mA  
mA  
mA  
mA  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
1, 2  
(One Bank Active)  
Precharge Standby Current  
in Power-down mode  
CKE VIL(max), tCC= tCC(min)  
5
Precharge Standby Current  
in Non Power-down mode  
CKE VIH(min), CS VIH(min),  
tCC= tCC(min)  
80  
65  
80  
70  
55  
70  
Active Standby Current  
power-down mode  
CKE VIL(max), tCC= tCC(min)  
Active Standby Current in  
in Non Power-down mode  
CKE VIH(min), CS VIH(min),  
tCC= tCC(min)  
Operating Current  
(Burst Mode)  
tRC tRFC(min)tRC tRFC(min)  
Page Burst, All Banks activated.  
265  
180  
220  
160  
Refresh Current  
ICC5  
ICC6  
tRC tRFC(min)  
CKE 0.2V  
mA  
mA  
1, 2,3  
1, 2  
Self Refresh Current  
5
Burst Length=4, tRC tRFC(min)  
IOL=0mA, tCC = tCC(min)  
Operating Current  
(4Bank Interleaving)  
ICC7  
300  
260  
mA  
1, 2  
Note :  
1. Measured with output open.  
2. Current meassured at V (max).  
DD  
3. Refresh period is 64ms.  
- 11 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
9.3 AC INPUT OPERATING CONDITIONS  
Recommended operating conditions(Voltage referenced to VSS=0V, V /V  
=2.35V ~ 2.7V,TA=0 to 65°C)  
DD DDQ  
Parameter  
Symbol  
Min  
+0.35  
REF  
Typ  
Max  
Unit  
Note  
Input High (Logic 1) Voltage; DQ  
V
V
-
-
V
IH  
Input Low (Logic 0) Voltage; DQ  
Clock Input Differential Voltage; CK and CK  
Clock Input Crossing Point Voltage; CK and CK  
Note :  
V
-
-
-
-
V
-0.35  
REF  
V
V
V
IL  
ID  
IX  
V
V
0.7  
V
+0.6  
1
2
DDQ  
0.5*  
-0.2  
0.5*V  
+0.2  
VDDQ  
DDQ  
1. V is the magnitude of the difference between the input level on CK and the input level on CK.  
ID  
2. The value of V is expected to equal 0.5*V  
IX  
of the transmitting device and must track variations in the DC level of the same.  
DDQ  
(V =2.35V ~ 2.7V, TA= 0 to 65°C)  
9.4 AC OPERATING TEST  
DD  
Parameter  
Value  
0.50*V  
Unit  
Note  
Input reference voltage for CK(for single ended)  
V
1
DDQ  
CK and CK signal maximum peak swing  
CK signal minimum slew rate  
Input Levels(VIH/VIL)  
1.5  
1.0  
V
V/ns  
V
V
+0.35/V  
-0.35  
REF  
REF  
Input timing measurement reference level  
Output timing measurement reference level  
Output load condition  
V
V
V
REF  
V
tt  
See Fig.1  
Note 1 : In case of differential clocks(CK and CK), input reference voltage for clock is a CK and CK’s crossing point.  
Vtt=0.5*VDDQ  
RT=50Ω  
Output  
Z0=50Ω  
VREF  
=0.5*VDDQ  
CLOAD=30pF  
(Fig. 1) Output Load Circuit  
- 12 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
(V =2.6V, TA= 25°C, f=1MHz)  
9.5 CAPACITANCE  
DD  
Parameter  
Symbol  
CIN1  
Min  
1.0  
1.0  
1.0  
1.0  
1.0  
Max  
5.0  
4.0  
4.0  
6.5  
6.5  
Unit  
pF  
Input capacitance( CK, CK )  
Input capacitance(A0~A12, BA0~BA1)  
Input capacitance( CKE, CS, RAS,CAS, WE )  
Data & DQS input/output capacitance(DQ0~DQ15)  
Input capacitance(DM0 ~ DM3)  
CIN2  
pF  
CIN3  
pF  
COUT  
CIN4  
pF  
pF  
DECOUPLING CAPACITANCE GUIDE LINE  
Recommended decoupling capacitance added to power line at board.  
Parameter  
Symbol  
Value  
Unit  
Decoupling Capacitance between V and V  
CDC1  
0.1 + 0.01  
0.1 + 0.01  
uF  
uF  
DD  
SS  
Decoupling Capacitance between V  
and V  
CDC2  
DDQ  
SSQ  
Note :  
1. V and V  
pins are separated each other. All V pins are connected in chip. All V  
pins are connected in chip.  
pins are connected in chip.  
DD  
DDQ  
DD  
DDQ  
2. V and V  
pins are separated each other. All V pins are connected in chip. All V  
SS  
SS  
SSQ  
SSQ  
9.6 AC CHARACTERISTICS(I)  
-40  
-50  
Symbol  
Unit  
Note  
Parameter  
Min  
4.0  
-
Max  
Min  
5.0  
Max  
CL=3  
10  
-
10  
10  
0.55  
0.55  
0.55  
0.65  
0.4  
1.1  
0.6  
1.28  
-
ns  
CK cycle time  
CL=2.5  
tCK  
6.0  
CK high level width  
tCH  
tCL  
0.45  
0.45  
-0.6  
-0.6  
-
0.55  
0.55  
0.6  
0.6  
0.4  
1.1  
0.6  
1.15  
-
0.45  
0.45  
-0.55  
-0.65  
-
tCK  
tCK  
ns  
CK low level width  
DQS out access time from CK  
Output access time from CK  
Data strobe edge to Dout edge  
Read preamble  
tDQSCK  
tAC  
ns  
tDQSQ  
tRPRE  
tRPST  
tDQSS  
tWPRES  
tWPREH  
tWPST  
tDQSH  
tDQSL  
tIS  
ns  
1
0.9  
0.4  
0.85  
0
0.9  
tCK  
tCK  
tCK  
ns  
Read postamble  
0.4  
CK to valid DQS-in  
0.72  
0
DQS-In setup time  
DQS-in hold time  
0.35  
0.4  
0.4  
0.4  
0.9  
0.9  
0.4  
0.4  
-
0.25  
0.4  
-
tCK  
tCK  
tCK  
tCK  
ns  
DQS write postamble  
0.6  
0.6  
0.6  
-
0.6  
-
DQS-In high level width  
DQS-In low level width  
Address and Control input setup  
Address and Control input hold  
DQ and DM setup time to DQS  
DQ and DM hold time to DQS  
0.35  
0.35  
0.6  
-
-
tIH  
-
0.6  
-
ns  
tDS  
-
0.4  
-
ns  
tDH  
-
0.4  
-
ns  
tCLmin  
or  
tCHmin  
tCLmin  
or  
tCHmin  
Clock half period  
tHP  
tQH  
-
-
-
-
ns  
ns  
1
1
Data output hold time from DQS  
Note 1 :  
tHP-0.4  
tHP-0.5  
- The JEDEC DDR specification currently defines the output data valid window(tDV) as the time period when the data strobe and all data associated with  
that data strobe are coincidentally valid.  
- The previously used definition of tDV(=0.35tCK) artificially penalizes system timing budgets by assuming the worst case output vaild window even then  
the clock duty cycle applied to the device is better than 45/55%  
- A new AC timing term, tQH which stands for data output hold time from DQS is difined to account for clock duty cycle variation and replaces tDV  
- tQHmin = tHP-X where  
. tHP=Minimum half clock period for any given cycle and is defined by clock high or clock low time(tCH,tCL)  
- 13 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
AC CHARACTERISTICS (I)  
-40  
-50  
Parameter  
Symbol  
Unit  
Note  
Min  
13  
15  
9
Max  
Min  
12  
14  
8
Max  
Row cycle time  
tRC  
tRFC  
-
-
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
Refresh row cycle time  
-
-
Row active time  
tRAS  
100K  
100K  
RAS to CAS delay for Read  
RAS to CAS delay for Write  
Row precharge time  
tRCDRD  
tRCDWR  
tRP  
4
-
-
-
-
-
-
-
-
-
-
-
4
-
-
-
-
-
-
-
-
-
-
-
2
2
4
4
Row active to Row active  
tRRD  
tWR  
3
2
Last data in to Row precharge @Normal Precharge  
Last data in to Row precharge @Auto Precharge  
Last data in to Read command  
Col. address to Col. address  
Mode register set cycle time  
Auto precharge write recovery + Precharge  
Exit self refresh to read command  
3
3
1
1
1
tWR_A  
tCDLR  
tCCD  
tMRD  
tDAL  
3
3
2
2
1
1
2
2
7
7
tXSR  
200  
200  
3tCK  
+tIS  
1tCK  
+tIS  
Power down exit time  
Refresh interval time  
tPDEX  
tREF  
-
-
ns  
us  
-
7.8  
-
7.8  
Note : 1. For normal write operation, even numbers of Din are to be written inside DRAM  
AC CHARACTERISTICS (II)  
(Unit : Number of Clock)  
K4D551638H-LC40  
Unit  
tCK  
tCK  
Frequency  
250MHz ( 4.0ns )  
200MHz ( 5.0ns )  
Cas Latency  
tRC  
13  
12  
tRFC  
15  
14  
tRAS  
9
8
tRCDRD tRCDWR  
tRP  
4
4
tRRD  
3
3
tDAL  
7
7
3
3
4
4
2
2
K4D551638H-LC50  
Frequency  
200MHz ( 5.0ns )  
166MHz ( 6.0ns )  
Unit  
tCK  
tCK  
Cas Latency  
tRC  
12  
10  
tRFC  
14  
12  
tRAS  
8
7
tRCDRD tRCDWR  
tRP  
4
3
tRRD  
2
2
tDAL  
7
6
3
2.5  
4
3
2
2
- 14 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
Write Interrupted by a Read & DM  
A burst write can be interrupted by a read command of any bank. The DQs must be in the high impedance state at least one clock  
cycle before the interrupting read data appear on the outputs to avoid data contention. When the read command is registered, any  
residual data from the burst write cycle must be masked by DM. The delay from the last data to read command (tCDLR) is required to  
avoid the data contention DRAM inside. Data that are presented on the DQ pins before the read command is initiated will actually be  
written to the memory. Read command interrupting write can not be issued at the next clock edge of that of write command.  
< Burst Length=8, CAS Latency=3 >  
0
1
2
3
4
5
6
7
8
CK  
CK  
Command  
NOP  
WRITE  
NOP  
DQSSmax  
NOP  
NOP  
CDLR  
READ  
NOP  
NOP  
NOP  
t
t
DQS  
5
t
WPRES*  
CAS Latency=3  
Din 7  
Din 0 Din 1 Din 2 Din 3 Din 4 Din 5 Din 6  
CDLR  
Dout 0 Dou
DQ  
s  
tDQSSmin  
t
DQS  
5
CAS Latency=3  
t
WPRES*  
Din 6  
Din 0 Din 1 Din 2 Din 3 Din 4 Din 5  
Din 7  
DQ  
s  
Dout 0 Dou
DM  
The following function established how a Read command may interrupt a Write burst and which input data is not written into the memory.  
1. For Read commands interrupting a Write burst, the minimum Write to Read command delay is 2 clock cycles. The case where the Write to Read delay  
is 1 clock cycle is disallowed.  
2. For Read commands interrupting a Write burst, the DM pin must be used to mask the input data words whcich immediately precede the interrupting  
Read operation and the input data word which immediately follows the interrupting Read operation.  
3. For all cases of a Read interrupting a Write, the DQ and DQS buses must be released by the driving chip (i.e., the memory controller) in time to allow  
the buses to turn around before the GDDR drives them during a read operation.  
4. If input Write data is masked by the Read command, the DQS input is ignored by the GDDR.  
* This function is only supported in 200/166MHz.  
- 15 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
10.0 IBIS : I/V Characteristics for Input and Output Buffers  
(1) Full Strength Driver Characteristics  
Pulldown Current (mA)  
Voltage  
Pullup Current (mA)  
Maximum  
Minimum  
Maximum  
Minimum  
(V)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
0
0
0
0
4.8  
10.0  
-4.8  
-10.4  
9.6  
18.9  
-9.6  
-20.8  
14.4  
19.1  
23.9  
28.8  
33.5  
38.3  
41.2  
44.3  
46.6  
48.0  
49.0  
49.3  
49.6  
49.9  
50.3  
50.9  
51.1  
51.4  
51.6  
51.8  
51.9  
52.0  
52.2  
52.4  
52.5  
27.0  
-14.4  
-19.1  
-23.9  
-28.8  
-33.5  
-37.4  
-39.7  
-40.2  
-40.6  
-40.6  
-41.0  
-41.2  
-41.5  
-41.7  
-41.8  
-41.9  
-42.0  
-42.1  
-42.2  
-42.3  
-42.4  
-42.5  
-42.6  
-42.7  
-42.8  
-31.0  
35.3  
-40.4  
43.5  
-48.7  
51.4  
-56.6  
59.1  
-64.3  
65.7  
-72.3  
72.7  
-80.4  
79.4  
-88.6  
85.8  
-96.7  
91.8  
-104.6  
-112.4  
-120.1  
-127.9  
-135.6  
-142.2  
-150.0  
-156.5  
-163.2  
-169.7  
-176.4  
-183.0  
-188.6  
-195.1  
-200.6  
-206.1  
97.6  
103.1  
108.0  
112.7  
116.6  
120.5  
124.4  
128.2  
131.6  
134.7  
137.7  
140.4  
142.8  
144.8  
146.4  
- 16 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
10.0 IBIS : I/V Characteristics for Input and Output Buffers  
(2) Weak Strength Driver Characteristics  
Pulldown Current (mA)  
Voltage  
Pullup Current (mA)  
Maximum  
Minimum  
Maximum  
Minimum  
(V)  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
0
0
0
0
2.7  
5.2  
-2.7  
-5.2  
5.4  
10.3  
15.2  
20.0  
24.5  
29.1  
33.5  
37.2  
41.1  
44.9  
48.6  
52.0  
55.2  
58.3  
61.0  
63.9  
66.0  
68.2  
70.4  
72.6  
74.5  
76.2  
77.9  
79.5  
80.8  
82.0  
82.9  
-5.4  
-10.3  
-15.2  
-20.0  
-24.5  
-29.1  
-33.5  
-37.2  
-41.1  
-44.9  
-48.6  
-52.0  
-55.2  
-58.3  
-61.0  
-63.9  
-66.0  
-68.2  
-70.4  
-72.6  
-74.5  
-76.2  
-77.9  
-79.5  
-80.8  
-82.0  
-82.9  
8.1  
-8.1  
10.8  
13.5  
16.3  
18.9  
21.6  
23.3  
25.1  
26.4  
27.2  
27.7  
27.9  
28.1  
28.3  
28.5  
28.8  
28.9  
29.1  
29.2  
29.3  
29.4  
29.4  
29.5  
29.6  
29.7  
-10.8  
-13.5  
-16.3  
-18.9  
-21.2  
-22.5  
-22.8  
-23.0  
-23.1  
-23.2  
-23.3  
-23.5  
-23.6  
-23.6  
-23.7  
-23.8  
-23.8  
-23.9  
-24.0  
-24.1  
-24.1  
-24.1  
-24.2  
-24.2  
- 17 -  
Rev. 1.3 April 2007  
K4D551638H  
256M GDDR SDRAM  
11.0 PACKAGE DIMENSIONS (66pin TSOP-II)  
Units : Millimeters  
#66  
#34  
(10×)  
(10×)  
#1  
#33  
+0.075  
-0.035  
0.125  
(1.50)  
22.22±0.10  
(10×)  
(10×)  
0.10 MAX  
0.25TYP  
(0.71)  
0.65TYP  
0.65±0.08  
0.30±0.08  
[
]
0.075 MAX  
NOTE  
1. (  
0×~8×  
) IS REFERENCE  
2. [  
] IS ASSY OUT QUALITY  
- 18 -  
Rev. 1.3 April 2007  

相关型号:

K4D553235F-GC

256M GDDR SDRAM
SAMSUNG

K4D553235F-GC20

Synchronous Graphics RAM, 8MX32, 0.35ns, CMOS, PBGA144, FBGA-144
SAMSUNG

K4D553235F-GC22

Synchronous Graphics RAM, 8MX32, 0.45ns, CMOS, PBGA144, FBGA-144
SAMSUNG

K4D553235F-GC220

DDR DRAM, 8MX32, 0.45ns, CMOS, PBGA144, FBGA-144
SAMSUNG

K4D553235F-GC25

256M GDDR SDRAM
SAMSUNG

K4D553235F-GC2A

256M GDDR SDRAM
SAMSUNG

K4D553235F-GC33

256M GDDR SDRAM
SAMSUNG

K4D553235F-VC200

DDR DRAM, 8MX32, 0.35ns, CMOS, PBGA144, LEAD FREE, FBGA-144
SAMSUNG

K4D553235F-VC22

Synchronous Graphics RAM, 8MX32, 0.45ns, CMOS, PBGA144, LEAD FREE, FBGA-144
SAMSUNG

K4D553235F-VC220

DDR DRAM, 8MX32, 0.45ns, CMOS, PBGA144, LEAD FREE, FBGA-144
SAMSUNG

K4D553238E-JC400

DDR DRAM, 8MX32, 0.6ns, CMOS, PBGA144, FBGA-144
SAMSUNG

K4D553238E-JC50

DDR DRAM, 8MX32, 0.7ns, CMOS, PBGA144, FBGA-144
SAMSUNG