S1D17C02D00B [SEIKO]

LIQUID CRYSTAL DISPLAY DRIVER, UUC301, DIE-301;
S1D17C02D00B
型号: S1D17C02D00B
厂家: SEIKO EPSON CORPORATION    SEIKO EPSON CORPORATION
描述:

LIQUID CRYSTAL DISPLAY DRIVER, UUC301, DIE-301

驱动 接口集成电路
文件: 总44页 (文件大小:307K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MF1389-03  
S1D17C02 Series  
Rev.2.0  
© Seiko Epson Corporation 2002, All rights reserved.  
Rev.2.0  
Contents  
1. DESCRIPTION .................................................................................................................................................. 1  
2. FEATURES........................................................................................................................................................ 1  
3. PAD LAYOUT .................................................................................................................................................... 2  
4. PAD CENTER COORDINATES ........................................................................................................................ 3  
5. PIN DESCRIPTION ........................................................................................................................................... 5  
6. BLOCK DIAGRAM ............................................................................................................................................. 9  
7. EXPLANATION OF BLOCK DIAGRAM........................................................................................................... 10  
7.1 Driver block............................................................................................................................................ 10  
7.2 Power block ........................................................................................................................................... 10  
8. FUNCTION DESCRIPTION ............................................................................................................................. 11  
8.1 Outline of the operations of the power block ......................................................................................... 11  
8.2 System configuration ............................................................................................................................. 11  
8.3 Primary boosting circuit ......................................................................................................................... 13  
8.4 Voltage regulating circuit ....................................................................................................................... 14  
8.5 Secondary through quaternary boosting circuits ................................................................................... 17  
8.6 Electric charge discharging circuit ......................................................................................................... 19  
8.7 Regarding the power saving function .................................................................................................... 19  
8.8 LCD driving circuit ................................................................................................................................. 21  
8.9 Timing diagram for the driver section .................................................................................................... 22  
9. ABSOLUTE MAXIMUM RATINGS .................................................................................................................. 23  
10. ELECTRIC CHARACTERISTICS .................................................................................................................... 24  
10.1 DC Characteristics................................................................................................................................. 24  
10.2 DC Characteristics of the power supply section .................................................................................... 25  
10.3 Operating current consumptions ........................................................................................................... 27  
10.4 AC characteristics of the driver section ................................................................................................. 28  
10.5 AC characteristics of the power supply section ..................................................................................... 30  
11. THE POWER SUPPLY .................................................................................................................................... 32  
11.1 Respective voltage levels ...................................................................................................................... 32  
11.2 Precautions when turning on and off the power supply ......................................................................... 32  
11.3 Timings of sleep and electric discharge signal inputs ........................................................................... 33  
12. EXAMPLE OF CONNECTION......................................................................................................................... 34  
12.1 Block diagram of an LCD module .......................................................................................................... 34  
12.2 Detailed connection example 1 for the power block (Primary: ×1.5, Ternary: ×3) ................................. 36  
12.3 Recommended capacitance values of the using capacitors and theoretical formulae  
for the voltage to be biased on both ends of each capacitor ................................................................ 37  
12.4 Detailed connection example 2 for the power block (Primary: ×2, Ternary: ×3) .................................... 38  
12.5 Detailed connection example 3 for the power block  
(Primary boosting: Interrupted. /Ternary boosting ratio: ×2) ................................................................ 39  
12.6 Detailed connection example 4 for the power block  
(Interrupting the operations of the primary, ternary and quaternary boosting circuits) ......................... 40  
13. CAUTIONS ...................................................................................................................................................... 41  
– i –  
Rev.2.0  
S1D17C02 Series  
1. DESCRIPTION  
2. FEATURES  
S1D17C02 Series is a common (low) driver with built-  
in MLS driving power by which low power consumption  
and high picture quality features can be acquired, these  
characteristics being deemed indispensable for various  
portable equipment and devices. The key features of  
the S1D17C02 include: 168 outputs, triple voltage level  
outputs and built-in LCD driving power.  
It should be used in a pair with a segment (column)  
driver with built-in display RAM. Thanks to the built-  
in power circuit, multiple power supplies necessary to  
drive the MLS can be obtained by single power input of  
1.7 to 3.6V, thus constituting a low power consumption  
module.  
• Number of LCD driving outputs: 168  
• Driver low output ON resistance  
• Built-in voltage conversion circuit employing the  
charge pump type DC/DC converter:  
Reference voltage  
Temperature gradient selection circuit  
Electronic volume control function with 128  
steps  
• Power saving function  
Graphic icon indications—Sectional indications  
during standing by  
period at ultra-low  
power consumption  
As the LCD panel, the slip chip shape is being employed  
which is said to be advantageous to realize narrower  
frame and the LCD panel can be operated under low  
logic power voltages suitable for a wide range of  
applications.  
• Non-biased display off function  
• Built-in discharging circuit (This circuit works to  
discharge unnecessary voltages being applied to the  
LCD panel during sleep time.)  
• Power supply  
Being provided with bidirectional selectivities for the  
pad layout and the output sequence of the driver which  
facilitate substrate mounting, this device exhibits the  
highest working efficiency for 1/160Duty panels.  
Logic power: VCC–VSS = 1.7 to 3.7V  
LCD driving power: V3–MV3 = 22V  
• Wide working temperature range: –40 to +85°C  
• CMOS processes  
• Shipped form: In chips or TCP’s  
S1D17C02D00B  
S1D17C02T00A  
• This device is not of a light-resistant design nor  
radiation resistant design.  
*
*
Rev.2.0  
EPSON  
1
S1D17C02 Series  
3. PAD LAYOUT  
283  
284  
111  
110  
93  
X
(0, 0)  
301  
1
92  
Chip size:  
PAD pitch:  
Chip thickness:  
(reference value)  
Substrate potential:  
17.05 × 2.5 mm  
96 µm (Min.)  
625 µm  
GND  
Au bump specifications (reference value)  
Au vertical bump  
X
×
Y
Tolerance  
Bump size A: 66.6 µm × 82.6 µm ± 4 µm (PAD Nos. 1 to 92)  
Bump size B: 62.7 µm × 80.0 µm ± 4 µm (PAD Nos. 111 to 283)  
Bump size C: 82.6 µm × 66.6 µm ± 4 µm (PAD Nos. 93 to 110, 284 to 301)  
Bump height: 22.5 ± 5 µm  
(reference value)  
(Details are according to the delivery specifications.)  
2
EPSON  
Rev.2.0  
S1D17C02 Series  
4. PAD CENTER COORDINATES  
PAD  
No.  
1
2
3
4
5
6
7
PIN  
Name  
DM  
DM  
V2  
PAD  
No.  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
PIN  
Name  
V2  
PAD  
No.  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
PIN  
Name  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
X
Y
X
Y
X
Y
–8213 –1077  
–8112  
–8012  
–309 –1077  
–208  
–108  
–7  
94  
194  
295  
396  
491  
769  
8362 –100  
V1  
4
108  
212  
316  
420  
524  
628  
732  
836  
MV1  
VCL  
VC  
TAP1  
VSS  
TAP2  
RV  
VEVL  
VEV  
FR  
F1  
F2  
CI  
CO  
VCLK  
VU/D  
VSS  
SKP  
VDD  
TC0  
TC1  
TC2  
VSS  
FACLK 4336  
FBCLK 4600  
FTEST 4863  
FREST 5127  
VSS  
FA0  
FA1  
FA2  
FA3  
VSS  
FB0  
FB1  
FB2  
FB3  
VSS  
DM  
CHC –7911  
–7810  
VC  
V2C2P –7710  
V2C2N –7609  
V2C1P –7508  
V2C1N –7408  
V1CP  
V1CN  
MV1CP –7106  
MV1CN –7005  
VEC2P –6904  
VEC2N –6804  
VEC1P –6703  
VEC1N –6603  
VSS  
CNT  
VDD  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
–7307  
–7206  
870  
968  
8256 1099  
8160  
1231  
1495  
1758  
2021  
2418  
2682  
2960  
3058  
3336  
3434  
3697  
3960  
4238  
COM1 8064  
COM2 7968  
COM3 7872  
COM4 7776  
COM5 7680  
COM6 7584  
COM7 7488  
COM8 7392  
COM9 7296  
COM10 7200  
COM11 7104  
COM12 7008  
COM13 6912  
COM14 6816  
COM15 6720  
COM16 6624  
COM17 6528  
COM18 6432  
COM19 6336  
COM20 6240  
COM21 6144  
COM22 6048  
COM23 5952  
COM24 5856  
COM25 5760  
COM26 5664  
COM27 5568  
COM28 5472  
COM29 5376  
COM30 5280  
COM31 5184  
COM32 5088  
COM33 4992  
COM34 4896  
COM35 4800  
COM36 4704  
COM37 4608  
COM38 4512  
–6502  
–6404  
–6126  
TEST2 –6028  
–5750  
STBY –5652  
–5374  
PSAVE –5276  
–4998  
VSS  
VDD  
VSS  
SLP1 –4900  
SLP2 –4636  
RES  
DISCH –4110  
–3832  
TEST1 –3734  
–4373  
5404  
5624  
5907  
6190  
6473  
6715  
6934  
7217  
7501  
7784  
7982  
8082  
8183  
8362 –932  
–828  
–724  
–620  
–516  
–412  
–308  
–204  
VSS  
VDD  
SHL  
VSS  
SEL  
VDD  
–3456  
–3358  
–3080  
–2982  
–2704  
CSEL –2606  
–2328  
DOFF –2230  
VSS  
PCL  
CL  
PCA  
CA  
VSSL  
MV3L  
MV3  
VDDH  
V3L  
–1966  
–1703  
–1440  
–1176  
–913  
–812  
–712  
–611  
–510  
–410  
DM  
DM  
DM  
VREG1  
VREG2  
DM  
DM  
DM  
V3  
DM  
Rev.2.0  
EPSON  
3
S1D17C02 Series  
Unit: µm  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
PAD  
No.  
PIN  
Name  
X
Y
X
Y
X
Y
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
COM39 4416 1099  
COM40 4320  
COM41 4224  
COM42 4128  
COM43 4032  
COM44 3936  
COM45 3840  
COM46 3744  
COM47 3648  
COM48 3552  
COM49 3456  
COM50 3360  
COM51 3264  
COM52 3168  
COM53 3072  
COM54 2976  
COM55 2880  
COM56 2784  
COM57 2688  
COM58 2592  
COM59 2496  
COM60 2400  
COM61 2304  
COM62 2208  
COM63 2112  
COM64 2016  
COM65 1920  
COM66 1824  
COM67 1728  
COM68 1632  
COM69 1536  
COM70 1440  
COM71 1344  
COM72 1248  
COM73 1152  
COM74 1056  
COM75 960  
COM76 864  
COM77 768  
COM78 672  
COM79 576  
COM80 480  
COM81 384  
COM82 288  
COM83 192  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
COM88 –384 1099  
COM89 –480  
COM90 –576  
COM91 –672  
COM92 –768  
COM93 –864  
COM94 –960  
COM95 –1056  
COM96 –1152  
COM97 –1248  
COM98 –1344  
COM99 –1440  
251 COM138 –5184 1099  
252 COM139 –5280  
253 COM140 –5376  
254 COM141 –5472  
255 COM142 –5568  
256 COM143 –5664  
257 COM144 –5760  
258 COM145 –5856  
259 COM146 –5952  
260 COM147 –6048  
261 COM148 –6144  
262 COM149 –6240  
263 COM150 –6336  
264 COM151 –6432  
265 COM152 –6528  
266 COM153 –6624  
267 COM154 –6720  
268 COM155 –6816  
269 COM156 –6912  
270 COM157 –7008  
271 COM158 –7104  
272 COM159 –7200  
273 COM160 –7296  
274 COM161 –7392  
275 COM162 –7488  
276 COM163 –7584  
277 COM164 –7680  
278 COM165 –7776  
279 COM166 –7872  
280 COM167 –7968  
281 COM168 –8064  
213 COM100 –1536  
214 COM101 –1632  
215 COM102 –1728  
216 COM103 –1824  
217 COM104 –1920  
218 COM105 –2016  
219 COM106 –2112  
220 COM107 –2208  
221 COM108 –2304  
222 COM109 –2400  
223 COM110 –2496  
224 COM111 –2592  
225 COM112 –2688  
226 COM113 –2784  
227 COM114 –2880  
228 COM115 –2976  
229 COM116 –3072  
230 COM117 –3168  
231 COM118 –3264  
232 COM119 –3360  
233 COM120 –3456  
234 COM121 –3552  
235 COM122 –3648  
236 COM123 –3744  
237 COM124 –3840  
238 COM125 –3936  
239 COM126 –4032  
240 COM127 –4128  
241 COM128 –4224  
242 COM129 –4320  
243 COM130 –4416  
244 COM131 –4512  
245 COM132 –4608  
246 COM133 –4704  
247 COM134 –4800  
248 COM135 –4896  
249 COM136 –4992  
250 COM137 –5088  
282  
283  
284  
285  
286  
287  
288  
289  
290  
291  
292  
293  
294  
295  
296  
297  
298  
299  
300  
301  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
DM  
VL  
–8160  
–8256  
–8362 836  
732  
628  
524  
420  
316  
212  
108  
4
–100  
–204  
–308  
–412  
–516  
–620  
–724  
–828  
–932  
VH  
COM84  
DM  
96  
0
VLCP  
VLCN  
VHCP  
VHCN  
DM  
DM  
COM85 –96  
COM86 –192  
COM87 –288  
4
EPSON  
Rev.2.0  
S1D17C02 Series  
5. PIN DESCRIPTION  
(1) Power terminal pins  
Number of  
pins  
Pin name  
I/O  
Description  
Substrate potential The substrate of the IC is of the grounding potential. When fixing the substrate  
potential, set it to the grounding.  
VCC  
Power Connects to the system power.  
supply  
5
VSS  
Power Connects to the system GND.  
supply  
Power LCD driving system intermediate power.  
supply  
12  
1
VEVL  
VDDH,V3L  
Power Multi-level power to drive LCD. It is necessary to maintain the  
one each  
VCL,MV3L, supply following relations.  
VSSL  
VDDH V3L VCL MV3L VSSL  
(2) Voltage modulation circuit  
Number of  
pins  
Pin name  
I/O  
Description  
VC  
VCLK  
O
I
VC output pin.  
Electronic volume control clock input pin.  
1
1
The electronic volume control values will change in synchronization  
with the rising time of this pin. Also, the electronic volume control  
value α will stop at the maximum value(α = 127) and the minimum  
value (α = 0).  
VU/D  
I
Electronic volume control up-down setting input pin.  
Controls the increases and decreases of the electronic volume  
control value α.  
1
VU/D  
Functions  
LOW  
The electronic volume control value α decreases.  
HIGH The electronic volume control value α increases.  
When changing the settings for this pin, do so on the timing that the  
VCLK input is on the low level.  
SKP  
I
Changes the number of steps of the electronic volume control.  
1
SKP  
Functions  
LOW  
Number of steps of the electronic volume control = 128  
HIGH Number of steps of the electronic volume control = 64  
TC0 to 2  
SLP2  
I
I
Temperature gradient setting pin.  
Reference power control input pin.  
Generation of the reference power will be interrupted when the  
low level signal is input through this pin.  
3
1
TEST 2  
I
Input pin for the IC test. It is normally fixed at LOW.  
1
RV  
TAP 1  
I
Input pin for regulating the voltage of the constant voltage circuit.  
Internal resistance pin  
1
1
I/ O  
(Vc connection pin when internal resistance is used.)  
TAP 2  
I/ O  
Internal resistance pin  
(RV connection pin when internal resistance is used.)  
1
Rev.2.0  
EPSON  
5
S1D17C02 Series  
(3) Boosting timing generating circuit  
Number of  
pins  
Pin name  
I/O  
Description  
Boosting clock signal input pin.  
Boosting operation control signal input pin.  
The internal boosting clock will stop and the boosting operation will  
be interrupted when the low level signal is input through this pin.  
PCL  
I
I
1
1
SLP1  
(4) Primary boosting circuit  
Number of  
pins  
Pin name  
I/O  
Description  
VEV  
VEC1P  
I/O  
(O)  
Primary boosting circuit output pin.  
Positive side connection pin for the 1st flying capacitor for  
generation of the VEV output.  
1
1
VEC1N  
VEC2P  
VEC2N  
CNT  
(O)  
(O)  
(O)  
I
Negative side connection pin for the 1st flying capacitor for  
generation of the VEV output.  
Positive side connection pin for the 2nd flying capacitor for  
generation of the VEV output.  
Negative side connection pin for the 2nd flying capacitor for  
generation of the VEV output.  
Primary boosting (M1) mode selection pin.  
When making M1 = Double boosting: Connect to HIGH.  
When making M1 = 1.5 time boosting: Connect to LOW.  
Primary boosting circuit control signal input pin  
When using the primary boosting circuit: HIGH  
When not using the primary boosting circuit: LOW  
1
1
1
1
I
1
STBY1  
(5) Secondary boosting circuit  
Number of  
pins  
Pin name  
I/O  
Description  
V2  
V2C1P  
O
(O)  
V2 output pin.  
1
1
Positive side connection pin for the 1st flying capacitor for  
generation of the V2 output.  
V2C1N  
V2C2P  
V2C2N  
(O)  
(O)  
(O)  
Negative side connection pin for the 1st flying capacitor for  
generation of the V2 output.  
Positive side connection pin for the 2nd flying capacitor for  
generation of the V2 output.  
Negative side connection pin for the 2nd flying capacitor for  
generation of the V2 output.  
1
1
1
V1  
V1C1P  
V1 output pin.  
1
1
O
(O)  
Positive side connection pin for the flying capacitor for generation  
of the V1 output.  
V1CN  
(O)  
Negative side connection pin for the flying capacitor for generation  
of the V1 output.  
1
MV1  
MV1CP  
O
O
MV1 output pin.  
1
1
Positive side connection pin for the flying capacitor for generation  
of the MV1 output.  
MV1CN  
O
Negative side connection pin for the flying capacitor for generation  
of the MV1 output.  
1
6
EPSON  
Rev.2.0  
S1D17C02 Series  
(6) Ternary and quaternary boosting circuits  
Number of  
pins  
Pin name  
I/O  
Description  
VH  
O
VH output pin.  
1
VHCP  
(O)  
Positive side connection pin for the flying capacitor for generation  
of the VH output.  
1
VHCN  
(O)  
Negative side connection pin for the flying capacitor for generation  
of the VH output.  
1
VL  
VLCP  
O
(O)  
VL output pin.  
1
1
Positive side connection pin for the flying capacitor for generation  
of the VL output.  
VLCN  
(O)  
(I)  
Negative side connection pin for the flying capacitor for generation  
of the VL output.  
Ternary boosting (M2) mode selection pin.  
1
1
CHC  
When making M2 = Triple boosting: Connect to the V2 pin.  
When making M2 = Double boosting: Connect to the VC pin.  
When making M2 = ×1 boosting: Connect to the V2 pin.  
(7) VH, VL/V2, MV2 changeover circuit  
Number of  
pins  
Pin name  
I/O  
Description  
V3  
O
O
I
V3 output pin.  
MV3 output pin.  
V3 and MV3 output voltage changing-over clock input pin.  
Power saving control input pin.  
1
1
1
1
MV3  
PCA  
PSAVE  
I
Functions  
V3 = V2  
PSAVE  
LOW  
(Power save IN)  
HIGH  
MV3 = MV2  
V3 = VH  
(Power save OUT)  
MV3 = VL  
After finishing the setting of this pin, switch over the potential of the  
V3 and MV3 taking 1-frame period.  
Be sure to turn OFF the indication before changing the setting.  
Also, make the settings on the timing that the PCA pin is on the low level.  
Rev.2.0  
EPSON  
7
S1D17C02 Series  
(8) LCD drive pin  
Number of  
pins  
Pin name  
I/O  
Description  
COM1 to  
COM168  
CL  
CA  
F1, F2  
O
LCD driving common (low) driver output. The output changes  
at the trailing edge of the CL.  
Shift clock input pin for the indicating data.  
Field start signal input pin.  
Driving pattern selecting signal input pin.  
LCD driving output alternating current signal input pin.  
LCD indication blanking control signal input pin. When the low  
level signal is input, all the common outputs will instantly become  
the VC level. The contents of the shift register will be maintained.  
Shifting direction selecting control signal input pin.  
168  
I
I
I
I
I
1
1
1
1
1
FR  
DOFF  
SHL, SEL  
I
2
SHL  
LOW  
HIGH  
LOW  
HIGH  
SEL  
LOW  
LOW  
HIGH  
HIGH  
Output shifting direction  
COM1COM84COM85COM168  
COM168COM85COM84COM1  
COM1COM84COM168COM85  
COM85COM168COM84COM1  
CSEL  
CI  
I
I
Chip selecting signal input pin under the cascade connection.  
Master: Connect to LOW.  
Slave: Connect to HIGH.  
Scanning data input pin.  
Master chip: Fixed to LOW  
1
1
Slave chip: Connect to the CO of the master chip.  
CO  
TEST1  
O
I
Scanning data output pin.  
Input pin for IC tests. Normally fixed to LOW.  
1
1
(9) Other pins  
Number of  
pins  
Pin name  
I/O  
Description  
DISCH  
I
Discharging circuit controlling signal input pin.  
1
When turning OFF the discharging operation: Connect to HIGH.  
When turning ON the discharging operation: Connect to LOW.  
Resetting signal input pin. Normally fixed to LOW.  
Input pin for IC tests. Normally fixed to LOW.  
Input pin for IC tests. Normally fixed to LOW.  
Input pin for IC tests. Normally fixed to LOW.  
Input pin for IC tests. Normally fixed to LOW.  
Input pin for IC tests. Keep it open.  
Input pin for IC tests. Keep it open.  
Input pin for IC tests. Keep it open.  
Input pin for IC tests. Keep it open.  
Dummy pad. Not connected to any other pins.  
I
I
I
I
I
RES  
FTEST  
FACLK  
FBCLK  
FREST  
FA0 to 3  
FB0 to 3  
VREG1  
VREG2  
DM  
1
1
1
1
one each  
one each  
1
1
34  
8
EPSON  
Rev.2.0  
S1D17C02 Series  
6. BLOCK DIAGRAM  
VDDH  
V
3L  
V
V
CC  
SS  
VCL  
MV3L  
VSSL  
VEVL  
LCD Driving Circuit  
DOFF  
FR  
F1  
F2  
TEST1  
V3  
VH,VL/V2,MV2  
Changeover Circuit  
Decoding Circuit  
MV  
3
VH  
CL  
VHCP  
VHCN  
CHC  
VLCP  
VLC  
Bidirectional Shift Resistor  
Ternary and  
Quaternary  
Boosting  
CSEL  
CA  
CI  
CO  
SEL  
SHL  
Shifting  
Direction  
Control  
Circuits  
VL  
V2  
V2C1P  
V2C1N  
V2C2P  
V2C2N  
V1  
Discharging  
Circuit  
DISCH  
VEV  
VEVC1P  
VEVC1N  
VEVC2P  
VEVC2N  
Secondary  
Boosting Circuit  
V1CP  
V1CN  
MV1  
Primary Boosting  
Circuit  
MV1CP  
MV1CN  
VC  
TAP1  
RV  
STBY  
SLP1  
CNT  
Boosting Timing  
Signal  
TAP2  
SKP  
Generation  
Circuit  
PCL  
Voltage  
Regulation  
Circuit  
V
U/D  
V
CLK  
TEST2  
SLP2  
PCA  
RES  
PSAVE  
TC0~2  
Rev.2.0  
EPSON  
9
S1D17C02 Series  
7. EXPLANATION OF BLOCK DIAGRAM  
7.1 Driver block  
(1) Bidirectional shift resistor  
This is a bidirectional shift resistor for transferrence of the scanning data.  
(2) Decoding circuit  
It works to form the LCD driving patterns using the column driver signals.  
(3) LCD driving circuit  
It outputs LCD driving voltages.  
7.2 Power block  
(1) Voltage regulating circuit  
The voltage regulating circuit regulates the voltages generated by the primary boosting circuits to output the LCD  
driving voltage VC.  
It incorporates a high precision constant voltage source, 128 step electronic volume control and a temperature  
compensating circuit.  
Desired temperature gradient can be selected from 8 types of temperature gradient choices.  
The electronic volume control is being controlled by the clock signal (VCLK) and the up-down signal (VU/D).  
(2) Boosting timing signal generation circuit  
This circuit works to generate clock signals for the charge pump using the PCL signals. When the SLP is shifted  
to the GND level, the boosting operation will be interrupted.  
(3) Primary boosting circuit  
This circuit is used when the system power supply is lower than the constant voltage output. It boosts the VCC  
potential to ×1.5 level or ×2 level. When taking voltage from an external source, shift the STBY signal to the GND  
level to stop the operation of the primary boosting circuit.  
(4) Secondary boosting circuit  
It generates the V2 potentials which are necessary for the segment (column) driver by double-boosting of the VC  
potentials. It also generates the V1 and MV1 potentials which are necessary for the segment (column) driver by one-  
second boosting of the V2 and Vc potentials.  
(5) Ternary and quaternary boosting circuits  
These circuits work to generate the V3 and MV3 potentials which are necessary for the common (low) driver by  
generating VH or VL potentials from the V2 or VC potentials.  
(6) VH, VL/V2, MV2 changeover circuit  
It works to output the specified potentials to the V3 and MV3 using the PSAVE signals.  
(7) Discharging circuit  
This circuit works to discharge the electric charges remaining in the V3, V2, V1, MV1 and MV3 pins to the VSS level.  
It is activated when the DISCH is shifted to the GND level. Although it can also be activated when the supply  
voltage VCC is interrupted compulsorily, make it a rule to observe the power ON/OFF sequence.  
10  
EPSON  
Rev.2.0  
S1D17C02 Series  
8. FUNCTION DESCRIPTION  
8.1 Outline of the operations of the power block  
All the bias voltages necessary to drive the LCD can be generated by a single power supply.  
Voltage levels that can be generated are as follows:  
• LCD driving supply voltages necessary for the column driver (V2, V1, VC, MV1 and GND=MV2)  
• LCD driving supply voltages necessary for the low driver (V3, VC and MV3)  
As the voltages for the low driver, desired boosting ratio can be selected from among ×1, ×2 or ×3 as the ternary boosting  
ratio (M2), thus making them applicable to a wide range of duties.  
The built-in electronic volume control function works to regulate the contrast of the LCD. The electronic volume  
control is being controlled through the VCLK pin and the VU/D pin for variations in 128 steps. Also, thanks to the built-  
in constant voltage circuit, stable LCD driving voltages can be constantly output without need for relying upon the  
system power supply.  
When the system side supply voltage (VCC–GND) is too low and insufficient as the LCD driving power (VC–GND),  
necessary LCD driving power (VC–GND) can be supplied by use of the primary boosting circuit.  
As the primary booster ratio, desired boosting ratio can be selected from between ×1.5 and ×2.  
8.2 System configuration  
(1) An exemplary system configuration  
Indicated below is an exemplary system configuration for the power circuit.  
S1D17C02D  
****  
LCD Panel  
Row Driver  
Power Circuit  
V2,V1,VC,MV  
1
Column  
Driver  
(S1D159 )  
**  
VCC  
MV  
2
GND  
GND  
Fig. 8.2.1 Block diagram of a system configuration  
Rev.2.0  
EPSON  
11  
S1D17C02 Series  
(2) Correlations of the system potentials  
Indicated below are the correlations of the system potentials.  
VC = 0V reference  
GND = 0V reference  
S1D17C02  
VH,V3  
M2 = 3  
3
4
3
2
Column Driver  
V2  
V1  
VC  
2
1
1
V2  
V1  
VC  
0
VCC  
MV1  
MV2  
VCC  
GND  
MV1  
MV2  
0
GND  
1  
2  
3  
1  
VL,MV3  
2  
System Side  
(Settings Primary boosting: M1 = ×1.5 and ternary boosting: M2 = ×3)  
Fig. 8.2.2 Potential correlation diagram inside the system  
12  
EPSON  
Rev.2.0  
S1D17C02 Series  
8.3 Primary boosting circuit  
The primary boosting circuit works to make voltage conversion (×1.5 or ×2 boosting) of the inputted supply voltage  
(VCC) coming from the system into the supply voltage (VEV) to the LCD driving circuit.  
(1) When using the primary boosting circuit  
In case supply voltages within the range of 3.7V VEV 5.5V are not available from an external source and when  
it is necessary to make use of the primary boosting function, connect the STBY pin to the high (VCC) level.  
At this time, make due settings for the primary boosting circuit so that the voltages within the range of 3.7V VEV  
5.5V can be obtained.  
To Secondary  
Booster  
STBY  
VEV  
VC  
When the Circuit is  
in Operation  
VCC  
VCC  
GND  
GND  
GND  
[Primary Boosting Circuit]  
[Constant Voltage Circuit]  
Fig. 8.3.1 When the primary boosting circuit is in operation  
When switching over the primary boosting ratio (M1 = ×2 or M1 = ×1.5), connect the CNT pin according to the Table  
8.3.1 given below.  
Table 8.3.1 Boosting ratio switching over pin  
Setting pin  
×2 boosting (M1 = ×2) ×1.5 boosting (M1 = ×1.5)  
HIGH (VCC) LOW (GND)  
CNT  
(2) When the primary boosting circuit is not necessary  
In case supply voltages within the range of 3.7V VEV 5.5V are available from an external source and when it  
is not necessary to use of the primary boosting function, connect the STBY pin to the GND level to interrupt the  
primary boosting operation.  
To Secondary  
Booster  
STBY  
VEV  
When the circuit  
operation is being  
interrupted  
VC  
VCC  
VCC  
GND  
GND  
GND  
[Primary boosting circuit]  
[Constant voltage circuit]  
Fig. 8.3.2 When the primary boosting circuit operation is being interrupted  
Rev.2.0  
EPSON  
13  
S1D17C02 Series  
8.4 Voltage regulating circuit  
Since the S1D17C02 Series devices incorporate highly accurate constant voltage source and the electronic volume  
control function at 128 steps, a high precision voltage regulating circuit can be constituted with the least number of  
components.  
(1) Constant voltage circuit  
This constant voltage circuit is equipped with 64 or 128 step electronic volume functions. By combining internal  
resistance R1, R2 or external resistance R1, R2 with the electronic volume functions, the contrast of LCD  
indications can be regulated. The electronic volume setting can be controlled by the VCLK and VU/D signals. The  
VC voltage can be calculated using the following equation.  
Inside the S1D17C02  
Outside the S1D17C02  
VEV  
VC  
R2  
VCREF  
RV  
Standard voltage + electronic volume  
(Note1)  
R1  
VSS  
Fig. 8.4.1 Constant voltage circuit  
Note 1: Giving care to noise is required since the RV pin is high impedance.  
R2  
V
C
= 1+  
= 1+  
× VCREF  
R1, R2 :External resistance  
VREF : Standard internal voltage of IC  
: Electronic volume control value (α = 0 to 127)  
R1  
R2  
R1  
1038 + 6α  
VC  
×
× VREF  
α
1800  
VREF, which is the standard internal voltage of IC, generates a voltage of VREF = 1.8 v (Ta = 25 ºC). It is also possible  
to abbreviate parts by using the internal resistance when the VC output voltage range is within VC = 3.6V because the  
.
=
resistance of R1 R2 is built in.  
.
Inside the S1D17C02  
Outside the S1D17C02  
V
V
EV  
C
TAP1  
R2  
RV  
V
CREF  
Standard voltage + electronic volume  
TAP2  
R1  
V
SS  
Fig. 8.4.2 An example of connection diagram when internal resistance is used  
14  
EPSON  
Rev.2.0  
S1D17C02 Series  
(2) Temperature gradient selection circuit  
This circuit works to select the temperature gradient characteristics of the LCD driving supply voltage. Through  
the temperature gradient selection pins, desired temperature gradient characteristic can be selected from among 8  
choices of temperature gradient characteristics. By selection of temperature gradient characteristics fitting to the  
temperature characteristics of the using LCD, a system can be duly constituted without need for provision of  
external elements for correction of the temperature characteristics.  
Table 8.4.1 Temperature gradient setting pins  
TC2  
0
0
0
0
1
1
1
1
TC1  
0
0
1
1
0
0
1
1
TC0 Temperature gradient [%/°C]  
0
1
0
1
0
1
0
1
0.063  
0.074  
0.084  
0.095  
0.106  
0.117  
0.128  
0.14  
If you want to select random temperature gradient characteristics other than those in Table 8.4.1 for the output voltage,  
use thermistor resistance, etc.  
Inside the S1D17C02  
Outside the S1D17C02  
VEV  
VC  
Thermistor  
resistance  
VCREF  
R2  
R1  
RV  
Standard voltage + electronic volume  
VSS  
Note 1: Giving care to noise is required since RV pin is high impedance.  
Fig. 8.4.3 An example of connection diagram when random temperature gradient characteristics  
are selected for the output voltage  
Rev.2.0  
EPSON  
15  
S1D17C02 Series  
(3) Electronic volume circuit  
The contrast of LCD indications can be regulated. The electronic volume setting can be controlled by the VCLK and  
VU/D signals.  
When the VU/D signal is at the low level, the VCLK clock will be down-counted and the electronic volume control  
values will be decremented. While, when the VU/D signal is at the high level, the VCLK clock will be up-counted  
and the electronic volume control values will be incremented. The electronic volume control value changes in  
synchronization with the fall time of the VCLK signal.  
Table 8.4.2 Table of functions for VU/D pin  
VU/D  
Functions  
LOW  
HIGH  
The VCLK clock is down-counted and the electronic volume control value are decreased.  
The VCLK clock is up-counted and the electronic volume control value are increased.  
The number of steps of the electronic volume control value can be changed using SKP.  
Table 8.4.3 Table of functions for SKP pin  
SKP  
LOW  
Functions  
Electronic volume control value α = 0 to 127  
Initial value at reset α = 64  
HIGH  
Electronic volume control value α = 0,2,4  
Initial value at reset α = 32  
124,126  
The electronic volume control value α will stop at the maximum value (α = 127) or the minimum value (α = 0) regardless  
of the clock input. After turning the power on, initialize by inputting on resetting or inputting at least 127 clocks (at  
least 63 clocks at SKP = HIGH) into the VCLK pin. An example of initialization and the waveform diagram of the VC  
output voltage is as follows:  
V
CCGND  
1 Turn on the power supply.  
2 Input at least 127 clocks of the clock signals  
into the VCLK pin.  
3 Input clock signals until desired electronic  
volume control value is obtained.  
4 Even when 128 clocks or more of clock signals  
are input, the electronic volume control value  
will stop at its maximum level.  
V
U/D  
1
2
127 128 129  
127  
V
V
CLK  
0
1
2
V
V
C
C
maximum voltage  
minimum voltage  
C
voltage  
GND=0V  
Fig. 8.4.4 An example of initialization and waveform diagram of the VC output voltage (SKP = LOW)  
16  
EPSON  
Rev.2.0  
S1D17C02 Series  
8.5 Secondary through quaternary boosting circuits  
LCD driving supply voltages necessary after the electronic volume control stage are being generated by the voltage  
conversion circuits of the CMOS charge pump method. The voltage conversion circuits are comprised of the secondary  
boosting circuit, ternary boosting circuit and quaternary boosting circuit. Indicated below is the correlation diagram  
among respective voltage conversion circuits.  
Ternary Boosting  
Circuit  
V3  
V2  
V1  
Secondary  
Boosting  
Circuit  
VC  
VC  
MV1  
MV2  
GND  
Quaternary Boosting  
Circuit  
MV3  
Fig. 8.5.1 Correlation diagram among respective voltage conversion circuits  
Also, theoretical formulae for respective potentials are as follows.  
Table 8.5.1 Theoretical formulae for respective potentials  
Signal  
names  
V3  
Theoretical formulae  
(When GND = 0V)  
(M2 + 1) × (VC GND)  
2 × (VC GND)  
3/2 × (VC GND)  
VC GND  
Theoretical formulae  
(When VC = 0V)  
M2 × (VC GND)  
VC GND  
V2  
V1  
1/2 × (VC GND)  
0V  
VC  
MV1  
MV2  
MV3  
1/2 × (VC GND)  
0V  
(M2 1) × (VC GND)  
1/2 × (VC GND)  
(VC GND)  
M2 × (VC GND)  
M2 stands for the ternary boosting ratio  
Rev.2.0  
EPSON  
17  
S1D17C02 Series  
The boosting ratio (M2) of the ternary boosting circuit can be set to ×1, ×2 or ×3 using external circuitry. Indicated below  
are respective circuitries and relevant potential levels.  
VH = 4 × (VC-GND)  
V2  
CHC  
VC  
VC  
GND=MV  
2
= 0V  
Fig. 8.5.2 Circuitry for the boosting ratio M2 = 3 and relevant potential levels  
VH = 3 × (VC-GND)  
V2  
CHC  
VC  
VC  
GND=MV  
2
= 0V  
Fig. 8.5.3 Circuitry for the boosting ratio M2 = 2 and relevant potential levels  
VH  
V3  
V2  
VH = V3 = V2 = 2× (VC-GND)  
CHC  
VC  
VC  
MV3  
VL  
GND= MV3 = MV2 =0  
PSAVE  
Fig. 8.5.4 Circuitry for the boosting ratio M2 = 1 and relevant potential levels  
Since boosting is being made in the sequence of secondary, ternary and quaternary boosting circuits on the basis of the  
VC voltage, be careful not to let respective LCD driving voltages being generated exceed the absolute maximum rating.  
18  
EPSON  
Rev.2.0  
S1D17C02 Series  
8.6 Electric charge discharging circuit  
When the DISCH pin is shifted to the GND level, the electric charge discharging circuit being incorporated in this IC  
will work to discharge the electric charges remaining in the power supplies VH, V3, V2, VC, VL and MV3 to the GND  
level.  
8.7 Regarding the power saving function  
The power saving function works to control activation/interruption of the ternary boosting circuit and quaternary  
boosting circuit and to switch over the outputs of the low side LCD driving voltage V3 and MV3 as shown in the table  
indicated below, through the PSAVE pin.  
Table 8.7.1  
Functions  
PSAVE = HIGH PSAVE = LOW  
Ternary and quaternary  
boosting circuits  
activation  
interruption  
V3 output voltage  
MV3 output voltage  
VH  
VL  
V2  
MV2 (GND)  
RES  
PSAVE  
PCA  
VH  
OPEN  
OPEN  
VH  
VL  
OPEN  
OPEN  
V2  
V3  
MV  
2
VL  
MV3  
The ternary and quaternary  
boosting circuits are  
being activated  
The ternary and quaternary  
boosting circuits are  
being interrupted  
Fig. 8.7.1 PSAVE Timing chart  
Described below are the drives making use of the power save function of the S1D17C02.  
(1) Graphic icon indications  
Graphic icon indications at an even lower power than partial indications are available. In case of partial indications,  
since the partial indications are being made with the indication duty remaining as is, the row driver is working under  
a higher voltage. While, in case of the graphic icon indications, the indication duty is changed over to lower the  
voltage for the row driver, thus realizing the low power consumption feature.  
Theoretically, it is possible to acquire satisfactory contrasts without need for re-setting of the electronic volume  
control value, as far as the ratio between the sectional indication duty n' and the overall indication duty n remains  
n'  
n
1
=
at  
(M2 stands for the ternary boosting ratio), approximately. Nonetheless, do not fail to check and  
(M2) 2  
confirm if the displayed shapes are satisfactory on the actual equipment. This function is available only when the  
device is combined with the column drier S1D15912. Necessary controls can be made by connecting the parallel  
outputs (PO ) from the S1D15912 to the PSAVE pin. Consequently, when using the graphic icon indications, it  
*
is necessary to input the following commands into the S1D15912.  
Rev.2.0  
EPSON  
19  
S1D17C02 Series  
(1) Display OFF  
(2) Port controls (LOW: Power saving HIGH: Ordinary)  
(3) Duty change  
(4) Dividing ratio change  
(5) Display ON  
To realize ultra-low power consumption feature while making graphic icon indications, change the dividing circuit  
setting for the S1D15912 to bring down the frequency of the CL (PCL).  
Do not apply large capacities to the V3 pin and MV3 pin since they may switch over.  
Shown below is a table comparing the characteristics of partial indications and graphic icon indications. Select the  
sectional indication means fitting to the desired specifications.  
Table 8.7.2  
Overall screen indications  
Sectional indications  
(Ordinary state)  
Partial indications  
HIGH to Intermediate  
Graphic icon indications  
LOW  
Power consumption  
Indication area  
Location of indication  
Indication duty  
HIGH  
Large  
Large to Small  
Small  
COM1 to COMn'  
n' *1  
Optional  
n
n
Switching over the  
indication mode  
Can be switched over instantly between  
each other.  
Necessary to turn off the  
indication once.  
(*1: Conditions wherein re-setting of the electronic volume control values is not necessary depend on the level of the  
M2. Namely, n' = n × 0.3 to 0.067)  
Shown below are the specific examples (reference values) of the driving duty ratios wherewith the values of the  
electronic VR need not be changed when switching over between the overall indications and icon partial indications.  
However, since these have been calculated on the basis of the driving conditions, do not fail to check and confirm if  
the displayed shapes are satisfactory on the actual equipment.  
Overall indication duty: n  
Graphic icon indication duty: n'  
Table 8.7.3 Indication duty examples (Reference values)  
n
n'  
M2 = 2  
20  
M2 = 3  
8
80  
100  
120  
140  
160  
200  
240  
24  
32  
36  
40  
50  
60  
12  
12  
16  
16  
24  
28  
20  
EPSON  
Rev.2.0  
S1D17C02 Series  
8.8 LCD driving circuit  
Shown below are the relations between the drive pattern selection signals F1 and F2, alternating current signals FR,  
indication blanking signals DOFF and common output voltages  
DOFF  
FR  
HIGH  
LOW  
LOW  
HIGH  
F1, F2  
1 line  
2 line  
3 line  
4 line  
1, 1  
V3  
0, 1  
V3  
1, 0  
MV3  
V3  
0, 0  
V3  
1, 1  
MV3  
V3  
0, 1  
MV3  
MV3  
V3  
1, 0  
V3  
0, 0  
MV3  
MV3  
MV3  
V3  
VC  
VC  
VC  
VC  
MV3  
V3  
V3  
V3  
MV3  
MV3  
MV3  
MV3  
V3  
V3  
V3  
MV3  
MV3  
V3  
V3  
MV3  
MV3  
Correlations among potentials: V3 > VC > MV3 (The VC is the center potential)  
Rev.2.0  
EPSON  
21  
S1D17C02 Series  
8.9 Timing diagram for the driver section  
1/168 Duty  
SHL = LOW, SEL = LOW and CSEL = LOW (A reference example)  
168 lines  
CA  
1
2
3
42 43 44 45  
84 85 86 87  
126 127 128 129  
168  
1
2
3
CL  
CO  
1 frame (168 lines)  
1st field  
2nd field  
3rd field  
4th field  
1
2
3
42 43 44 45  
84 85 86 87  
126 127128129  
168 1  
2
3
CL  
FR  
F1  
F2  
V3  
VC  
COM1  
MV  
3
3
3
3
3
3
3
V
3
VC  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
MV  
V3  
VC  
MV  
V3  
VC  
MV  
V3  
VC  
MV  
V3  
VC  
MV  
V3  
VC  
MV  
V
3
VC  
MV3  
V3  
V
C
COM  
168  
MV  
3
22  
EPSON  
Rev.2.0  
S1D17C02 Series  
9. ABSOLUTE MAXIMUM RATINGS  
Item  
Symbol  
Rating  
Min.  
Unit  
Applicable Pin  
Remarks  
Max.  
6.0  
6.0  
16  
Input power voltage 1  
Input power voltage 2  
Input power voltage 3  
VCC  
VEV  
0.3  
0.3  
8.0  
V
V
V
VCC  
VEV  
VLCD  
VDDH, V3L, VCL  
MV3L, VSSL  
VH  
*2, *3  
Output voltage 1  
Output voltage 2  
Output voltage 3  
Output voltage 4  
Input pin voltage  
Input current 1  
VV3  
VV2  
VVC  
VMV3  
VIN  
0.0  
0.0  
0.0  
8.0  
0.3  
16  
16  
V
V
V2  
VC  
VL  
5.0  
V
0.0  
V
VCC+0.3  
3.0  
V
*1  
ICC  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
°C  
°C  
°C  
VCC  
VEV  
V3  
Input current 2  
IEV  
3.0  
Output current 1  
Output current 2  
Output current 3  
Output current 4  
Output current 5  
Output current 6  
Operating temperature  
IV3  
0.2  
IV2  
1.0  
V2  
IV1  
2.0  
V1  
IVC  
2.0  
VC  
MV1  
V3  
IMV1  
IMV3  
Topr  
2.0  
0.2  
40  
65  
55  
85  
Storage temperature 1 (Chip) Tstg1  
Storage temperature 2 (TCP) Tstg2  
150  
100  
*1: Applicable pin names are PCL, PCA, CNT, SLP1, SLP2, STBY, PSAVE, DISCH, RES, VCLK, VU/D,  
SKP, TC0 to 2, CL, CA, DOFF, F1, F2, FR, CSEL, SHL, SEL, CI, CO, TEST1, TEST2  
*2: Potential levels of the VDDH, V3L, MV3L and VSSL should always be maintained in the following state.  
VDDH V3L VCL MV3L VSSL  
*3 Do not let the logic powers float nor let the VCC vary widely while LCD driving power is being applied  
since, otherwise, the LSI may go into permanent breakage. Particularly, pay great attention when  
determining the sequences of turning on of the system power and turning off of the system power.  
VDDH, V3L  
VCL  
VCC  
GND  
VSSL, MV3L  
Logic Powers  
LCD Driving  
Powers  
Rev.2.0  
EPSON  
23  
S1D17C02 Series  
10. ELECTRIC CHARACTERISTICS  
GND=0V, VCC=+3.0V, and Ta=40 to +85°C unless otherwise noted. (*1)  
10.1 DC Characteristics  
Item  
Symbol  
Conditions  
Applicable  
Pin  
Standard  
Min. Typ. Max.  
Unit Note  
Supply voltage (1)  
Supply voltage (2)  
Supply voltage (3)  
Supply voltage (4)  
VCC  
VEV  
V3  
VCC  
1.7  
3.7  
12  
3
6  
3.7  
5.5  
V
V
V
V
V
V
V
V
V
VEV, VEVL  
V3L, VDDH  
VCL  
MV3L, VSSL  
*2  
VC  
Supply voltage (5)  
MV3  
VIH  
VIL  
VOH  
VOL  
ILI  
HIGH level input voltage  
LOW level input voltage  
HIGH level output voltage  
LOW level output voltage  
Input leak current  
VCC=1.7V  
to 3.7V  
0.8VCC  
0
VCC  
0.2VCC  
VCC  
VCC=1.7V IOH=0.3mA CO VCC0.4  
to 3.7V  
GNDVINVCC  
IOH=0.3mA  
VSS  
0.4  
2.0 µA  
3.0 µA  
*2  
CO  
VCC  
Output leak current  
Resting current (1)  
ILO  
ICCQ  
VIH = VCC or  
VIL = GND  
V3 MV3 =  
4.4 to 24.0V  
VIH=VCC  
5
µA  
Resting current (2)  
ILCDQ  
VDDH, V3L  
VH, VSSL  
25 µA  
MV3L,VL,V2  
VIL=GND  
Output resistance  
Input pin capacity  
RCOM  
VON= Recommended COM 1 to  
conditions for COM168  
, V and MV  
0.55  
0.7 kΩ  
0.5V  
V3  
C
3
CI  
Freq=1MHz  
*3  
10  
pF  
Independent chips  
Ta25°C  
*1 Unless otherwise designated, conditions for the operation mode and the pins should be as follows:  
Connection conditions: Standard connection according to Section 12.4 Detailed connection example 3 for  
the power block.  
Capacity conditions: According to Section 12.3 Recommended capacities”  
CL signal inputting conditions: CL cycle = 85 µsec., CL pulse duration = 200n sec. and Electronic volume  
control value: α = 127 (Max.)  
*2 Applicable pin names are PCL, PCA, SYNC, SLP1, SLP2, STBY1, PSAVE, DISCH, RES, VCLK, VU/D,  
TC0 to 2, CL, CA, DOFF, F1, F2, FR, CSEL, SHL1, SHL2, CI, CO, TEST1, TEST2.  
*3 Applicable pin names are PCL, PCA, SYNC, SLP1, SLP2, PSAVE, DISCH, RES, VCLK, VU/D, TC0 to 2,  
CL, CA, DOFF, F1, F2, FR, CSEL, SHL1, SHL2, CI, TEST1, TEST2.  
24  
EPSON  
Rev.2.0  
S1D17C02 Series  
10.2 DC Characteristics of the power supply section  
Item  
Symbol  
Conditions  
Applicable  
Pin  
Standard  
Min. Typ. Max.  
Unit Note  
VC Output voltage  
VEV=3.7V IO=1mA  
V2=7.2V  
VC  
2.0  
3.6  
V
VEV Output resistance  
RVEV VEV=3.6V M1=2  
IO=1mA M1=1.5  
VEV  
VC  
160 220  
170 220  
*4  
*4  
Load output saturating  
resistance  
RVC  
VEV=3.6, IO=1mA  
Electronic volume control  
value α=127 (Max.)  
V2=6.0V  
50  
100  
V1 Output resistance  
MV1 Output resistance  
V2 Output resistance  
RV1  
V1  
MV1  
V2  
190 300  
100 150  
260 350  
*4  
*4  
*4  
IO=0.5mA (Flowing out to VC)  
RMV1 V2=6.0V  
IO=0.5mA (Flowing in from VC)  
RV2  
RV31  
RV32  
RV33  
VC=3.0V  
IO  
= 0.25mA (Flowing out to V  
C
)
V3 Output resistance 1  
(M2=1)  
V3 Output resistance 2  
(M2=2)  
V3 Output resistance 3  
(M2=3)  
MV3 Output resistance 2  
(M2=1)  
MV3 Output resistance 3  
(M2=2)  
MV3 Output resistance 4  
(M2=3)  
VC=3.0V  
V3  
0.62 0.85 k*4  
I =0.05mA (Flowing out to VC)  
O
VC=3.0V  
V3  
3.5  
4.0  
7.0 k*4  
7.0 k*4  
IO  
=0.05mA (Flowing out to V  
C
C
)
)
)
)
VC=3.0V  
V3  
IO=0.05mA (Flowing out to V  
RMV31 VC=3.0V  
MV3  
MV3  
MV3  
VC  
0.39 0.7 k*4  
IO=0.05mA (Flowing in from VC  
RMV32 VC=3.0V  
3.7  
4.1  
7.0 k*4  
7.0 k*4  
I =0.05mA (Flowing in from VC  
O
RMV33 VC=3.0V  
IO=0.05mA (Flowing in from VC)  
Electronic volume control EVR Le VEV=3.6V  
±1.7 ±5.0 % of *5  
linearity error  
VTAP1=1.8V  
FSR  
VTAP2=1.08V  
Electronic volume control EVRd Le VEV=3.6V  
VC  
VC  
±0.12 ±0.25 LSB *5  
differential linearity error  
VTAP1=1.8V  
VTAP2=1.08V  
Temperature gradient  
CT0  
CT1  
CT2  
CT3  
CT4  
CT5  
CT6  
CT7  
(TC2, TC1, TC0)=(L, L, L)  
0.068 0.063 0.057 %/°C *6  
0.080 0.074 0.067 %/°C *6  
0.090 0.084 0.077 %/°C *6  
0.100 0.095 0.088 %/°C *6  
0.116 0.106 0.099 %/°C *6  
0.121 0.117 0.111 %/°C *6  
0.134 0.128 0.123 %/°C *6  
0.148 0.140 0.135 %/°C *6  
(TC0, TC1, TC2)=(L, L, H)  
(TC0, TC1, TC2)=(L, H, L)  
(TC0, TC1, TC2)=(L, H, H)  
(TC0, TC1, TC2)=(H, L, L)  
(TC0, TC1, TC2)=(H, L, H)  
(TC0, TC1, TC2)=(H, H, L)  
(TC0, TC1, TC2)=(H, H, H)  
Rev.2.0  
EPSON  
25  
S1D17C02 Series  
*4 PCL signal inputting conditions PCL cycle: 85µsec. PCL pulse duration: 200nsec.  
Do not apply loads to V1, MV1, V2, V3 and MV3 simultaneously when making measurement.  
(Since the characteristics of respective power sources are being indicated independently, they are different from the  
state when the modules are actually being driven.)  
Assuming that VC = 3V, calculate the output resistance by the measurement value (E) as against the ideal value (E0).  
R = (E0 - E)/I0 (I0: Load current)  
*5 Definitions of errors are as follows:  
VC(α=127)  
Linearity error: What is the percentage of difference  
of the measurement value against the VC at the full-  
scale of the ideal value.  
EVR Le = (VCmeasure VCidel)/3.6V  
Differential linearity error: What is the percentage  
of the difference between the variation width of the  
ideal value and the difference from the variation  
width of the ideal value (dVCidel) of the variation  
width of the measurement value (dVCmeasure).  
dVCidle = 12mV  
Ideal Values  
(Vcidel)  
b
Measurement Values  
(Vcmeasure)  
dVCmeasure = VCmeasure (α = n + 1) VCmeasure  
(α = n)  
VC(α=0)  
EVR dLe = (dVCmeasure dVCidel) /dVCidel  
127  
0
Electronic Volume Control  
Values (α)  
*6 Definition of temperature gradient is as follows.  
Vc 50°C Vc 0°C  
(
)
(
)
1
CT =  
×
×100  
50°C 0°C  
Vc 25°C  
(
)
26  
EPSON  
Rev.2.0  
S1D17C02 Series  
10.3 Operating current consumptions  
While the built-in power supply is being turned OFF  
Item  
Symbol  
Conditions  
Standard  
Min. Typ. Max.  
Unit Note  
Current consumption 1  
ICC  
VCC=1.7V  
VCC=2.7V  
VCC=3.7V  
1.5  
2.5  
3.5  
5.0 µA *7  
7.0 µA *7  
9.0 µA *7  
Current consumption 2  
Current consumption 3  
IDDH  
ISSL  
VCC=VEVL=3.7, VDDH=V3L=12V  
6.5 10.0 µA *7  
5.5 10.0 µA *7  
VCL=3V, VSSL=MV3L=6V  
While the built-in power supply is being turned ON  
Item  
Symbol  
Conditions  
Standard  
Unit Note  
Min. Typ. Max.  
Current consumption 1  
Current consumption 2  
Current consumption 3  
Current consumption 1a  
Current consumption 2a  
Current consumption 3a  
Current consumption 1b  
Current consumption 2b  
Current consumption 3b  
IOP1  
IOP2  
Boost rate M2=1, M1=1  
Boost rate M2=2, M1=1  
Boost rate M2=3, M1=1  
Boost rate M2=1, M1=1.5  
Boost rate M2=2, M1=1.5  
Boost rate M2=3, M1=1.5  
Boost rate M2=1, M1=2  
Boost rate M2=2, M1=2  
Boost rate M2=3, M1=2  
40  
50  
60  
50  
70  
90  
70  
95  
60  
80  
90  
70  
µA *8  
µA *8  
µA *8  
µA *9  
IOP3  
IOP1a  
IOP2a  
IOP3a  
IOP1b  
IOP2b  
IOP3b  
100 µA *9  
120 µA *9  
100 µA *10  
130 µA *10  
120 150 µA *10  
*7 VIH = VCC, VIL = GND, fFR = 70Hz and 1/168duty no-load  
*8 The load conditions are, no-load and the primary boosting circuit is not being used.  
Using the electronic volume control, adjust to VEV = 3.6V and VC = 3.0V.  
*9 The load conditions are, no-load and with the primary boosting circuit being set to ×1.5 boosting.  
Using the electronic volume control, adjust to VCC = 2.4V and VC = 3.0V.  
*10 The load conditions are, no-load and with the primary boosting circuit being set to ×2 boosting.  
Using the electronic volume control, adjust to VCC = 1.8V and VC = 3.0V.  
Rev.2.0  
EPSON  
27  
S1D17C02 Series  
10.4 AC characteristics of the driver section  
(1) Input timing characteristics for the driver section  
FR  
t
t
FRDH  
FRDS  
F1, F2  
CL  
t
t
WCLH  
FFDH  
t
t
f
r
t
FFDS  
t
t
DH  
DS  
t
t
WCLL  
SET  
t
CCL  
CA, CI  
The FR latched at the nth CL will be reflected to the output of the n+1th CL.  
AC characteristic measurement conditions:  
* Input signal level:  
VIH = 0.8VCC  
VIL = 0.2VCC  
* Input signal rise time: Tr 10ns  
* Input signal fall time: Tf 10ns  
VCC = 1.7 to 3.7V  
Ta = 40 to +85°C  
Item  
CL synchronization  
CL HIGH-level pulse width  
CL LOW-level pulse width  
FR setup time  
Symbol  
tCCL  
Conditions  
Min.  
800  
140  
660  
200  
40  
200  
40  
200  
40  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tWCLH  
tWCLL  
tFRDS  
tFRDH  
tFFDS  
tFFDH  
tDS  
FR hold time  
F1 and F2 setup time  
F1 and F2 hold time  
CA (CI) setup time  
CA (CI) hold time  
tDH  
tSET  
CA (CI) to CL allowable time  
150  
28  
EPSON  
Rev.2.0  
S1D17C02 Series  
(2) Output timing characteristics for the driver section  
CL  
t
pdDOC  
CO  
t
pdCCL  
DOFF  
t
pdCDOF  
COM Output  
AC characteristic measurement conditions:  
* Input signal level:  
VIH = 0.8VCC  
VIL = 0.2VCC  
* Input signal rise time: Tr 10ns  
* Input signal fall time: Tf 10ns  
VCC = 1.7 to 3.7V  
V3L = 16V to 14V  
MV3L = 8V to 0V  
Ta = 40 to +85°C  
Item  
Symbol  
tpdDOC  
tpdCCL  
Conditions  
CL=15 pF  
Min.  
Max.  
600  
500  
Unit  
ns  
ns  
CL to CO output delay time  
CL to COM output delay time  
DOFF to COM output delay time  
tpdCDOF  
1400  
ns  
Rev.2.0  
EPSON  
29  
S1D17C02 Series  
10.5 AC characteristics of the power supply section  
AC characteristic measurement conditions:  
* Input signal level:  
VIH = 0.8VCC  
VIL = 0.2VCC  
* Input signal rise time: Tr 10ns  
* Input signal fall time: Tf 10ns  
VCC = 1.7 to 3.7V  
Ta = 40 to +85°C  
(1) PCL input timing  
tWPCLH  
tr  
tf  
PCL  
tWPCLL  
tCPCL  
Item  
Symbol Parameter  
Min.  
50  
140  
660  
Max.  
Unit  
us  
ns  
PCL synchronization  
PCL HIGH pulse width  
PCL LOW pulse width  
tCPCL  
tWPCLH  
tWPCLL  
ns  
(2) Clock input timing  
tCVCL  
tWVCLH  
VCLK  
tWVCLL  
tVUDH  
tVUDS  
VU/D  
Item  
Symbol Parameter  
Min.  
50  
140  
660  
500  
500  
Max.  
Unit  
ns  
ns  
ns  
ns  
VCLK synchronization  
VCLK HIGH pulse width  
VCLK LOW pulse width  
VU/D setup time  
tCVCL  
tWVCLH  
tWVCLL  
tVUDS  
VU/D hold time  
tVUDH  
ns  
When changing the setting for the VU/D pin, do so at the timing when the VCLK pin signal is on the LOW level.  
30  
EPSON  
Rev.2.0  
S1D17C02 Series  
(3) PSAVE input timing  
PCA  
tPSDS  
tPSDH  
PSAVE  
tPSFIXH, tPSFIX  
Item  
Symbol Parameter  
Min.  
500  
Max.  
Unit  
ns  
PSAVE setup time  
tPSDS  
tPSDH  
PSAVE hold time  
500  
ns  
PSAVE LOW hold time  
PSAVE HIGH hold time  
tPSFIXL  
tPSFIXH  
4 × tCACYC  
4 × tCACYC  
(4) RES signal input timing  
RES  
tRW  
tR  
Internal Status  
During Reset  
Reset Completed  
Item  
Symbol  
tRW  
Parameter  
Min.  
1.5  
Max.  
1.5  
Unit  
µs  
µs  
Reset LOW pulse width  
Reset completion time  
tR  
Rev.2.0  
EPSON  
31  
S1D17C02 Series  
11. THE POWER SUPPLY  
11.1 Respective voltage levels  
When supplying the VEV power separate from the VCC, always supply a potential equal to that of the VCC or more.  
(Always maintain the relation of VEV VCC.)  
11.2 Precautions when turning on and off the power supply  
Since this LSI is for LCDs of higher voltages, if the logic powers float or if the VCC vary widely while driving voltage  
is being applied to the LCD or before the voltage being applied to the LCD stabilizes, excess current may flow to break  
the LSI.  
Always observe the following sequences when turning on and off the power supply.  
When turning on the power supply  
Step  
Operation  
Status ready to proceed to the next step  
1
VCC turns ON.  
VCC becomes stable.  
2
SLP1, SLP2, DISCH  
LOW HIGH  
When the LCD power supplies (VH, V1 to V3, VL, MV1 and  
MV3) have been stabilized.  
(Boosting starts.)  
Although it is dependent upon the LCD module, about  
100ms will be necessary. (Always check and confirm the  
above using the actual module.)  
3
DOFF LOW HIGH  
During Power Off  
Step  
Operation  
Status ready to proceed to the next step  
1
2
DOFF HIGH LOW  
SLP1, SLP2, DISCH  
When the LCD power supplies (VH, V1 to V3,VL, MV1 and  
HIGH LOW  
(Boosting stops.)  
(Discharging starts.)  
MV3) are start discharging.  
Although it is dependent upon the LCD module, about  
100ms will be necessary.  
(Always check and confirm the above using the actual  
module.)  
3
VCC Off.  
32  
EPSON  
Rev.2.0  
S1D17C02 Series  
11.3 Timings of sleep and electric discharge signal inputs  
Use the following timing chart when enabling SLP1, SLP2 and DISCH signals.  
tSLPFIXH, tSLPFIXL  
SLP1, SLP2  
DISCH  
Item  
Reference value  
100(*3)  
Unit  
ms  
Pin(s) applied  
SLP1,SLP2  
DISCH  
Remarks  
Holding time of Sleep HIGH  
Holding time of Sleep LOW  
*1  
*2  
100(*3)  
ms  
*1: Corresponds to the power startup time.  
*2: Corresponds to the power discharging time.  
*3: Reference value for the standard connections (12,2 Example 1 of detailed power block connections) with all external  
capacitors having a rating of 1µF.  
Since the startup and discharging times depend on the external capacitors and LCD panels, it is required to verify  
these times on your machine.  
Rev.2.0  
EPSON  
33  
S1D17C02 Series  
12. EXAMPLE OF CONNECTION  
12.1 Block diagram of an LCD module  
(1) VDD = VDDI  
CO  
CI  
SHL  
SEL  
CSEL  
TEST1  
TEST2  
PSAVE  
DOFF  
FR  
F2  
F1  
132(R,G,B) × 168 dot  
CL  
CA  
PCL  
PCA  
1/168 duty  
V
U/D  
VCLK  
SLP1  
SLP2  
DISCH  
RES  
V2  
V1  
VC  
MV1  
V
V
CC  
SS  
132(R,G,B)out  
S1D15912  
MPU  
I/F  
VDDI = VDD  
GND  
Fig. 12.1-1  
34  
EPSON  
Rev.2.0  
S1D17C02 Series  
(2) VDD × 0.8 ≥ VDDI  
V
V
DD  
SS  
CO  
CI  
SHL  
SEL  
CSEL  
TEST1  
TEST2  
PSAVE  
DOFF  
FR  
F2  
F1  
132(R,G,B) × 168 dot  
CL  
CA  
PCL  
PCA  
1/168 duty  
V
V
U/D  
CLK  
SLP1  
SLP2  
DISCH  
RES  
V
V
V
2
1
C
MV  
1
V
V
CC  
SS  
132(R,G,B)out  
S1D15912  
MPU  
I/F  
V
DDI  
DD  
V
GND  
Fig. 12.1-2  
Rev.2.0  
EPSON  
35  
S1D17C02 Series  
12.2 Detailed connection example 1 for the power block (Primary: ×1.5, Ternary: ×3)  
From column  
SKP  
driver  
V
to VDDH,V3L  
3
V
U/D  
V
V
U/D  
MV  
3
to VSSL,MV3L  
V
CLK  
CLK  
TEST2  
V
H
+
SLP  
SLP2  
TC0  
TC1  
TC2  
CB3  
V
HCP  
+
+
CP3  
CP4  
V
HCN  
CHC  
V
LCP  
RES  
PCA  
RES  
PCA  
V
LCN  
V
V
L
To column  
driver  
PSAVE  
PSAVE  
+
CB4  
+
2
V
2
STBY  
SLP1  
CNT  
V
V
CB2  
2C1P  
+
+
CP2M  
CP2S  
2C1N  
V
PCL  
PCL  
2C2P  
2C2N  
V
DISCH  
V
1
V
1
+
+
+
V
+
+
V
EV  
1CP  
1CN  
CBV1  
+
CPV1  
CB1  
V
VEC1P  
MV  
1
MV  
1
CP1S  
VEC1N  
VEC2P  
VEC2N  
MV  
1CP  
1CN  
CPVM1  
+
CPMV1  
MV  
CP1M  
V
C
V
C
RV  
R2  
R1  
to V  
CL  
TAP1  
TAP2  
+
System power  
supply  
CBVC  
V
CC  
GND  
Fig. 12.2  
[Settings]  
Primary boosting ratio: M1 = ×1.5  
Ternary boosting ratio: M2 = ×3  
Internal resistance is unused.  
36  
EPSON  
Rev.2.0  
S1D17C02 Series  
12.3 Recommended capacitance values of the using capacitors and theoretical formulae  
for the voltage to be biased on both ends of each capacitor  
Theoretical formulae for the  
voltage to be biased on  
both ends of each capacitor  
Circuit Name  
Function  
Capacitor Capacitance • Electronic maximum  
Name  
values  
(µF)  
control at position  
• Voltage of storage  
capacitor to the GND  
VCC GND  
VCC GND  
VEV = 2 × (VCC GND)  
When the primary boosting  
circuit setting is M1 = ×2  
Flying  
CP1M  
CP1S  
CB1  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
3.3  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
Accumulate  
Flying  
When the primary boosting  
circuit setting is M1 = ×1.5  
CP1M  
CP1S  
CB1  
CBVC  
CP2M  
CP2S  
CPV1  
CPMV1  
CB2  
0.5 × (VCC GND)  
0.5 × (VCC GND)  
VEV = 1.5 × (VCC GND)  
VEV GND  
Accumulate  
Smothing  
Flying  
Electronic volume control circuit  
Secondary boosting circuit  
VEV GND  
VEV GND  
VEV GND  
VEV GND  
Accumulate  
V2 = 2 × (VEV GND)  
V1 = 1.5 × (VEV GND)  
MV1 = 0.5 × (VEV GND)  
VEV GND  
CBV1  
CBMV1  
CP3  
When the ternary boosting  
circuit setting is M2 = ×2  
When the ternary boosting  
circuit setting is M2 = ×3  
Quaternary booster circuit  
Flying  
Accumulate  
Flying  
Accumulate  
Flying  
CB3  
CP3  
CB3  
CP4  
VH = 3 × (VEV GND)  
2 × (VEV GND)  
VH = 4 × (VEV GND)  
4 × (VEV GND)  
VL = 3 × (VEV GND)  
Accumulate  
CB4  
Capacitance values for respective capacitors listed above ar recommended values in case the LCD panel size is 2.2" (1/  
120duty). Also, Section 10. Electric characteristicsare characteristics when the capacitance values are as  
aforementioned. Consequently, when the LCD panel size is smaller then 2.2" or when the LCD panel being used can  
be driven at a lower current level, the capacitance of the capacitor can be smaller. Nonetheless, since the output  
impedance will increase in such case, be sure to check the picture quality and find out the capacitance value where the  
LCD driving voltage can be stabilized.  
The electronic volume control circuit and the V1 and MV1 generating circuits (= voltage follower) are being comprised  
of au-pair pumps. Use of corresponding storage capacitors of larger capacity levels (a few µ-farads) will work to lower  
the frequency characteristics to create conditions suppressing oscillations. However, be sure to make checks in this  
regard with each application. Especially, when using storage capacitors of smaller capacitance levels, oscillations may  
occur and perform careful and sufficient checks before finalizing the circuit design.  
Rev.2.0  
EPSON  
37  
S1D17C02 Series  
12.4 Detailed connection example 2 for the power block (Primary: ×2, Ternary: ×3)  
From column  
SKP  
driver  
to VDDH,V3L  
V
3
V
U/D  
V
V
U/D  
MV  
to VSSL,MV3L  
3
V
CLK  
CLK  
TEST2  
V
H
+
SLP  
SLP2  
TC0  
TC1  
TC2  
CB3  
V
HCP  
+
+
CP3  
CP4  
V
HCN  
CHC  
V
LCP  
RES  
PCA  
RES  
PCA  
V
LCN  
V
V
L
To column  
driver  
PSAVE  
PSAVE  
+
CB4  
+
2
V
2
STBY  
SLP1  
CNT  
V
V
CB2  
2C1P  
+
+
CP2M  
CP2S  
2C1N  
V
PCL  
PCL  
2C2P  
2C2N  
V
DISCH  
V
1
V
1
+
+
+
V
+
+
VEV  
1CP  
1CN  
CBV1  
+
CPV1  
CB1  
V
VEC1P  
MV  
1
MV  
1
CP1S  
VEC1N  
VEC2P  
VEC2N  
MV  
1CP  
1CN  
CPVM1  
CPMV1  
+
MV  
CP1M  
V
C
V
C
RV  
to V  
CL  
TAP1  
TAP2  
+
System power  
supply  
CBVC  
V
CC  
GND  
Fig. 12.4  
[Settings]  
Primary boosting ratio: M1 = ×2  
Ternary boosting ratio: M2 = ×3  
Internal resistance is used.  
38  
EPSON  
Rev.2.0  
S1D17C02 Series  
12.5 Detailed connection example 3 for the power block (Primary boosting: Interrupted.  
/Ternary boosting ratio: ×2)  
From column  
SKP  
driver  
V
to VDDH,V3L  
3
V
U/D  
V
V
U/D  
MV  
3
to VSSL,MV3L  
V
CLK  
CLK  
TEST2  
V
H
+
SLP  
SLP2  
TC0  
TC1  
TC2  
CB3  
V
HCP  
+
+
CP3  
CP4  
V
HCN  
CHC  
V
LCP  
RES  
PCA  
RES  
PCA  
V
LCN  
V
V
L
To column  
driver  
PSAVE  
PSAVE  
+
CB4  
+
2
V
2
STBY  
SLP1  
CNT  
V
V
CB2  
2C1P  
+
CP2M  
2C1N  
V
PCL  
PCL  
+
2C2P  
2C2N  
V
CP2S  
DISCH  
V
1
V
1
+
V
+
V
EV  
1CP  
1CN  
CBV1  
+
CPV1  
V
VEC1P  
MV  
1
MV  
1
VEC1N  
VEC2P  
VEC2N  
MV  
1CP  
1CN  
+
CPVM1  
MV  
CPMV1  
V
C
V
C
RV  
to V  
CL  
TAP1  
TAP2  
+
System power  
supply  
CBVC  
V
CC  
GND  
Fig. 12.5  
[Settings]  
Primary boosting ratio: M1 = ×1 (Use the VCC.)  
Ternary boosting ratio: M2 = ×2  
Internal resistance is used.  
Rev.2.0  
EPSON  
39  
S1D17C02 Series  
12.6 Detailed connection example 4 for the power block (Interrupting the operations of  
the primary, ternary and quaternary boosting circuits)  
From column  
SKP  
driver  
V
to VDDH,V3L  
3
V
U/D  
V
V
U/D  
MV  
3
to VSSL,MV3L  
V
CLK  
CLK  
TEST2  
V
H
SLP  
SLP2  
TC0  
TC1  
TC2  
V
HCP  
V
HCN  
CHC  
V
LCP  
RES  
PCA  
RES  
PCA  
V
LCN  
V
V
L
To column  
driver  
PSAVE  
PSAVE  
2
V
2
STBY  
SLP1  
CNT  
+
V
V
CB2  
2C1P  
+
+
CP2M  
CP2S  
2C1N  
V
PCL  
PCL  
2C2P  
2C2N  
V
DISCH  
V
1
V
1
+
V
+
+
VEV  
1CP  
1CN  
CBV1  
CPV1  
V
VEC1P  
MV  
1
MV  
1
+
VEC1N  
VEC2P  
VEC2N  
MV  
1CP  
1CN  
CPVM1  
CPMV1  
MV  
V
C
V
C
RV  
to V  
CL  
TAP1  
TAP2  
+
System power  
supply  
CBVC  
V
CC  
GND  
Fig. 12.6  
Primary boosting circuit: Interrupted. M1 = ×1 (Use the VCC.)  
[Settings]  
Ternary and quaternary boosting circuits: Interrupted. M2 = ×1 (V2 = V3 and MV2 = MV3)  
Internal resistance is used.  
40  
EPSON  
Rev.2.0  
S1D17C02 Series  
13. CAUTIONS  
Pay attention to the following points when using these development specifications.  
1. The contents of these development specifications are subject to change without prior notice for improvement  
purposes.  
2. These development specifications are not meant to guarantee authorization for implementation of industrial  
properties and any other rights nor do they approve licensing of relevant patents.  
Application examples being introduced in these development specifications are for our customers to appreciate the  
characteristics of this product and we will not hold ourselves responsible for any troubles occurring from circuits  
employing these examples.  
Meanwhile, the magnitudes of respective figures in the characteristics table are being represented by the magnitude  
on the number line.  
3. No part of these development specifications can be reproduced in any form without our permission nor can they be  
copied for other purposes.  
4. When using semiconductor elements, pay attention to the following points:  
Handling precautions relevant to light”  
Semiconductor elements change their characteristics when light is irradiated upon them. Consequently, when this IC  
is exposed to flight, malfunctioning may occur. To prevent occurrence of malfunctioning of the IC by the light, observe  
the following precautions when designing a printed wiring board and product incorporating this IC:  
(1) Design a structure which can provide sufficient shading effects over this IC when the product is actually used and  
install the IC properly for said purposes.  
(2) For inspection processes, make an environmental design considering the shading effects for the ICs having been  
installed.  
(3) When examining the shading effects for this IC, consider the shading effects over the front surface, rear surface and  
side surfaces of the IC chips.  
Rev.2.0  
EPSON  
41  

相关型号:

S1D17C02T00A

LIQUID CRYSTAL DISPLAY DRIVER, UUC301, TCP-301
SEIKO

S1D17E01D00A100

LIQUID CRYSTAL DISPLAY DRIVER, UUC200, DIE-200
SEIKO

S1D19105

S1D19105d01b000
ETC

S1D2140B03

R/G/B VIDEO AMPLIFIER WITH OSD INTERFACE FOR MONITORS
SAMSUNG

S1D2140B03-D0B0

R/G/B VIDEO AMPLIFIER WITH OSD INTERFACE FOR MONITORS
SAMSUNG

S1D2141X01

R/G/B VIDEO AMPLIFIER FOR MONITORS
SAMSUNG

S1D2141X01-D0

R/G/B VIDEO AMPLIFIER FOR MONITORS
SAMSUNG

S1D2141X01-D0B0

R/G/B VIDEO AMPLIFIER FOR MONITORS
SAMSUNG

S1D2147A01

DEFLECTION PROCESSOR FOR MULTISYNC MONITORS
SAMSUNG

S1D2147A01-A0B0

DEFLECTION PROCESSOR FOR MULTISYNC MONITORS
SAMSUNG

S1D2500A

WIDE BAND ANALOG SWITCH FOR MONITORS
SAMSUNG

S1D2500A01-D0

I2C BUS CONTROLLED R/G/B VIDEO AMPLIFIER
SAMSUNG