K4N56163QF-GC33 [SAMSUNG]

DDR DRAM, 16MX16, 0.47ns, CMOS, PBGA84, FBGA-84;
K4N56163QF-GC33
型号: K4N56163QF-GC33
厂家: SAMSUNG    SAMSUNG
描述:

DDR DRAM, 16MX16, 0.47ns, CMOS, PBGA84, FBGA-84

时钟 动态存储器 双倍数据速率 内存集成电路
文件: 总19页 (文件大小:324K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
256M gDDR2 SDRAM  
K4N56163QF-GC  
256Mbit gDDR2 SDRAM  
Revision 1.8  
May 2005  
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,  
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.  
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,  
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,  
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY. ALL  
INFORMATION IN THIS DOCUMENT IS PROVIDED  
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.  
1. For updates or additional information about Samsung products, contact your nearest Samsung office.  
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or similar  
applications where Product failure could result in loss of life or personal or physical harm, or any military or  
defense application, or any governmental procurement to which special terms or provisions may apply.  
* Samsung Electronics reserves the right to change products or specification without notice.  
Rev. 1.8 May 2005  
- 1 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
Revision History  
Revision  
Month  
Year  
History  
- Target Spec  
- Defined Target Specification  
0.0  
April  
2004  
- DC spec defined.  
1.0  
1.1  
1.2  
October  
December  
December  
2004  
2004  
2004  
- Changed VDD&VDDQ of K4N56163QF-GC20/22 from 1.8V+0.1V to 2.0V+0.1V  
- Changed ICC2P and ICC6 to 10mA  
- Changed the DC characteristics table  
- Added 50 ohm at the EMRS(1) programming table.  
1.3  
1.4  
1.5  
1.6  
1.7  
January  
February  
March  
April  
2005  
2005  
2005  
2005  
2005  
- Typo corrected  
- Added Lead-Free part number in the datasheet.  
- Removed K4N56163QF-GC20/22 from the datasheet.  
- Modified Power-up and Initialization Sequence on page 22.  
- Corrected typo.  
April  
- Changed speed bin organization.  
(K4N56163QF-GC2A/K4N56163QF-GC33/K4N56163QF-GC36)  
- 533 Speed bin changed into 550 speed bin.  
- 600 speed bin is added.  
1.8  
May  
2005  
- 667 speed bin changed into 700 speed bin.  
- Seperated device operation and timing diagram  
- Corrected typo.  
Rev. 1.8 May 2005  
- 2 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
4M x 16Bit x 4 Banks graphic DDR2 Synchronous DRAM  
with Differential Data Strobe  
1.0 FEATURES  
• 1.8V + 0.1V power supply for device operation  
• 1.8V + 0.1V power supply for I/O interface  
• 4 Banks operation  
• Bi-directional Differential Data-Strobe  
(Single-ended data-strobe is an optional feature)  
• Off-chip Driver (OCD) Impedance Adjustment  
• On Die Termination  
• Posted CAS  
• Programmable CAS Letency : 4,5,6 and 7  
• Programmable Additive Latency : 0, 1, 2, 3. 4 and 5  
• Write Latency (WL) = Read Latency (RL) -1  
• Burst Legth : 4 and 8 (Interleave/nibble sequential)  
• Programmable Sequential/ Interleave Burst Mode  
• Refresh and Self Refresh  
Average Refesh Period 7.8us at lower then TCASE 85×C,  
3.9us at 85×C < TCASE < 95 ×C  
• 84 ball FBGA  
2.0 ORDERING INFORMATION  
Part NO.  
Max Freq.  
Max Data Rate  
800Mbps/pin  
700Mbps/pin  
600Mbps/pin  
550Mbps/pin  
Interface  
Package  
K4N56163QF-GC25  
K4N56163QF-GC2A*  
K4N56163QF-GC33  
K4N56163QF-GC36*  
400MHz  
350MHz  
300MHz  
275MHz  
SSTL  
84 Ball FBGA  
* K4N56163QF-GC2A/36 can fully cover previous K4N56163QF-GC30/37(667/533Mbps) product.  
** K4N56163QF-ZC is the Lead-Free part number.  
3.0 GENERAL DESCRIPTION  
FOR 4M x 16Bit x 4 Bank gDDR2 SDRAM  
The 256Mb gDDR2 SDRAM chip is organized as 4Mbit x 16 I/O x 4banks banks device. This synchronous device achieve high speed  
graphic double-data-rate transfer rates of up to 1000Mb/sec/pin for general applications. The chip is designed to comply with the follow-  
ing key gDDR2 SDRAM features such as posted CAS with additive latency, write latency = read latency - 1, Off-Chip Driver(OCD)  
impedance adjustment and On Die Termination.  
All of the control and address inputs are synchronized with a pair of externally supplied differential clocks. Inputs are latched at the cross  
point of differential clocks (CK rising and CK falling). All I/Os are synchronized with a pair of bidirectional strobes (DQS and DQS) in a  
source synchronous fashion. A thirteen bit address bus is used to convey row, column, and bank address information in a RAS/CAS  
multiplexing style. For example, 256Mb(x16) device receive 13/9/2 addressing. The 256Mb gDDR2 devices operate with a single  
1.8V ± 0.1V power supply and 1.8V ± 0.1V VDDQ.  
The 256Mb gDDR2 devices are available in 84ball FBGAs(x16).  
Note : The functionality described and the timing specifications included in this data sheet are for the DLL Enabled mode of operation.  
Rev. 1.8 May 2005  
- 3 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
4.0 PIN CONFIGURATION  
Normal Package (Top View)  
1
2
3
7
8
9
A
VSSQ  
UDQS  
VDDQ  
UDQ2  
VSSQ  
UDQS  
VSSQ  
VDDQ  
VDD  
NC  
VSS  
UDM  
UDQ6  
VSSQ  
UDQ1  
B
C
UDQ7  
VDDQ  
VDDQ  
UDQ3  
VSS  
VDDQ  
UDQ4  
VDD  
UDQ0  
D
E
F
VSSQ  
LDQS  
VSSQ  
UDQ5  
VDDQ  
VSSQ  
NC  
LDQ6  
VSSQ  
LDQ1  
LDM  
LDQS  
VDDQ  
LDQ2  
LDQ7  
VDDQ  
LDQ4  
VDDQ  
LDQ3  
LDQ0  
VSSQ  
CK  
VDDQ  
G
H
J
VSSQ  
VREF  
CKE  
LDQ5  
VDDL  
VSS  
WE  
VSSDL  
RAS  
VDD  
ODT  
K
CK  
NC  
L
BA0  
A10  
A3  
BA1  
A1  
CAS  
A2  
CS  
A0  
A4  
A8  
M
N
P
VDD  
VSS  
VSS  
A5  
A6  
A7  
A9  
A11  
R
VDD  
A12  
NC  
NC  
NC  
Note : VDDL and VSSDL are power and ground for the DLL. lt is recommended that  
they are isolated on the device from VDD, VDDQ, VSS, and VSSQ.  
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
+ + +  
Ball Locations  
: Populated Ball  
: Depopulated Ball  
+
G
H
J
Top View  
(See the balls through the Package)  
K
L
+
+
+
+
+
+
M
N
P
R
Rev. 1.8 May 2005  
- 4 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
5.0 PACKAGE DIMENSIONS (84 Ball FBGA)  
11.00 ± 0.10  
# A1 INDEX MARK (OPTIONAL)  
6.40  
0.80  
1.60  
4
9
8
7
6
5
3
2
1
A
B
C
D
E
F
G
H
M
J
K
N
L
P
R
3.20  
(6.15)  
(0.90)  
(1.80)  
84-0.45±0.05  
0.2 M  
A B  
11.00 ± 0.10  
#A1  
0.35±0.05  
MAX.1.20  
Unit : mm  
Rev. 1.8 May 2005  
- 5 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
6.0 INPUT/OUTPUT FUNCTIONAL DESCRIPTION  
Symbol  
Type  
Function  
Clock: CK and CK are differential clock inputs. CMD, ADD inputs are sampled on the crossing of the posi-  
CK, CK  
Input tive edge of CK and negative edge of CK. Output (read) data is referenced to the crossings of CK and CK  
(both directions of crossing).  
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input  
buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self Refresh operation  
(all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for power down entry  
and exit, and for self refresh entry. CKE is asynchronous for self refresh exit. CKE must be maintained high  
CKE  
Input  
throughout read and write accesses. Input buffers, excluding CK, CK and CKE are disabled during power-  
down. Input buffers, excluding CKE, are disabled during self refresh.  
Chip Select: All commands are masked when CS is registered HIGH. CS provides for external bank selec-  
tion on systems with multiple banks. CS is considered part of the command code.  
CS  
Input  
On Die Termination: ODT (registered HIGH) enables termination resistance internal to the gDDR2  
SDRAM. When enabled, ODT is only applied to each DQ, UDQS/UDQS, LDQS/LDQS, UDM, and LDM  
signal for x16 configurations. The ODT pin will be ignored if the Extended Mode Register (EMRS) is pro-  
ODT  
Input  
grammed to disable ODT.  
RAS, CAS, WE  
(L)UDM  
Input Command Inputs: RAS, CAS and WE (along with CS) define the command being entered.  
Input Data Mask: DM is an input mask signal for write data. Input data is masked when DM is sampled  
Input HIGH coincident with that input data during a Write access. DM is sampled on both edges of DQS.  
Although DM pins are input only, the DM loading matches the DQ and DQS loading.  
Bank Address Inputs: BA0 and BA1 define to which bank an Actove, Read, Write or Precharge command  
Input is being applied. BA0 also determines if the mode register or extended mode register is to be accessed dur-  
ing a MRS or EMRS cycle.  
BA0 - BA1  
Address Inputs: Provided the row address for Active commands and the column address and Auto Pre-  
charge bit for Read/Write commands to select one location out of the memory array in the respective bank.  
Input A10 is sampled during a Precharge command to determine whether the Precharge applies to one bank  
(A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is selected by BA0,  
BA1. The address inputs also provide the op-code during Mode Register Set commands.  
A0 - A12  
DQ  
Input/  
Data Input/ Output: Bi-directional data bus.  
Output  
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write  
data. LDQS corresponds to the data on DQ0-DQ7; UDQS corresponds to the data on DQ8-DQ15. The data  
Input/  
LDQS,(LDQS)  
UDQS,(UDQS)  
strobes LDQS and UDQS may be used in single ended mode or paired with optional complementary sig-  
Output  
nals LDQS and UDQS to provide differential pair signaling to the system during both reads and writes. An  
EMRS(1) control bit enables or disables all complementary data strobe signals.  
No Connect: No internal electrical connection is present.  
Supply DQ Power Supply: 1.8V ± 0.1V  
NC/RFU  
VDDQ  
VSSQ  
VDDL  
VSSL  
VDD  
Supply DQ Ground  
Supply DLL Power Supply: 1.8V ± 0.1V  
Supply DLL Ground  
Supply Power Supply: 1.8V ± 0.1V  
Supply Ground  
VSS  
VREF  
Supply Reference voltage  
Rev. 1.8 May 2005  
- 6 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
7.0 ABSOLUTE MAXIMUM DC RATINGS  
Symbol  
Parameter  
Voltage on VDD pin relative to Vss  
Voltage on VDDQ pin relative to Vss  
Voltage on VDDL pin relative to Vss  
Voltage on any pin relative to Vss  
Rating  
Units  
Notes  
VDD  
- 1.0 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
- 0.5 V ~ 2.3 V  
V
V
V
V
1
1
1
1
VDDQ  
VDDL  
VIN, VOUT  
TSTG  
Storage Temperature  
-55 to +100  
°C  
1, 2  
Note :  
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to JESD51-  
2 standard.  
8.0 AC & DC OPERATING CONDITIONS  
8.1 Recommended DC Operating Conditions (SSTL - 1.8)  
Rating  
Symbol  
Parameter  
Units  
Notes  
Min.  
1.7  
Typ.  
1.8  
Max.  
1.9  
VDD  
VDDL  
VDDQ  
VREF  
VTT  
Supply Voltage  
V
V
Supply Voltage for DLL  
Supply Voltage for Output  
Input Reference Voltage  
Termination Voltage  
1.7  
1.8  
1.9  
4
4
1.7  
1.8  
1.9  
V
0.49*VDDQ  
VREF-0.04  
0.50*VDDQ  
VREF  
0.51*VDDQ  
VREF+0.04  
mV  
V
1,2  
3
Note : There is no specific device VDD supply voltage requirement for SSTL-1.8 compliance. However under all conditions VDDQ must be less than or  
equal to VDD.  
1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically the value of VREF is expected to be about  
0.5 x VDDQ of the transmitting device and VREF is expected to track variations in VDDQ.  
2. Peak to peak AC noise on VREF may not exceed +/-2% VREF(DC).  
3. VTT of transmitting device must track VREF of receiving device.  
4. AC parameters are measured with VDD, VDDQ and VDDDL tied together.  
8.2 Operating Temperature Condition  
Symbol  
Parameter  
Rating  
Units  
Note  
TOPER  
Operating Temperature  
0 to 95  
°C  
1, 2, 3  
Note :  
1. Operating Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement conditions, please refer to  
JESD51.2 standard.  
2. At 0 - 85 °C, operation temperature range are the temperature which all DRAM specification will be supported.  
3. At 85 - 95 °C operation temperature range, doubling refresh commands in frequency to a 32ms period ( tREFI=3.9 us ) is required, and to enter to self  
refresh mode at this temperature range, an EMRS command is required to change internal refresh rate.  
8.3 Input DC & AC Logic Level  
Input DC Logic Level  
Symbol  
IH(DC)  
Parameter  
Min.  
Max.  
Units  
Note  
Note  
V
VREF + 0.125  
VDDQ - 0.3  
VDDQ + 0.3  
VREF - 0.125  
DC input logic high  
DC input logic low  
V
V
VIL(DC)  
Input AC Logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
VIH(AC)  
VIL(AC)  
AC input logic high  
-
V
VREF + 0.250  
-
AC input logic low  
VREF - 0.250  
V
Rev. 1.8 May 2005  
- 7 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
8.4 AC Input Test Conditions  
Symbol  
Condition  
Input reference voltage  
Value  
Units  
Note  
VREF  
0.5 * VDDQ  
V
1
VSWING(MAX)  
Input signal maximum peak to peak swing  
Input signal minimum slew rate  
1.0  
1.0  
V
1
SLEW  
Note :  
V/ns  
2, 3  
1. Input waveform timing is referenced to the input signal crossing through the V  
2. The input signal minimum slew rate is to be maintained over the range from V  
max for falling edges as shown in the below figure.  
(AC) level applied to the device under test.  
IH/IL  
to V (AC) min for rising edges and the range from V  
to V (AC)  
IL  
REF  
IH  
REF  
3. AC timings are referenced with input waveforms switching from V (AC) to V (AC) on the positive transitions and V (AC) to V (AC) on the negative  
IL  
IH  
IH  
IL  
transitions.  
VDDQ  
VIH(AC) min  
VIH(DC) min  
VSWING(MAX)  
VREF  
VIL(DC) max  
VIL(AC) max  
VSS  
delta TF  
V
delta TR  
Rising Slew =  
REF - VIL(AC) max  
delta TF  
VIH(AC) min - VREF  
delta TR  
Falling Slew =  
< AC Input Test Signal Waveform >  
8.5 Differential input AC logic Level  
Symbol  
Parameter  
Min.  
Max.  
Units  
Note  
VID(AC)  
AC differential input voltage  
VDDQ + 0.6  
V
1
0.5  
VIX(AC)  
AC differential cross point voltage  
0.5 * VDDQ - 0.175  
0.5 * VDDQ + 0.175  
V
2
Note :  
1. VID(AC) specifies the input differential voltage |VTR -VCP | required for switching, where VTR is the true input signal (such as CK, DQS, LDQS or  
UDQS) and VCP is the complementary input signal (such as CK, DQS, LDQS or UDQS). The minimum value is equal to VIH(AC) - VIL(AC).  
2. The typical value of VIX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VIX(AC) is expected to track variations in VDDQ .  
VIX(AC) indicates the voltage at which differential input signals must cross.  
V
DDQ  
V
TR  
Crossing point  
V
ID  
V
V
IX or OX  
V
CP  
V
SSQ  
< Differential signal levels >  
8.6 Differential AC output parameters  
Symbol  
Parameter  
Min.  
Max.  
0.5 * VDDQ + 0.125  
Units  
Note  
VOX(AC)  
AC differential cross point voltage  
0.5 * VDDQ - 0.125  
V
1
Note :  
1. The typical value of VOX(AC) is expected to be about 0.5 * VDDQ of the transmitting device and VOX(AC) is expected to track variations in VDDQ .  
VOX(AC) indicates the voltage at which differential output signals must cross.  
Rev. 1.8 May 2005  
- 8 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
8.7 OCD default characteristics  
Description  
Output impedance  
Parameter  
Min  
Nom  
Max  
Unit  
Note  
12.6  
18  
23.4  
ohms  
1,2  
Output impedance step size for  
OCD calibration  
0
1.5  
ohms  
6
Pull-up and pull-down mismatch  
Output slew rate  
0
4
5
ohms  
V/ns  
1,2,3  
Sout  
1.5  
1,4,5,6,7,8  
Notes:  
1. Absolute Specifications (0°C T  
+95°C; VDD = +1.8V ±0.1V, VDDQ = +1.8V ±0.1V)  
CASE  
2. Impedance measurement condition for output source dc current: VDDQ = 1.7V; VOUT = 1420mV; (VOUT-VDDQ)/Ioh must be less than 23.4 ohms for  
values of VOUT between VDDQ and VDDQ-280mV. Impedance measurement condition for output sink dc current: VDDQ = 1.7V; VOUT = 280mV;  
VOUT/Iol must be less than 23.4 ohms for values of VOUT between 0V and 280mV.  
3. Mismatch is absolute value between pull-up and pull-dn, both are measured at same temperature and voltage.  
4. Slew rate measured from V (AC) to V (AC).  
IL  
IH  
5. The absolute value of the slew rate as measured from DC to DC is equal to or greater than the slew rate as measured from AC to AC. This is guaran-  
teed by design and characterization.  
6. This represents the step size when the OCD is near 18 ohms at nominal conditions across all process and represents only the DRAM uncertainty.  
Output slew rate load :  
VTT  
25 ohms  
Output  
(VOUT)  
Reference  
Point  
7. DRAM output slew rate specification applies to 533Mb/sec/pin, 667Mb/sec/pin, 800Mb/sec/pin, 900Mbps/sec/pin and  
1000Mbps/sec/pin speed bins.  
8. Timing skew due to DRAM output slew rate mis-match between DQS / DQS and associated DQs is included in tDQSQ and tQHS  
specification.  
8.8 DC characteristics  
(Recommended operating conditions unless otherwise noted, 0°C Tc ≤85°C )  
Version  
Parameter  
Symbol  
Test Condition  
Unit  
-25  
-2A  
-33  
-36  
Burst Length=4 tRC tRC(min). IOL=0mA, tCC= tCC(min).  
DQ,DM,DQS inputs changing twice per clock cycle. Address  
and control inputs changing once per clock cycle  
Operating Current  
(One Bank Active)  
ICC1  
150  
130  
125  
120  
mA  
Precharge Standby Current  
in Power-down mode  
ICC2P  
ICC2N  
ICC3P  
CKE VIL(max), tCC= tCC(min)  
10  
mA  
mA  
mA  
Precharge Standby Current  
in Non Power-down mode  
CKE VIH(min), CS VIH(min),tCC= tCC(min)  
Address and control inputs changing once per clock cycle  
45  
50  
45  
50  
40  
45  
40  
45  
Active Standby Current  
power-down mode  
CKE VIL(max), tCC= tCC(min)  
CKE VIH(min), CS VIH(min), tCC= tCC(min) DQ,DM,DQS  
inputs changing twice per clock cycle. Address and control  
inputs changing once per clock cycle  
Active Standby Current in  
in Non Power-down mode  
ICC3N  
ICC4  
85  
85  
80  
80  
mA  
mA  
IOL=0mA ,tCC= tCC(min),  
Operating Current  
( Burst Mode)  
Page Burst, All Banks activated. DQ,DM,DQS inputs chang-  
ing twice per clock cycle. Address and control inputs changing  
once per clock.  
300  
190  
290  
180  
270  
170  
260  
160  
Refresh Current  
ICC5  
ICC6  
tRCtRFC  
CKE 0.2V  
mA  
mA  
Self Refresh Current  
10  
Burst Length=4 tRC tRC(min). IOL=0mA, tCC= tCC(min).  
DQ,DM,DQS inputs changing twice per clock cycle. Address  
and control inputs changing once per clock cycle  
Operating Current  
(4Bank interleaving)  
ICC7  
430  
410  
370  
350  
mA  
Note :  
1. Measured with outputs open and ODT off  
2. Refresh period is 32ms  
Rev. 1.8 May 2005  
- 9 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
8.9 Input/Output capacitance  
- 2A  
- 25  
- 36  
-33  
Parameter  
Symbol  
Units  
Min  
1.0  
x
Max  
2.0  
Min  
1.0  
x
Max  
2.0  
Min  
1.0  
x
Max  
2.0  
Input capacitance, CK and CK  
CCK  
CDCK  
CI  
pF  
pF  
pF  
pF  
pF  
pF  
Input capacitance delta, CK and CK  
0.25  
2.0  
0.25  
2.0  
0.25  
2.0  
Input capacitance, all other input-only pins  
Input capacitance delta, all other input-only pins  
Input/output capacitance, DQ, DM, DQS, DQS  
Input/output capacitance delta, DQ, DM, DQS, DQS  
1.0  
x
1.0  
x
1.0  
x
CDI  
0.25  
4.0  
0.25  
4.0  
0.25  
3.5  
CIO  
2.5  
x
2.5  
x
2.5  
x
CDIO  
0.5  
0.5  
0.5  
9.0 Electrical Characteristics & AC Timing for - 25/2A/33/36  
(0 °C < T  
< 95 °C; V  
= 1.8V + 0.1V; V = 1.8V + 0.1V)  
CASE  
DDQ DD  
9.1 Refresh Parameters by Device Density  
Parameter  
Symbol  
256Mb  
75  
Units  
ns  
Refresh to active/Refresh command time  
tRFC  
0 °C TCASE 85°C  
7.8  
µs  
Average periodic refresh interval  
tREFI  
85 °C < TCASE 95°C  
3.9  
µs  
9.2 Speed Bins and CL, tRCD, tRP, tRC and tRAS  
SPEED  
Bin (CL-tRCD-tRP)  
Parameter  
CAS LATENCY  
tCK  
- 25  
6-6-6  
min  
6
- 2A  
5-5-5  
min  
5
-33  
5-5-5  
min  
5
- 36  
Units  
4-5-5  
min  
4
tCK  
ns  
2.5  
6
2.86  
5
3.3  
5
3.6  
5
tRCD  
tCK  
tCK  
tCK  
tCK  
tRP  
6
5
5
5
tRC  
22  
18  
18  
16  
11  
tRAS  
16  
13  
13  
Rev. 1.8 May 2005  
- 10 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
9.3 Timing Parameters by Speed Grade  
(Refer to notes for informations related to this table at the bottom)  
- 25  
max  
-400 +400  
-350 +350 -400 +400 -420 +420  
- 2A  
min max  
-450 +450 -470 +470  
- 33  
- 36  
min max  
Parameter  
Symbol  
Units Notes  
min  
min max  
DQ output access time from CK/CK  
DQS output access time from CK/CK  
CK high-level width  
tAC  
-500 +500  
-450 +450  
ps  
ps  
tDQSCK  
tCH  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
0.45  
0.45  
0.55  
0.55  
tCK  
tCK  
CK low-level width  
tCL  
min  
(tCL,  
tCH)  
min  
(tCL,  
tCH)  
min  
(tCL,  
tCH)  
min  
(tCL,  
tCH)  
CK half period  
tHP  
x
x
x
x
ps  
20,21  
24  
Clock cycle time, CL= x  
tCK  
tDH  
2.5  
8.0  
x
2.86  
8.0  
x
3.3  
8.0  
x
3.6  
8.0  
x
ns  
ps  
15,16,  
17  
DQ and DM input hold time  
175  
175  
195  
225  
15,16,  
17  
DQ and DM input setup time  
tDS  
50  
0.6  
0.35  
x
x
x
x
50  
0.6  
0.35  
x
x
x
x
70  
0.6  
0.35  
x
x
x
x
100  
0.6  
0.35  
x
x
x
x
ps  
tCK  
tCK  
ps  
Control & Address input pulse width for  
each input  
tIPW  
tDIPW  
tHZ  
DQ and DM input pulse width for each  
input  
Data-out high-impedance time from CK/  
CK  
tAC  
max  
tAC  
max  
tAC  
max  
tAC  
max  
tLZ  
(DQS)  
tAC  
min  
tAC  
max  
tAC  
min  
tAC  
max  
tAC  
min  
tAC  
max  
tAC  
min  
tAC  
max  
DQS low-impedance time from CK/CK  
DQ low-impedance time from CK/CK  
ps  
27  
27  
2*tAC tAC 2*tAC tAC 2*tAC tAC 2* tAC tAC  
min  
tLZ(DQ)  
ps  
max  
280  
380  
x
min  
max  
310  
410  
x
min  
max  
320  
420  
x
min  
max  
340  
440  
x
DQS-DQ skew for DQS and associated  
DQ signals  
tDQSQ  
tQHS  
tQH  
x
x
x
x
ps  
ps  
ps  
22  
21  
DQ hold skew factor  
x
x
x
x
tHP -  
tQHS  
tHP -  
tQHS  
tHP -  
tQHS  
tHP -  
tQHS  
DQ/DQS output hold time from DQS  
Write command to first DQS latching tran-  
sition  
WL  
WL  
WL  
WL  
WL  
WL  
WL  
WL  
tDQSS  
tCK  
-0.25 +0.25 -0.25 +0.25 -0.25 +0.25 -0.25 +0.25  
DQS input high pulse width  
DQS input low pulse width  
DQS falling edge to CK setup time  
DQS falling edge hold time from CK  
Mode register set command cycle time  
Write postamble  
tDQSH  
tDQSL  
tDSS  
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
0.35  
0.35  
0.2  
0.2  
2
x
x
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
tCK  
x
x
x
x
tDSH  
x
x
x
x
tMRD  
x
x
x
x
tWPST  
tWPRE  
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
0.4  
0.35  
0.6  
x
19  
Write preamble  
14,16,  
18  
Address and control input hold time  
Address and control input setup time  
tIH  
tIS  
250  
175  
x
x
325  
200  
x
x
345  
220  
x
x
375  
250  
x
x
ps  
ps  
14,16,  
18  
Read preamble  
Read postamble  
tRPRE  
tRPST  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
0.9  
0.4  
1.1  
0.6  
tCK  
tCK  
28  
28  
Active to active command period for 1KB  
page size products  
tRRD  
tRRD  
7.5  
10  
x
x
7.5  
10  
x
x
7.5  
10  
x
x
7.5  
10  
x
x
ns  
ns  
12  
12  
Active to active command period for 2KB  
page size products  
Rev. 1.8 May 2005  
- 11 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
- 25  
max  
- 2A  
-33  
- 36  
max  
Parameter  
Symbol  
tFAW  
Units Notes  
min  
min  
max  
min  
max  
min  
Four Activate Window for 1KB page size  
products  
37.5  
37.5  
50  
37.5  
37.5  
ns  
ns  
Four Activate Window for 2KB page size  
products  
tFAW  
50  
50  
50  
CAS to CAS command delay  
Write recovery time  
tCCD  
tWR  
2
6
2
5
2
5
2
4
tCK  
tCK  
x
x
x
x
x
x
x
x
Auto precharge write recovery + precharge  
time  
tWR  
+tRP  
tWR  
+tRP  
tWR  
+tRP  
tWR  
+tRP  
tDAL  
x
x
tCK  
23  
11  
Internal write to read command delay  
tWTR  
3
3
x
3
3
3
3
2
2
x
tCK  
tCK  
Internal read to precharge command delaytRTP  
tRFC +  
10  
tRFC +  
10  
tRFC +  
10  
tRFC +  
10  
Exit self refresh to a non-read command tXSNR  
ns  
Exit self refresh to a read command  
tXSRD  
tXP  
200  
200  
200  
200  
tCK  
tCK  
tCK  
tCK  
Exit precharge power down to any non-  
read command  
2
x
x
2
x
x
2
x
x
2
x
Exit active power down to read command tXARD  
2
2
2
2
x
9
Exit active power down to read command  
tXARDS  
6 - AL  
6 - AL  
6 - AL  
6 - AL  
9, 10  
(Slow exit, Lower power)  
CKE minimum pulse width  
tCKE  
3
3
3
2
3
2
3
2
tCK  
tCK  
(high and low pulse width)  
ODT turn-on delay  
tAOND  
tAON  
3
2
2
2
tAC  
(max)+  
0.7  
tAC  
(max)+  
0.7  
tAC  
(max)+  
0.7  
tAC  
(max)+  
1
tAC  
(min)  
tAC  
(min)  
tAC  
(min)  
tAC  
(min)  
ODT turn-on  
ns  
13, 25  
2tCK+  
tAC(ma  
x)+1  
2tCK+  
tAC(ma  
x)+1  
2tCK+  
tAC(ma  
x)+1  
2tCK+t  
AC(ma  
x)+1  
tAC  
(min)+2  
tAC  
(min)+2  
tAC  
(min)+2  
tAC  
(min)+2  
ODT turn-on(Power-Down mode)  
ODT turn-off delay  
tAONPD  
tAOFD  
tAOF  
ns  
tCK  
ns  
3.5  
3.5  
2.5  
2.5  
2.5  
2.5  
2.5  
2.5  
tAC  
(max)+  
0.6  
tAC  
(max)+  
0.6  
tAC  
(max)+  
0.6  
tAC  
(max)+  
0.6  
tAC  
(min)  
tAC  
(min)  
tAC  
(min)  
tAC  
(min)  
ODT turn-off  
26  
2.5tCK  
+
n)+2 tAC(ma  
x)+1  
2.5tCK  
+tAC(m  
ax)+1  
2.5tCK  
+tAC(m  
ax)+1  
2.5tCK  
+tAC(m  
ax)+1  
tAC(mi  
n)+2  
tAC(mi  
n)+2  
tAC(mi  
n)+2  
tAC(mi  
ODT turn-off (Power-Down mode)  
tAOFPD  
ns  
ODT to power down entry latency  
ODT power down exit latency  
OCD drive mode output delay  
tANPD  
tAXPD  
tOIT  
3
8
0
3
8
0
3
8
0
3
8
tCK  
tCK  
ns  
12  
12  
12  
0
12  
Minimum time clocks remains ON after  
CKE asynchronously drops LOW  
tIS+tC  
K +tIH  
tIS+tC  
K +tIH  
tIS+tC  
K +tIH  
tIS+tC  
K +tIH  
tDelay  
ns  
24  
Note : General notes, which may apply for all AC parameters  
1. Slew Rate Measurement Levels  
a. Output slew rate for falling and rising edges is measured between VTT - 250 mV and VTT + 250 mV for single ended signals. For differential signals  
(e.g. DQS - DQS) output slew rate is measured between DQS - DQS = -500 mV and DQS - DQS = +500mV. Output slew rate is guaranteed by  
design, but is not necessarily tested on each device.  
b. Input slew rate for single ended signals is measured from dc-level to ac-level: from VREF - 125 mV to VREF + 250 mV for rising edges and from  
VREF + 125 mV and VREF - 250 mV for falling edges. For differential signals (e.g. CK - CK) slew rate for rising edges is measured from CK - CK =  
-250 mV to CK - CK = +500 mV (250mV to -500 mV for falling egdes).  
c. VID is the magnitude of the difference between the input voltage on CK and the input voltage on CK, or between DQS and DQS for differential  
strobe.  
Rev. 1.8 May 2005  
- 12 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
2. gDDR2 SDRAM AC timing reference load  
Following figure represents the timing reference load used in defining the relevant timing parameters of the part. It is not intended to be either a precise  
representation of the typical system environment or a depiction of the actual load presented by a production tester. System designers will use IBIS or  
other simulation tools to correlate the timing reference load to a system environment. Manufacturers will correlate to their production test conditions (gen-  
erally a coaxial transmission line terminated at the tester electronics).  
VDDQ  
DQ  
DQS  
DQS  
Output  
DUT  
V
= V  
/2  
TT  
DDQ  
Timing  
reference  
point  
25Ω  
<AC Timing Reference Load>  
The output timing reference voltage level for single ended signals is the crosspoint with VTT. The output timing reference voltage level for differential sig-  
nals is the crosspoint of the true (e.g. DQS) and the complement (e.g. DQS) signal.  
3. gDDR2 SDRAM output slew rate test load  
Output slew rate is characterized under the test conditions as shown in the following figure.  
VDDQ  
DUT  
DQ  
Output  
DQS, DQS  
V
= V  
/2  
TT  
DDQ  
25Ω  
<Slew Rate Test Load>  
Test point  
4. Differential data strobe  
gDDR2 SDRAM pin timings are specified for either single ended mode or differential mode depending on the setting of the EMRS “Enable DQS” mode  
bit; timing advantages of differential mode are realized in system design. The method by which the gDDR2 SDRAM pin timings are measured is mode  
dependent. In single ended mode, timing relationships are measured relative to the rising or falling edges of DQS crossing at VREF. In differential mode,  
these timing relationships are measured relative to the crosspoint of DQS and its complement, DQS. This distinction in timing methods is guaranteed by  
design and characterization. Note that when differential data strobe mode is disabled via the EMRS, the complementary pin, DQS, must be tied externally  
to VSS through a 20 ohm to 10 K ohm resisor to insure proper operation.  
t
t
DQSL  
DQSH  
DQS  
DQS  
DQS/  
DQS  
t
t
WPST  
WPRE  
VIH(dc)  
VIL(dc)  
VIH(ac)  
DQ  
DM  
D
D
D
D
t
VIL(ac)  
t
t
DH  
DH  
VIH(dc)  
DS  
t
DS  
VIH(ac)  
DMin  
DMin  
DMin  
DMin  
VIL(ac)  
VIL(dc)  
<Data input (write) timing>  
t
t
CL  
CH  
CK  
CK  
CK/CK  
DQS  
DQS  
DQS/DQS  
DQ  
t
t
RPRE  
RPST  
Q
Q
Q
Q
t
DQSQmax  
t
DQSQmax  
t
QH  
t
QH  
<Data output (read) timing>  
Rev. 1.8 May 2005  
- 13 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
5. AC timings are for linear signal transitions.  
6. These parameters guarantee device behavior, but they are not necessarily tested on each device.  
They may be guaranteed by device design or tester correlation.  
7. All voltages are referenced to VSS.  
8. Tests for AC timing, IDD, and electrical (AC and DC) characteristics, may be conducted at nominal reference/supply voltage levels, but the related  
specifications and device operation are guaranteed for the full voltage range specified.  
: Specific Notes for dedicated AC parameters  
9. User can choose which active power down exit timing to use via MRS(bit 12). tXARD is expected to be used for fast active power down exit timing.  
tXARDS is expected to be used for slow active power down exit timing.  
10. AL = Additive Latency  
11. This is a minimum requirement. Minimum read to precharge timing is AL + BL/2 providing the tRTP and tRAS(min) have been satisfied.  
12. A minimum of two clocks (2 * tCK) is required irrespective of operating frequency  
13. Timings are guaranteed with command/address input slew rate of 1.0 V/ns.  
14. These parameters guarantee device behavior, but they are not necessarily tested on each device. They may be guaranteed by device design or  
tester correlation.  
15. Timings are guaranteed with data, mask, and (DQS in singled ended mode) input slew rate of 1.0 V/ns.  
16. Timings are guaranteed with CK/CK differential slew rate of 2.0 V/ns. Timings are guaranteed for DQS signals with a differential slew rate of 2.0 V/ns  
in differential strobe mode and a slew rate of 1V/ns in single ended mode.  
17. tDS and tDH (data setup and hold) derating  
1) Input waveform timing is referenced from the input signal crossing at the V (AC) level for a rising signal and V (AC) for a falling signal applied to  
IH  
IL  
the device under test.  
2) Input waveform timing is referenced from the input signal crossing at the V (DC) level for a rising signal and V (DC) for a falling signal applied to  
IH  
IL  
the device under test.  
tDS, tDH Derating Values (ALL units in ‘ps’, Note 1 applies to entire Table)  
DQS,DQS Differential Slew Rate  
4.0 V/ns  
3.0 V/ns  
2.0 V/ns  
1.8 V/ns  
1.6 V/ns  
1.4V/ns  
1.2V/ns  
1.0V/ns  
0.8V/ns  
tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH tDS tDH  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
125  
45  
21  
0
-
125  
45  
125  
83  
0
45  
21  
0
-
95  
12  
1
-
33  
12  
-2  
-19  
-42  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
83  
0
-
83  
21  
-
-
-
-
0
0
24  
13  
-1  
-19  
-43  
-
24  
10  
-7  
-30  
-59  
-
-
-
-
-
-
-
-
-
-
DQ  
Slew  
rate  
-11  
-14  
-11  
-25  
-
-14  
-31  
-
25  
11  
-7  
-31  
-74  
-
22  
5
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-13  
-31  
-
23  
5
17  
-6  
-35  
-77  
-
-
-
-
-
-
-18  
-47  
-89  
-
17  
-7  
-50  
6
-
-
V/ns  
-
-
-
-
-19  
-62  
-23  
-65  
5
-11  
-53  
-
-
-
-
-
-
-38  
-
-
-
-
-
-
-
-
-127 -140 -115 -128 -103 -116  
For all input signals the total tDS (setup time) and tDH(hold time) required is calculated by adding the datasheet tDS(base) and tDH(base) value to the  
delta tDS and delta tDH derating value respectively. Example : tDS (total setup time) = tDS(base) + delta tDS.  
Rev. 1.8 May 2005  
- 14 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
18. tIS and tIH (input setup and hold) derating  
1) Input waveform timing is referenced from the input signal crossing at the V (AC) level for a rising signal and V (AC) for a falling signal applied to  
IH  
IL  
the device under test.  
2) Input waveform timing is referenced from the input signal crossing at the V (DC) level for a rising signal and V (DC) for a falling signal applied to  
IH  
IL  
the device under test.  
tIS, tIH Derating Values for DDR2 550  
CK,CK Differential Slew Rate  
1.5 V/ns  
Units  
Notes  
2.0 V/ns  
1.0 V/ns  
tIS  
+187  
+179  
+167  
+150  
+125  
+83  
0
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIS  
+217  
+209  
+197  
+180  
+155  
+113  
+30  
tIH  
+124  
+119  
+113  
+105  
+75  
+51  
+30  
+16  
-1  
tIS  
+247  
+239  
+227  
+210  
+185  
+143  
+60  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+60  
0.9  
-11  
-14  
+19  
+49  
+46  
Command  
/Adress Slew  
rate(V/ns)  
0.8  
0.7  
-25  
-31  
+5  
+35  
+29  
-43  
-54  
-13  
-24  
+17  
+6  
0.6  
-67  
-83  
-37  
-53  
-7  
-23  
0.5  
-110  
-175  
-285  
-350  
-525  
-800  
-125  
-188  
-292  
-375  
-500  
-708  
-80  
-95  
-50  
-65  
0.4  
-145  
-255  
-320  
-495  
-770  
-158  
-262  
-345  
-470  
-678  
-115  
-225  
-290  
-465  
-740  
-128  
-232  
-315  
-440  
-648  
0.3  
0.25  
0.2  
0.15  
tIS and tIH Derating Values for DDR2-600 DDR2-700, DDR2-800  
CK,CK Differential Slew Rate  
Units  
Notes  
2.0 V/ns  
1.5 V/ns  
1.0 V/ns  
tIS  
+150  
+143  
+133  
+120  
+100  
+67  
0
tIH  
+94  
+89  
+83  
+75  
+45  
+21  
0
tIS  
+180  
+173  
+163  
+150  
+130  
+97  
+30  
+25  
+17  
+8  
tIH  
+124  
+119  
+113  
+105  
+75  
tIS  
+210  
+203  
+193  
+180  
+160  
+127  
+60  
tIH  
+154  
+149  
+143  
+135  
+105  
+81  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.25  
0.2  
0.15  
0.1  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
+51  
+30  
+60  
-5  
-14  
+16  
+55  
+46  
Command  
/Adress Slew  
rate(V/ns)  
-13  
-31  
-1  
+47  
29  
-22  
-54  
-24  
+38  
+6  
-34  
-83  
-4  
-53  
+26  
-23  
-60  
-125  
-188  
-292  
-375  
-500  
-708  
-1125  
-30  
-95  
0
-65  
-100  
-168  
-200  
-325  
-517  
-1000  
-70  
-158  
-262  
-345  
-470  
-678  
-1095  
-40  
-128  
-232  
-315  
-440  
-648  
-1065  
-138  
-170  
-295  
-487  
-970  
-108  
-140  
-265  
-457  
-940  
Rev. 1.8 May 2005  
- 15 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
19. The maximum limit for this parameter is not a device limit. The device will operate with a greater value for this parameter, but system performance  
(bus turnaround) will degrade accordingly.  
20. MIN ( tCL, tCH) refers to the smaller of the actual clock low time and the actual clock high time as provided to the device (i.e. this value can be greater  
than the minimum specification limits for tCL and tCH). For example, tCL and tCH are = 50% of the period, less the half period jitter ( tJIT(HP)) of the  
clock source, and less the half period jitter due to crosstalk ( tJIT(crosstalk)) into the clock traces.  
21. tQH = tHP – tQHS, where:  
tHP = minimum half clock period for any given cycle and is defined by clock high or clock low ( tCH, tCL).  
tQHS accounts for:  
1) The pulse duration distortion of on-chip clock circuits; and  
2) The worst case push-out of DQS on one transition followed by the worst case pull-in of DQ on the next transition, both of which are, separately,  
due to data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers.  
22. tDQSQ: Consists of data pin skew and output pattern effects, and p-channel to n-channel variation of the output drivers as well as output slew rate  
mismatch between DQS / DQS and associated DQ in any given cycle.  
23. tDAL = (nWR) + ( tRP/tCK) :  
For each of the terms above, if not already an integer, round to the next highest integer. tCK refers to the application clock period. nWR refers to the  
tWR parameter stored in the MRS.  
Example: For gDDR550 at t CK = 3.6 ns with tWR programmed to 4 clocks. tDAL = 4 + (18 ns / 3.6 ns) clocks =4 +(5)clocks=9clocks.  
24. The clock frequency is allowed to change during self–refresh mode or precharge power-down mode. In case of clock frequency change during pre-  
charge power-down, a specific procedure is required as described in gDDR2 device operation  
25. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.  
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.  
26. ODT turn off time min is when the device starts to turn off ODT resistance.  
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.  
27. tHZ and tLZ transitions occur in the same access time as valid data transitions. These parameters are referenced to a specific voltage level which  
specifies when the device output is no longer driving (tHZ), or begins driving (tLZ) . Following figure shows a method to calculate the point when  
device is no longer driving (tHZ), or begins driving (tLZ) by measuring the signal at two different voltages. The actual voltage measurement points are  
not critical as long as the calculation is consistent.  
28. tRPST end point and tRPRE begin point are not referenced to a specific voltage level but specify when the device output is no longer driving (tRPST),  
or begins driving (tRPRE). Following figure shows a method to calculate these points when the device is no longer driving (tRPST), or begins driving  
(tRPRE) by measuring the signal at two different voltages. The actual voltage measurement points are not critical as long as the calculation is consis-  
tent. These notes are referenced to the “Timing parameters by speed grade” tables for gDDR2-550/700 and gDDR2-800.  
VTT + 2x mV  
VTT + x mV  
VOH + x mV  
VOH + 2x mV  
tLZ  
tHZ  
tRPRE begin point  
tRPST end point  
VTT - x mV  
VOL + 2x mV  
VOL + x mV  
T1  
T2  
T2  
T1  
VTT - 2x mV  
tHZ,tRPST end point = 2*T1-T2  
tLZ,tRPRE begin point = 2*T1-T2  
<Test method for tLZ, tHZ, tRPRE and tRPST>  
Rev. 1.8 May 2005  
- 16 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
29. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the V  
level to the differ-  
IH(ac)  
ential data strobe crosspoint for a rising signal, and from the input signal crossing at the V  
falling signal applied to the device under test.  
level to the differential data strobe crosspoint for a  
IL(ac)  
30. Input waveform timing with differential data strobe enabled MR[bit10]=0, is referenced from the input signal crossing at the V  
level to the differ-  
IH(dc)  
ential data strobe crosspoint for a rising signal and V  
test.  
to the differential data strobe crosspoint for a falling signal applied to the device under  
IL(dc)  
Differential Input waveform timing  
DQS  
DQS  
tDS  
tDS  
tDH  
tDH  
V
V
V
V
DDQ  
(AC) min  
IH  
(DC) min  
IH  
REF  
V (DC) max  
IL  
V (AC) max  
IL  
V
SS  
<Data setup/hold timing>  
31. Input waveform timing is referenced from the input signal crossing at the VIH(ac) level for a rising signal and VIL(ac) for a falling signal applied to the  
device under test.  
32. Input waveform timing is referenced from the input signal crossing at the VIL(dc) level for a rising signal and VIH(dc) for a falling signal applied to the  
device under test.  
CK  
CK  
tIS  
tIS  
tIH  
tIH  
V
V
V
V
DDQ  
(AC) min  
IH  
IH  
(DC) min  
REF  
V (DC) max  
IL  
V (AC) max  
IL  
V
SS  
<Input setup/hold timing>  
33. tWTR is at lease two clocks (2 * tCK) independent of operation frequency.  
34. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(ac) level to the sin-  
gle-ended data strobe crossing VIH/L(dc) at the start of its transition for a rising signal, and from the input signal crossing at the VIL(ac) level to the  
single-ended data strobe crossing VIH/L(dc) at the start of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between Vil(dc)max and Vih(dc)min.  
35. Input waveform timing with single-ended data strobe enabled MR[bit10] = 1, is referenced from the input signal crossing at the VIH(dc) level to the sin-  
gle-ended data strobe crossing VIH/L(ac) at the end of its transition for a rising signal, and from the input signal crossing at the VIL(dc) level to the sin-  
gle-ended data strobe crossing VIH/L(ac) at the end of its transition for a falling signal applied to the device under test. The DQS signal must be  
monotonic between Vil(dc)max and Vih(dc)min.  
36. tCKEmin of 3 clocks means CKE must be registered on three consecutive positive clock edges. CKE must remain at the valid input level the entire  
time it takes to achieve the 3 clocks of registeration. Thus, after any cKE transition, CKE may not transitioin from its valid level during the time period  
of tIS + 2*tCK + tIH.  
Rev. 1.8 May 2005  
- 17 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
10.0 Command Truth Table.  
CKE  
BA0  
BA1  
Function  
CS  
RAS  
CAS  
WE  
A11  
A10  
A9 - A0 Note  
Previous Current  
Cycle  
Cycle  
(Extended) Mode Register Set  
Refresh (REF)  
H
H
H
H
H
L
L
L
L
H
L
L
L
L
L
L
L
L
L
H
H
L
H
L
L
L
L
L
L
H
H
X
H
L
BA  
X
OP Code  
1,2  
X
X
X
X
X
X
1
Self Refresh Entry  
L
L
X
1,8  
X
H
L
X
H
H
H
H
L
Self Refresh Exit  
L
H
X
X
X
X
1,7  
Single Bank Precharge  
Precharge all Banks  
Bank Activate  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
BA  
X
X
X
L
X
X
1,2  
1
L
L
H
L
H
L
BA  
BA  
BA  
BA  
BA  
X
Row Address  
1,2  
Write  
H
H
H
H
H
X
X
H
X
H
Column  
Column  
Column  
Column  
X
L
H
L
Column 1,2,3  
Column 1,2,3  
Column 1,2,3  
Column 1,2,3  
Write with Auto Precharge  
Read  
L
L
L
H
H
H
X
X
H
X
H
Read with Auto-Precharge  
No Operation  
L
H
X
X
H
X
X
H
X
H
X
X
1
1
Device Deselect  
X
X
Power Down Entry  
H
L
L
X
X
X
X
X
X
X
X
1,4  
1,4  
Power Down Exit  
Note :  
H
1. All gDDR2 SDRAM commands are defined by states of CS, RAS, CAS , WE and CKE at the rising edge of the clock.  
2. Bank addresses BA0, BA1, BA2 (BA) determine which bank is to be operated upon. For (E)MRS BA selects an (Extended) Mode Register.  
3. Burst reads or writes at BL=4 cannot be terminated or interrupted. See sections "Reads interrupted by a Read" and "Writes interrupted by a Write"  
4. The Power Down Mode does not perform any refresh operations. The duration of Power Down is therefore limited by the refresh requirements outlined.  
5. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
6. “X” means “H or L (but a defined logic level)”.  
7. Self refresh exit is asynchronous.  
8. VREF must be maintained during Self Refresh operation.  
Rev. 1.8 May 2005  
- 18 -  
256M gDDR2 SDRAM  
K4N56163QF-GC  
11.0 Clock Enable (CKE) Truth Table for Synchronous Transitions  
CKE  
Command (N) 3  
Current State 2  
Action (N) 3  
Note  
Previous Cycle 1 Current Cycle 1  
RAS, CAS, WE, CS  
(N-1)  
(N)  
L
L
X
Maintain Power-Down  
Power Down Exit  
11, 13, 15  
4, 8, 11,13  
11, 15  
Power Down  
L
H
L
DESELECT or NOP  
X
L
Maintain Self Refresh  
Self Refresh Exit  
Self Refresh  
Bank(s) Active  
All Banks Idle  
L
H
L
DESELECT or NOP  
DESELECT or NOP  
DESELECT or NOP  
REFRESH  
4, 5,9  
H
Active Power Down Entry  
Precharge Power Down Entry  
Self Refresh Entry  
4,8,10,11,13  
4, 8, 10,11,13  
6, 9, 11,13  
7
H
L
H
L
H
H
Refer to the Command Truth Table  
Note :  
1. CKE (N) is the logic state of CKE at clock edge N; CKE (N–1) was the state of CKE at the previous clock edge.  
2. Current state is the state of the DDR SDRAM immediately prior to clock edge N.  
3. COMMAND (N) is the command registered at clock edge N, and ACTION (N) is a result of COMMAND (N).  
4. All states and sequences not shown are illegal or reserved unless explicitly described elsewhere in this document.  
5. On Self Refresh Exit DESELECT or NOP commands must be issued on every clock edge occurring during the t  
period. Read commands may be  
XSNR  
issued only after t  
(200 clocks) is satisfied.  
XSRD  
6. Self Refresh mode can only be entered from the All Banks Idle state.  
7. Must be a legal command as defined in the Command Truth Table.  
8. Valid commands for Power Down Entry and Exit are NOP and DESELECT only.  
9. Valid commands for Self Refresh Exit are NOP and DESELECT only.  
10. Power Down and Self Refresh can not be entered while Read or Write operations, (Extended) Mode Register Set operations or Precharge operations  
are in progress. See section "Power Down" and "Self Refresh Command" for a detailed list of restrictions.  
11. Minimum CKE high time is three clocks.; minimum CKE low time is three clocks.  
12. The state of ODT does not affect the states described in this table. The ODT function is not available during Self Refresh.  
13. The Power Down does not perform any refresh operations. The duration of Power Down Mode is therefore limited by the refresh requirements outlined.  
14. CKE must be maintained high while the SDRAM is in OCD calibration mode .  
15. “X” means “don’t care (including floating around VREF)” in Self Refresh and Power Down. However ODT must be driven high or low in Power Down if  
the ODT function is enabled (Bit A2 or A6 set to “1” in EMRS(1) ).  
16. V  
must be maintained during Self Refresh operation.  
REF  
11.1 DM Truth Table  
Name (Functional)  
DM  
DQs  
Note  
-
Valid  
1
Write enable  
H
X
1
Write inhibit  
Note :  
1. Used to mask write data, provided coincident with the corresponding data  
Rev. 1.8 May 2005  
- 19 -  

相关型号:

K4N56163QF-GC330

DDR DRAM, 16MX16, 0.47ns, CMOS, PBGA84, FBGA-84
SAMSUNG

K4N56163QF-GC360

DDR DRAM, 16MX16, 0.5ns, CMOS, PBGA84, FBGA-84
SAMSUNG

K4N56163QF-GC37

256Mbit gDDR2 SDRAM
SAMSUNG

K4N56163QF-GC370

DDR DRAM, 16MX16, 0.5ns, CMOS, PBGA84, FBGA-84
SAMSUNG

K4N56163QF-ZC25

DDR DRAM, 16MX16, 0.4ns, CMOS, PBGA84, FBGA-84
SAMSUNG

K4N56163QF-ZC2A

DDR DRAM, 16MX16, 0.45ns, CMOS, PBGA84, FBGA-84
SAMSUNG

K4N56163QF-ZC2A0

DDR DRAM, 16MX16, 0.45ns, CMOS, PBGA84, LEAD FREE, FBGA-84
SAMSUNG

K4N56163QF-ZC2AT

DDR DRAM, 16MX16, CMOS, PBGA84,
SAMSUNG

K4N56163QF-ZC300

DDR DRAM, 16MX16, 0.45ns, CMOS, PBGA84, LEAD FREE, FBGA-84
SAMSUNG

K4N56163QF-ZC33

DDR DRAM, 16MX16, 0.47ns, CMOS, PBGA84, FBGA-84
SAMSUNG

K4N56163QF-ZC330

DDR DRAM, 16MX16, 0.47ns, CMOS, PBGA84, LEAD FREE, FBGA-84
SAMSUNG

K4N56163QF-ZC33T

DDR DRAM, 16MX16, CMOS, PBGA84,
SAMSUNG