GS12190 [SEMTECH]

Bidirectional 12G UHD-SDI Reclocking Adaptive Cable Equalizer/Cable Driver;
GS12190
型号: GS12190
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Bidirectional 12G UHD-SDI Reclocking Adaptive Cable Equalizer/Cable Driver

文件: 总121页 (文件大小:2881K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GS12190  
Bidirectional 12G UHD-SDI Reclocking  
Adaptive Cable Equalizer/Cable Driver  
Automatic input offset compensation  
Key Features  
Trace Driver Features:  
Single bidirectional 75Ω cable interface with on-chip  
termination  
Integrated 100Ω differential output termination  
DC-coupling from 1.2V to 2.5V CML logic  
On-die connection between equalizer and cable  
SMPTE ST 2082-1, ST 2081-1, ST 424, ST 292-1 and ST  
259 compliant input/output  
Trace Driver data output pre-emphasis to  
compensate for up to 20FR4 at 11.88Gb/s  
Multi-standard operation from 1Mb/s to 11.88Gb/s  
Manual or automatic Mute or Disable on LOS  
Supports reclocking for DVB-ASI at 270Mb/s and MADI  
at 125Mb/s  
Reclocker features:  
Manual or automatic rate modes  
Manual or automatic Reclocker Bypass  
Wide-range Loop Bandwidth control  
3D Input Signal Eye Monitor  
PRBS Generator and Checker  
Automatic cable equalization. Typical equalized cable  
lengths of Belden 1694A cable:  
Reclocking at the following data rates: 125Mb/s,  
270Mb/s, 1.485Gb/s, 2.97Gb/s, 5.94Gb/s, and  
11.88Gb/s. This includes the f/1.001 rates.  
70m at 11.88Gb/s  
90m at 5.94Gb/s  
170m at 2.97Gb/s  
240m at 1.485Gb/s  
400m at 270Mb/s  
Additional Features:  
Single 1.8V power supply for analogue and digital  
core  
2.5V for Cable Driver output supply  
1.2V, 1.8V, or 2.5V for Trace Driver output supply  
GSPI serial control and monitoring interface  
Cable Equalizer Mode Features:  
Improved reach with stress patterns  
Four configurable GPIO pins for control or status  
monitoring  
Manual or automatic power-down on loss of signal  
Programmable carrier detect with squelch  
threshold adjustment  
Wide operating temperature range: -40ºC to +85ºC  
Small 6mm x 4mm 40-pin QFN  
Manual and automatic Cable Equalizer Bypass  
Pin compatible with the GS12090 and GS3590  
Pb-free, Halogen-free, RoHS / WEEE compliant  
Cable Driver Mode Features:  
Wide swing control  
Pre-emphasis to compensate for significant  
insertion loss between device output and BNC  
Applications  
Next-generation 12G UHD-SDI infrastructures designed to  
support UHDTV1, UHDTV2, 4K D-Cinema and 3D HFR and  
HDR production image formats. Typical applications:  
Cameras, Switchers, Distribution Amplifiers and Routers.  
Manual or automatic power-down on loss of signal  
Manual or automatic Mute or Disable on LOS  
Trace Equalizer Features:  
Integrated 100Ω differential input termination  
Manual or automatic power-down on loss of signal  
Adjustable carrier detect threshold  
DC-coupling from 1.2V to 2.5V CML logic  
Trace Equalization to compensate for up to 20FR4  
at 11.88Gb/s  
GS12190  
Final Data Sheet  
PDS-061916  
1 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
With high phase consistency between scans and  
configurable space and time thresholds, algorithms can be  
deployed in the field to analyse long-term signal quality  
variation (Bathtub Plot) to reduce costly system installation  
debug time for intermittent errors.  
Description  
The GS12190 is a low-power, configurable multi-rate  
reclocking Cable Equalizer/Cable Driver supporting rates  
up to 12G UHD-SDI. It can be configured to equalize or drive  
signals over 75Ω coaxial cable. It includes DC restoration to  
compensate for the DC content of SMPTE pathological test  
patterns. Since the GS12190 is a reclocking device,  
extremely low output jitter is achievable even at extended  
cable/trace lengths.  
Each output has highly-configurable pre-emphasis and  
swing controls to compensate for long trace and connector  
losses.  
Additionally, automatic and user selectable output slew  
rate control is provided for the Cable Driver output.  
The integrated Eye Monitor provides non-disruptive  
mission mode analysis of the post-equalized input signal.  
The 256x128 resolution scan matrix allows accurate signal  
analysis to speed-up prototyping and enable field analysis.  
The GS12190 is pin compatible with the GS12090 and  
GS3590 Bidirectional 3G-SDI Reclocking Adaptive Cable  
Equalizer/Cable Driver.  
Built-in macros enable customizable cross section analysis  
and quick horizontal and vertical eye opening  
measurements.  
CS SCLK SDIN SDOUT  
GPIO1 GPIO2 GPIO3 GPIO4  
Control & Status  
Selector  
Cable  
Equalizer  
Trace  
Equalizer  
DDI  
Eye Monitor  
Slicer  
SDIO  
Cable  
Driver  
Trace  
Driver  
Reclocker  
Selector  
Selector  
DDO  
Pre-emphasis  
Pre-emphasis  
PRBS Checker  
PRBS  
Generator  
GS12190 Functional Block Diagram  
GS12190  
Final Data Sheet  
PDS-061916  
2 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Revision History  
Version  
ECO  
PCN  
Date  
Changes and/or Modifications  
3
2
051867  
051393  
May 2020  
April 2020  
Datasheet status changed to Final.  
Changes made to Table 2-2: DC Electrical Characteristics.  
“Re-timerchanged to “Reclocker. Changes made to GS12190  
Functional Block Diagram, Key Features, Table 2-1: Absolute  
Maximum Ratings, Table 2-3: AC Electrical Characteristics, Figure  
7-3: Marking Diagram. Data Sheet status changed to Preliminary.  
1
0
047121  
045796  
November 2019  
March 2019  
New Document.  
Contents  
1. Pin Out.................................................................................................................................................................5  
1.1 GS12190 Pin Assignment ................................................................................................................5  
1.2 GS12190 Pin Descriptions ...............................................................................................................6  
2. Electrical Characteristics................................................................................................................................9  
2.1 Absolute Maximum Ratings ...........................................................................................................9  
2.2 DC Electrical Characteristics ........................................................................................................ 10  
2.3 AC Electrical Characteristics ......................................................................................................... 13  
3. Input/Output Circuits.................................................................................................................................. 16  
4. Detailed Description.................................................................................................................................... 18  
4.1 Device Description .......................................................................................................................... 18  
4.1.1 Bidirectional Mode Control.............................................................................................. 18  
4.1.2 Sleep Mode............................................................................................................................ 18  
4.2 Cable Equalizer ................................................................................................................................. 19  
4.2.1 Cable Equalizer Bypass...................................................................................................... 19  
4.2.2 Upstream Launch Swing Compensation.................................................................... 20  
4.2.3 Carrier Detect, Squelch Control, and Loss of Signal ............................................... 20  
4.3 Trace Equalizer ................................................................................................................................. 23  
4.3.1 Input Trace Equalizer ......................................................................................................... 23  
4.3.2 Carrier Detect, and Loss of Signal.................................................................................. 24  
4.4 Serial Digital Reclocker .................................................................................................................. 26  
4.4.1 PLL Loop Bandwidth Control.......................................................................................... 27  
4.4.2 Automatic and Manual Rate Detection....................................................................... 27  
4.4.3 Lock Time ............................................................................................................................... 28  
4.5 PRBS Checker .................................................................................................................................... 30  
4.5.1 Timed PRBS Check Measurement Procedure............................................................ 30  
4.5.2 Continuous PRBS Check Measurement Procedure................................................. 32  
4.6 Eye Monitor ........................................................................................................................................ 34  
4.6.1 Scan Matrix and Measurement Time............................................................................ 35  
4.6.2 Matrix-Scan and Shape-Scan Operation..................................................................... 37  
GS12190  
Final Data Sheet  
PDS-061916  
3 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.7 PRBS Generator ................................................................................................................................ 44  
4.8 Output Drivers .................................................................................................................................. 47  
4.8.1 Bypassed Reclocker Signal Output Control ............................................................... 47  
4.8.2 Output Driver Polarity Inversion.................................................................................... 47  
4.8.3 Output Driver Data Rate Selection................................................................................ 48  
4.8.4 Amplitude and Pre-Emphasis Control ......................................................................... 49  
4.8.5 Trace Driver DC-Coupling Requirements ................................................................... 58  
4.8.6 Output State Control Modes........................................................................................... 59  
4.9 GPIO Controls .................................................................................................................................... 61  
4.10 GSPI Host Interface ....................................................................................................................... 61  
4.10.1 CS Pin..................................................................................................................................... 61  
4.10.2 SDIN Pin................................................................................................................................ 62  
4.10.3 SDOUT Pin ........................................................................................................................... 62  
4.10.4 SCLK Pin................................................................................................................................ 63  
4.10.5 Command Word 1 Description.................................................................................... 64  
4.10.6 GSPI Transaction Timing ................................................................................................ 66  
4.10.7 Single Read/Write Access............................................................................................... 67  
4.10.8 Auto-increment Read/Write Access........................................................................... 68  
4.10.9 Setting a Device Unit Address...................................................................................... 69  
4.10.10 Default GSPI Operation ................................................................................................ 70  
4.10.11 Clear Sticky Counts Through Four Way Handshake .......................................... 71  
4.10.12 Device Power-Up Sequence....................................................................................... 72  
4.10.13 Host Initiated Device Reset......................................................................................... 73  
5. Register Map................................................................................................................................................... 75  
5.1 Control Registers ............................................................................................................................. 75  
5.2 Status Registers ................................................................................................................................ 78  
5.3 Register Descriptions ..................................................................................................................... 79  
5.3.1 Control Register Descriptions......................................................................................... 79  
5.3.2 Status Register Descriptions..........................................................................................110  
6. Application Information...........................................................................................................................117  
6.1 Typical Application Circuit .........................................................................................................117  
7. Package & Ordering Information ..........................................................................................................118  
7.1 Package Dimensions .................................................................................................................... 118  
7.2 Recommended PCB Footprint ..................................................................................................119  
7.3 Packaging Data ..............................................................................................................................119  
7.4 Marking Diagram ...........................................................................................................................120  
7.5 Solder Reflow Profile .................................................................................................................... 120  
7.6 Ordering Information ...................................................................................................................120  
GS12190  
Final Data Sheet  
PDS-061916  
4 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
1. Pin Out  
1.1 GS12190 Pin Assignment  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VEE_DDI  
NC  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
VEEO  
SDIO  
SDI_TERM  
VCC_DDI  
TERM  
SDO  
GS12190  
40-pin QFN  
6mm x 4mm  
VCCO_0  
VCCO_1  
DDO  
DDI  
DDI  
DDO  
VEE_DDI  
VEEO  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Figure 1-1: GS12190 Pin Assignment  
GS12190  
Final Data Sheet  
PDS-061916  
5 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
1.2 GS12190 Pin Descriptions  
Table 1-1: GS12190 Pin Descriptions  
Pin Number  
Name  
Type  
Description  
Most negative power supply connection for the Cable Equalizer and  
Trace Equalizer.  
1, 8  
VEE_DDI  
Power  
Connect to ground.  
2, 30  
3
NC  
Not internally connected.  
Input Common Mode termination. Decouple to ground (see  
Section 6.1 Typical Application Circuit for recommended values).  
SDI_TERM  
Most positive power supply connection for the Trace and Cable  
Equalizer.  
4
VCC_DDI  
Power  
Connect to 1.8V.  
Input Common Mode termination. Decouple to ground (see  
Section 6.1 Typical Application Circuit for recommended values).  
5
TERM  
DDI, DDI  
RSVD  
Input  
Serial digital differential input. Differential CML input with internal  
100Ω termination.  
6, 7  
9, 32  
These pins may be left floating. Please contact your Semtech FAE for  
additional information on circuit compatibility with the GS12190.  
Chip Select input for the Gennum Serial Peripheral Interface (GSPI)  
host control/status port.  
1.8V CMOS input with 100kΩ pull-up.  
Active-low input.  
10  
CS  
Digital Input  
Refer to Section 4.10.1 for more details.  
Serial digital data input for the Gennum Serial Peripheral Interface  
(GSPI) host control/status port.  
11  
12  
13  
SDIN  
SDOUT  
SCLK  
Digital Input  
Digital Output  
Digital Input  
1.8V CMOS input with 100kΩ pull-down.  
Refer to Section 4.10.2 for more details.  
Serial digital data output for the Gennum Serial Peripheral Interface  
(GSPI) host control/status port.  
1.8V CMOS output.  
Refer to Section 4.10.3 for more details.  
Burst-mode clock input for the Gennum Serial Peripheral Interface  
(GSPI) host control/status port.  
1.8V CMOS input with 100kΩ pull-down.  
Refer to Section 4.10.4 for more details.  
Most negative power supply for digital core logic.  
Connect to ground.  
14, 15  
16  
VSS  
Power  
Power  
Most positive power supply connection for digital core logic.  
Connect to 1.8V.  
VDD  
GS12190  
Final Data Sheet  
PDS-061916  
6 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 1-1: GS12190 Pin Descriptions (Continued)  
Pin Number  
Name  
Type  
Description  
Multi-function Control/Status Input/Output 0.  
Default function:  
Digital  
Input/Output  
Direction = Output  
Signal = High indicates LOS (Loss of Signal, inverse of Carrier Detect)  
17  
GPIO0  
Pin is 1.8V CMOS I/O, please refer to GPIO0_CFG for more information  
on how to configure GPIO0.  
Multi-function Control/Status Input/Output 1.  
Default function:  
Digital  
Input/Output  
Direction = Output  
Signal = High indicates PLL is locked  
18  
GPIO1  
Pin is 1.8V CMOS I/O, please refer to GPIO1_CFG for more information  
on how to configure GPIO1.  
Most negative power supply connection for the analogue core.  
Connect to ground.  
19, 31, 37, 38  
20  
VEE_CORE  
VCCO1P8_1  
VEEO  
Power  
Power  
Power  
Most positive power supply connection for Trace Driver pre-driver.  
Connect to 1.8V.  
Most negative power supply connection for the output drivers.  
Connect to ground.  
21, 28  
Differential CML output with two internal 50Ω pull-ups.  
22, 23  
24  
DDO, DDO  
VCCO_1  
Output  
Power  
In cable equalizer mode, the data signal or PRBS Generator can be  
selected for this output.  
Most positive power supply connection for the DDO/ DDO output  
driver.  
Connect to 1.2V – 2.5V.  
Most positive power supply connection for the SDIO/SDO output  
driver.  
25  
26  
VCCO_0  
SDO  
Power  
Connect to 2.5V.  
Single-ended CML output buffer with internal 75Ω pull-up. Decouple  
to ground (see Section 6.1 Typical Application Circuit for  
recommended values).  
Output  
Single-ended bidirectional CML buffer with internal 75Ω pull-up.  
27  
29  
SDIO  
Output  
Power  
In cable driver mode, the data signal or PRBS Generator can be  
selected for this output.  
Most positive power supply connection for Cable Driver pre-driver.  
Connect to 1.8V.  
VCCO1P8_0  
Multi-function Control/Status Input/Output 2.  
Default function:  
Digital  
Input/Output  
Direction = Input  
Signal = Set HIGH to put device in sleep  
33  
GPIO2  
Pin is 1.8V CMOS I/O, please refer to GPIO2_CFG for more information  
on how to configure GPIO2.  
GS12190  
Final Data Sheet  
PDS-061916  
7 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 1-1: GS12190 Pin Descriptions (Continued)  
Pin Number  
Name  
Type  
Description  
VCO filter capacitor connection. Decouple to ground. See Section 6.1  
Typical Application Circuit for recommended values.  
34  
VCO_FILT  
Passive  
Most positive power supply connection for the analogue core.  
Connect to 1.8V.  
35  
36  
VCC_CORE  
GPIO3  
Power  
Multi-function Control/Status Input/Output 3.  
Default function:  
Digital  
Input/Output  
Direction = Input  
Signal = Set HIGH to put device in cable driver mode  
Pin is 1.8V CMOS I/O, please refer to GPIO3_CFG for more information  
on how to configure GPIO3.  
Loop filter capacitor connection. Connect to pin 40 through a  
capacitor (see Section 6.1 Typical Application Circuit for  
recommended values).  
39  
40  
LF+  
LF-  
Passive  
Passive  
Loop filter capacitor connection. Connect to pin 39 through a  
capacitor (see Section 6.1 Typical Application Circuit for  
recommended values).  
Central paddle can be connected to ground or left unconnected. Its  
purpose is to provide increased mechanical stability. It is not required  
for thermal dissipation. It is not recommended to connect the device  
ground pins to the central paddle.  
Tab  
GS12190  
Final Data Sheet  
PDS-061916  
8 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
2. Electrical Characteristics  
2.1 Absolute Maximum Ratings  
Table 2-1: Absolute Maximum Ratings  
Parameter  
Value  
Supply Voltage—Core (VCC_DDI  
,
-0.5V to +2.2V  
-0.5V to +2.8V  
VCC_CORE, VDD  
)
VCCO_0  
VCCO_1  
Supply Voltage—Output Driver  
-0.5V to +2.8V  
2kV HBM  
Input ESD Voltage (any pin)  
Storage Temperature Range (TS)  
-50°C to +125°C  
-0.3V to 2.6V  
Input Voltage Range (SDIO)  
-0.3V to (VCC_CORE + 0.3)V  
Input Voltage Range (GPIO2, GPIO3)  
Input Voltage Range (CS, SDIN, SCLK,  
VSS, VDD, GPIO0, GPIO1)  
-0.3V to (VDD +0.3)V  
260°C  
Solder Reflow Temperature  
Note: Absolute Maximum Ratings are those values beyond which damage may occur.  
Functional operation outside of the ranges shown in the AC/DC electrical characteristics  
tables is not guaranteed.  
GS12190  
Final Data Sheet  
PDS-061916  
9 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
2.2 DC Electrical Characteristics  
Table 2-2: DC Electrical Characteristics  
TA = -40°C to +85°C, unless otherwise shown.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Notes  
Bi-Directional Characteristics (Applicable to Both Modes)  
VCC_DDI  
VCC_CORE, VDD  
,
Supply Voltage  
1.71  
1.8  
1.89  
V
DDI Input and DDO  
Output Termination  
Differential  
100  
Ω
SDIO Bi-directional  
Termination  
Between SDIO and GND  
Between SDO and GND  
75  
75  
Ω
Ω
SDO Output Termination  
Reclocker Unlocked During  
Rate Search  
182  
mA  
Supply Current—  
Analogue Core  
PRBS Generator Enabled  
PRBS Checker Enabled  
Eye Monitor Enabled  
119  
60  
mA  
mA  
mA  
2, 3  
2
ICC_CORE  
54  
2
Supply Current—  
Digital Logic  
IDD  
16  
20  
mA  
V
0.65*  
VDD  
VIH  
VDD  
Input Voltage—Digital Pins  
(CS, SDIN, SCLK, GPIO[0:1])  
0.35*  
VDD  
VIL  
VIH  
VIL  
0
V
V
V
0.65*  
VCC_CORE  
VCC_CORE  
Input Voltage—Digital Pins  
(GPIO[2:3])  
0.35*  
VCC_CORE  
0
VDD -  
0.45  
VOH  
VOL  
VOH  
VOL  
IOH = -5mA  
IOL = +5mA  
IOH = -5mA  
IOL = +5mA  
0.45  
V
V
V
V
Output Voltage—Digital Pins  
(SDOUT, GPIO[0:1])  
VCC_CORE  
- 0.45  
Output Voltage—Digital Pins  
(GPIO[2:3])  
0.45  
Cable Equalizer Mode Characteristics  
1.14  
1.2  
1.8  
2.5  
1.26  
1.89  
2.63  
V
V
V
Supply Voltage—Trace  
Driver  
VCCO_1  
1.71  
2.38  
GS12190  
Final Data Sheet  
PDS-061916  
10 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 2-2: DC Electrical Characteristics (Continued)  
TA = -40°C to +85°C, unless otherwise shown.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Notes  
VCCO_1 = 1.2V,  
Output Swing = 400mVppd  
DDO/DDO enabled  
,
,
,
,
,
430  
mW  
1
VCCO_1 = 1.8V,  
Output Swing = 400mVppd  
DDO/DDO enabled  
440  
455  
445  
470  
mW  
mW  
mW  
mW  
1
1
1
1
VCCO_1 = 1.8V,  
PD  
Power  
Output Swing = 800mVppd  
DDO/DDO enabled  
VCCO_1 = 2.5V,  
Output Swing = 400mVppd  
DDO/DDO enabled  
VCCO_1 = 2.5V,  
Output Swing = 800mVppd  
DDO/DDO enabled  
VCCO_1 = 1.2V,  
Output Swing = 400mVppd  
10  
10  
20  
10  
20  
17  
17  
30  
17  
30  
mA  
mA  
mA  
mA  
mA  
1
1
1
1
1
VCCO_1 = 1.8V,  
Output Swing = 400mVppd  
VCCO_1 = 1.8V,  
Output Swing = 800mVppd  
ICCO_1  
Supply Current—Trace Driver  
VCCO_1 = 2.5V,  
Output Swing = 400mVppd  
VCCO_1 = 2.5V,  
Output Swing = 800mVppd  
Supply Current — Trace  
Driver Pre Driver  
ICCO_1P8_1  
Output Swing = 800mVpp  
25  
32  
18  
mA  
mA  
VCCO_0 = 2.5V,  
Output Swing = 800mVppd  
Supply Current — VCCO_0  
ICCO_0  
13  
55  
Supply Current—  
Cable Equalizer  
ICC_SDI  
ICC_CORE  
VCMOUT  
75  
161  
mA  
mA  
V
Supply Current—  
Analogue Core  
Reclocker Locked to Rate  
125  
DDO Output Common  
Mode Voltage  
VCCO_1 -  
ΔVDDO/2  
GS12190  
Final Data Sheet  
PDS-061916  
11 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 2-2: DC Electrical Characteristics (Continued)  
TA = -40°C to +85°C, unless otherwise shown.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units  
Notes  
Cable Driver Mode Characteristics  
Supply Voltage — Cable  
Driver  
VCCO_0  
2.38  
2.5  
2.63  
V
1
VCCO_0 = 2.5V,  
Output Swing = 800mVpp  
,
375  
mW  
DDO/DDO disabled  
PD  
Power  
VCCO_0 = 2.5V,  
Output Swing = 800mVpp  
with max pre-emphasis,  
DDO/DDO disabled  
390  
mW  
VCCO_0 = 2.5V,  
Output Swing = 800mVpp  
25  
30  
36  
38  
mA  
mA  
1
Supply Current—  
Cable Driver  
ICCO_0  
VCCO_0 = 2.5V,  
Output Swing = 800mVpp  
,
with max pre-emphasis  
Supply Current — Cable  
Driver Pre Driver  
ICCO1P8_0  
ICC_CORE  
ICC_DDI  
Output Swing = 800mVpp  
20  
120  
20  
30  
164  
32  
mA  
mA  
mA  
V
4
Supply Current—  
Analogue Core  
Reclocker Locked to Rate  
Supply Current — Trace  
Equalizer  
DDI Input Common  
Mode Voltage  
VCMIN  
0.94  
2.525  
SDO Output Common Mode  
Voltage  
VCCO_0 -  
VCMOUT  
Single-Ended  
VSDO/2  
Sleep Mode  
Cable Equalizer mode  
Cable Driver mode  
Sleep  
Sleep  
80  
45  
mW  
mW  
Notes:  
1. Pre-emphasis is disabled.  
2. Current listed is an increase to ICC_CORE when stated condition is true.  
3. Selected clock source = VCO free running.  
4. 0.94V is when the Trace Equalizer is DC-coupled to upstream driver running from 1.2V supply, and 2.525V is when Trace Equalizer is DC-coupled to  
upstream driver running from 2.5V supply.  
GS12190  
Final Data Sheet  
PDS-061916  
12 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
2.3 AC Electrical Characteristics  
Table 2-3: AC Electrical Characteristics  
VCC_DDI, VCC_CORE, VDD = +1.8V ±5% and VCCO_0, VCCO_1 = +2.5V ±5%, TA = -40°C to +85°C, unless otherwise shown.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units Notes  
Bi-Directional Characteristics (Applicable to Both Modes)  
DRDDI, DRSDIO  
Serial Input Data Rate  
0.001  
11.88  
-17  
-12  
-8  
Gb/s  
dB  
12  
1
1
1
1
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5MHz to 1.485GHz  
1.485GHz to 2.97GHz  
2.97GHz to 5.94GHz  
5.94GHz to 11.88GHz  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
dB  
Return Loss  
dB  
-5  
dB  
5
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
kHz  
MHz  
MHz  
kHz  
kHz  
MHz  
MHz  
MHz  
kHz  
MHz  
MHz  
MHz  
MHz  
10  
BWLOOP(125Mb/s)  
BWLOOP(270Mb/s)  
BWLOOP(1.485Gb/s)  
BWLOOP(2.97Gb/s)  
BWLOOP(5.94Gb/s)  
BWLOOP(11.88Gb/s)  
19  
Setting 0.5x (Default)  
Setting 1.0x  
38  
75  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
10  
20  
40  
Setting 0.5x  
80  
Setting 1.0x (Default)  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
158  
55  
110  
220  
438  
875  
110  
220  
440  
0.88  
1.75  
220  
440  
0.88  
1.75  
3.5  
440  
0.88  
1.75  
3.5  
7.0  
Setting 0.5x (Default)  
Setting 1.0x  
PLL Loop Bandwidth  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
Setting 0.5x (Default)  
Setting 1.0x  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
Setting 0.5x (Default)  
Setting 1.0x  
Setting 0.0625x  
Setting 0.125x  
Setting 0.25x  
Setting 0.5x (Default)  
Setting 1.0x  
GS12190  
Final Data Sheet  
PDS-061916  
13 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 2-3: AC Electrical Characteristics (Continued)  
VCC_DDI, VCC_CORE, VDD = +1.8V ±5% and VCCO_0, VCCO_1 = +2.5V ±5%, TA = -40°C to +85°C, unless otherwise shown.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Units Notes  
Cable Equalizer Mode Characteristics  
VSDIO  
mVpp  
mVppd  
mVppd  
BNC Input Voltage Swing  
720  
150  
600  
800  
200  
800  
880  
250  
3
7
8
200mV  
800mV  
Differential Output  
Voltage Swing  
VDDO  
1000  
triseDDO  
tfallDDO  
,
DDO, DDO, Rise/Fall Time  
All rates  
40  
ps  
11  
DDO Mismatch in  
Rise/Fall Time  
75  
8
ps  
ps  
11  
6
DDO Duty Cycle Distortion  
DDO, DDO  
10  
PLL Lock Time —  
Asynchronous  
tALOCK  
tSLOCK  
ms  
SD  
10  
2
µs  
µs  
UI  
6
6
PLL Lock Time —  
Synchronous  
HD/3G/UHD  
Belden 1694A: 400m  
tOJ(125Mb/s)  
tOJ(270Mb/s)  
tOJ(1.485Gb/s)  
tOJ(2.97Gb/s)  
tOJ(5.94Gb/s)  
tOJ(11.88Gb/s)  
0.02  
0.1  
2, 14  
Belden 1694A: 400m  
Belden 1694A: 240m  
0.04  
0.04  
0.05  
0.1  
0.1  
0.1  
UI  
UI  
UI  
UI  
UI  
2, 14  
2, 14  
2, 14  
2, 14  
14  
Serial Data Output Jitter (DDO)  
Belden 1694A: 170m  
0.1  
Belden 1694A: 90m  
0.15  
0.15  
Belden 1694A: 70m  
0.07  
Cable Driver Mode Characteristics  
Differential Input  
Voltage Swing  
VDDI  
mVppd  
mVpp  
200  
800  
13  
V
SDIO, VSDO  
BNC Output Voltage Swing  
Single Ended  
720  
800  
20  
880  
4
9
12G  
Inches  
Inches  
Inches  
Inches  
Inches  
Inches  
UI  
6G  
30  
9
3G  
60  
9
Loss Compensation (Input  
Trace Equalization)  
HD  
60  
9
SD  
60  
9
MADI  
60  
9
12G  
0.7  
0.8  
0.85  
0.95  
Intrinsic Input Jitter Tolerance  
IIJT  
MADI/SD/HD/3G/6G  
UI  
All rates enabled, except  
MADI.  
16.7  
ms  
6
PLL Lock Time—  
Asynchronous  
tALOCK  
All rates enabled.  
SD  
32  
10  
ms  
µs  
µs  
ps  
ps  
ps  
6
6
tSLOCK  
PLL Lock Time—Synchronous  
SDIO, SDO Rise/Fall Time  
HD/3G/6G/12G  
SD/MADI  
5
6
400  
1000  
70  
t
riseSDIO, tfallSDIO  
HD/3G  
6G/12G  
40  
GS12190  
Final Data Sheet  
PDS-061916  
14 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 2-3: AC Electrical Characteristics (Continued)  
VCC_DDI, VCC_CORE, VDD = +1.8V ±5% and VCCO_0, VCCO_1 = +2.5V ±5%, TA = -40°C to +85°C, unless otherwise shown.  
Parameter  
Symbol  
Conditions  
SD/MADI  
HD/3G  
Min  
Typ  
Max  
100  
20  
10  
5
Units Notes  
ps  
ps  
ps  
%
%
%
%
UI  
SDIO Mismatch  
in Rise/Fall Time  
6G/12G  
SD/MADI  
HD/3G  
SDIO Eye Cross Shift  
(SDIO, SDO)  
8
6G/12G  
9
SDIO Overshoot  
10  
0.08  
tOJ(125Mb/s)  
tOJ(270Mb/s)  
tOJ(1.485Gb/s)  
tOJ(2.97Gb/s)  
tOJ(5.94Gb/s)  
tOJ(11.88Gb/s)  
tOJ(Bypass)  
0.015  
2, 10  
0.035  
0.025  
0.04  
0.04  
0.1  
0.08  
0.08  
0.08  
0.1  
UI  
UI  
UI  
UI  
UI  
UI  
2, 10  
2, 10  
2, 10  
2, 10  
2, 10  
2, 10  
BW = default,  
Pattern = PRBS  
Serial Data Output Jitter (SDIO)  
0.16  
0.2  
0.1  
Notes:  
1. Values achieved with Semtech evaluation board and connector.  
2. Measured using a clean input source.  
3. Default value for CFG_EQ_INPUT_LAUNCH_SWING_COMP parameter in control register 0x18. The default parameter value is 80d (50h).  
4. Default Cable Driver swing Setting.  
5. Please see PLL_LOOP_ BANDWIDTH_ 0 for the full range of loop bandwidth settings.  
6. Please see Section 4.4.3.1 for the further definition on Synchronous and Asynchronous Lock Time.  
7. Output driver setting of 8.  
8. Output driver setting of 36.  
9. Trace insertion loss was measured with FR4 material using 7 mil strip-line traces using a PRBS23 signal.  
10. Measured under minimal trace loss conditions.  
11. Rise/fall time was measured between 80% and 20%.  
12. When in Cable Equalizer Mode, the rise/fall time of signals at the source should not be more than 62ns.  
13. Stated minimum and maximum voltages represent voltage levels at input pins.  
14. Max jitter occurs at the maximum cable length.  
GS12190  
Final Data Sheet  
PDS-061916  
15 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
3. Input/Output Circuits  
VCC_DDI  
VCC_DDI VCC_DDI  
DDI  
RLC  
RLC  
50Ω  
50Ω  
TERM  
DDI  
Figure 3-1: DDI, DDI  
VCCO_0  
RLC  
VCCO_0  
VCCO_0  
VCCO_1  
VCCO_1  
VCCO_1  
RLC  
75Ω  
75Ω  
50Ω  
50Ω  
SDIO  
SDO  
DDO  
DDO  
Figure 3-2: DDO/DDO  
Figure 3-3: SDIO, SDO  
GS12190  
Final Data Sheet  
PDS-061916  
16 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
VDD  
VDD  
VDD  
VDD  
VDD  
100kΩ  
SDIN,  
SCLK  
CS  
100kΩ  
Figure 3-4: SDIN, SCLK  
Figure 3-5: Chip Select (CS)  
VCC_IO*  
VCC_IO*  
VCC_IO*  
1kΩ  
GPIO[0:3]  
VDD  
VDD  
100kΩ  
VCC_IO*  
SDOUT  
Note: VCC_IO makes reference to the following power supplies and pins:  
VCC_IO = VDD for GPIO[0:1]  
VCC_IO = VCC_CORE for GPIO[2:3]  
Figure 3-6: SDOUT  
Figure 3-7: GPIO[0:3]  
GS12190  
Final Data Sheet  
PDS-061916  
17 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4. Detailed Description  
4.1 Device Description  
The GS12190 features a 75Ω internally-terminated bidirectional SDIO port, which can be  
set as SMPTE-compliant Cable Driver or Cable Equalizer. In addition to the SDIO port,  
there is a 100Ω differential Trace Driver to transmit the incoming SDI signal to the  
system and a 100Ω differential Trace Equalizer to receive the outgoing signal from the  
system. The bidirectional mode can be controlled through the host interface, or the  
GPIO pin. The Cable Driver has amplitude and pre-emphasis control to compensate for  
significant insertion loss between device output and BNC. The Trace Driver also has  
amplitude and pre-emphasis control which can compensate for 15dB of insertion loss at  
5.94GHz. The pre-emphasis control is two-dimensional in both the Cable Driver and  
Trace Driver, where both pre-emphasis pulse amplitude and width adjustments can be  
made to help optimize for interconnect mismatches such as vias and connectors. The  
Trace Equalizer has boost control, which can compensate for 17dB of insertion loss at  
5.94GHz.  
4.1.1 Bidirectional Mode Control  
The bidirectional mode of the GS12190 can be controlled through the GPIO or the host  
interface.  
By default the device is in pin control mode and GPIO3 is the control input pin. To put  
the device in Cable Equalizer Mode drive this pin LOW. To put the device in Cable Driver  
Mode, drive this pin HIGH.  
In addition to GPIO control, the host can set the direction mode through the host  
interface using the CTRL_DIRECTION_SEL_MODE and CTRL_DIRECTION_SEL  
parameters in register 0x14h. To use the host interface to control the direction mode,  
first choose host interface select mode by writing 1b to CTRL_DIRECTION_SEL_MODE  
(default = 0b pin mode). Once the device is in host interface select mode, the host can  
put the device in cable equalizer mode by writing 0b to the CTRL_DIRECTION_SEL  
control parameter (default = 1b cable driver mode).  
4.1.2 Sleep Mode  
To enable low-power operation, the GS12190 has Manual and Automatic Sleep Mode  
control.  
The default mode is Automatic Sleep Mode on LOS (Loss Of Signal). The device can also  
be manually put into Sleep Mode. When the device is in Sleep Mode, all the core blocks  
are powered-down, except the host interface and carrier detect circuits. The SDIO Cable  
Driver output buffer is always disabled (powered-down) in sleep mode, while the DDO  
Trace Driver can be disabled or muted.  
GS12190  
Final Data Sheet  
PDS-061916  
18 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
The CTRL_AUTO_SLEEP and CTRL_MANUAL_SLEEP parameters in register 0x3h,  
control the sleep mode of the device. The default value of the CTRL_AUTO_SLEEP  
parameter is 1b (Auto Sleep). While in Auto Sleep Mode, the CTRL_MANUAL_SLEEP  
parameter has no effect. To enable host control of the sleep mode, set the  
CTRL_AUTO_SLEEP parameter to 0b for Manual Sleep Control. To prevent the device  
from entering sleep, set the CTRL_MANUAL_SLEEP parameter to 0b (not sleep). To  
manually configure the device to sleep, set the CTRL_MANUAL_SLEEP parameter to 1b  
(sleep).  
The device can also be manually made to sleep through the GPIO pins. The default GPIO  
pin to control sleep is GPIO2 (pin 33). Drive this pin HIGH to make the device sleep.  
Section 4.7 describes the PRBS Generator function. If the device's PRBS Generator is  
intended to be used without a valid input signal, the device should be manually set to  
not sleep as described above. Without a valid input signal, an LOS status will be  
generated and the device will enter sleep mode and the PRBS block will be disabled. For  
a description of LOS thresholds and settings, see Section 4.2.3 and Section 4.3.2.  
4.2 Cable Equalizer  
When the GS12190 is operating in Cable Equalizer Mode, it can automatically adjust its  
gain to equalize and restore SMPTE-compliant signals received over different lengths of  
coaxial cable having loss characteristics similar to Belden 1694A. With the default  
settings, the device will automatically equalize MADI at 125Mb/s and most common  
SMPTE-compliant signals between SD at 270Mb/s and UHD-SDI at 11.88Gb/s and  
bypass signals below 125Mb/s.  
The GS12190 features programmable Launch Swing Compensation, Squelch Threshold  
Adjust, and Bypass, all of which can be set through the device's host interface.  
The equalized or bypassed signal is then routed to the serial digital reclocker block.  
Note: Section 4.2 to Section 4.2.3.2 are only applicable to the Cable Equalizer input  
(SDIO).  
4.2.1 Cable Equalizer Bypass  
With the default settings, the device will automatically bypass signals below 125Mb/s.  
During cable equalizer bypass mode, the device supports low data rate and slow edge  
signals such as SMPTE310 and AES3id. The rise/fall times must not exceed 62ns. While in  
cable equalizer bypass mode, signals will not be reclocked by the reclocker block.  
To force the device to bypass the cable equalizer, DC restoration stage, and reclocker,  
the following two methods can be used:  
Host Interface Control:  
Set the following parameters in register 17h  
CTRL_CEQ_AUTO_BYPASS = 0  
CTRL_CEQ_MANUAL_BYPASS = 1  
GS12190  
Final Data Sheet  
PDS-061916  
19 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
GPIO Control:  
1. Configure a GPIO as an input by writing 0h to CFG_GPIO<n>_OUTPUT_ENA.  
2. Configure the GPIO function as “cable equalizer bypass enable,by writing 84h to  
CFG_GPIO<n>_FUNCTION.  
3. Drive the selected GPIO pin HIGH.  
Note: The <n> in the control parameter names refers to the GPIO pin number.  
4.2.2 Upstream Launch Swing Compensation  
The GS12190 Cable Equalizer has an automatic gain control circuit, that is optimized on  
the assumption that the Cable Driver in the upstream device is SMPTE-compliant and  
has a launch swing of 800mVpp ±10%. When the source amplitude is known to be  
non-SMPTE-compliant, a compensation adjustment can be made in the GS12190. The  
GS12190 can adjust for launch swings in the range of 250mV to 1V in approximately  
50mVppd increments. Upstream launch swing compensation can be adjusted through  
the CFG_EQ_INPUT_LAUNCH_SWING_COMP parameter in control register 0x18. The  
default parameter value is 80d (50h), which corresponds to a nominal launch swing of  
800mVppd  
.
4.2.3 Carrier Detect, Squelch Control, and Loss of Signal  
The GS12190 Cable Equalizer has highly-configurable carrier detection and squelching  
capability. The carrier detection can be made more robust against spurious signals and  
noise at the inputs and the squelch control can be configured and enabled to reduce  
false outputs to low level signals such as crosstalk.  
The GS12190 reports two separate carrier detect parameters—STAT_PRI_CD and  
STAT_SEC_CD. They are described in Section 4.2.3.1 and Section 4.2.3.2 respectively.  
Note: The parameters referred to within Section 4.2.3 to Section 4.2.3.2 are linked to  
their respective registers in Table 4-1.  
4.2.3.1 Primary Carrier Detection (STAT_PRI_CD) Configuration  
Primary carrier detection (STAT_PRI_CD) can be configured for higher stability by  
filtering out longer transients or glitches. This can be achieved by increasing the  
sampling window over which the signal is sampled and the number of samples required  
to assert or de-assert it.  
There are three configuration parameters that control assertion or de-assertion of  
STAT_PRI_CD:  
CFG_CD_FILTER_SAMPLE_WIN  
CFG_FILTER_DEASSERT_CNT  
CFG_CD_FILTER_ASSERT_CNT  
See Figure 4-1 for a visual representation of the STAT_PRI_CD configuration  
parameters.  
GS12190  
Final Data Sheet  
PDS-061916  
20 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
With the default values in place:  
An assertion (setting HIGH) of STAT_PRI_CD will take place after a valid signal is  
present for ~6.5ms  
A de-assertion (setting LOW) of STAT_PRI_CD will take place after loss of a valid  
signal for ~96µs  
If the application requires any adjustment of the sampling window, assertion count, or  
de-assertion count, please consult the following equations to calculate the associated  
time to assert or de-assert STAT_PRI_CD.  
STAT_PRI_CD de-assert time:  
(1.6μs) * (CFG_CD_FILTER_SAMPLE_WIN + 1) * CFG_CD_FILTER_DEASSERT_CNT  
STAT_PRI_CD assert time:  
(1.6μs) * (CFG_CD_FILTER_SAMPLE_WIN + 1) * CFG_CD_FILTER_ASSERT_CNT  
= ASSERT Threshold  
CFG_CD_FILTER_ASSERT_CNT =n  
n=1  
n=2  
n=3  
Time in clock cycles  
CFG_CD_FILTER_SAMPLE_WIN  
= DEASSERT Threshold  
CFG_CD_FILTER_DEASSERT_CNT =n  
n=1  
n=2  
n=3  
Time in clock cycles  
CFG_CD_FILTER_SAMPLE_WIN  
Figure 4-1: STAT_PRI_CD Configuration Parameters  
4.2.3.2 Secondary Carrier Detection (STAT_SEC_CD) Configuration  
The secondary carrier detection signal acts as an additional carrier detection which can  
be further filtered through squelch controls. It also serves as the control signal for Mute  
on LOS (Loss Of Signal) and Disable on LOS. Please refer to Section 4.8.6 to  
Section 4.8.6.3 for further information on this.  
If the application requires the use of squelch settings, start by setting the following:  
CFG_SEC_CD_INCL_CLI_SQUELCH = 1  
Once this parameter is set, the device will apply squelch based on the settings found  
within the following parameters:  
CFG_CLI_SQUELCH_THRESHOLD  
CFG_CLI_SQUELCH_HYSTERESIS  
GS12190  
Final Data Sheet  
PDS-061916  
21 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
The device will use these parameters to determine squelch status and set that within  
STAT_CLI_SQUELCH. Based off of this, secondary carrier detection can be described as:  
STAT_SEC_CD = inverse of (STAT_CLI_SQUELCH & STAT_PRI_CD).  
To help detail how the device determines the state of Squelch, we define the following  
variables:  
CLI = STAT_CABLE_LEN_INDICATION  
THR = CFG_CLI_SQUELCH_THRESHOLD  
HYS = CFG_CLI_SQUELCH_HYSTERESIS  
SQL = STAT_CLI_SQUELCH  
The following rules define the state of SQL.  
Note: If the cable equalizer is in bypass (STAT_CEQ_BYPASS = 1), the device will set  
SQL to 0.  
If CLI > (THR + HYS), the device will set SQL to 1, otherwise:  
If CLI < (THR - HYS), the device will set SQL to 0, otherwise:  
If CLI ≥ (THR - HYS) and CLI ≤ (THR + HYS), SQL remains unchanged.  
If SQL = 1, the device will not indicate lock and the trace driver state will be  
defined by output state control parameters settings, see Section 4.8.6 for more  
details.  
Table 4-1: Cable Equalizer Status and Configuration Parameters  
Register Addressh and Name  
Parameter Name  
Parameter Description  
15, CARR_ DET_CFG  
CFG_SEC_CD_INCL_CLI_SQUELCH Enables or disables squelch control.  
Used to tune the squelch threshold based on the  
tolerance requirements of the application.  
CFG_CLI_SQUELCH_THRESHOLD  
CFG_CLI_SQUELCH_HYSTERESIS  
16, SQUELCH_ PARAMETERS  
Used to tune the squelch hysteresis based on the  
tolerance requirements of the application.  
20, CD_FILTER_ DELAYS_0  
21, CD_FILTER_ DELAYS_1  
22, CD_FILTER_ DELAYS_2  
CFG_CD_FILTER_SAMPLE_WIN  
CFG_CD_FILTER_DEASSERT_CNT  
CFG_CD_FILTER_ASSERT_CNT  
Primary carrier detect sampling window size.  
Primary carrier detect de-assertion count.  
Primary carrier detect assertion count.  
A counter showing the number of times the primary  
Carrier Detect signal changed.  
STAT_CNT_PRI_CD_CHANGES  
84, STICKY_ COUNTS_0  
86, CURRENT_ STATUS_0  
A counter showing the number of times the secondary  
Carrier Detect signal changed.  
STAT_CNT_SEC_CD_CHANGES  
STAT_CLI_SQUELCH  
Cable equalizer Squelch status.  
GS12190  
Final Data Sheet  
PDS-061916  
22 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 4-1: Cable Equalizer Status and Configuration Parameters (Continued)  
Register Addressh and Name  
87, CURRENT_ STATUS_1  
88, EQ_GAIN_IND  
Parameter Name  
Parameter Description  
Primary filtered carrier detect of the analogue carrier  
detect signal.  
STAT_PRI_CD  
Secondary filtered carrier detect of the analogue carrier  
detect signal.  
STAT_SEC_CD  
SDIO cable length indication when in cable equalizer  
mode.  
STAT_CABLE_LEN_INDICATION  
4.3 Trace Equalizer  
The GS12190 features a differential input buffer with 100Ω differential input  
termination, which includes a Trace Equalizer that can be configured to compensate for  
up to 20" of 7mil strip-line in FR4 at 11.88Gb/s and up to 60" at 2.97Gb/s.  
The differential input signal can be either DC-coupled or AC-coupled, and is capable of  
operation with any binary coded signal between 1Mb/s and 11.88Gb/s.  
The input circuit is compatible with industry standard CML differential transmitters  
when DC-coupled using industry standard 100Ω differential termination circuitry.  
The Trace Equalizer includes an automatic input offset compensation circuit. This  
reduces offset-induced data jitter in the link due to asymmetric performance of  
DC-coupled upstream differential drivers. The input offset compensation circuit also  
improves the input sensitivity of the Trace Equalizer.  
Note: When working with the Trace Equalizer, note the following:  
The parameters referred to within Section 4.3 to Section 4.3.2 are linked to their  
respective registers in Table 4-2. For a complete list of registers and functions, see  
Section 5.  
Section 4.3 to Section 4.3.2 are only applicable to the Trace Equalizer input (DDI).  
4.3.1 Input Trace Equalizer  
The Trace Equalizer can compensate for up to 17dB of insertion loss at 5.94GHz in 8  
increments, which can be adjusted through the CFG_TREQ0_BOOST parameter in  
control register 0x1Eh. The default value of CFG_TREQ0_BOOST is (0h), which  
corresponds to the minimum equalization boost level.  
Please refer to Figure 4-2 for recommended boost setting.  
GS12190  
Final Data Sheet  
PDS-061916  
23 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
8
7
6
5
4
3
2
1
0
boost setting 8  
boost setting 7  
boost setting 6  
boost setting 5  
boost setting 4  
boost setting 3  
boost setting 2  
boost setting 1  
boost setting 0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
Insertion Loss at 5.94GHz (dB)  
Figure 4-2: GS12190 Trace EQ Boost Setting Recommendation  
By default at power-up or after system reset, the Trace Equalizer is configured to  
compensate for up to 3" of 7mil strip-line in FR4 material at high frequencies.  
Note: If using input trace lengths longer than 5", use an upstream launch swing of  
~ 800mVppd  
.
4.3.2 Carrier Detect, and Loss of Signal  
The Trace Equalizer has a highly-configurable Carrier Detection mechanism that allows  
the system designer to optimize the sensitivity and hysteresis of the Carrier Detection  
mechanism to meet specific system requirements.  
Default settings should satisfy most applications; however, designers can modify the  
following three parameters to customize the Trace Equalizer's carrier detection for their  
application:  
CFG_TREQ0_CD_BOOST  
CFG_TREQ0_CD_ASSERT_THRESH  
CFG_TRE0Q_CD_DEASSERT_THRESH  
The Trace Equalizer Carrier Detect is reported by status parameter STAT_PRI_CD in  
register 0x87h.  
GS12190  
Final Data Sheet  
PDS-061916  
24 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
The first CD control parameter is CFG_TREQ0_CD_BOOST in register 0x1Eh. This  
parameter determines the method and therefore the level of equalization to be used on  
the input signal routed to the Carrier Detection sub-block. The default value is 0b, which  
maximizes the level of equalization. Alternatively, the designer can choose to have this  
signal equalized at the same level as the main signal routed to the reclocker by setting  
CFG_TREQ0_CD_BOOST to 1b. The setting of this parameter has no impact on the main  
signal routed to the reclocker.  
The last two CD control parameters can be found in register 0x1Fh. Parameters  
CFG_TREQ0_CD_ASSERT_THRESH and CFG_TRE0Q_CD_DEASSERT_THRESH set  
the Carrier Detect assert and de-assert thresholds to the input signal, which also defines  
the hysteresis of CD signal.  
The default values of CFG_TREQ0_CD_ASSERT_THRESH and  
CFG_TREQ0_CD_DEASSERT_THRESH are 4d and 3d respectively. With the default  
settings, the minimum launch swing needed to assert the carrier detect is 200mV and it  
will be de-asserted when the signal level falls below 150mV.  
The STAT_PRI_CD (Carrier Detect) parameter will be set to 0b and the LOS will be set to  
1b whenever a new signal at the input does not exceed the assert threshold, or an  
existing signal falls below the de-assert threshold. The result is that the device will not  
indicate lock, and the outputs will mute (assuming Mute on LOS is left to its default value  
in the CONTROL_OUTPUT_MUTE register—0x49h). See Section 4.8.6 for more details.  
Given a differential input trace with 17dB of insertion loss at 5.94GHz and  
CFG_TREQ_CD_BOOST = 0b, Figure 4-3 illustrates the relationship between launch  
swing voltage, and minimum threshold setting to assert or de-asset Carrier Detect at all  
rates up to threshold setting at 11.88Gb/s.  
Min Launch Swing vs. CD Threshold Setting  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
Carrier Detect Threshold Setting  
Figure 4-3: Input Voltage vs. Carrier Detect Threshold Setting  
GS12190  
Final Data Sheet  
PDS-061916  
25 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 4-2: Trace Equalizer Status and Configuration Parameters  
Register Addressh and Name  
84, STICKY_ COUNTS_0  
Parameter Name  
Description  
A counter showing the number of times the  
primary Carrier Detect signal changed.  
STAT_CNT_PRI_CD_CHANGES  
Primary filtered carrier detect of the  
analogue carrier detect signal.  
87, CURRENT_ STATUS_1  
STAT_PRI_CD  
CFG_TREQ0_CD_ASSERT_THRESH  
CFG_TREQ0_CD_DEASSERT_THRESH  
CFG_TREQ0_BOOST  
Sets the Carrier Detect assert threshold.  
Sets the Carrier Detect de-assert threshold.  
Sets the Trace Equalizer boost level.  
1F, TREQ0_CD_ HYSTERESIS  
1E, TREQ0_ INPUT_BOOST  
CFG_TREQ0_CD_BOOST  
Selects the boost method of the CD signal.  
4.4 Serial Digital Reclocker  
The GS12190 includes an integrated Reclocker, whose purpose is to lock to a valid  
incoming signal from the Cable Equalizer stage (when operating in cable equalizer  
mode) or the Trace Equalizer stage (when operating in cable driver mode) and produce  
a lower jitter signal at the Cable Driver or Trace Driver outputs. The Reclocker has the  
ability to lock to any of the following data rates: MADI (125Mb/s), SD-SDI (270Mb/s),  
HD-SDI (1.485Gb/s), 3G-SDI (2.97Gb/s), 6G-SDI (5.94Gb/s) and 12G-SDI (11.88Gb/s). This  
includes the f/1.001 rates.  
The default settings of the Reclocker block are optimal for most applications. However,  
the following controls allow the user to customize the behaviour of the Reclocker: loop  
bandwidth control, Automatic and Manual Rate Detection.  
Note: The parameters referred to within Section 4.4.1 to Section 4.4.2 are linked to their  
respective registers in Table 4-4: Reclocker Control and Status Parameters. For a  
complete list of registers and functions, please see Section 5.  
GS12190  
Final Data Sheet  
PDS-061916  
26 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.4.1 PLL Loop Bandwidth Control  
The ratio of output peak-to-peak jitter to input peak-to-peak jitter of the Reclocker can  
be represented by a low-pass jitter transfer function, with a bandwidth equal to the PLL  
loop bandwidth. Although the default loop bandwidth settings for the GS12190  
reclocker are ideal for most SDI signals, the GS12190 allows the user to adjust the loop  
bandwidth for each MADI and SMPTE-compliant rate.  
Registers 0x0Ah through 0x0Ch contain the following parameters which allow the user  
to configure rate-dependent loop bandwidth: CFG_PLL_LBW_12G,  
CFG_PLL_LBW_6G,CFG_PLL_LBW_3G, CFG_PLL_LBW_HD, CFG_PLL_LBW_SD, and  
CFG_PLL_LBW_MADI. The loop bandwidth settings are defined in terms of ratios of the  
nominal loop bandwidth. For each rate, where '1.0x' is the nominal loop bandwidth, the  
following ratios are available: 0.0625x, 0.125x, 0.25x, 0.5x, and 1.0x. Table 2-3 provides  
the specific loop bandwidths for each data rate and loop bandwidth setting. Lowering  
the loop bandwidth will lower the jitter amplitude above the loop bandwidth  
frequency. Although lower output jitter is desirable, the lower loop bandwidth may  
reduce the device’s IJT to very high jitter that may be present outside the loop  
bandwidth.  
4.4.2 Automatic and Manual Rate Detection  
In Cable Equalizer mode, with the default rate detect settings, the Reclocker will  
automatically attempt to lock to any of following data rates: MADI (125Mb/s), SD-SDI  
(270Mb/s), HD-SDI (1.485Gb/s), 3G-SDI (2.97Gb/s), 6G-SDI (5.94Gb/s) and 12G-SDI  
(11.88Gb/s). This includes the f/1.001 rates.  
In Cable Driver mode, with the default rate detect settings, the Reclocker will  
automatically attempt to lock to any of the following data rates: SD-SDI (270Mb/s),  
HD-SDI (1.485Gb/s), 3G-SDI (2.97Gb/s), 6G-SDI (5.94Gb/s) and 12G-SDI (11.88Gb/s). This  
includes the f/1.001 rates.  
However, the reclocker can be configured to only lock to a single rate, by setting the  
CFG_AUTO_RATE_DETECT_ENA and CFG_MANUAL_RATE parameters in register  
0x06. In addition to CFG_MANUAL_RATE, when operating in cable driver mode and  
with automatic rate detection enabled (CFG_AUTO_RATE_DETECT_ENA = 1), specific  
rates can be excluded from the rate detect list through the CFG_RATE_ENA_<r> rate  
disable mask parameter in 0x06h, where r is the rate to be disabled. For details on  
specific settings, please see Table 5-3: Control Register Descriptions, RATE_ DETECT_  
MODE.  
Note: The CFG_RATE_ENA_<r> parameter is only applicable to the Trace Equalizer  
input DDI in cable driver mode.  
The STAT_LOCK parameter in register 0x86h will indicate that the Reclocker is locked  
when its value is 1b and unlocked when its value is 0b. The lock status can also be  
monitored externally on any GPIO pin, however it is the default mode for GPIO1, pin 18.  
The STAT_DETECTED_RATE parameter in register 0x87h will indicate the data rate at  
which the Reclocker is locked to. A value of 0d in the STAT_DETECTED_RATE parameter  
indicates that the device is not locked, while values between 1d and 6d will indicate that  
the device is locked to one of the six available rates between MADI at 125Mb/s and  
UHD-SDI at 11.88Gb/s.  
GS12190  
Final Data Sheet  
PDS-061916  
27 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
If the Reclocker cannot lock to any of the valid rates in automatic mode or the selected  
rate in manual mode, the signal can automatically be bypassed to the output. If the  
reclocker does lock to the incoming signal, the reclocked and bypassed (if manual  
bypass control enabled) signals are available at the appropriate output. See Section 4.8  
for more details.  
Table 4-3: Detected Data Rates  
STAT_DETECTED_  
Detected Data Rate  
RATE [2:0]  
0
1
2
3
4
5
6
7
Unlocked  
MADI (125Mb/s)  
SD (270Mb/s)  
HD (1.485Gb/s)  
3G (2.97Gb/s)  
6G (5.94Gb/s)  
12G (11.88Gb/s)  
Reserved  
4.4.3 Lock Time  
4.4.3.1 Synchronous and Asynchronous Lock Time  
Synchronous lock time is defined as the time it takes the device to re-lock to an existing  
signal that has been momentarily interrupted or to a new signal of the same data rate  
as the previous signal which has been quickly switched in.  
Asynchronous lock time is defined as the time it takes the device to lock when a signal  
is first applied to the serial digital inputs, or when the signal rate changes. The  
asynchronous and synchronous lock times are defined in Table 2-3.  
Note: To ensure synchronous lock times are met, the maximum interruption time of the  
signal is 10µs for an SD-SDI signal. HD, 3G, 6G, or 12G signals must have a maximum  
interruption time of 6µs. The new signal, after interruption, must have the same  
frequency as the original signal but may have an arbitrary phase.  
GS12190  
Final Data Sheet  
PDS-061916  
28 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 4-4: Reclocker Control and Status Parameters  
Register  
Addresshand  
Parameter Name  
Description  
Name  
Enables or disables the automatic rate detection mode of the  
reclocker.  
CFG_AUTO_RATE_DETECT_ENA  
CFG_MANUAL_RATE  
Select a single rate for the reclocker rate detection when  
CFG_AUTO_RATE_DETECT_ENA is 0b.  
06,  
CFG_RATE_ENA_12G  
CFG_RATE_ENA_3G  
CFG_RATE_ENA_6G  
CFG_RATE_ENA_HD  
CFG_RATE_ENA_SD  
CFG_RATE_ENA_MADI  
CFG_PLL_LBW_12G  
12G auto rate detection enable  
3G auto rate detection enable  
RATE_DETECT_  
MODE  
6G auto rate detection enable  
HD auto rate detection enable  
SD auto rate detection enable  
MADI auto rate detection enable  
Configures the Loop Bandwidth for 12G signals.  
0A,  
PLL_LOOP_  
BANDWIDTH_ 0  
CFG_PLL_LBW_6G  
CFG_PLL_LBW_3G  
CFG_PLL_LBW_HD  
CFG_PLL_LBW_SD  
CFG_PLL_LBW_MADI  
Configures the Loop Bandwidth for 6G signals.  
Configures the Loop Bandwidth for 3G signals.  
Configures the Loop Bandwidth for HD signals.  
Configures the Loop Bandwidth for SD signals.  
Configures the Loop Bandwidth for MADI signals.  
0B,  
PLL_LOOP_  
BANDWIDTH_ 1  
0C,  
PLL_LOOP_  
BANDWIDTH_ 2  
CFG_GPIO1_FUNCTION  
Sets the function of GPIO1.  
11,  
GPIO1_CFG  
CFG_GPIO1_OUTPUT_ ENA  
Sets the GPIO pin as either an output or an input.  
Counter showing the number of times the PLL lock status  
changed.  
STAT_CNT_PLL_LOCK_CHANGES  
STAT_CNT_RATE_CHANGES  
85,  
STICKY_  
COUNTS_1  
Counter showing the number of times the PLL lock rate  
changed.  
86,  
CURRENT_  
STATUS_0  
STAT_LOCK  
The status of the PLL. Locked, or unlocked.  
The rate at which the PLL is locked to.  
87,  
CURRENT_  
STATUS_1  
STAT_DETECTED_RATE  
GS12190  
Final Data Sheet  
PDS-061916  
29 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.5 PRBS Checker  
The GS12190 includes an integrated PRBS Checker, which can error check a PRBS7 signal  
out of the Trace or Cable equalizer input blocks.  
There are two modes of operation for the PRBS checker:  
Timed Mode: Used for precise measurements of up to ~3.34s  
In Timed Mode, the host sets the measurement time and executes the  
checker operation. The device ends the PRBS error check measurement  
when the timer expires, and the host reads back the measurement status  
and error count  
Continuous Mode: Can be used for longer measurements but with less precision in  
the time interval  
In Continuous Mode, the host controls the starts and stops of the PRBS error  
checking operation then reads back the measurement status and error count  
Note: When working with the PRBS Checker, please note the following:  
The parameters referred to in Section 4.5 to Section 4.5.2 are briefly described and  
linked to their respective registers in Table 4-5  
The PRBS Generator and Checker can be active at the same time. However, the  
Generator can not be looped back on itself for error checking  
4.5.1 Timed PRBS Check Measurement Procedure  
For applications where measurement times are ~3.34s or less, the timed PRBS check  
mode is the most suitable. Alternatively, to achieve precise timing for lower BER signals,  
the timed PRBS check measurement can be repeated by the host and the total  
measurement time and error count is determined by summing the individual  
measurements.  
In timed mode, the host sets the total measurement time by setting the  
CFG_PRBS_CHECK_PREDIVIDER and the CFG_PRBS_CHECK_MEAS_TIME  
parameters to the required values to achieve the total measurement time required by  
the application.  
To perform a timed PRBS measurement, please complete the following steps:  
1. Set the appropriate settings within CFG_PRBS_CHECK_PREDIVIDER and  
CFG_PRBS_CHECK_MEAS_TIME to achieve the total measurement time  
required by the application. The TMT (Total Measurement Time) is determined  
by the following equation:  
TMT = CFG_PRBS_CHECK_PREDIVIDER * (CFG_PRBS_CHECK_MEAS_TIME  
*256+1) * (1/40MHz)  
Note: Using the default CFG_PRBS_CHECK_PREDIVIDER setting of 0  
(pre-divider = 4) and CFG_PRBS_CHECK_MEAS_TIME setting of 3  
(MEAS_TIME = 3), the TMT is ~77µs per measurement.  
2. Follow the steps outlined in the flowchart found within Figure 4-4: Timed PRBS  
Check Flow.  
GS12190  
Final Data Sheet  
PDS-061916  
30 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Note:  
The host must not change CTRL_PRBS_CHECK_START  
during a PRBS timed check except as described in  
this diagram. There is no capability for the host to  
abort a timed PRBS check once requested.  
In particular, after setting CTRL_PRBS_CHECK_START  
to 1 for a timed check, the host is not permitted to  
write CTRL_PRBS_CHECK_START back to 0 until the  
device sets STAT_PRBS_CHECK_STATUS to 2 or 3  
indicating completion or abort. Behaviour is  
undefined if it does so; it would lead to race  
conditions in the host <-> device handshake.  
Start Timed PRBS Check Measurement  
Host sets  
CTRL_PRBS_CHECK_TIMED_CONT_B = 1  
CTRL_PRBS_CHECK_START = 1  
Device clears error count  
And attempts to start PRBS  
checker based on lock  
condition of device  
Device Sets  
STAT_PRBS_CHK_ERR_CNT = 0  
Loss of lock occurred during measurement  
or at the beginning of measurement  
initiation. Error count is invalid  
Resets PRBS  
checker.  
STAT_PRBS_CHECK_STATUS  
= 3  
Host sets  
CTRL_PRBS_CHECK_START = 0  
YES  
YES  
Prepares device  
for next  
operation  
NO  
NO  
Device Sets  
STAT_PRBS_CHECK_STATUS =  
0
STAT_PRBS_CHECK_STATUS  
= 1  
YES  
PRBS Checker is ready for new  
operation  
NO  
Status indicates that  
timer Expired, PRBS  
Timed Measurement  
Complete  
NO  
STAT_PRBS_CHECK_STATUS  
= 2  
Resets PRBS  
checker.  
YES  
Host sets  
CTRL_PRBS_CHECK_START = 0  
NO  
STAT_PRBS_CHECK_STATUS  
= 0  
YES  
PRBS Error Check Completed  
Successfully  
User reads Error count from  
STAT_PRBS_CHK_ERR_CNT  
Figure 4-4: Timed PRBS Check Flow  
GS12190  
Final Data Sheet  
PDS-061916  
31 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.5.2 Continuous PRBS Check Measurement Procedure  
The maximum measurement time for a timed PRBS error measurement is ~3.35  
seconds. For links with very low error rates, this time is insufficient to capture an  
adequate number of errors. For these situations, the continuous PRBS check  
measurement is more appropriate.  
In continuous PRBS measurement mode, the measurement can run as long as required  
(assuming the device remains locked) to ensure the BER test level is met.  
To perform a continuous PRBS measurement, please follow the steps outlined in the  
flowchart found within Figure 4-5: Continuous PRBS Flow Chart  
Table 4-5: PRBS Checker Parameter Description  
Register Addressh and Name  
Parameter Name  
Parameter Description  
Selects pre-divider for PRBS check measurement  
timer.  
CFG_PRBS_CHECK_PREDIVIDER  
50, PRBS_ CHK_CFG  
Selects PRBS check measurement interval for timed  
measurements.  
CFG_PRBS_CHECK_MEAS_TIME  
Selects between timed and continuous type PRBS  
measurement.  
CTRL_PRBS_CHECK_TIMED_CONT_B  
51, PRBS_CHK_ CTRL  
CTRL_PRBS_CHECK_START  
STAT_PRBS_CHK_ERR_CNT  
Used to start and stop PRBS measurements.  
PRBS error count storage location.  
89, PRBS_ CHK_ERR_CNT  
8A, PRBS_ CHK_STATUS  
STAT_PRBS_CHECK_STATUS  
STAT_PRBS_CHECK_LAST_ABORT  
Status indication of PRBS checker.  
Indication bit for PRBS successful completion or abort.  
GS12190  
Final Data Sheet  
PDS-061916  
32 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Start Continuous PRBS Check  
Measurement  
Device clears error count  
And attempts to start PRBS  
checker based on lock  
condition of device  
Host sets  
CTRL_PRBS_CHECK_TIMED_CONT_B = 0  
CTRL_PRBS_CHECK_START = 1  
Device Sets  
STAT_PRBS_CHK_ERR_CNT = 0  
Loss of lock occurred during  
measurement or at the  
beginning of measurement  
initiation. Error count is invalid  
Resets PRBS  
checker.  
STAT_PRBS_CHECK_STATUS  
= 3  
Host sets  
CTRL_PRBS_CHECK_START = 0  
YES  
Prepares device  
for next  
operation  
NO  
Device Sets  
STAT_PRBS_CHECK_STATUS  
= 0  
STAT_PRBS_CHECK_STATUS  
= 1  
NO  
YES  
NO  
Host may terminate PRBS  
measurement at anytime  
by completing this action.  
PRBS Checker is ready for new  
operation  
Host sets  
CTRL_PRBS_CHECK_START  
=0  
YES  
YES  
NO  
STAT_PRBS_CHECK_STATUS  
= 0  
YES  
STAT_PRBS_CHECK_LAST_ABORT  
= 1  
This step is to ensure that an error did  
not occur between ending the PRBS  
measurement and the last polling of  
STAT_PRBS_CHECK_STATUS.  
NO  
PRBS Error Check Completed  
Successfully  
User reads Error count from  
STAT_PRBS_CHK_ERR_CNT  
Figure 4-5: Continuous PRBS Flow Chart  
GS12190  
Final Data Sheet  
PDS-061916  
33 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.6 Eye Monitor  
The GS12190 includes an integrated Eye Monitor, which can scan the equalized signal  
from the Trace or Cable equalizer input blocks. The Eye Monitor is capable of performing  
a full 128h x 256v matrix-scan or simply a 4 coordinate shape-scan of the equalized  
signal (See Figure 4-6).  
Figure 4-6: Full Matrix-Scan (left) and 4-Point Shape-Scan (right)  
The Eye Monitor is highly-configurable, and the host can configure the offset,  
resolution, sample time, and error threshold parameters to control the depth and  
execution time of the scan. The Eye Monitor scans the signal from whichever of the  
Trace or Cable equalizer blocks is active for the current direction (see Section 4.1.1 for  
directional mode configuration). Similar to the PRBS Checker, the Eye Monitor is  
controlled through a 4-way handshake mechanism. The following sections outline the  
scan parameters and procedure to configure the eye scan area, error threshold, and run  
a shape or full scan.  
GS12190  
Final Data Sheet  
PDS-061916  
34 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.6.1 Scan Matrix and Measurement Time  
0
Max Horizontal Scan Resolution  
Default  
128  
Vertical  
Offset  
Start  
Vertical Offset Step = 1  
Phase Step = 1  
Vertical  
Offset Start  
Vertical  
Offset Stop  
Phase Start  
Phase Stop  
Vertical Offset Step = 2  
Phase Step = 1  
Default  
Vertical  
Offset  
Stop  
255  
0
127  
Default  
Default  
Phase  
Start  
Phase  
Stop  
Vertical Offset Step = 4  
Phase Step = 4  
Figure 4-7: Eye Scan Matrix Parameters  
Figure 4-7 shows a visual representation of the scan matrix and indicates the spatial  
parameters that determine the scan area and resolution. Running a scan using the  
default offset and step parameters, results in 32768 (128x256) samples. The number of  
samples and thus, the total scan time can be reduced to meet the needs of the  
application. The scan area can be reduced by reducing the span determined by the  
vertical and phase start and stop offsets or the resolution can be reduced by increasing  
the step size between adjacent samples. On the right in Figure 4-7, there are three step  
settings used as examples, however there are a total of nine combinations possible. See  
Table 4-6 for the register addresses and parameter names of the spatial eye scan  
parameters.  
For example, by increasing the vertical and phase step size to 4, the resolution is  
reduced to (1/4)2, thus reducing the number of samples down to 2048 (32768x1/16).  
GS12190  
Final Data Sheet  
PDS-061916  
35 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
The vertical and horizontal scan information is useful when adjusting pre-emphasis and  
equalization of a link. However, once this is accomplished, it may be sufficient to use the  
Eye Scanner to only monitor jitter by setting the offsets to simply slice the eye at the  
centre offset position, thus obtaining a simple 128 sample horizontal scan. A horizontal  
eye can be configured to run in just over a millisecond.  
In addition to the spatial parameters, the sample time, and thus the bit error rate  
resolution for the eye scan can be adjusted; longer scans can detect finer bit error rates.  
However, this proportionally increases the total scan time. The sample time in  
microseconds is determined by a 32-bit time-out value split across two 16 bit registers.  
See Table 4-7 for the register addresses and parameter names of the time-out eye scan  
parameters.  
For example, using the default spatial and temporal measurement scan parameters, the  
scan time is approximately 6.6 seconds (32768 x 2 x 100µs). However, by changing the  
vertical and horizontal step size to 4, the scan time can be reduced to 400ms (2048 x 2 x  
100µs).  
The error count information can be used as is to determine the minimum inner contour  
based on the measurement time. However, the basic data can be post-processed to  
determine things like error rate, and error threshold. The following equations provide  
guidance for user post-processing:  
Equation 4-1  
sample1error1count  
-------------------------------------------------------------  
error1rate =  
sample1time  
Contour maps can be created by defining error rate thresholds, and grouping sampled  
points that fall between thresholds.  
For example:  
Equation 4-2  
Equation 4-3  
sample1time  
error1rate1threshold11  
sample1time  
error1rate1threshold12  
-----------------------------------------------------------------------  
-----------------------------------------------------------------------  
sample1error1threshold   
Some sampling scopes provide eye maps with BER contours; similar limited BER contour  
approximations can be obtained from the eye scan by using BER threshold groups.  
For example:  
sample1time1x1data1rate  
sample1time1x1data1rate  
-------------------------------------------------------------------------------  
-------------------------------------------------------------------------------  
sample1error1threshold   
error1rate1threshold11  
error1rate1threshold12  
GS12190  
Final Data Sheet  
PDS-061916  
36 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 4-6: Spatial Scan Configuration Parameters  
Register Addressh and Name  
Parameter Name  
Description  
CTRL_EYE_PHASE_START  
CTRL_EYE_PHASE_STOP  
Horizontal phase start index  
Horizontal phase stop index  
Horizontal phase step size  
Vertical offset start index  
Vertical offset stop index  
Vertical offset step size  
5A, EYE_MON_ SCAN_CTRL_0  
CTRL_EYE_PHASE_STEP  
5B, EYE_MON_ SCAN_CTRL_1  
5C, EYE_MON_ SCAN_CTRL_2  
CTRL_EYE_VERT_OFFSET_START  
CTRL_EYE_VERT_OFFSET_STOP  
CTRL_EYE_VERT_OFFSET_STEP  
4.6.2 Matrix-Scan and Shape-Scan Operation  
The previous section described the parameters used to adjust the spatial and temporal  
eye scan settings. Each sample of the eye scan can record up to 65536 errors. A full eye  
scan would require 64KB (256 x 128 x 2 Bytes) of memory to store the data of a full scan.  
The Eye Monitor was implemented to use device resources more efficiently by  
segmenting a full scan into several partial scan segments. Each partial scans segment  
can contain up to 512B of scan data.  
In the case of a full matrix-scan, there are 128 partial scan segments and each partial  
scan segment contains two complete scan lines (2 x 128 x 2B = 512B). In the case of a  
partial matrix-scan, each scan segment contains multiple partial scan lines including  
partial lines (see Figure 4-8).  
GS12190  
Final Data Sheet  
PDS-061916  
37 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
1st Partial Scan  
Error Count = Max  
0 < rror Count < Max  
E
Error Count = 0  
1st Partial Scan  
1st  
1 st  
Vertical Offset Start  
2nd  
2nd  
2nd  
2nd  
...  
...  
...  
...  
Last  
Last  
Vertical Offset Stop  
128th Partial Scan  
Phase Start  
Phase Stop  
Figure 4-8: Full Matrix-Scan (left) and Partial Matrix-Scan (right)  
Figure 4-7 illustrates an example of an eye scan, where the sampled eye data is not  
centred within the scan matrix. The eye scan data has an arbitrary centre phase relative  
to the centre of the matrix which is determined when the Eye Monitor is powered-up.  
While the Eye Monitor remains powered, subsequent scans will maintain the same  
relative phase allowing for consecutive scans to be compared for changes.  
Although the scan data is not centred, a simple algorithm can be applied to the data to  
shift the eye data and extract the relevant information.  
In addition to the matrix-scan, the Eye Monitor includes a built-in function called a  
shape-scan. The shape-scan returns four coordinates corresponding to the horizontal  
and vertical extremes of the inner eye (See Figure 4-9).  
GS12190  
Final Data Sheet  
PDS-061916  
38 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Error Count = Max  
> Error Count Threshold  
Error Count = 0  
Positive Edge  
(PE)  
Left Edge  
(LE)  
Right Edge  
(RE)  
Negative Edge  
(NE)  
Figure 4-9: 4-Point Scan Coordinates Relative to the Eye  
The four points obtained from the shape-scan can be used to quickly and easily  
calculate the eye height and width of the signal eye. The shape-scan alone will most  
likely meet the signal analysis requirements of most applications. Alternatively, the  
coordinates obtained from the shape-scan can be used to optimize the bounds of a  
partial matrix-scan. The four points returned from the shape-scan are determined by the  
error rate threshold set by the error threshold parameter and the time-out parameters  
previously discussed.  
GS12190  
Final Data Sheet  
PDS-061916  
39 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 4-7: Time-out Eye Scan Parameters  
Register Addressh and Name  
Parameter Name  
Description  
56, EYE_MON_ INT_CFG_2  
54, EYE_MON_ INT_CFG_0  
55, EYE_MON_ INT_CFG_1  
CFG_EYE_BER_THRESHOLD  
CFG_EYE_MON_TIMEOUT_MS  
CFG_EYE_MON_TIMEOUT_LS  
Number of sample errors to determine fail  
MSB of measurement time in microseconds  
LSB of measurement time in microseconds  
This section provides a step-by-step procedure to run a matrix and shape-scan. The  
shape-scan procedure is described first.  
Shape-Scan Procedure:  
1. Ensure the offset and step parameters described in Table 4-6 are set to their default  
values.  
2. Configure the 4-point error rate threshold by setting each of the parameters listed  
in Table 4-7.  
3. Configure the eye monitor to run a shape-scan by setting  
CTRL_EYE_SHAPE_SCAN_B to 1.  
4. Start the scan and poll the scanner status register until the scan is complete. Please  
refer to the flow diagram in Figure 4-10.  
GS12190  
Final Data Sheet  
PDS-061916  
40 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Run Shape Scan  
Please Note the Following:  
- While the Eye Monitor is  
powered-up, the Cable Equalizer  
input only has partial adaptation  
enabled  
Host powers up eye monitor and starts  
Shape Scan by setting:  
Note: the host can write  
CTRL_EYE_MON_POWER_CTRL = 1  
CTRL_EYE_MON_START = 1  
CTRL_EYE_MON_POWER_CTRL = 1 and  
CTRL_EYE_MON_START = 1 in the  
same GSPI write (i.e. at the  
- Status = STAT_EYE_MON_STATUS  
same time). It is not necessary to set  
the power up first.  
Host reads scan status from  
STAT_EYE_MON_STATUS  
3
1 or 0  
Status  
2
Host determines Eye Width and Eye Height by reading from  
the following 4 registers:  
le = STAT_EYE_SHAPE_LEFT_EDGE_PHASE  
re = STAT_EYE_SHAPE_RIGHT_EDGE_PHASE  
pe =STAT_EYE_SHAPE_POS_EDGE_OFFSET  
ne =STAT_EYE_SHAPE_NEG_EDGE_OFFSET  
if pe > ne:  
Scan Failed  
Reset Eye Scanner  
EyeHeight = (256 + ne - pe)  
else:  
EyeHeight = (ne - pe)  
if le > re:  
EyeWidtht = (128 + re - le)  
else:  
EyeWidtht = (re - le)  
Host Resets Eye Scanner for new scan by  
setting CTRL_EYE_MON_START = 0  
Or power down by setting  
CTRL_EYE_MON_POWER_CTRL = 0  
NO  
Status = 0?  
Shape Scan  
Complete  
Figure 4-10: Shape-Scan Flow Diagram  
GS12190  
Final Data Sheet  
PDS-061916  
41 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Matrix-Scan Procedure:  
1. Set the bounds of the matrix-scan with the offset and step parameters described in  
Table 4-6. The default value results in a full matrix-scan. Alternatively, the  
shape-scan can be executed and the coordinates returned can be used to minimize  
the scan time and data size of the scan.  
2. Configure the 4-point error rate threshold by setting each of the parameters listed  
in Table 4-7.  
3. Configure the eye monitor to run a matrix-scan by setting  
CTRL_EYE_SHAPE_SCAN_B to 0.  
4. Start the scan and poll the scanner status register until the scan is complete. Refer  
to the flow diagram in Figure 4-11.  
Read Eye Scan Buffer Procedure:  
1. Host reads image size from STAT_EYE_IMAGE_SIZE.  
Note: The matrix-scan is composed of multiple partial scan segments. The size (in  
Bytes) of the last partial scan segment is stored in STAT_EYE_IMAGE_SIZE.  
2. Host reads scan buffer data from register 0x6C00h to (0x6C00 + (size read from  
STAT_EYE_IMAGE_SIZE)/2).  
Address 0x6C00h is the first header word corresponding to the last vertical offset  
position in the matrix that was read  
Address 0x6C01h is the second header word corresponding to the image size.  
This value is a copy of the image size that was read from  
STAT_EYE_IMAGE_SIZE  
Address 0x6C02h to (0x6C00 + (size read from STAT_EYE_IMAGE_SIZE)/2) is the  
eye scan data:  
The image data is 2 bytes per sample point  
Making reference to the Matrix shown in Figure 4-7, the eye scan data  
starting at 0x6C02h is stored in order from left to right, top to bottom, from  
the last stored vertical/horizontal position in the matrix  
The number of samples contained in the scan buffer is equal to (size read from  
STAT_EYE_IMAGE_SIZE - 4)/2  
GS12190  
Final Data Sheet  
PDS-061916  
42 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Please Note the Following:  
Run Scan  
- While the Eye Monitor is powered-up,  
the Cable Equalizer input only has partial  
adaptation enabled  
YES  
Status = 0?  
Host powers up eye monitor and starts  
Matrix Scan by setting:  
- Status = STAT_EYE_MON_STATUS  
Note: the host can write  
CTRL_EYE_MON_POWER_CTRL = 1  
CTRL_EYE_MON_START = 1  
- Partial = STAT_EYE_SCAN_PARTIAL_OR_FULL  
CTRL_EYE_MON_POWER_CTRL = 1 and  
CTRL_EYE_MON_START = 1 in the  
same GSPI write (i.e. at the same time).  
It is not necessary to set the  
power up first.  
NO  
Host reads scan status from  
STAT_EYE_MON_STATUS  
3
1 or 0  
status  
2
Host preforms  
Read Buffer  
Scan  
Host Resets Eye Scanner for  
new scan by setting  
CTRL_EYE_MON_START = 0  
Scan Failed  
Reset Eye Scanner  
Eye Scan  
Data  
Procedure  
NO  
Partial = 1?  
YES  
Host Resets Eye Scanner for new scan by  
setting CTRL_EYE_MON_START = 0  
Or power down by setting  
CTRL_EYE_MON_POWER_CTRL = 0  
NO  
Status = 0?  
Full Eye Scan  
Complete  
Figure 4-11: Matrix-Scan Flow Diagram  
GS12190  
Final Data Sheet  
PDS-061916  
43 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.7 PRBS Generator  
The GS12190 includes an integrated PRBS Generator which can produce a differential  
PRBS7 or a divided clock signal on SDIO/SDO or DDO/DDO for system testing.  
Note: The parameters referred to within this section are briefly described and linked to  
their respective registers in Table 4-8.  
The PRBS Generator and Checker can be active at the same time. However, the  
Generator can not be looped back on itself for error checking  
Please consider the following before initializing the PRBS Generator for use:  
Ensure that the directional mode setting is set to utilize the appropriate output.  
Refer to Section 4.1.1 for more information:  
Cable Driver Mode PRBS output = SDIO/SDO  
Cable Equalizer Mode PRBS output = DDO/DDO  
If the application requires adjustment to the default output swing on either PRBS  
output. Please see Section 4.8.4 for details on how to adjust these settings  
To configure the PRBS Generator for use, please see the following steps:  
1. Select the PRBS Generator as the source on the appropriate output:  
To switch DDO/DDO from data mode to PRBS generator mode, set  
CTRL_OUTPUT1_SIGNAL_SEL = 1  
To switch SDIO/SDO from data mode to PRBS generator mode, set  
CTRL_OUTPUT0_SIGNAL_SEL = 1  
2. The default device settings are configured to power-down the device on loss of  
input signal. If the PRBS Generator is to be used without a valid input signal, then  
the following automatic setting parameters must be disabled. This must be done to  
ensure device is powered-up and the outputs are active for the PRBS Generator.  
The following settings are required for PRBS output on either output:  
CTRL_AUTO_SLEEP = 0  
CTRL_MANUAL_SLEEP = 0  
The following settings are required when DDO/DDO is selected as PRBS  
output:  
CTRL_OUTPUT1_AUTO_MUTE = 0  
CTRL_OUTPUT1_MANUAL_MUTE = 0  
CTRL_OUTPUT1_AUTO_DISABLE = 0  
CTRL_OUTPUT1_MANUAL_DISABLE = 0  
The following settings are required when SDIO/SDO is selected as PRBS  
output:  
CTRL_OUTPUT0_AUTO_MUTE = 0  
CTRL_OUTPUT0_MANUAL_MUTE = 0  
CTRL_OUTPUT0_AUTO_DISABLE = 0  
CTRL_OUTPUT0_MANUAL_DISABLE = 0  
CTRL_OUTPUT0_AUTO_SLEW = 0  
GS12190  
Final Data Sheet  
PDS-061916  
44 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Manually set the appropriate slew rate in CTRL_OUTPUT0_MANUAL_SLEW for  
the rate to be selected in CTRL_PRBS_GEN_DATA_RATE  
0 for SD and MADI  
1 for HD and 3G  
2 for 6G and 12G  
3. Set the values within the following parameters which meet the needs of the  
application:  
CTRL_PRBS_GEN_SIGNAL_SELECT  
CTRL_PRBS_GEN_CLK_SRC  
CTRL_PRBS_GEN_DATA_RATE  
Note: If CTRL_PRBS_GEN_CLK_SRC was set to reclocker recovered clock a  
valid signal that the reclocker has locked to must be present for proper  
operation, and the PRBS Generator will match this data rate regardless of  
what rate CTRL_PRBS_GEN_DATA_RATE is set to  
CTRL_PRBS_GEN_CLK_DIVIDER  
CTRL_PRBS_GEN_INVERT  
4. Start the Generator by setting CTRL_PRBS_GEN_ENABLE = 1.  
To stop the Generator at any time, set CTRL_PRBS_GEN_ENABLE = 0. If the use of the  
PRBS Generator is complete, revert any settings made in steps 1, 2 and/or 4 to return to  
normal operation.  
Table 4-8 provides a brief description of the parameters used to configure and enable  
the PRBS Generator. For a detailed description of each parameter, please reference the  
linked registers.  
Table 4-8: PRBS Generator Parameter Descriptions  
Register Addressh and Name  
Parameter Name  
Parameter Description  
CTRL_AUTO_SLEEP  
Set the device to auto or manual sleep  
Manually set the sleep setting of the  
device when auto sleep mode is turned  
off  
3, CONTROL_ SLEEP  
CTRL_MANUAL_SLEEP  
Selects between data or PRBS Generator  
as the driver source for DDO/DDO  
CTRL_OUTPUT1_SIGNAL_SEL  
CTRL_OUTPUT0_SIGNAL_SEL  
48, OUTPUT_ SIG_SELECT  
Selects between data or PRBS Generator  
as the driver source for SDIO/SDO  
GS12190  
Final Data Sheet  
PDS-061916  
45 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 4-8: PRBS Generator Parameter Descriptions (Continued)  
Register Addressh and Name  
Parameter Name  
Parameter Description  
Select automatic or manual mute control  
for DD0/DDO  
CTRL_OUTPUT1_AUTO_MUTE  
Manually set the mute control for  
DD0/DDO when auto mute mode is  
turned off  
CTRL_OUTPUT1_MANUAL_MUTE  
CTRL_OUTPUT0_AUTO_MUTE  
CTRL_OUTPUT0_MANUAL_MUTE  
CTRL_OUTPUT1_AUTO_DISABLE  
49, CONTROL_ OUTPUT_ MUTE  
Select automatic or manual mute control  
for SDIO/SDO  
Manually set the mute control of the  
SDIO/SDO when auto mute mode is  
turned off  
Selects automatic or manual disable  
control for DD0/DDO  
Manually set the disable control of  
CTRL_OUTPUT1_MANUAL_DISABLE DD0/DDO when auto disable mode is  
turned off  
4A, CONTROL_ OUTPUT_ DISABLE  
Selects automatic or manual disable  
CTRL_OUTPUT0_AUTO_DISABLE  
control for SDIO/SDO  
Manually set the disable control of the  
CTRL_OUTPUT0_MANUAL_DISABLE SDIO/SDO when auto disable mode is  
turned off  
Selects auto or manual slew rate selection  
CTRL_OUTPUT0_AUTO_SLEW  
for SDIO/SDO  
4B, CONTROL_ OUTPUT_ SLEW  
Manually set the slew rate for SDIO/SDO  
CTRL_OUTPUT0_MANUAL_SLEW  
when auto slew mode is turned off  
Selects between setting the output of the  
CTRL_PRBS_GEN_SIGNAL_SELECT  
CTRL_PRBS_GEN_CLK_SRC  
CTRL_PRBS_GEN_CLK_DIVIDER  
CTRL_PRBS_GEN_INVERT  
PRBS Generator to being a clock or a PRBS  
test signal  
Selects the clock source used by the PRBS  
Generator  
If a clock is selected as the PRBS output  
signal, this parameter sets the divide ratio  
of the clock  
52, PRBS_GEN_ CTRL  
Allows the polarity of the PRBS signal to  
be inverted  
If a PRBS test signal is selected as the  
output signal, this parameter sets the  
data rate of the PRBS7 signal  
CTRL_PRBS_GEN_DATA_RATE  
CTRL_PRBS_GEN_ENABLE  
Used to enable or disable the PRBS  
Generator  
GS12190  
Final Data Sheet  
PDS-061916  
46 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.8 Output Drivers  
The GS12190 features two independent output drivers (see Figure 3-2 and Figure 3-3),  
with data and PRBS Generators available on both outputs. The two drivers provide  
highly-configurable amplitude and pre-emphasis control. The Cable Driver output on  
SDIO can compensate for significant loss between the device output and BNC. The Trace  
Driver, DDO, can compensate for up 15dB of insertion loss at 5.94GHz. This can represent  
up to 20" of compensation at 12G for typical micro-strip and strip-line routing. In normal  
operation, reclocked and bypassed data is available at both outputs. The signal on the  
outputs can be inverted to help with signal polarity when layout requires trace  
inversion. The PRBS Generator is available at both outputs. The LOS (Loss Of Signal)  
status from the equalizer stage can be used to automatically mute or disable the  
outputs on their assertion. The Loss Of Lock status from the reclocker block can be used  
to mute the outputs. The Cable Driver is always disabled during sleep, while the Trace  
Driver can be configured to mute or disable during sleep. The sleep control modes takes  
precedence over the manual or automatic LOS and Loss of Lock output control modes.  
Note: The <n> in the control parameter names refers to the output number. Output 0 is  
the cable driver output SDIO and output 1 is the trace driver output DDO.  
4.8.1 Bypassed Reclocker Signal Output Control  
With the default power-up settings, the GS12190 outputs will automatically switch to  
the bypassed signal (non-reclocked) whenever the PLL is unlocked. Alternatively,  
manual reclocker bypass may be configured by setting the  
CTRL_OUTPUT<n>_RETIMER_AUTO_BYPASS and  
CTRL_OUTPUT<n>_RETIMER_MANUAL_BYPASS parameters in register 0x4Ch to 0b  
and 1b respectively via the host interface, in which case the PLL will remain bypassed for  
all rates.  
The reclocker bypass function, manual or automatic, does not affect the input  
equalization function of the device.  
If the GS12190 is in Cable Driver Mode, and loop-back is not enabled, then setting SDIO  
to manual bypass will power-down the reclocker block and features of the reclocker  
such as rate detect and lock detect will no longer be accessible in this mode. The same  
is true if the GS12190 is in Cable Equalizer Mode and DDO is set to manual bypass.  
4.8.2 Output Driver Polarity Inversion  
While in Data Mode, the signal polarity may be inverted at the outputs through the  
CTRL_OUTPUT<n>_DATA_INVERT parameters in register 0x48h. This may be useful to  
compensate for an inverted upstream signal or to facilitate board signal routing. To  
invert the polarity of either of the two output drivers, write 1b to control parameter  
CTRL_OUTPUT<n>_DATA_INVERT.  
GS12190  
Final Data Sheet  
PDS-061916  
47 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.8.3 Output Driver Data Rate Selection  
The following information describes the default output driver configuration for each  
operational mode, and how to modify them if required by the application.  
4.8.3.1 Cable Driver Mode  
In cable driver mode, with default settings active, the GS12190 uses the output driver  
and slew rate group settings for the data rate to which the reclocker is locked.  
When the reclocker is unlocked it will use the 6G/12G rate group:  
CFG_OUTPUT0_CD_UHD_DRIVER_SWING  
CFG_OUTPUT0_CD_UHD_PREEMPH_WIDTH  
CFG_OUTPUT0_CD_UHD_PREEMPH_AMPL  
CFG_OUTPUT0_CD_UHD_PREEMPH_PWRDWN  
If required, manual selection of the output driver and slew rate group is possible using  
the following steps:  
1. Set CTRL_OUTPUT0_AUTO_SLEW = 0  
2. Set CTRL_OUTPUT0_MANUAL_SLEW to the desired rate group. The slew rate  
options are as follows:  
0 = SD/MADI  
1 = HD/3G  
2 = 6G/12G  
4.8.3.2 Trace Driver Mode  
In trace driver mode, with default settings active, the GS12190 uses the SD trace driver  
output group settings for all data rates, regardless of reclocker lock condition or data  
rate being applied.  
The following parameters are used to control the output for all data rates in the default  
condition:  
CFG_OUTPUT1_TD_SD_DRIVER_SWING  
CFG_OUTPUT1_TD_SD_PREEMPH_WIDTH  
CFG_OUTPUT1_TD_SD_PREEMPH_AMPL  
CFG_OUTPUT1_TD_SD_PREEMPH_PWRDWN  
If required, per-rate selection of the trace driver output group setting is possible by  
setting CTRL_OUTPUT1_TRDR_PER_RATE = 1. Once set, the trace driver output group  
will be determined by the rate to which the reclocker is locked.  
For example, if the reclocker is locked to 12G, the following parameters will be used to  
control the output drivers:  
CFG_OUTPUT1_TD_12G_DRIVER_SWING  
CFG_OUTPUT1_TD_12G_PREEMPH_WIDTH  
CFG_OUTPUT1_TD_12G_PREEMPH_AMPL  
CFG_OUTPUT1_TD_12G_PREEMPH_PWRDWN  
Note: If per-rate settings are being used, when the reclocker is not locked the trace  
driver will use the 12G trace driver output group settings.  
GS12190  
Final Data Sheet  
PDS-061916  
48 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.8.4 Amplitude and Pre-Emphasis Control  
The two output drivers offer very granular amplitude and pre-emphasis control. For  
optimal loss compensation, both the pre-emphasis pulse amplitude and the  
pre-emphasis pulse width can be independently configured on both output drivers.  
This extra flexibility provides a mechanism to better shape the pre-emphasis gain to  
match the frequency loss response of interconnect composed of trace, connector and  
via losses. The swing and pre-emphasis can be independently configured for specific  
data rates.  
Note: Output 0 references the Cable Driver, and Output 1 references the Trace Driver.  
The output swing on the Cable Driver can be configured for the following three rate  
groups:  
CFG_OUTPUT0_CD_SD_DRIVER_SWING (MADI and SD)  
CFG_OUTPUT0_CD_HD_DRIVER_SWING (HD and 3G)  
CFG_OUTPUT0_CD_UHD_DRIVER_SWING (6G and 12G)  
The output pre-emphasis on the Cable Driver can be configured for the following two  
rate groups:  
CFG_OUTPUT0_CD_HD_PREEMPH_WIDTH (HD and 3G)  
CFG_OUTPUT0_CD_HD_PREEMPH_AMPL (HD and 3G)  
CFG_OUTPUT0_CD_UHD_PREEMPH_WIDTH (6G and 12G)  
CFG_OUTPUT0_CD_UHD_PREEMPH_AMPL (6G and 12G)  
The output driver swing and pre-emphasis will use the rate specific swing configuration  
when the reclocker is locked to that rate. The default swing setting is ~800mVpp  
single-ended into an external 75Ω load, and is adjustable in each of the output swing  
parameters listed above. The Cable Driver supply is pin 25 (VCCO_0) and should be  
connected to a 2.5V supply. The default pre-emphasis settings provide minimal  
insertion loss compensation.  
The Trace Driver amplitude can be configured to use the same swing for all rates, or  
similarly to the Cable Driver, can have a specific swing for each rate.  
The following registers allow a per rate swing to be configured for five rates:  
CFG_OUTPUT1_TD_SD_DRIVER_SWING (SD)  
CFG_OUTPUT1_TD_HD_DRIVER_SWING (HD)  
CFG_OUTPUT1_TD_3G_DRIVER_SWING (3G)  
CFG_OUTPUT1_TD_6G_DRIVER_SWING (6G)  
CFG_OUTPUT1_TD_12G_DRIVER_SWING (12G)  
The output pre-emphasis on the Trace Driver can be configured for the following five  
rates:  
CFG_OUTPUT1_TD_SD_PREEMPH_WIDTH (SD)  
CFG_OUTPUT1_TD_SD_PREEMPH_AMPL (SD)  
CFG_OUTPUT1_TD_HD_PREEMPH_WIDTH (HD)  
CFG_OUTPUT1_TD_HD_PREEMPH_AMPL (HD)  
CFG_OUTPUT1_TD_3G_PREEMPH_WIDTH (3G)  
CFG_OUTPUT1_TD_3G_PREEMPH_AMPL (3G)  
CFG_OUTPUT1_TD_6G_PREEMPH_WIDTH (6G)  
CFG_OUTPUT1_TD_6G_PREEMPH_AMPL (6G)  
GS12190  
Final Data Sheet  
PDS-061916  
49 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
CFG_OUTPUT1_TD_12G_PREEMPH_WIDTH (12G)  
CFG_OUTPUT1_TD_12G_PREEMPH_AMPL (12G)  
The Trace Driver swing can be adjusted in ≈25mVpp increments. The default swing value  
is 400Vppd into an external 100Ω differential load. Although an adequate swing and  
pre-emphasis can be achieved with a 1.8V output supply, for long traces where  
maximum output swing and pre-emphasis range is desired, it is recommended that the  
device VCC_DDO output supply pin be connected to a 2.5V supply. The default  
pre-emphasis settings provide minimal insertion loss compensation.  
4.8.4.1 Pre-emphasis Optimization  
The goal of pre-emphasis is to open the eye at the downstream receiver as much as  
possible. This means minimizing ISI jitter while meeting sufficient inner eye amplitude  
to meet a receiver's input sensitivity. The Cable Driver has the additional requirement to  
meet the SMPTE output specification.  
The GS12190 has a high level of precision for pre-emphasis control, which allows for fine  
optimization of any loss channel. The default Cable Driver settings should meet SMPTE  
output specification for most applications with short (1 to 2 inch) trace between the  
GS12190 and the output BNC. However, the pre-emphasis values may be adjusted to  
produce a better-looking eye. It is difficult to provide guidance regarding dB, as a 12G  
eye diagram looks different depending on the video test equipment used. The designer  
must optimize for their targets.  
The only requirement of the Trace Driver pre-emphasis settings is to minimize ISI  
introduced by a lossy link and maximize the eye opening at the receiver. The  
pre-emphasis compensation of the GS12190 output channel is a two-step process. The  
first step is to use the settings from Figure 4-12 to Figure 4-19 that best match the  
insertion loss of the link in the application, while the second step is a fine optimization  
procedure.  
In most cases, where the downstream device has a reclocker, the first step alone may  
meet the design target. However, if the downstream device is a non-reclocked buffer or  
crosspoint, it may be required to further optimize the settings to minimize the jitter  
thereby maximizing the system jitter budget. To do this, please see the Fine  
Optimization Procedure.  
In the remainder of this section the following abbreviations are used for clarity:  
DS = Driver Swing  
PPA = Pre-emphasis Pulse Amplitude  
PPW = Pre-emphasis Pulse Width  
7
6
5
5
10 15  
3
5 10 15 10 15 20 10 15 20 15 20 25 15 20 25 20 25 30  
PPA  
4
7
8
11  
12  
15  
PPW  
Figure 4-12: Pre-emphasis Settings for VCCO_1 = 1.2V and DS = 7 (swing = 200mVpp  
)
GS12190  
Final Data Sheet  
PDS-061916  
50 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4
3
10  
20  
15  
30  
PPA  
PPW  
Figure 4-13: Pre-emphasis Settings for VCCO_1 = 1.2V and DS = 16 (swing = 400mVpp  
)
12  
10  
8
6
5
10 15  
3
5 10 15 10 15 20 10 15 20 15 20 25 15 20 25 20 25 30 35 40 45 50  
PPA  
4
7
8
11  
12  
15  
PPW  
Figure 4-14: Pre-emphasis Settings for VCCO_1 = 1.8V and DS = 7 (swing = 200mVpp  
)
8
7
6
5
4
3
2
5
15 25  
3
5
15 25 10 20 30 10 20 30 15 25 35 15 25 35 20 30 40 45 50 PPA  
11 12 15  
4
7
8
PPW  
Figure 4-15: Pre-emphasis Settings for VCCO_1 = 1.8V and DS = 16 (swing = 400mVpp  
)
3.5  
3
2.5  
2
1.5  
10  
20  
30  
15  
40  
50  
PPA  
PPW  
Figure 4-16: Pre-emphasis Settings for VCCO_1 = 1.8V and DS = 35 (swing = 800mVpp  
)
GS12190  
Final Data Sheet  
PDS-061916  
51 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
13  
12  
11  
10  
9
8
7
6
5
10 15  
3
5 10 15 10 15 20 10 15 20 15 20 25 15 20 25 20 25 30 35 40 45 50  
PPA  
4
7
8
11  
12  
15  
PPW  
Figure 4-17: Pre-emphasis Settings for VCCO_1 = 2.5V and DS = 7 (swing = 200mVpp  
)
8
7
6
5
4
3
5
15 25  
3
5 15 25 10 20 30 10 20 30 15 25 35 15 25 35 20 30 40 45 50  
PPA  
4
7
8
11  
12  
15  
PPW  
Figure 4-18: Pre-emphasis Settings for VCCO_1 = 2.5V and DS = 16 (swing = 400mVpp  
)
3.5  
3
2.5  
2
1.5  
40  
30  
15  
50  
10  
20  
PPA  
PPW  
Figure 4-19: Pre-emphasis Settings for VCCO_1 = 2.5V and DS = 35 (swing = 800mVpp  
)
4.8.4.1.1 Fine Optimization Procedure  
The procedure requires access to the signal at the downstream device input, or  
non-reclocked device output. If there are multiple stages between the initial  
downstream device input and final measurement point, it is still possible to perform  
optimization; however link settings within the other stages must be fairly optimized.  
The pre-emphasis amplitude (PPA) and pre-emphasis width (PPW) settings can be  
optimized by sweeping the PPA and PPW settings in increments of 'a' and 'w' and  
selecting the setting which results in the lowest jitter. For Trace Driver optimization, 'a'  
and 'w' increments of 5 should be sufficient.  
GS12190  
Final Data Sheet  
PDS-061916  
52 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
The procedure has three steps.  
1. Pre-emphasis Amplitude (PPA) Optimization: Set the PPA and PPW to the values  
obtained from the graph selected out of Figure 4-12 to Figure 4-19, and then  
measure the downstream jitter. While keeping PPW constant, increment the PPA by  
'a'. If the jitter is lower after the first increment, continue to increment by 'a' until the  
jitter begins increasing or a setting of 50 is reached. If there was a setting which  
resulted in a lower jitter measurement than the initial setting, that is the Optimized  
Pre-emphasis Amplitude setting: PPAOptimal, and the PPA optimization procedure is  
complete.  
However, if the jitter increased after the first increment, decrement the setting by 'a'  
below the initial value. If the jitter is lower after the first decrement, continue to  
decrement by 'a' until the jitter begins increasing or a setting of 0 is reached. If there  
was a setting which resulted in a lower jitter measurement than the initial setting,  
that is the Optimized Pre-emphasis Amplitude: PPAOptimal  
.
If incrementing the PPA or decrementing the PPA did not result in a setting with  
lower jitter, then the initial setting obtained from the graph selected out of  
Figure 4-12 to Figure 4-19 is the PPA optimized Pre-emphasis Amplitude setting:  
PPAOptimal.  
2. The second step is to set the PPA to the optimized setting PPAOptimal determined in  
step 1 and PPW to the values obtained from the graph selected out of Figure 4-12  
to Figure 4-19, then measure the downstream jitter. While keeping PPA constant,  
increment the PPW by 'w'. If the jitter is lower after the first increment, continue to  
increment by 'w' until the jitter begins increasing or a setting of 15 is reached. If  
there was a setting which resulted in a lower jitter measurement than the initial  
setting, that is the Optimized Pre-emphasis Width setting: PPWOptimal, and the  
optimization procedure is complete.  
However, if the jitter increased after the first increment, decrement the setting by  
'w' below the initial value. If the jitter is lower after the first decrement, continue to  
decrement by 1 until the jitter begins increasing or a value of 0 is reached. If there  
was a setting which resulted in a lower jitter measurement than the initial setting,  
that is the Optimized Pre-emphasis Width setting: PPWOptimal, and the optimization  
procedure is complete.  
If incrementing the PPW or decrementing the PPW did not result in a setting with  
lower jitter, then the initial setting value obtained from the graph selected out of  
Figure 4-12 to Figure 4-19 is the optimized Pre-emphasis Width setting: PPWOptimal  
.
3. Pre-emphasis pulse amplitude has a direct impact on swing amplitude. The third  
and final step is to readjust the driver swing until the swing amplitude design  
target is met. The fine optimization procedure maybe repeated to ensure that the  
PPAOptimal and PPWOptimal settings previously determined still hold with the new  
DS setting.  
Steps 1 and 2 are illustrated in Figure 4-20: PPA Optimization Flow Chart and Figure  
4-21: PPW Optimization Flow Chart below.  
GS12190  
Final Data Sheet  
PDS-061916  
53 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Parameter and Variable Definition  
PPAinit: Initial PPA value from equation result.  
PPWinit: Initial PPW value from equation result.  
DSinit: Measurement sweep Initial Driver Swing Setting = 9.  
PPAoptimal: Post measurement sweep Optimal Pre-emphasis Pulse Amplitude setting.  
PPWoptimal: Post measurement sweep Optimal Pre-emphasis Pulse Width setting.  
a: Measurement sweep PPA increment value.  
Start Optimization  
n: Measurement sweep test number value.  
Set  
PPA: Current Measurement Pre-emphasis Pulse Amplitude setting.  
PPW: Current Measurement Pre-emphasis Pulse Width setting.  
DS: Current Measurement Driver Swing Amplitude setting.  
PPA = PPAinit  
PPW = PPWinit  
DS = DSinit  
Recorded  
Jitter  
Measurement  
1, 2, 3, …, n  
Measure initial Jitter  
record results for  
measurement# n=0  
Record Data  
Read Data  
PPA Optimization  
Complete  
PPAoptimal = PPA(n-1)  
no  
no  
If (PPA – a) > 0  
yes  
If (PPA + a) < 50  
yes  
PPA = PPA + a  
n = n + 1  
PPA = PPA - a  
n = n + 1  
Measure Jitter  
record results for  
measurement# n  
Measure Jitter  
record results for  
measurement# n  
If n > 1  
Or  
PPA – (2*a) < 0  
PPA Optimization  
Complete  
PPAoptimal = PPA(n-1)  
yes  
no  
no  
PPA Optimization  
Complete  
PPAoptimal = PPA(n-1)  
no  
If Jitter(n) <  
jitter(n-1)  
Is Jitter(n) <  
jitter(n-1)  
PPA = PPAinit  
PPW = PPWinit  
yes  
yes  
Figure 4-20: PPA Optimization Flow Chart  
GS12190  
Final Data Sheet  
PDS-061916  
54 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Parameter and Variable Definition  
PPWinit: Initial PPW value from equation result.  
DSinit: Measurement sweep Initial Driver Swing Setting = 9.  
PPAoptimal: Post measurement sweep Optimal Pre-emphasis Pulse Amplitude setting.  
PPWoptimal: Post measurement sweep Optimal Pre-emphasis Pulse Width setting.  
w: Measurement sweep PPW increment value.  
Start Optimization  
n: Measurement sweep test number value.  
Set  
PPA: Current Measurement Pre-emphasis Pulse Amplitude setting.  
PPW: Current Measurement Pre-emphasis Pulse Width setting.  
DS: Current Measurement Driver Swing Amplitude setting.  
PPA = PPAoptimal  
PPW = PPWinit  
DS = DSinit  
Recorded  
Jitter  
Measurement  
1, 2, 3, …, n  
Measure initial Jitter  
record results for  
measurement# n = 0  
Record Data  
Read Data  
PPW Optimization  
Complete  
PPWoptimal = PPW(n-1)  
no  
no  
If (PPW + w) <  
16  
If (PPW – w) > 0  
yes  
yes  
PPW = PPW + w  
n = n + 1  
PPW = PPW - w  
n = n + 1  
Measure Jitter  
record results for  
measurement# n  
Measure Jitter  
record results for  
measurement# n  
If n > 1  
Or  
PPW – (2*w) < 0  
PPW Optimization  
Complete  
PPWoptimal = PPW(n-1)  
yes  
no  
no  
PPW Optimization  
Complete  
PPWoptimal = PPW(n-1)  
no  
If Jitter(n) <  
jitter(n-1)  
Is Jitter(n) <  
jitter(n-1)  
PPW = PPWinit  
yes  
yes  
Figure 4-21: PPW Optimization Flow Chart  
GS12190  
Final Data Sheet  
PDS-061916  
55 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 4-9: Output Swing and Pre-emphasis Control Parameters  
Register  
Addresshand  
Parameter Name  
Description  
Name  
2B/29  
OUTPUT_  
PARAM_CD_  
SD_3/OUTPUT_  
PARAM_  
Output amplitude configuration parameter.  
<n> = 0: For SD and MADI rates on SDIO.  
<n> = 1: For SD or all rates* on DDO.  
CFG_OUTPUT<n>_CD/TD_  
SD_DRIVER_SWING  
Note: If CTRL_OUTPUT1_TRDR_PER_RATE = 0, this setting will  
be used for all data rates output form DDO.  
TD_SD_1  
Output pre-emphasis pulse width configuration parameter.  
<n> = 0: Reserved - do not modify.  
<n> = 1: For SD or all rates* on DDO.  
CFG_OUTPUT<n>_CD/TD_SD_  
PREEMPH_WIDTH  
Note: If CTRL_OUTPUT1_TRDR_PER_RATE = 0, this setting will  
be used for all data rates output form DDO.  
2A/28  
OUTPUT_  
PARAM_CD_  
SD_2/OUTPUT_  
PARAM_TD_  
SD_0  
Output pre-emphasis power-down configuration parameter.  
<n>=0:Reserved - do not modify.  
<n>=1:For SD or all rates* on DDO.  
CFG_OUTPUT<n>_CD/TD_SD_  
PREEMPH_PWRDWN  
Note: If CTRL_OUTPUT1_TRDR_PER_RATE = 0, this setting will  
be used for all data rates output form DDO.  
Output amplitude configuration parameter.  
<n> = 0: Reserved - do not modify.  
<n> = 1: For SD or all rates* on DDO.  
CFG_OUTPUT<n>_CD/TD_SD_  
PREEMPH_AMPL  
Note: If CTRL_OUTPUT1_TRDR_PER_RATE = 0, this setting will  
be used for all data rates output form DDO.  
2D/2F  
OUTPUT_  
PARAM_  
TD_HD_1/  
OUTPUT_  
PARAM_  
CD_HD_3  
Output amplitude configuration parameter.  
CFG_OUTPUT<n>_CD/TD_  
HD_DRIVER_SWING  
<n> = 0: For HD and 3G rates on SDIO.  
<n> = 1: For HD rates on DDO.  
Output pre-emphasis pulse width configuration parameter.  
CFG_OUTPUT<n>_CD/TD_  
HD_PREEMPH_WIDTH  
<n> = 0: For HD and 3G rates on SDIO.  
<n> = 1: For HD rates on DDO.  
2C/2E  
OUTPUT_  
PARAM_  
TD_HD_0/  
OUTPUT_  
PARAM_  
CD_HD_2  
Output pre-emphasis power-down configuration parameter.  
CFG_OUTPUT<n>_CD/TD_  
HD_PREEMPH_PWRDWN  
<n> = 0: For HD and 3G rates on SDIO.  
<n> = 1: For HD rates on DDO.  
Output pre-emphasis power-down configuration parameter.  
CFG_OUTPUT<n>_CD/TD_  
HD_PREEMPH_AMPL  
<n> = 0: For HD and 3G rates on SDIO.  
<n> = 1: For HD rates on DDO.  
GS12190  
Final Data Sheet  
PDS-061916  
56 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 4-9: Output Swing and Pre-emphasis Control Parameters (Continued)  
Register  
Addresshand  
Parameter Name  
Description  
Name  
31/33  
OUTPUT_  
PARAM_  
TD_3G_1/  
OUTPUT_  
PARAM_  
CD_UHD_3  
Output amplitude configuration parameter.  
CFG_OUTPUT<n>_TD/CD_  
3G/UHD_DRIVER_SWING  
<n> = 0: For 6G and 12G rates on SDIO.  
<n> = 1: For 3G rates on DDO.  
Output pre-emphasis pulse width configuration parameter.  
CFG_OUTPUT<n>_TD/CD_  
3G/UHD_PREEMPH_WIDTH  
<n> = 0: For 6G and 12G rates on SDIO.  
<n> = 1: For 3G rates on DDO.  
30/32  
OUTPUT_  
PARAM_  
TD_3G_0/  
OUTPUT_  
PARAM_  
CD_UHD_2  
Output pre-emphasis power-down configuration parameter.  
CFG_OUTPUT<n>_TD/CD_  
3G/UHD_PREEMPH_  
PWRDWN  
<n> = 0: For 6G and 12G rates on SDIO.  
<n> = 1: For 3G rates on DDO.  
Output pre-emphasis pulse amplitude configuration parameter.  
CFG_OUTPUT<n>_TD/CD_  
3G/UHD_PREEMPH_AMPL  
<n> = 0: For 6G and 12G rates on SDIO.  
<n> = 1: For 3G rates on DDO.  
35  
OUTPUT_  
PARAM_  
TD_6G_1  
CFG_OUTPUT1_TD_6G_  
DRIVER_SWING  
DDO Trace Driver amplitude configuration parameter for 6G.  
CFG_OUTPUT1_TD_6G_  
PREEMPH_WIDTH  
DDO Trace Driver output pre-emphasis pulse width  
configuration parameter for 6G.  
0x34  
OUTPUT_  
PARAM_  
TD_6G_0  
CFG_OUTPUT1_TD_6G_  
PREEMPH_PWRDWN  
DDO output pre-emphasis power-down configuration  
parameter for 6G.  
CFG_OUTPUT1_TD_6G_  
PREEMPH_AMPL  
DDO Trace Driver output pre-emphasis pulse amplitude  
configuration parameter for 6G.  
39  
OUTPUT_  
PARAM_  
TD_12G_1  
CFG_OUTPUT1_TD_12G_  
DRIVER_SWING  
DDO Trace Driver amplitude configuration parameter for 12G.  
CFG_OUTPUT1_TD_12G_  
PREEMPH_WIDTH  
DDO Trace Driver output pre-emphasis pulse width  
configuration parameter for 12G.  
38  
OUTPUT_  
PARAM_  
TD_12G_0  
CFG_OUTPUT1_TD_12G_  
PREEMPH_PWRDWN  
DDO output pre-emphasis power-down configuration  
parameter for 12G.  
CFG_OUTPUT1_TD_12G_  
PREEMPH_AMPL  
DDO Trace Driver output pre-emphasis pulse amplitude  
configuration parameter for 12G.  
GS12190  
Final Data Sheet  
PDS-061916  
57 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.8.5 Trace Driver DC-Coupling Requirements  
Table 4-10 lists the required Vcco (driver supply voltage) and DS (driver swing) required  
to achieve three common nominal VDDOppd (peak-to-peak differential output voltages)  
and their associated nominal Vcmout (output common mode voltage).  
In the DC-coupled case, where Vcco is connected to the same supply as the input buffer  
supply voltage of the downstream device, Vcmount in Table 4-10 is the common mode  
voltage at the output of the GS12190 driver. For short low-loss transmission lines, this  
will also be the common mode voltage created at the input termination of the  
downstream input buffer. However, for long and lossy transmission lines, the amplitude  
will be attenuated at the downstream receiver and therefore the common mode  
voltage created at the input termination will be higher and must be measured or  
simulated for accuracy. For proper link operation, the common mode voltage created at  
the input termination of the downstream input buffer must be within the Vcmin range  
specified by that device.  
In the AC-coupled case, Vcmout is the common mode voltage at the driver side of the  
AC-coupling capacitor placed near the driver. In the AC-coupled case, Vcmout does not  
need to be within the Vcmin range specified by the downstream device. However, the  
capacitor should have a voltage rating that exceeds |Vcmout-Vcmin|. In addition to the  
voltage rating, the recommended value of the AC-coupling capacitor should be at least  
4.7μF to meet the low cut-off frequency requirement of low transition density signals  
such as the check-field pattern defined in SMPTE RP-198. The capacitor should have a  
temperature rating that maintains the capacitance over the required operating range.  
Table 4-10: ΔVDDO (mVppd) and VCMOUT(V) vs. DS Setting and VCCO  
DC-Coupled  
ΔVDDO (mVppd) vs. DS Setting  
AC-Coupled  
VCMOUT (V) vs. DS Setting  
VCMOUT (V) vs. DS Setting  
Vcco (V)  
8
17  
37  
8
17  
37  
8
17  
37  
1.2  
1.8  
2.5  
200  
200  
200  
400  
400  
400  
1.15  
1.75  
2.45  
1.1  
1.7  
2.4  
1.6  
2.3  
1.1  
1.7  
2.4  
1
1.4  
2.1  
800  
800  
1.6  
2.3  
GS12190  
Final Data Sheet  
PDS-061916  
58 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.8.6 Output State Control Modes  
The GS12190 provides several output state control modes to meet specific application  
requirements. The Trace Driver has the following three output modes: operational,  
muted, or disabled. The Cable Driver also has these three modes and additionally has a  
balanced mode. During non-sleep, if the control modes are configured such that  
multiple output modes are enabled, the priorities of the control modes from highest to  
lowest are the following: balanced (Cable Driver only), disabled, and then muted.  
Section 4.8.6.1 through Section 4.8.6.3 describe how to configure the output control  
modes that are enabled during non-sleep.  
If the device enters sleep, either manually or automatically, the sleep output control  
modes take precedence over the non-sleep control modes. During sleep, the Cable  
Driver will always be disabled, while the Trace Driver can be configured to mute or  
disable during sleep. The default Trace Driver configuration is for it to be disabled  
during sleep; however the Trace Driver can be configured to mute during sleep by  
setting the CFG_SLEEP_OUTPUT1_MUTE parameter in register 0x5h to 1b.  
4.8.6.1 Output Mute Control Mode  
Each of the outputs on the GS12190 have independent mute control modes, which can  
be configured through the host interface.  
The following are the four output mute control modes:  
1. The outputs automatically mute on LOS (default).  
2. The outputs automatically mute on LOS and during rate search.  
3. The outputs never mute.  
4. The outputs are always muted.  
The first mute control mode is the default power-up configuration for both output  
drivers (the CTRL_OUTPUT<n>_AUTO_MUTE control parameter in register 0x49h is  
set to 1b). In this mode, the outputs will automatically mute on the assertion of LOS. This  
includes LOS as a result of setting up Squelch Adjust (see Section 4.2.3 for more details).  
In addition to mute on LOS, with auto mute control mode configured, setting the  
CTRL_OUTPUT<n>_AUTO_MUTE_DURING_RATE_SEARCH control parameter in  
register 0x49h to 1b, will configure the outputs to also mute when the device loses lock  
and begins to rate search.  
The outputs can be manually configured to never mute by setting both the  
CTRL_OUTPUT<n>_AUTO_MUTE and CTRL_OUTPUT<n>_MANUAL_MUTE control  
parameters in register 0x49h to 0b. Alternatively, the outputs can be manually  
configured to always be muted by setting the CTRL_OUTPUT<n>_AUTO_MUTE and  
CTRL_OUTPUT<n>_MANUAL_MUTE control parameters to 0b and 1b respectively.  
4.8.6.2 Output Disable Control Mode  
Each of the outputs on the GS12190 also have independent disable control modes,  
which can be configured through the host interface.  
GS12190  
Final Data Sheet  
PDS-061916  
59 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
The following are the three output disable control modes:  
1. The outputs are never disabled (default).  
2. The outputs are automatically disabled on LOS.  
3. The outputs are always disabled.  
The first disable control mode is the default power-up configuration for both output  
drivers (the CTRL_OUTPUT<n>_AUTO_DISABLE and  
CTRL_OUTPUT<n>_MANUAL_DISABLE control parameters in register 0x4Ah are both  
set to 0b). In this mode, the outputs will never disable. By setting the  
CTRL_OUTPUT<n>_AUTO_DISABLE control parameter in register 0x4Ah to 1b, the  
outputs will automatically disable on the assertion of LOS. This includes LOS as a result  
of setting up Squelch Adjust (see Section 4.2.3 for more details).  
The output can be manually disabled by leaving the  
CTRL_OUTPUT<n>_AUTO_DISABLE control parameter set to 0b and setting the  
CTRL_OUTPUT<n>_MANUAL_DISABLE control parameter to 1b.  
The disable control mode takes precedence over the output mute control mode.  
4.8.6.3 Output Balanced Control Mode  
The GS12190 has a feature designed to facilitate reliable Output Return Loss (ORL)  
measurements on SDIO/SDO while the device is still powered. The device can be put into  
balanced control mode which prevents the outputs from toggling while ORL is being  
measured. Balanced control mode can be enabled through the host interface, by setting  
control parameter CTRL_OUTPUT0_BALANCED in register 4Dh to 1b. This control is  
solely for the Cable Driver output. This control mode takes precedence over both the  
output mute and output disable control modes.  
4.8.6.4 Loopback Control  
The GS12190 has the ability to loop a reclocked version of the signal applied to the Trace  
Equalizer input (DDI) to the Trace Driver output (DDO) while in Cable Driver Mode. To  
enable this feature set CTRL_LOOPBACK_ENA to 1.  
With default settings applied, and the device set to Cable Driver Mode, the Trace Driver  
is inactive and it is controlled by the CFG_TRDR_MUTE_WHEN_CABLE_DRIVER  
parameter to determine whether it is muted or disabled. Once CTRL_LOOPBACK_ENA  
is set to 1, it overrides any setting in CFG_TRDR_MUTE_WHEN_CABLE_DRIVER.  
Note: When using the Loopback feature, please note the following:  
The Loopback signal of DDI appearing on DDO will be only be reclocked if the  
device is locked to the signal applied to the Trace Equalizer input (DDI). If the  
reclocker is bypassed or not locked, the loopback signal will not be reclocked.  
The output state control modes described in Section 4.8.6.1 to Section 4.8.6.3  
(disable, mute, and balanced) take priority over the CTRL_LOOPBACK_ENA  
parameter.  
This mode is only applicable to Cable Driver Mode, using DDI as the input.  
GS12190  
Final Data Sheet  
PDS-061916  
60 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.9 GPIO Controls  
There are four configurable GPIO pins which can independently be configured as inputs  
or outputs. Each GPIO has a default function which can be re-configured through the  
host interface.  
If there is a conflict between the internal register configuration of a given device  
function and the logic-level applied to a GPIO pin that is configured to control that same  
device function, the GPIO logic-level takes precedence over the internal register  
configuration. The logic HIGH and LOW levels of the GPIO[3:0] pin to which LOS is  
connected are specified by the EIA/JESD8-5A standard for 1.8V operation.  
For a list of available functions and configuration details of GPIO[3:0], please refer to the  
GPIO Configuration Registers in Section 5.  
4.10 GSPI Host Interface  
The GS12190 is configured via the Gennum Serial Peripheral Interface (GSPI).  
The GSPI host interface is comprised of a serial data input signal (SDIN pin), serial data  
output signal (SDOUT pin), an active-LOW chip select (CS pin) and a burst clock (SCLK  
pin).  
The GS12190 is a slave device, so the SCLK, SDIN and CS signals must be sourced by the  
application host processor.  
All read and write access to the device is initiated and terminated by the application  
host processor.  
4.10.1 CS Pin  
The Chip Select pin (CS) is an active-low signal provided by the host processor to the  
GS12190.  
The HIGH-to-LOW transition of this pin marks the start of serial communication to the  
GS12190.  
The LOW-to-HIGH transition of this pin marks the end of serial communication to the  
GS12190.  
Each device may use its own separate Chip Select signal from the host processor or up  
to 32 devices may be connected to a single Chip Select when making use of the Unit  
Address feature.  
Only those devices whose Unit Address matches the UNIT ADDRESS in GSPI Command  
Word 1 will respond to communication from the host processor (unless the B’CAST ALL  
bit in GSPI Command Word 1 is set to 1).  
GS12190  
Final Data Sheet  
PDS-061916  
61 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.10.2 SDIN Pin  
The SDIN pin is the GSPI serial data input pin of the GS12190.  
The 32-bit Command and 16-bit Data Words from the host processor or from the SDOUT  
pin of other devices are shifted into the device on the rising edge of SCLK when the CS  
pin is LOW.  
4.10.3 SDOUT Pin  
The SDOUT pin is the GSPI serial data output of the GS12190.  
All data transfers out of the GS12190 to the host processor or to the SDIN pin of other  
connected devices occur from this pin.  
By default at power-up or after system reset, the SDOUT pin provides a non-clocked path  
directly from the SDIN pin, regardless of the CS pin state, except during the GSPI Data  
Word portion for read operations from the device. This allows multiple devices to be  
connected in Loop-Through configuration.  
For read operations, the SDOUT pin is used to output data read from an internal  
Configuration and Status Register (CSR) when CS is LOW. Data is shifted out of the device  
on the falling edge of SCLK, so that it can be read by the host processor or other  
downstream connected device on the subsequent SCLK rising edge.  
4.10.3.1 GSPI Link Disable Operation  
It is possible to disable the direct SDIN to SDOUT (Loop-Through) connection by writing  
a value of 1 to the GSPI_LINK_DISABLE bit in CONTROL_REG. When disabled, any data  
appearing at the SDIN pin will not appear at the SDOUT pin and the SDOUT pin is HIGH.  
Note: Disabling the Loop-Through operation is temporarily required when initializing  
the Unit Address for up to 32 connected devices.  
The time required to enable/disable the Loop-Through operation from assertion of the  
register bit is less than the GSPI configuration command delay as defined by the  
parameter tcmd_GSPI_config (4 SCLK cycles).  
Table 4-11: GSPI_LINK_DISABLE Bit Operation  
Bit State  
Description  
0
1
SDIN pin is looped through to the SDOUT pin  
Data appearing at SDIN does not appear at SDOUT, and SDOUT pin is HIGH.  
GS12190  
Final Data Sheet  
PDS-061916  
62 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
SDIN pin  
Configuration and  
Status Register  
SDOUT pin  
GSPI_LINK  
_DISABLE  
High-Z  
BUS_THROUGH_  
ENABLE  
CS pin  
Figure 4-22: GSPI_LINK_DISABLE Operation  
4.10.3.2 GSPI Bus-Through Operation  
Using GSPI Bus-Through operation, the GS12190 can share a common PCB trace with  
other GSPI devices for SDOUT output.  
When configured for Bus-Through operation, by setting  
GSPI_BUS_THROUGH_ENABLE bit to 1, the SDOUT pin will be high-impedance when  
the CS pin is HIGH.  
When the CS pin is LOW, the SDOUT pin will be driven and will follow regular read and  
write operation as described in Section 4.10.3.  
Multiple chains of GS12190 devices can share a single SDOUT bus connection to host by  
configuring the devices for Bus-Through operation. In such configuration, each chain  
requires a separate Chip Select (CS).  
SDIN pin  
Configuration and  
Status Register  
SDOUT pin  
GSPI_LINK  
_DISABLE  
High-Z  
BUS_THROUGH_  
ENABLE  
CS pin  
Figure 4-23: GSPI_BUS_THROUGH_ENABLE Operation  
4.10.4 SCLK Pin  
The SCLK pin is the GSPI serial data shift clock input to the device, and must be provided  
by the host processor.  
Serial data is clocked into the GS12190 SDIN pin on the rising edge of SCLK. Serial data  
is clocked out of the device from the SDOUT pin on the falling edge of SCLK (read  
operation). SCLK is ignored when CS is HIGH.  
The maximum interface clock rate is 27MHz.  
GS12190  
Final Data Sheet  
PDS-061916  
63 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.10.5 Command Word 1 Description  
All GSPI accesses are a minimum of 48 bits in length (two 16-bit Command Words  
followed by a 16-bit Data Word) and the start of each access is indicated by the  
HIGH-to-LOW transition of the Chip Select (CS) pin of the GS12190.  
The format of the Command Words and Data Word are shown in Figure 4-24.  
Data received immediately following this HIGH-to-LOW transition will be interpreted as  
a new Command Word.  
4.10.5.1 R/W bit—B15 Command Word 1  
This bit indicates a read or write operation.  
When R/W is set to 1, a read operation is indicated, and data is read from the register  
specified by the ADDRESS field of the Command Word.  
When R/W is set to 0, a write operation is indicated, and data is written to the register  
specified by the ADDRESS field of the Command Word.  
4.10.5.2 B'CAST ALL—B14 Command Word 1  
This bit is used in write operations to configure all devices connected in Loop-Through  
and Bus-Through configuration with a single command.  
When B’CAST ALL is set to 1, the following Data Word (AUTOINC = 0) or Data Words  
(AUTOINC = 1) are written to the register specified by the ADDRESS field of the  
Command Words (and subsequent addresses when AUTOINC = 1), regardless of the  
setting of the UNIT ADDRESS(es).  
When B’CAST ALL is set to 0, a normal write operation is indicated. Only those devices  
that have a Unit Address matching the UNIT ADDRESS field of Command Word 1 write  
the Data Word to the register specified by the ADDRESS field of the Command Words.  
4.10.5.3 EMEM—B13 Command Word 1  
The EMEM bit must be set to 1 in Command Word 1. When EMEM is set to 1, a 23-bit  
address split between Command Word 1 and Command Word 2 is used to access the  
registers in this device.  
4.10.5.4 AUTOINC—B12 Command Word 1  
When AUTOINC is set to 1, Auto-Increment read or write access is enabled.  
In Auto-Increment Mode, the device automatically increments the register address for  
each contiguous read or write access, starting from the address defined in the ADDRESS  
field of the Command Word.  
The internal address is incremented for each 16-bit read or write access until a  
LOW-to-HIGH transition on the CS pin is detected.  
When AUTOINC is set to 0, single read or write access is required.  
Auto-Increment write must not be used to update values in CONTROL_REG.  
GS12190  
Final Data Sheet  
PDS-061916  
64 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.10.5.5 UNIT ADDRESS—B11:B7 Command Word 1  
The 5 bits of the UNIT ADDRESS field of the Command Word are used to select one of 32  
devices connected on a single chip select in Loop-Through or Bus-Through  
configurations.  
Read and write accesses are only accepted if the UNIT ADDRESS field matches the  
programmed DEV_UNIT_ADDRESS in CONTROL_REG.  
By default at power-up or after a device reset, the DEV_UNIT_ADDRESS is set to 00h.  
4.10.5.6 ADDRESS—B6:B0 Command Word 1 and B15:B0 Command Word 2  
The Command and Data Word formats are shown in Figure 4-24 and Figure 4-25. As an  
example of the command word structure, reading register 0x90h from a device with unit  
address 3, that has AUTOINC = 0, and B’CAST ALL = 0 would be structured as follows:  
Command word 1: 1010 0001 1000 0000 (0xA180h)  
Command word 2: 0000 0000 1001 0000 (0x90h)  
Command Words  
MSB  
LSB  
UNIT ADDRESS  
ADDRESS[22:16]  
A19  
B’CAST  
ALL  
EMEM  
A13  
AUTOINC  
A12  
UA4  
A11  
UA3  
A10  
UA2  
A9  
UA1  
UA0  
A22  
A6  
A21  
A5  
A20  
A4  
A18  
A2  
A17  
A1  
A16  
R / W  
ADDRESS[15:0]  
A8 A7  
A15  
A14  
A3  
D3  
A0  
D0  
Data Word  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D2  
D1  
Figure 4-24: Command and Data Word Format  
Command Word 1  
MSB  
R / W  
LSB  
UNIT ADDRESS  
UA2  
ADDRESS[22:16]  
A19  
B’CAST  
ALL  
EMEM  
AUTOINC  
UA4  
UA3  
UA1  
UA0  
A22  
A21  
A20  
A18  
A17  
A16  
23-bit CSR address field.  
5-bit UNIT ADDRESS field providing up to  
32 devices to be connected on a single CS.  
Auto increment read/write access when set.  
Single read write access when reset.  
Extended memory mode. When set, the extended memory mode is  
enabled. When reset, normal GSPI addressing is enabled.  
When set, the UNIT ADDRESS field is ignored and  
all data accesses are actioned by the device.  
When reset, the Unit Address is used to  
manage data accesses in the device.  
Read access when this bit is set.  
Write access when this bit is reset.  
Command Word 2  
ADDRESS[15:0]  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
Figure 4-25: Command Word 1 and Command Word 2 Details  
Note: Please see Section 4.10.5.6 ADDRESS—B6:B0 Command Word 1 and B15:B0  
Command Word 2 for an example of the command word structure.  
GS12190  
Final Data Sheet  
PDS-061916  
65 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.10.6 GSPI Transaction Timing  
tcmd_GSPI_config  
tcmd  
t9  
SCLK  
CS  
X
X
SDIN  
SDOUT  
t0  
t1  
t2  
t4  
t7  
SCLK  
CSb  
t3  
t8  
R/W  
BCST  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN  
SDOUT  
R/W  
BCST  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D
12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
SDIN signal is looped out on SDOUT  
Write Mode  
t5  
t9  
SCLK  
CSb  
t6  
R/W  
RSV  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
SDIN  
SDOUT  
R/W  
RSV  
EMEM  
Auto_Inc  
UA4  
UA3  
UA2  
UA1  
UA0  
A22  
A21  
A20  
A19  
A18  
A17  
A16  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A8  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
D15  
D14  
D13  
D12  
D11  
D10  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Read Data is output on SDOUT  
SDIN signal is looped out on SDOUT  
Read Mode  
Figure 4-26: GSPI External Interface Timing  
Table 4-12: GSPI Timing Parameters  
Equivalent  
SCLK  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Cycles  
SCLK Frequency  
t0  
1
1.7  
37  
50  
27  
60  
MHz  
ns  
CS LOW Before SCLK Rising Edge  
SCLK Period  
t1  
t2  
ns  
SCLK Duty Cycle  
40  
%
t3  
Input Data Setup Time  
SCLK Idle Time – Write  
SCLK Idle Time – Read  
Inter–Command Delay Time  
2.3  
ns  
38.51  
138  
t4  
ns  
t5  
3
ns  
tcmd  
115  
ns  
Inter–Command Delay Time (after  
GSPI configuration write)  
2
4
139  
1.3  
0
6.4  
ns  
ns  
ns  
tcmd_GSPI_conf  
t6  
t7  
SDOUT After SCLK Falling Edge  
CS HIGH After Final SCLK Falling  
Edge  
t8  
t9  
Input Data Hold Time  
CS HIGH Time  
1.2  
58  
ns  
ns  
SDIN to SDOUT Combinatorial  
Delay  
3.4  
ns  
GS12190  
Final Data Sheet  
PDS-061916  
66 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 4-12: GSPI Timing Parameters (Continued)  
Equivalent  
SCLK  
Cycles  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
# of  
Max chips daisy-chained at max  
SCLK frequency (26 MHz)  
compatible  
Semtech  
devices  
8
When host clocks in SDOUT  
data on falling edge of SCLK  
Max frequency for 32  
daisy-chained devices  
7.5  
MHz  
Note:  
1. Parameter is exactly multiple of SCLK periods and scales proportionally.  
2. tcmd_GSPI_conf inter-command delay must be used whenever modifying CONTROL_REG register at address 0x00.  
4.10.7 Single Read/Write Access  
Single read/write access timing for the GSPI interface is shown in Figure 4-27 to  
Figure 4-31.  
When performing a single read or write access, one Data Word is read from/written to  
the device per access. Each access is a minimum of 48-bits long, consisting of two  
Command Words and a single Data Word. The read or write cycle begins with a  
HIGH-to-LOW transition of the CS pin. The read or write access is terminated by a  
LOW-to-HIGH transition of the CS pin.  
The maximum interface clock rate is 27MHz and the inter-command delay time  
indicated in the figures as tcmd, is a minimum of 3 SCLK clock cycles. After modifying  
values in CONTROL_REG, the inter-command delay time, tcmd_GSPI_config, is a minimum  
of 4 SCLK clock cycles.  
For read access, the time from the last bit of Command Word 2 to the start of the data  
output, as defined by t5, corresponds to no less than 4 SCLK clock cycles at 27MHz.  
t
cmd  
SCLK  
CS  
COMMAND WORD 1  
COMMAND WORD 1  
COMMAND WORD 2  
COMMAND WORD 2  
DATA WORD  
DATA WORD  
X
X
COMMAND WORD 1  
COMMAND WORD 1  
SDIN  
SDOUT  
Figure 4-27: GSPI Write Timing—Single Write Access with Loop-Through Operation (default)  
t
cmd  
SCLK  
CS  
SDIN  
COMMAND WORD 2  
COMMAND WORD 1  
DATA WORD  
X
COMMAND WORD 1  
SDOUT  
Figure 4-28: GSPI Write Timing—Single Write Access with GSPI Link-Disable Operation  
GS12190  
Final Data Sheet  
PDS-061916  
67 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
t
cmd  
SCLK  
CS  
COMMAND WORD 2  
COMMAND WORD 2  
COMMAND WORD 1  
COMMAND WORD 1  
DATA WORD  
DATA WORD  
X
High-z  
COMMAND WORD 1  
COMMAND WORD 1  
SDIN  
High-Z  
SDOUT  
Figure 4-29: GSPI Write Timing—Single Write Access with Bus-Through Operation  
SCLK  
t
5
CS  
COMMAND WORD 1  
COMMAND WORD 1  
COMMAND WORD 2  
COMMAND WORD 2  
SDIN  
DATA WORD  
SDOUT  
Figure 4-30: GSPI Read Timing—Single Read Access with Loop-Through Operation (default)  
SCLK  
t
5
CS  
SDIN  
COMMAND WORD  
COMMAND WORD  
1
1
COMMAND WORD  
COMMAND WORD  
2
2
High-z  
X
DATA WORD  
SDOUT  
Figure 4-31: GSPI Read Timing—Single Read Access with Bus-Through Operation  
4.10.8 Auto-increment Read/Write Access  
Auto-increment read/write access timing for the GSPI interface is shown in Figure 4-32  
to Figure 4-36.  
Auto-increment mode is enabled by the setting the AUTOINC bit of Command Word 1.  
In this mode, multiple Data Words can be read from/written to the device using only one  
starting address. Each access is initiated by a HIGH-to-LOW transition of the CS pin, and  
consists of two Command Words and one or more Data Words. The internal address is  
automatically incremented after the first read or write Data Word, and continues to  
increment until the read or write access is terminated by a LOW-to-HIGH transition of  
the CS pin.  
Note: Writing to CONTROL_REG using Auto-increment access is not allowed.  
The maximum interface clock rate is 27MHz and the inter-command delay time  
indicated in the diagram as tcmd, is a minimum of 3 SCLK clock cycles.  
For read access, the time from the last bit of the second Command Word to the start of  
the data output of the first Data Word as defined by t5 will be no less than 4 SCLK cycles  
at 27MHz. All subsequent read data accesses will not be subject to this delay during an  
Auto-Increment read.  
GS12190  
Final Data Sheet  
PDS-061916  
68 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
SCLK  
CS  
SDIN  
COMMAND WORD 1  
COMMAND WORD 1  
COMMAND WORD 2  
COMMAND WORD 2  
DATA 1  
DATA 1  
DATA 2  
DATA 2  
SDOUT  
Figure 4-32: GSPI Write Timing—Auto-Increment with Loop-Through Operation (default)  
SCLK  
CS  
COMMAND WORD 1  
COMMAND WORD 2  
DATA 1  
DATA 2  
SDIN  
SDOUT  
Figure 4-33: GSPI Write Timing—Auto-Increment with GSPI Link Disable  
Operation  
SCLK  
CS  
SDIN  
COMMAND WORD 2  
COMMAND WORD 2  
COMMAND WORD 1  
COMMAND WORD 1  
DATA 1  
DATA 1  
DATA 2  
DATA 2  
High-Z  
SDOUT  
Figure 4-34: GSPI Write Timing—Auto-Increment with Bus-Through Operation  
SCLK  
t
5
CS  
SDIN  
COMMAND WORD 1  
COMMAND WORD 1  
COMMAND WORD 2  
COMMAND WORD 2  
SDOUT  
DATA 1  
DATA 2  
Figure 4-35: GSPI Read Timing—Auto-Increment Read with Loop-Through Operation (default)  
SCLK  
t
5
CS  
SDIN  
COMMAND WORD 1  
COMMAND WORD 1  
COMMAND WORD 2  
COMMAND WORD 2  
High-z  
SDOUT  
X
DATA 1  
DATA 2  
Figure 4-36: GSPI Read Timing—Auto-Increment Read with Bus-through Operation  
4.10.9 Setting a Device Unit Address  
Multiple (up to 32) GS12190 devices can be connected to a common Chip Select (CS) in  
Loop-Through or Bus-Through operation.  
To ensure that each device selected by a common CS can be separately addressed, a  
unique Unit Address must be programmed by the host processor at start-up as part of  
system initialization or following a device reset.  
Note: By default at power-up or after a device reset, the DEV_UNIT_ADDRESS of each  
device is set to 0h and the SDINSDOUT non-clocked loop-through for each device is  
enabled.  
GS12190  
Final Data Sheet  
PDS-061916  
69 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
These are the steps required to set the DEV_UNIT_ADDRESS of devices in a chain to  
values other than 0:  
1. Write to Unit Address 0 selecting CONTROL_REG (ADDRESS = 0h), with the  
GSPI_LINK_DISABLE bit set to 1 and the DEV_UNIT_ADDRESS field set to 0. This  
disables the direct SDINSDOUT non-clocked path for all devices on chip select.  
2. Write to Unit Address 0 selecting CONTROL_REG (ADDRESS = 0h), with the  
GSPI_LINK_DISABLE bit set to 0 and the DEV_UNIT_ADDRESS field set to a  
unique Unit Address. This configures DEV_UNIT_ADDRESS for the first device in  
the chain. Each subsequent such write to Unit Address 0 will configure the next  
device in the chain. If there are 32 devices in a chain, the last (32nd) device in the  
chain must use DEV_UNIT_ADDRESS value 0.  
3. Repeat step 2 using new, unique values for the DEV_UNIT_ADDRESS field in  
CONTROL_REG until all devices in the chain have been configured with their own  
unique Unit Address value.  
Note: tcmd_GSPI_conf delay must be observed after every write that modifies  
CONTROL_REG.  
All connected devices receive this command (by default the Unit Address of all devices  
is 0), and the Loop-Through operation will be re-established for all connected devices.  
Once configured, each device will only respond to Command Words with a  
UNIT ADDRESS field matching the DEV_UNIT_ADDRESS in CONTROL_REG.  
Note: Although the Loop-Through and Bus-Through configurations are compatible  
with previous generation GSPI enabled devices (backward compatibility), only devices  
supporting Unit Addressing can share a chip select. All devices on any single chip select  
must be connected in a contiguous chain with only the last device's SDOUT connected  
to the application host processor. Multiple chains configured in Bus-Through mode can  
have their final SDOUT outputs connected to a single application host processor input.  
4.10.10 Default GSPI Operation  
By default at power-up or after a device reset, the GS12190 is set for Loop-Through  
Operation and the internal DEV_UNIT_ADDRESS field of the device is set to 0.  
Figure 4-37 shows a functional block diagram of the Configuration and Status Register  
(CSR) map in the GS12190.  
GS12190  
Final Data Sheet  
PDS-061916  
70 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
At power-up or after a device reset, DEVICE_UNIT_ADDRESS = 00h  
[15]  
R/W  
[14]  
[13]  
[12]  
[11:7]  
[6:0]  
bits  
BCAST  
ALL  
Auto  
Inc  
Unit Address  
32 devices  
Register Address  
Upper 7 bits  
EMEM  
COMMAND 1  
[15:0]  
bits  
COMMAND 2  
Lower 16 bits of Register Address  
[15:0]  
bits  
Compare  
DATA  
Data to be written / Read Data  
[4:0]  
[15]  
[14]  
[12:5]  
bits  
[13]  
Read/Write  
GSPI_BUS_  
THROUGH  
_ENABLE  
GSPI_LINK  
_DISABLE  
Reg 0  
RESERVED  
DEV_UNIT_ADDRESS  
RESERVED  
Configuration and Status Registers  
Figure 4-37: Internal Register Map Functional Block Diagram  
The steps required for the application host processor to write to the Configuration and  
Status Registers via the GSPI, are as follows:  
1. Set Command Word 1 for write access (R/W = 0); set Auto Increment; set the Unit  
Address field in the Command Word 1 to match the configured  
DEV_UNIT_ADDRESS which will be zero after power-up. Set the Register Address  
bits in Command Word 1 to match the upper 7 bits of the register address to be  
accessed. Set the bits in Command Word 2 to match the lower 16 bits of the register  
address to be accessed. Write Command Word 1 and Command Word 2.  
2. Write the Data Word to be written to the first register.  
3. Write the Data Word to be written to the next register in Auto Increment mode, etc.  
Read access is the same as the above with the exception of step 1, where the Command  
Word 1 is set for read access (R/W = 1).  
Note: The UNIT ADDRESS field of Command Word 1 must always match  
DEV_UNIT_ADDRESS for an access to be accepted by the device. Changing  
DEV_UNIT_ADDRESS to a value other than 0 is only required if multiple devices are  
connected to a single chip select (in Loop-Through or Bus-Through configuration).  
4.10.11 Clear Sticky Counts Through Four Way Handshake  
There are four sticky counters that keep count of changes in status of primary and  
secondary carrier detect, rate changes, and lock changes. The counters can be read from  
the following four parameters in register 0x84h and 0x85h:  
STAT_CNT_PRI_CD_CHANGES, STAT_CNT_SEC_CD_CHANGES,  
STAT_CNT_RATE_CHANGES, and STAT_CNT_PLL_LOCK_CHANGES. The counters  
saturate at 255 (0xFFh) and must be cleared before additional status changes can be  
counted. The following four way handshake procedures clears the counters.  
1. Poll STAT_CLEAR_COUNTS_STATUS parameter until equal to 0 (idle), then set  
CTRL_CLEAR_COUNTS = 1 (clear sticky counts).  
2. Poll STAT_CLEAR_COUNTS_STATUS parameter until equal to 2 (cleared), then  
reset CTRL_CLEAR_COUNTS to 0.  
GS12190  
Final Data Sheet  
PDS-061916  
71 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
The device will now reset STAT_CLEAR_COUNTS_STATUS to 0 (idle) and the clearing  
process can be repeated at any time.  
4.10.12 Device Power-Up Sequence  
If all power supplies cannot be guaranteed to power-up simultaneously, ensure that  
VCC_DDI powers up first. Please note that there is no minimum time requirement  
between power supply initializations after VCC_DDI is energized.  
Note: Please check with your local FAE (Field Applications Engineer), as some devices  
may need updated configuration settings. If a configuration file has been provided by  
the FAE, see the timing information in the Serial Routing and Distribution Product  
Configuration Loading Procedure Application Note (PDS-061176).  
4.10.12.1 Power-Up Timing Sequence  
The following timing sequence must be observed after power-up when no external  
configuration loading is required. See Figure 4-38 for the timing requirements of Steps  
1 and 2 below.  
Step 1 – No GSPI Access Allowed  
a) Device supply reaches 90% of target. POR (Power On Reset) is activated.  
b) Internal blocks reset, default device configuration boot-up begins.  
c) Default device configuration boot-up process.  
Step 2 – GSPI Access Allowed  
a) Host sets EYE_MON_INT_CFG_3 (register address 0x57) to 0x8006.  
b) If there are multiple devices on the GSPI chain, the host should configure the unit  
address of each device. See Section 4.10.9 for further information on unit  
addressing.  
c) Host sets custom application specific settings.  
d) Normal operation begins.  
GS12190  
Final Data Sheet  
PDS-061916  
72 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
5.11 ms – no GSPI Access Allowed  
GSPI Access Allowed  
All blocks reset.  
After Completion of Reset, device  
automatically initiates default  
configuration boot-up.  
Eye Monitor  
Reset:  
Host  
writes 0x8006  
to register 0x57  
at unit address  
0.  
Normal Operation Begins.  
Host must reconfigure the unit addresses of  
devices that were reset to 0.  
After which, host may read/write any  
register of a specific device on the chain, or  
use broadcast write to concurrently write a  
command to all devices on the GSPI chain.  
All devices that  
received reset  
command will  
have their unit  
address reset to  
0.  
Command will  
be broadcast to  
all devices that  
were reset.  
Device Blocks  
Resetting.  
Device  
Configuration  
Booting.  
Application Defined GSPI Read/Write  
Access.  
GSPI Access..  
110 μs  
5 ms  
Host writes  
0xAD00 to  
Internal Reset  
Sequence  
Complete.  
Default  
Configuration  
Boot-Up  
Eye  
Monitor  
Reset.  
Register 0x007F  
to reset device.  
Host may reset  
all devices by  
using broadcast  
mode.  
Complete.  
Figure 4-38: Power-Up Sequence.  
4.10.13 Host Initiated Device Reset  
The GS12190 includes a reset function accessible via the device's host interface, which  
reverts all internal logic and register values to their default values.  
The device can be reset with a single write of AD00h to the RESET_CONTROL bits of the  
CONTROL_RESET register, which will assert and de-assert the device reset within the  
duration of the GSPI write access Data Word.  
The device can be placed and held in reset by writing AA00h to the RESET_CONTROL  
bits of the CONTROL_RESET register. Subsequent writes of DD00h to the  
RESET_CONTROL bits will de-assert device reset.  
The current state of user-initiated device reset can be read from the RESET_CONTROL  
bits of CONTROL_RESET register.  
While in reset, host interface access to any other register will not be functional and all  
logic and configuration registers will be in reset state. While in reset, output behaviour  
is undefined. The digital logic and registers within the device will exit the reset state 5ms  
after device reset is de-asserted.  
The following timing sequence must be observed to initiate a device reset.  
Note: Please check with your local FAE, as some devices may need updated  
configuration settings. If a configuration file has been provided by the FAE, see the  
timing information in the Serial Routing and Distribution Product Configuration  
Loading Procedure Application Note (PDS-061176).  
GS12190  
Final Data Sheet  
PDS-061916  
73 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
4.10.13.1 Host Initiated Device Reset Timing Sequence  
The following timing sequence must be observed after a Host Initiated Device Reset  
when no external configuration loading is required. See Figure 4-39 for the timing  
requirements of the Steps 1 to 3 below.  
Step 1 – GSPI Access Allowed  
a) Host writes 0xAD00h to register 0x007Fh to reset selected devices, or all devices  
using broadcast.  
Step 2– No GSPI Access Allowed  
a) Internal blocks reset, default device configuration boot-up begins.  
b) Default device configuration boot-up completes.  
Step 3 – GSPI Access Allowed  
a) Host sets EYE_MON_INT_CFG_3 (register address 0x57h) to 0x8006h.  
b) If there are multiple devices on the GSPI chain, host must reconfigure unit address  
of each device that was reset. See Section 4.10.9 for further information on unit  
addressing.  
c) Host sets custom application specific settings.  
d) Normal operation begins.  
5.11 ms – No GSPI Access Allowed  
GSPI Access Allowed  
All blocks reset.  
After Completion of Reset, device  
automatically initiates default  
configuration boot-up.  
Eye Monitor  
Reset:  
Host  
writes 0x8006  
to register 0x57  
at unit address  
0.  
Normal Operation Begins.  
Host must reconfigure the unit addresses of  
devices that were reset to 0.  
After which, the host may read/write any  
register of specific device on the chain, or  
use broadcast write to concurrently write a  
command to all devices on the GSPI chain.  
All devices that  
received reset  
command will  
have their unit  
address reset to  
0.  
Command will  
be broadcast to  
all devices that  
were reset.  
Device Blocks  
Resetting.  
Device  
Configuration  
Booting.  
Application Defined GSPI Read/Write  
Access.  
GSPI Access.  
110 μs  
5 ms  
Host writes  
0xAD00 to  
Internal Reset  
Sequence  
Complete.  
Default  
Configuration  
Boot-Up  
Eye  
Monitor  
Reset.  
Register 0x007F  
to reset device.  
Host may reset  
all devices by  
using broadcast  
mode.  
Complete.  
Figure 4-39: Host Initiated Device Reset Timing Sequence.  
GS12190  
Final Data Sheet  
PDS-061916  
74 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
5. Register Map  
The host interface on the GS12190 provides users complete control of key features such  
as GPIO configuration, PLL loop bandwidth settings, reclock parameters, carrier  
detection, cable equalization, bypass modes, output swing controls, mute functions,  
pre-emphasis control and many others.  
It also includes a wide selection of Status Registers which allow the user to read back  
several key metrics of information from the GS12190 to add more flexibility to their  
designs.  
Section 5.1 to Section 5.3 cover each Control and Status Register in detail.  
5.1 Control Registers  
Table 5-1: Control Registers  
GSPI  
Addressh  
Register Name  
R/W  
0
1
CONTROL_ REG  
DEVICE_ID  
RW  
RO  
2
RSVD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
7F  
3
CONTROL_ RESET  
CONTROL_ SLEEP  
MISC_CNTRL  
4
5
MISC_CFG  
6
RATE_ DETECT_ MODE  
RATE_ DETECT_CFG  
7
Reclocker Configuration  
8
9
RSVD  
RW  
RW  
RW  
RW  
RW  
RW  
FACTORY_ CDR_ PARAMETERS  
PLL_LOOP_ BANDWIDTH_ 0  
PLL_LOOP_ BANDWIDTH_ 1  
PLL_LOOP_ BANDWIDTH_ 2  
RSVD  
0A  
0B  
0C  
0D to 0F  
GPIO Configuration  
10  
11  
12  
GPIO0_CFG  
RW  
RW  
RW  
GPIO1_CFG  
GPIO2_CFG  
GS12190  
Final Data Sheet  
PDS-061916  
75 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-1: Control Registers (Continued)  
GSPI  
Register Name  
Addressh  
R/W  
13  
GPIO3_CFG  
RW  
Equalizer Configuration  
14  
15  
INPUT_ SELECT_CTRL  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
CARR_ DET_CFG  
16  
SQUELCH_ PARAMETERS  
CABLE_EQ_ BYPASS_ MODE  
INPUT_ LAUNCH_ SWING_CFG  
RSVD  
17  
18  
19 to 1D  
1E  
TREQ0_ INPUT_BOOST  
TREQ0_CD_ HYSTERESIS  
CD_FILTER_ DELAYS_0  
CD_FILTER_ DELAYS_1  
CD_FILTER_ DELAYS_2  
RSVD  
1F  
20  
21  
22  
23 to 25  
Output Configuration  
26 to 27  
28  
RSVD  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
OUTPUT_ PARAM_TD_ SD_0  
OUTPUT_ PARAM_ TD_SD_1  
OUTPUT_ PARAM_CD_ SD_2  
OUTPUT_ PARAM_CD_ SD_3  
OUTPUT_ PARAM_ TD_HD_0  
OUTPUT_ PARAM_ TD_HD_1  
OUTPUT_ PARAM_ CD_HD_2  
OUTPUT_ PARAM_ CD_HD_3  
OUTPUT_ PARAM_ TD_3G_0  
OUTPUT_ PARAM_ TD_3G_1  
OUTPUT_ PARAM_ CD_UHD_2  
OUTPUT_ PARAM_ CD_UHD_3  
OUTPUT_ PARAM_ TD_6G_0  
OUTPUT_ PARAM_ TD_6G_1  
RSVD  
29  
2A  
2B  
2C  
2D  
2E  
2F  
30  
31  
32  
33  
34  
35  
36 to 37  
GS12190  
Final Data Sheet  
PDS-061916  
76 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-1: Control Registers (Continued)  
GSPI  
Register Name  
Addressh  
R/W  
38  
OUTPUT_ PARAM_ TD_12G_0  
OUTPUT_ PARAM_ TD_12G_1  
RSVD  
RW  
RW  
RW  
RW  
RW  
39  
3A to 40  
41  
OUTPUT_ PARAM_ MUTE_1  
RSVD  
42 to 47  
Output Control  
48  
OUTPUT_ SIG_SELECT  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
49  
CONTROL_ OUTPUT_ MUTE  
CONTROL_ OUTPUT_ DISABLE  
CONTROL_ OUTPUT_ SLEW  
CONTROL_ RETIMER_ BYPASS  
CONTROL_ BALANCED_ MODE  
RSVD  
4A  
4B  
4C  
4D  
4E to 4F  
Test Functions  
50  
51  
PRBS_ CHK_CFG  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
PRBS_CHK_ CTRL  
PRBS_GEN_ CTRL  
RSVD  
52  
53  
54  
EYE_MON_ INT_CFG_0  
EYE_MON_ INT_CFG_1  
EYE_MON_ INT_CFG_2  
EYE_MON_ INT_CFG_3  
RSVD  
55  
56  
57  
58 to 59  
5A  
EYE_MON_ SCAN_CTRL_0  
EYE_MON_ SCAN_CTRL_1  
EYE_MON_ SCAN_CTRL_2  
EYE_MON_ SCAN_CTRL_3  
RSVD  
5B  
5C  
5D  
5E to 5F  
Internal Only Configuration (Do not write to these registers)  
60 to 7E RSVD  
GS12190  
Final Data Sheet  
PDS-061916  
77 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
5.2 Status Registers  
Table 5-2: Status Registers  
GSPI  
Register Name  
Addressh  
R/W  
80  
81  
RSVD  
RW  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RW  
VERSION_0  
82  
VERSION_1  
83  
VERSION_2  
84  
STICKY_ COUNTS_0  
STICKY_ COUNTS_1  
CURRENT_ STATUS_0  
CURRENT_ STATUS_1  
EQ_GAIN_IND  
85  
86  
87  
88  
89  
PRBS_ CHK_ERR_CNT  
PRBS_ CHK_STATUS  
EYE_MON_ SCAN_ SIZE_OUTPUT  
EYE_MON_ SHAPE_ OUTPUT_0  
EYE_MON_ SHAPE_ OUTPUT_1  
EYE_MON_ SHAPE_ OUTPUT_2  
EYE_MON_ SHAPE_ OUTPUT_3  
EYE_MON_ STATUS  
RSVD  
8A  
8B  
8C  
8D  
8E  
8F  
90  
91 to BF  
GS12190  
Final Data Sheet  
PDS-061916  
78 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
5.3 Register Descriptions  
5.3.1 Control Register Descriptions  
Table 5-3: Control Register Descriptions  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15  
RW  
0
0
Reserved—do not modify.  
0 = Enable loop-through. SDIN pin is  
looped through to the SDOUT pin  
GSPI_LINK_DISABLE  
14  
RW  
1 = Disable loop-through. Data  
appearing at SDIN does not appear at  
SDOUT, and SDOUT pin is HIGH  
CONTROL_  
REG  
0
0 = Disable bus-through mode  
1 = Enable bus-through mode  
GSPI_BUS_THROUGH_  
ENABLE  
13  
RW  
RW  
0
0
RSVD  
12:5  
Reserved—do not modify.  
Device address programmed by  
application. See Section 4.10.9 for  
further information.  
DEV_UNIT_ADDRESS  
4:0  
RW  
0
This register contains the device’s  
identification, including revision.  
Contact the local technical sales  
representative for details.  
1
2
DEVICE_ID  
RSVD  
DEVICE_VERSION  
RSVD  
15:0  
15:0  
RO  
0
R/W  
Reserved—do not modify.  
Device Reset, Reverts all internal logic  
and register values to defaults.  
Write Values:  
AA00h = Asserts device reset  
DD00h = De-assert device reset  
AD00h = Assert/de-assert device reset in  
a single write  
CONTROL_  
RESET  
7F  
RESET_CONTROL  
15:0  
R/W  
DD00  
Read Values:  
AA00h = User-initiated reset is asserted  
DD00h = User-initiated reset is  
de-asserted  
See Section 4.10.13 for further  
information.  
GS12190  
Final Data Sheet  
PDS-061916  
79 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:2  
R/W  
0
Reserved—do not modify.  
Sleep manual mode control:  
0 = Never Sleep  
1 = Always Sleep  
CTRL_MANUAL_SLEEP  
1
R/W  
R/W  
0
Controls sleep mode when auto sleep  
(CTRL_AUTO_SLEEP) is disabled.  
CONTROL_  
SLEEP  
Sleep auto mode control:  
3
0 = Disable auto sleep mode  
1 = Enable auto sleep mode  
If CTRL_AUTO_SLEEP = 0 (manual sleep  
mode), then CTRL_MANUAL_SLEEP  
controls sleep.  
CTRL_AUTO_SLEEP  
0
1
If CTRL_AUTO_SLEEP = 1 (auto sleep  
mode), sleep is automatically entered  
on loss of signal.  
RSVD  
15:1  
R/W  
R/W  
0
0
Reserved—do not modify.  
Clear sticky counts control register.  
0 = no action  
1 = clear sticky counts.  
4
MISC_CNTRL  
Part of a four way handshake with  
STAT_CLEAR_COUNTS_STATUS. See  
Section 4.10.11 for more details on  
implementing the four way handshake  
for this operation.  
CTRL_CLEAR_COUNTS  
0
RSVD  
15:5  
4
R/W  
R/W  
0
0
Reserved—do not modify.  
Controls whether Trace Driver (DDO) is  
muted or disabled when GS12190  
bi-directional part is in Cable Driver  
Mode and CTRL_LOOPBACK_ENA = 0:  
CFG_TRDR_MUTE_  
WHEN_CABLE_DRIVER  
0 = Disable (power-down)  
1 = Mute  
5
MISC_CFG  
Controls whether Trace Driver (DDO) is  
muted or disabled (powered-down)  
during sleep:  
CFG_SLEEP_OUTPUT1_  
MUTE  
3
R/W  
R/W  
0
1
0 = Disable (power-down) output  
during sleep  
1 = mute output during sleep  
RSVD  
2:0  
Reserved—do not modify.  
GS12190  
Final Data Sheet  
PDS-061916  
80 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:14  
R/W  
0
Reserved—do not modify.  
12G auto rate detection enable:  
0 = Disable rate  
1 = Enable rate  
CFG_RATE_ENA_12G  
CFG_RATE_ENA_6G  
CFG_RATE_ENA_3G  
CFG_RATE_ENA_HD  
CFG_RATE_ENA_SD  
13  
R/W  
R/W  
R/W  
R/W  
R/W  
1
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
6G auto rate detection enable:  
0 = Disable rate  
1 = Enable rate  
12  
11  
10  
9
1
1
1
1
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
3G auto rate detection enable:  
0 = Disable rate  
1 = Enable rate  
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
HD auto rate detection enable:  
0 = Disable rate  
1 = Enable rate  
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
RATE_  
DETECT_  
MODE  
6
SD auto rate detection enable:  
0 = Disable rate  
1 = Enable rate  
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
MADI auto rate detection enable:  
0 = Disable rate  
1 = Enable rate  
CFG_RATE_ENA_MADI  
RSVD  
8
R/W  
R/W  
0
0
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
7:5  
Reserved—do not modify.  
Manual rate selection. The reclocker will  
only lock to the selected rate if  
CFG_AUTO_RATE_DETECT_ENA = 0:  
0 = < MADI (only applicable in Cable  
Equalizer Mode)  
1 = MADI  
2 = SD  
CFG_MANUAL_RATE  
4:1  
R/W  
0
3 = HD  
4 = 3G  
5 = 6G  
6 = 12G  
7 = Reserved—do not modify  
GS12190  
Final Data Sheet  
PDS-061916  
81 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Set or disable auto rate detection mode.  
0 = Disable auto rate detection  
1 = Enable auto rate detection  
When automatic rate detection is  
disabled, the rate is set by  
CFG_MANUAL_RATE.  
RATE_  
DETECT_  
MODE  
CFG_AUTO_RATE_  
DETECT_ENA  
6
0
R/W  
1
(Continued)  
(Continued)  
Note: If using manual rate selection  
while in cable driver mode, the host  
should set CFG_MANUAL_RATE to 1  
through 7 first, then set  
CFG_AUTO_RATE_ENA = 0.  
RSVD  
15:5  
4
R/W  
R/W  
0
0
Reserved—do not modify.  
Select data rate threshold between SD  
and MADI:  
CFG_RD_SD_MADI_  
THRESHOLD  
0 = 181Mb/s  
1 = 198Mb/s  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
CFG_RD_SD_MADI_THRESHOLD and  
CFG_RD_MADI_LTMADI_DATADIV (bit  
slice [3:0]) determines the rate detection  
threshold between MADI and <MADI  
rates. The following threshold settings  
are available:  
RATE_  
DETECT_CFG  
7
0x0 = 53Mb/s  
0x2 = 32Mb/s  
0x3 = 79Mb/s (default)  
0x6 = 63Mb/s  
CFG_RD_MADI_  
LTMADI_DATADIV  
3:2  
R/W  
0
0x9 = 48Mb/s  
0xA = 95Mb/s  
0xC = 111Mb/s  
0x1, 0x4, 0x5, 0x7, 0x8, 0xB, 0xD, and 0xE  
= Reserved—do not use  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
See CFG_RD_MADI_ LTMADI_DATADIV.  
CFG_RD_MADI_  
LTMADI_CLKDIV  
1:0  
R/W  
3
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
GS12190  
Final Data Sheet  
PDS-061916  
82 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Reclocker Configuration  
8
9
RSVD  
RSVD  
RSVD  
15:0  
15:2  
R/W  
R/W  
3
Reserved—do not modify.  
Reserved—do not modify.  
1C  
To maximize loop bandwidth of PLL and  
consequently IJT of the reclocker, set  
this parameter to 0.  
FACTORY_  
CDR_  
PARAMETERS  
CFG_MIN_LBW  
1
R/W  
1
RSVD  
RSVD  
0
R/W  
R/W  
0
0
Reserved—do not modify.  
Reserved—do not modify.  
15:13  
Configure PLL loop bandwidth in terms  
of ratio to nominal loop bandwidth 'x'  
(see Table 2-3).  
11.88Gb/s (12G) loop bandwidth  
setting:  
0x00 = Reserved—do not use  
0x01 = 0.0625x  
0x02 = 0.125x  
0x03 = 0.1875x  
0x04 = 0.25x  
0x05 = 0.3125x  
0x06 = 0.375x  
0x07 = 0.4375x  
0x08 = 0.5x  
CFG_PLL_LBW_12G  
12:8  
R/W  
8
0x09 = 0.5625x  
0x0A = 0.625x  
0x0B = 0.6875x  
0x0C = 0.75x  
PLL_LOOP_  
BANDWIDTH_  
0
0A  
0x0D = 0.8125x  
0x0E = 0.875x  
0x0F = 0.9375x  
0x10 to 0x1B = Reserved—do not use  
0x1C = 1.0x (nominal)  
0x1D = 1.0625x  
0x1E = 1.125x  
0x1F = 1.1875x  
RSVD  
7:5  
4:0  
R/W  
R/W  
0
8
Reserved—do not modify.  
Configure 5.94Gb/s (6G) PLL loop  
bandwidth in terms of ratio to nominal  
loop bandwidth 'x' (see Table 2-3).  
CFG_PLL_LBW_6G  
See CFG_PLL_LBW_12G parameter for  
available settings.  
GS12190  
Final Data Sheet  
PDS-061916  
83 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:13  
12:8  
7:5  
R/W  
0
8
Reserved—do not modify.  
Configure 2.97Gb/s (3G) PLL loop  
bandwidth in terms of ratio to nominal  
loop bandwidth 'x' (see Table 2-3).  
CFG_PLL_LBW_3G  
RSVD  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
See CFG_PLL_LBW_12G parameter for  
available settings.  
PLL_LOOP_  
BANDWIDTH_  
1
0B  
0
Reserved—do not modify.  
Configure 1.485Gb/s (HD) PLL loop  
bandwidth in terms of ratio to nominal  
loop bandwidth 'x' (see Table 2-3).  
CFG_PLL_LBW_HD  
RSVD  
4:0  
8
See CFG_PLL_LBW_12G parameter for  
available settings.  
15:13  
12:8  
7:5  
0
Reserved—do not modify.  
Configure 270Mb/s (SD) PLL loop  
bandwidth in terms of ratio to nominal  
loop bandwidth 'x' (see Table 2-3).  
CFG_PLL_LBW_SD  
RSVD  
1C  
0
See CFG_PLL_LBW_12G parameter for  
available settings.  
PLL_LOOP_  
BANDWIDTH_  
2
0C  
Reserved—do not modify.  
Configure 125Mb/s (MADI) PLL loop  
bandwidth in terms of ratio to nominal  
loop bandwidth 'x' (see Table 2-3).  
CFG_PLL_LBW_MADI  
RSVD  
4:0  
8
See CFG_PLL_LBW_12G parameter for  
available settings.  
0D to 0F  
RSVD  
15:0  
0
Reserved—do not modify.  
GPIO Configuration  
RSVD  
15:9  
R/W  
0
1
Reserved—do not modify.  
GPIO0 buffer mode control.  
10  
GPIO0_CFG  
CFG_GPIO0_  
OUTPUT_ENA  
0 = GPIO pin is configured as an input  
(tri-stated / high impedance)  
8
R/W  
1 = GPIO pin is configured as an output  
GS12190  
Final Data Sheet  
PDS-061916  
84 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Function select for GPIO0 pin.  
GPIO0 output functions:  
0x00 = Output driven LOW  
0x01 = Output driven HIGH  
0x02 = PLL lock status  
(HIGH—PLL locked)  
0x03 to 0x7F = Reserved—do not use  
0x80 = LOS—equivalent to inverse of  
STAT_PRI_CD for Trace Equalizer input  
(DDI) and STAT_SEC_CD for cable  
equalizer input (SDIO)  
0x81 = Carrier detect status of the  
selected input (STAT_PRI_CD for Trace  
Equalizer input (DDI) and STAT_SEC_CD  
for cable equalizer input (SDIO))  
0x82 = Sleep mode status  
(HIGH—Device in sleep mode)  
0x83 = HIGH for SD, LOW for all other  
rates  
0x84 = Rate detected [0]  
0x85 = Rate detected [1]  
0x86 = Rate detected [2]  
Note: To have full rate range using the  
GPIO rate detect function, one GPIO pin  
must be used for each Rate Detect bit  
[2:0]. Please see Table 4-3: Detected  
Data Rates for the indication values.  
10  
GPIO0_CFG  
(Continued)  
CFG_GPIO0_FUNCTION  
7:0  
R/W  
80  
(Continued)  
0x87 to 0xFF = Reserved—do not use  
GPIO0 input functions:  
0x00 to 0x80 = Reserved—do not use  
0x81 = SDIO disable control  
(HIGH—disable)  
0x82 = DDO disable control  
(HIGH—disable)  
0x83 = Reserved—do not modify  
0x84 = Cable equalizer bypass enable  
(HIGH—Bypass enabled), Cable  
equalizer input (SDIO) only.  
0x85 = reclocker bypass enable  
(HIGH—Bypass enabled)  
0x86 = Sleep control (HIGH—Sleep)  
0x87 = Cable Driver / Equalizer mode  
selection (HIGH = Cable Driver Mode,  
DDI as input / LOW = Cable Equalizer  
Mode, SDIO as input).  
0x88 to 0xFF = Reserved—do not use  
GS12190  
Final Data Sheet  
PDS-061916  
85 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:9  
R/W  
0
Reserved—do not modify.  
GPIO1 buffer mode control.  
See GPIO0_CFG:  
CFG_GPIO0_OUTPUT_ENA parameter  
for description and available settings.  
CFG_GPIO1_OUTPUT_  
ENA  
8
R/W  
1
11  
GPIO1_CFG  
Default mode: Output  
Function select for GPIO1 pin.  
See GPIO0_CFG:  
CFG_GPIO1_FUNCTION  
RSVD  
7:0  
15:9  
8
R/W  
R/W  
R/W  
2
0
0
CFG_GPIO0_FUNCTION parameter for  
description and available settings.  
Default Function: 0x02 = PLL lock status  
Reserved—do not modify.  
GPIO2 buffer mode control.  
See GPIO0_CFG:  
CFG_GPIO0_OUTPUT_ENA parameter  
for description and available settings.  
CFG_GPIO2_OUTPUT_  
ENA  
12  
GPIO2_CFG  
Default mode: Input  
Function select for GPIO2 pin.  
See GPIO0_CFG:  
CFG_GPIO2_FUNCTION  
RSVD  
7:0  
15:9  
8
R/W  
R/W  
R/W  
86  
0
CFG_GPIO0_FUNCTION parameter for  
description and available settings.  
Default Function: 0x86 = Sleep control  
Reserved—do not modify.  
GPIO3 buffer mode control.  
See GPIO0_CFG:  
CFG_GPIO0_OUTPUT_ENA parameter  
for description and available settings.  
CFG_GPIO3_OUTPUT_  
ENA  
0
Default mode: Input  
13  
GPIO3_CFG  
Function select for GPIO3 pin.  
See GPIO0_CFG:  
CFG_GPIO0_FUNCTION parameter for  
description and available settings.  
CFG_GPIO3_FUNCTION  
7:0  
R/W  
87  
Default Function: 0x87 = Cable  
Equalizer/Driver mode selection  
GS12190  
Final Data Sheet  
PDS-061916  
86 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Equalizer Configuration  
RSVD  
15:11  
R/W  
R/W  
0
0
Reserved—do not modify.  
Enables trace input (DDI) to trace output  
(DDO) loopback mode when in cable  
driver mode.  
0 = Loopback is disabled. The Trace  
Driver is controlled by CFG_TRDR_  
MUTE_WHEN_CABLE_DRIVER.  
CTRL_LOOPBACK_ENA  
10  
1 = Loopback is enabled. (subject to  
output state control modes, see  
Section 4.8.6)  
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
INPUT_  
SELECT_CTRL  
RSVD  
9:3  
2:1  
R/W  
R/W  
60  
0
Reserved—do not modify.  
14  
Select bi-directional control method.  
0 = pin mode (default mode)  
1 = Host Interface Mode  
CTRL_DIRECTION_  
SEL_MODE  
2 = Reserved—do not select  
3 = Reserved—do not select  
The host should configure one of the  
GPIO pins for input select before  
selecting mode 0.  
Selects bidirectional mode when  
CTRL_DIRECTION_SEL_MODE = 1 (Host  
Interface mode).  
CTRL_DIRECTION_SEL  
RSVD  
0
R/W  
R/W  
1
0
0 = Cable Equalizer Mode  
1 = Cable Driver Mode  
15:1  
Reserved—do not modify.  
Enable or disable squelch control  
conditions for deriving secondary  
carrier detection (LOS) status for Cable  
Equalizer mode.  
CARR_  
DET_CFG  
15  
CFG_SEC_CD_INCL_  
CLI_SQUELCH  
0
R/W  
0
0 = Ignore CLI squelch  
1 = Take into account CLI squelch  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
GS12190  
Final Data Sheet  
PDS-061916  
87 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15  
R/W  
0
Reserved—do not modify.  
Set the input signal squelch threshold.  
Range = 0 to 64d (64d is max cable reach  
CFG_CLI_SQUELCH_  
THRESHOLD  
determined for specific rate, cable type,  
and launch swing compensation).  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
14:8  
R/W  
40  
SQUELCH_  
PARAMETERS  
16  
RSVD  
7
R/W  
R/W  
R/W  
0
2
0
Reserved—do not modify.  
Set the input signal squelch hysteresis.  
Range = 1d to 30d  
CFG_CLI_SQUELCH_  
HYSTERESIS  
6:0  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
RSVD  
15:2  
Reserved—do not modify.  
Controls Cable Equalizer bypass when  
auto cable equalizer bypass is disabled  
(CTRL_CEQ_AUTO_BYPASS= 0).  
CTRL_CEQ_MANUAL_  
BYPASS  
1
R/W  
0
0 = Cable Equalizer never bypassed  
1 = Cable Equalizer always bypassed  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
CABLE_EQ_  
BYPASS_  
MODE  
17  
Auto Cable Equalizer bypass mode  
control:  
0 = Disable auto mode  
1 = Enable auto mode  
CTRL_CEQ_AUTO_  
BYPASS  
0
R/W  
1
When CFG_CEQ_AUTO_BYPASS = 0,  
CEQ bypass is controlled by  
CFG_CEQ_BYPASS_MANUAL.  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
RSVD  
15:7  
6:0  
R/W  
R/W  
0
Reserved—do not modify.  
Input launch swing compensation  
setting in units of 10 mVppd  
INPUT_  
LAUNCH_  
SWING_CFG  
Default setting of 80d (0x50)  
CFG_CEQ_INPUT_  
LAUNCH_SWING_  
COMP  
18  
corresponds to 800mV. Default for  
upstream SMPTE-compliant cable  
drivers operating at 800mv ±10%.  
50  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
19  
1A  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
15:0  
15:0  
15:0  
15:0  
R/W  
R/W  
R/W  
R/W  
1
0
1
0
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
1B  
1C to 1D  
GS12190  
Final Data Sheet  
PDS-061916  
88 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:5  
R/W  
0
Reserved—do not modify.  
Trace Equalizer input boost setting:  
0 = Bypass equalization stage  
1 to 8 = 1 to 17dB of insertion loss at  
5.94GHz (see Figure 4-2)  
CFG_TREQ0_BOOST  
4:1  
R/W  
0
Bypass is the minimum boost setting;  
boost 8 is maximum boost setting.  
TREQ0_  
INPUT_BOOST  
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
1E  
Selects boost level applied to Trace  
Equalizer input signal for carrier  
detection function only.  
CFG_TREQ0_CD_  
BOOST  
0
R/W  
R/W  
0
0
0 = Sets to boost 8 (See Figure 4-2)  
1 = Use CFG_TREQ0_BOOST setting  
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
RSVD  
15:8  
Reserved—do not modify.  
Sets assert threshold for Trace Equalizer  
input carrier detect.  
0 to15d, where 0 is minimum threshold  
and 15d is maximum threshold (see  
Figure 4-3).  
CFG_TREQ0_CD_  
ASSERT_THRESH  
7:4  
R/W  
4
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
TREQ0_CD_  
HYSTERESIS  
1F  
Sets de-assert threshold for Trace  
Equalizer input carrier detect  
0 to15d, where 0 is minimum threshold  
and 15d is maximum threshold (see  
Figure 4-3).  
CFG_TREQ0_CD_DEAS  
SERT_THRESH  
3:0  
R/W  
R/W  
3
0
Note: This parameter is only applicable  
to the Trace Equalizer input (DDI).  
RSVD  
15:8  
Reserved—do not modify.  
Cable Equalizer input carrier detect filter  
sample window period in clock cycles.  
Sample window size is this value plus 1  
clock cycle.  
CD_FILTER_  
DELAYS_0  
20  
CFG_CD_FILTER_  
SAMPLE_WIN  
7:0  
R/W  
3
Valid Range = 0x03 to 0xFF  
See Section 4.2.3 for details.  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
GS12190  
Final Data Sheet  
PDS-061916  
89 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:10  
9:0  
R/W  
0
Reserved—do not modify.  
Number of samples for detecting cable  
equalizer carrier detection de-assertion:  
CD_FILTER_  
DELAYS_1  
21  
Valid Range = 0x00 to 0x3FF  
See Section 4.2.3 for details.  
CFG_CD_FILTER_  
DEASSERT_CNT  
R/W  
R/W  
R/W  
R/W  
F
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
RSVD  
15:10  
9:0  
0
Reserved—do not modify.  
Number of samples for detecting cable  
equalizer carrier detection assertion:  
CD_FILTER_  
DELAYS_2  
22  
Valid Range = 0x00 to 0x3FF  
See Section 4.2.3 for details.  
CFG_CD_FILTER_  
ASSERT_CNT  
3FF  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
23 to 25  
26 to 27  
RSVD  
RSVD  
RSVD  
RSVD  
15:0  
0
0
Reserved—do not modify.  
Output Configuration  
15:0  
R/W  
Reserved—do not modify.  
GS12190  
Final Data Sheet  
PDS-061916  
90 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:13  
12:8  
7
R/W  
0
2
0
Reserved—do not modify.  
Configure the Trace Driver output (DDO)  
SD pre-emphasis pulse width.  
Range: 0 to 15d.  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
CFG_OUTPUT1_TD_  
SD_PREEMPH_WIDTH  
R/W  
R/W  
Note: By default, the Trace Driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT1_TRDR_PER_RATE for  
per rate setting).  
RSVD  
Reserved—do not modify.  
Trace Driver output (DDO) SD  
Pre-Emphasis power-down  
DDO power-down control for  
pre-emphasis driver.  
OUTPUT_  
PARAM_TD_  
SD_0  
28  
0 = Pre-emphasis driver powered-up  
(pre-emphasis enabled)  
1 = Pre-emphasis driver powered-down  
(pre-emphasis disabled)  
CFG_OUTPUT1_TD_  
SD_PREEMPH_  
PWRDWN  
6
R/W  
0
Note: By default, the Trace Driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT1_TRDR_PER_RATE for  
per rate setting).  
Configure the Trace Driver output (DDO)  
SD pre-emphasis pulse amplitude.  
Range = 0d to 50d  
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
CFG_OUTPUT1_TD_  
SD_PREEMPH_AMPL  
5:0  
R/W  
1
Note: By default, the Trace Driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT1_TRDR_PER_RATE for  
per rate setting).  
RSVD  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
0
Reserved—do not modify.  
Configure the trace driver output (DDO)  
SD amplitude. Range: 0 to 40d.  
Adjust the differential Trace Driver  
amplitude. The default value produces  
an amplitude of 400mVppd  
CFG_OUTPUT1_TD_  
SD_DRIVER_SWING  
OUTPUT_  
PARAM_  
TD_SD_1  
29  
11  
70  
Note: By default, the Trace Driver SD  
settings are applied for all rates (see  
CTRL_OUTPUT1_TRDR_PER_RATE for  
per rate setting).  
RSVD  
Reserved—do not modify.  
GS12190  
Final Data Sheet  
PDS-061916  
91 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:13  
12:8  
R/W  
0
Reserved—do not modify.  
Configures the MADI/SD rate  
pre-emphasis pulse width on Cable  
Driver output (SDIO):  
CFG_OUTPUT0_CD_  
SD_PREEMPH_  
WIDTH  
Range = 0d to 15d  
R/W  
3
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
7
6
R/W  
R/W  
0
1
Reserved—do not modify.  
Power-down the MADI/SD rate  
pre-emphasis on Cable Driver output  
(SDIO):  
OUTPUT_  
PARAM_CD_  
SD_2  
2A  
CFG_OUTPUT0_CD_  
SD_PREEMPH_  
PWRDWN  
0 = Pre-emphasis driver powered-up  
(pre-emphasis enabled)  
1 = Pre-emphasis driver powered-down  
(pre-emphasis disabled).  
Configures the MADI/SD rate  
pre-emphasis amplitude on Cable  
Driver output (SDIO):  
CFG_OUTPUT0_CD_  
SD_PREEMPH_AMPL  
Range = 0d to 15d  
5:0  
R/W  
R/W  
0
0
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
RSVD  
15:14  
Reserved—do not modify.  
Configure the Cable Driver output  
(SDIO) SD/MADI amplitude in ~25mVpp  
steps:  
Functional Range = 9d to 31d  
Precision Range = 21d to 27d  
Default value = 24d (~800mVpp  
)
CFG_OUTPUT0_CD_  
SD_DRIVER_  
SWING  
OUTPUT_  
PARAM_CD_  
SD_3  
2B  
13:8  
R/W  
18  
Note: In auto slew mode  
(CTRL_OUTPUT0_AUTO_SLEW=1), the  
slew rate is determined by the rate at  
which the reclocker is locked. If the  
reclocker is unlocked, the slew will  
default to 6G/12G Slew. See Table 2-3  
for Rise/Fall Times, and Section 4.8.3 for  
more details on output driver selection.  
RSVD  
7:0  
R/W  
A0  
Reserved—do not modify.  
GS12190  
Final Data Sheet  
PDS-061916  
92 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:13  
12:8  
7
R/W  
0
2
0
Reserved—do not modify.  
Configure the Trace Driver output (DDO)  
HD pre-emphasis pulse width.  
Range = 0d to 15d  
CFG_OUTPUT1_TD_  
HD_PREEMPH_WIDTH  
R/W  
R/W  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
Reserved—do not modify.  
Trace Driver output (DDO) HD  
pre-emphasis power-down  
OUTPUT_  
PARAM_  
TD_HD_0  
2C  
Power-down control for pre-emphasis  
driver.  
CFG_OUTPUT1_TD_  
HD_PREEMPH_  
PWRDWN  
6
R/W  
0
0 = Pre-emphasis driver powered-up  
(pre-emphasis enabled)  
1 = Pre-emphasis driver powered-down  
(pre-emphasis disabled)  
Configure the Trace Driver output (DDO)  
HD pre-emphasis pulse amplitude.  
Range = 0d to 50d  
CFG_OUTPUT1_TD_  
HD_PREEMPH_AMPL  
5:0  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
R/W  
1
0
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
RSVD  
Reserved—do not modify.  
Configure the Trace Driver output (DDO)  
HD amplitude.  
OUTPUT_  
PARAM_  
TD_HD_1  
Range = 0d to 40d  
CFG_OUTPUT1_TD_  
HD_DRIVER_SWING  
2D  
11  
70  
Adjust the differential trace driver  
amplitude. The default value produces  
an amplitude of 400mVppd  
.
RSVD  
Reserved—do not modify.  
GS12190  
Final Data Sheet  
PDS-061916  
93 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:13  
12:8  
7
R/W  
0
9
0
Reserved—do not modify.  
Configure the Cable Driver output  
(SDIO) HD/3G pre-emphasis pulse  
width.  
CFG_OUTPUT0_CD_  
HD_PREEMPH_WIDTH  
Range = 0d to 15d  
R/W  
R/W  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
Reserved—do not modify.  
Cable Driver output (SDIO) HD/3G  
pre-emphasis power-down.  
OUTPUT_  
PARAM_  
CD_HD_2  
2E  
SDIO power-down control for  
pre-emphasis driver.  
CFG_OUTPUT0_CD_  
HD_PREEMPH_  
PWRDWN  
6
R/W  
0
0 = Pre-emphasis driver powered-up  
(pre-emphasis enabled)  
1 = Pre-emphasis driver powered-down  
(pre-emphasis disabled)  
Configure the Cable Driver output  
(SDIO) HD/3G pre-emphasis pulse  
amplitude.  
CFG_OUTPUT0_CD_  
HD_PREEMPH_AMPL  
Range = 0d to 15d  
5:0  
R/W  
R/W  
7
0
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
RSVD  
15:14  
Reserved—do not modify.  
Configure the Cable Driver output  
(SDIO) HD/3G amplitude in ~20mVpp  
steps.  
Functional Range = 9d to 31d  
Precision Range = 20d to 26d  
Default value = 23d (~800mVpp  
)
OUTPUT_  
PARAM_  
CD_HD_3  
CFG_OUTPUT0_CD_  
HD_DRIVER_SWING  
2F  
13:8  
R/W  
17  
Note: In auto slew mode  
(CTRL_OUTPUT0_AUTO_SLEW=1), the  
slew rate is determined by the rate at  
which the reclocker is locked. If the  
reclocker is unlocked, the slew will  
default to 6G/12G Slew. See Table 2-3  
for Rise/Fall Times, and Section 4.8.3 for  
more details on output driver selection.  
RSVD  
7:0  
R/W  
80  
Reserved—do not modify.  
GS12190  
Final Data Sheet  
PDS-061916  
94 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:13  
12:8  
7
R/W  
0
2
0
Reserved—do not modify.  
Configure the Trace Driver output (DDO)  
3G pre-emphasis pulse width.  
Range = 0d to 15d  
CFG_OUTPUT1_TD_  
3G_PREEMPH_WIDTH  
R/W  
R/W  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
Reserved—do not modify.  
Trace Driver output (DDO) 3G  
pre-emphasis power-down  
OUTPUT_  
PARAM_  
TD_3G_0  
30  
DDO power-down control for  
pre-emphasis driver.  
CFG_OUTPUT1_TD_  
3G_PREEMPH_  
PWRDWN  
6
R/W  
0
0 = Pre-emphasis driver powered-up  
(pre-emphasis enabled)  
1 = Pre-emphasis driver powered-down  
(pre-emphasis disabled)  
Configure the trace driver output (DDO)  
3G pre-emphasis pulse amplitude.  
Range = 0d to 50d  
CFG_OUTPUT1_TD_  
3G_PREEMPH_AMPL  
5:0  
15:14  
13:8  
7:0  
R/W  
R/W  
R/W  
R/W  
1
0
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
RSVD  
Reserved—do not modify.  
Configure the Trace Driver output (DDO)  
3G amplitude.  
OUTPUT_  
PARAM_  
TD_3G_1  
Range = 0d to 40d  
CFG_OUTPUT1_TD_  
3G_DRIVER_SWING  
31  
11  
70  
Adjust the differential Trace Driver  
amplitude. The default value produces  
an amplitude of 400mVppd  
.
RSVD  
Reserved—do not modify.  
GS12190  
Final Data Sheet  
PDS-061916  
95 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:13  
12:8  
7
R/W  
0
7
0
Reserved—do not modify.  
Configure the Cable Driver output  
(SDIO) 6G/12G pre-emphasis pulse  
width.  
Range = 0d to 15d  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
CFG_OUTPUT0_CD_  
UHD_PREEMPH_  
WIDTH  
R/W  
Note: In auto slew mode (CTRL_  
OUTPUT0_AUTO_SLEW = 1), the slew  
rate is determined by the rate at which  
the reclocker is locked. If the reclocker is  
unlocked, the slew will default to  
6G/12G Slew. See Table 2-3 for Rise/Fall  
times, and Section 4.8.3 for more details  
on output driver selection.  
32  
OUTPUT_  
PARAM_  
CD_UHD_2  
RSVD  
R/W  
Reserved—do not modify.  
Cable Driver output (SDIO) 6G/12G  
pre-emphasis power-down  
SDIO power-down control for  
pre-emphasis driver.  
0 = Pre-emphasis driver powered-up  
(pre-emphasis enabled)  
1 = Pre-emphasis driver powered-down  
(pre-emphasis disabled)  
CFG_OUTPUT0_CD_  
UHD_PREEMPH_  
PWRDWN  
6
R/W  
0
Note: In auto slew mode (CTRL_  
OUTPUT0_AUTO_SLEW = 1), the slew  
rate is determined by the rate at which  
the reclocker is locked. If the reclocker is  
unlocked, the slew will default to  
6G/12G Slew. See Table 2-3 for Rise/Fall  
times, and Section 4.8.3 for more details  
on output driver selection.  
Configure the Cable Driver output  
(SDIO) 6G/12G pre-emphasis pulse  
amplitude.  
Range = 0d to 50d  
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
OUTPUT_  
PARAM_  
CD_UHD_2  
(Continued)  
CFG_OUTPUT0_CD_  
UHD_PREEMPH_AMPL  
32  
5:0  
R/W  
B
(Continued)  
Note: In auto slew mode (CTRL_  
OUTPUT0_AUTO_SLEW = 1), the slew  
rate is determined by the rate at which  
the reclocker is locked. If the reclocker is  
unlocked, the slew will default to  
6G/12G Slew. See Table 2-3 for Rise/Fall  
times, and Section 4.8.3 for more details  
on output driver selection.  
GS12190  
Final Data Sheet  
PDS-061916  
96 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:14  
13:8  
7:0  
R/W  
0
Reserved—do not modify.  
Configure the Cable Driver output  
(SDIO) 6G/12G amplitude in ~15mVpp  
steps.  
Functional Range = 9d to 31d  
Precision Range = 21d to 27d  
Default value = 24d (~800mVpp  
)
Note:  
• At 12G, it is the combined default  
pre-emphasis and amplitude settings  
that result in 800mV on most test  
equipment. Shorter trace may require  
reduced pre-emphasis and increased  
swing setting up to 27d to achieve  
CFG_OUTPUT0_CD_  
UHD_DRIVER_  
SWING  
OUTPUT_  
PARAM_  
CD_UHD_3  
33  
R/W  
18  
800mV.  
• In auto slew mode (CTRL_OUTPUT0_  
AUTO_SLEW = 1), the slew rate is  
determined by the rate at which the  
reclocker is locked. If the reclocker is  
unlocked, the slew will default to  
6G/12G Slew. See Table 2-3 for Rise/Fall  
times, and Section 4.8.3 for more details  
on output driver selection.  
RSVD  
R/W  
60  
Reserved—do not modify.  
GS12190  
Final Data Sheet  
PDS-061916  
97 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:13  
12:8  
7
R/W  
0
2
0
Reserved—do not modify.  
Configure the Trace Driver output (DDO)  
6G pre-emphasis pulse width.  
Range = 0d to 15d  
CFG_OUTPUT1_TD_  
6G_PREEMPH_WIDTH  
R/W  
R/W  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
RSVD  
Reserved—do not modify.  
Trace Driver output (DDO) 6G  
pre-emphasis power-down.  
OUTPUT_  
PARAM_  
TD_6G_0  
34  
DDO power-down control for  
pre-emphasis driver.  
CFG_OUTPUT1_TD_  
6G_PREEMPH_  
PWRDWN  
6
R/W  
0
0 = Pre-emphasis driver powered-up  
(pre-emphasis enabled)  
1 = Pre-emphasis driver powered-down  
(pre-emphasis disabled)  
Configure the Trace Driver output (DDO)  
6G pre-emphasis pulse amplitude.  
Range = 0d to 50d  
CFG_OUTPUT1_TD_  
6G_PREEMPH_AMPL  
5:0  
15:14  
13:8  
R/W  
R/W  
R/W  
1
0
Adjust the pre-emphasis pulse width to  
better match the channel loss at  
Nyquist.  
RSVD  
Reserved—do not modify.  
Configure the Trace Driver output (DDO)  
6G amplitude.  
OUTPUT_  
PARAM_  
TD_6G_1  
Range = 0d to 40d  
CFG_OUTPUT1_TD_  
6G_DRIVER_SWING  
35  
11  
Adjust the differential Trace Driver  
amplitude. The default value produces  
an amplitude of 400mVppd  
.
RSVD  
RSVD  
RSVD  
7:0  
R/W  
R/W  
R/W  
70  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
36  
37  
RSVD  
RSVD  
15:0  
15:0  
201  
1170  
GS12190  
Final Data Sheet  
PDS-061916  
98 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:13  
12:8  
7
R/W  
0
2
0
Reserved—do not modify.  
Configure the Trace Driver output (DDO)  
12G pre-emphasis pulse width.  
Range = 0d to 15d  
Adjust the pre-emphasis pulse width to  
better match the channel loss response  
shape.  
CFG_OUTPUT1_TD_  
12G_PREEMPH_WIDTH  
R/W  
R/W  
Note: When per rate settings are  
chosen, the Trace Driver 12G settings  
are applied for all rates when the  
reclocker is unlocked (see  
CTRL_OUTPUT1_TRDR_  
PER_RATE for per rate setting).  
RSVD  
Reserved—do not modify.  
Trace driver output (DDO) 12G  
pre-emphasis power-down.  
DDO power-down control for  
pre-emphasis driver.  
OUTPUT_  
PARAM_  
TD_12G_0  
0 = Pre-emphasis driver powered-up  
(pre-emphasis enabled)  
1 = Pre-emphasis driver powered-down  
(pre-emphasis disabled)  
38  
CFG_OUTPUT1_TD_  
12G_PREEMPH_  
PWRDWN  
6
R/W  
0
Note: When per rate settings are  
chosen, the Trace Driver 12G settings  
are applied for all rates when the  
reclocker is unlocked (see  
CTRL_OUTPUT1_TRDR_  
PER_RATE for per rate setting).  
Configure the Trace Driver output (DDO)  
12G pre-emphasis pulse amplitude.  
Range: 0 to 50d  
Adjust the pre-emphasis pulse  
amplitude to better match the channel  
loss at Nyquist.  
CFG_OUTPUT1_TD_  
12G_PREEMPH_AMPL  
5:0  
R/W  
1
Note: When per rate settings are  
chosen, the Trace Driver 12G settings  
are applied for all rates when the  
reclocker is unlocked (see  
CTRL_OUTPUT1_TRDR_  
PER_RATE for per rate setting).  
GS12190  
Final Data Sheet  
PDS-061916  
99 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:14  
R/W  
0
Reserved—do not modify.  
Configure the Trace Driver output (DDO)  
12G amplitude.  
Range = 0d to 40d  
Adjust the differential Trace Driver  
amplitude. The default value produces  
OUTPUT_  
PARAM_  
TD_12G_1  
CFG_OUTPUT1_TD_  
12G_DRIVER_SWING  
an amplitude of 400mVppd  
.
39  
13:8  
R/W  
11  
Note: When per rate settings are  
chosen, the Trace Driver 12G settings  
are applied for all rates when the  
reclocker is unlocked (see  
CTRL_OUTPUT1_TRDR_  
PER_RATE for per rate setting).  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
15:14  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
70  
201  
1170  
342  
1C90  
342  
1C90  
340  
0
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
3A  
3B  
3C  
3D  
3E  
3F  
40  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
Controls the output mute differential  
latch voltage. Default is 8=~200mVdiff  
.
Increasing the setting may be required  
for noisy environment, but mute power  
increases proportionally to mute  
differential latch voltage.  
OUTPUT_  
PARAM_  
MUTE_1  
CFG_OUTPUT1_MUTE_  
DRIVER_SWING  
41  
13:8  
R/W  
8
Range = 0d to 63d  
Note: This parameter is only applicable  
to the trace driver output (DDO).  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
7:0  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
50  
340  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
42  
43  
44  
45  
46  
47  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
RSVD  
15:0  
15:0  
15:0  
15:0  
15:0  
15:0  
850  
342  
1C90  
342  
1C90  
GS12190  
Final Data Sheet  
PDS-061916  
100 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Output Control  
RSVD  
15:4  
R/W  
10  
0
Reserved—do not modify.  
Controls optional signal polarity  
inversion on SDIO when data is selected  
(CTRL_OUTPUT0_SIGNAL_SEL = 0).  
CTRL_OUTPUT0_  
DATA_INVERT  
3
R/W  
Controls optional signal polarity  
inversion on DDO when data is selected  
(CTRL_OUTPUT1_SIGNAL_SEL = 0).  
CTRL_OUTPUT1_  
DATA_INVERT  
2
1
R/W  
R/W  
0
0
SDIO data vs PRBS select:  
0 = Data  
OUTPUT_  
SIG_SELECT  
48  
CTRL_OUTPUT0_  
SIGNAL_SEL  
1 = PRBS Generator output (PRBS7 or  
divided version of PRBS Generator  
clock)  
DDO data vs PRBS select:  
0 = Data  
1 = PRBS Generator output (PRBS7 or  
divided version of PRBS Generator  
clock)  
CTRL_OUTPUT1_  
SIGNAL_SEL  
0
R/W  
R/W  
0
0
RSVD  
15:6  
Reserved—do not modify.  
Selects if device is auto muted during  
rate search, based on loss of lock at the  
input in cable equalizer mode.  
1 = Mutes DDO when the reclocker is  
not locked to the applied signal.  
CTRL_OUTPUT1_  
AUTO_MUTE_DURING_  
RATE_SEARCH  
5
R/W  
0
0 = Device does not auto mute.  
Note: If passing non-standard rates  
through the device or using the PRBS  
generator, set this parameter to 0.  
Selects if device is auto muted during  
rate search, based on loss of lock at the  
input in cable driver mode.  
CONTROL_  
OUTPUT_  
MUTE  
49  
1 = Mutes SDIO when the reclocker is  
not locked to the applied signal.  
CTRL_OUTPUT0_  
AUTO_MUTE_DURING_  
RATE_SEARCH  
4
R/W  
0
0 = Device does not auto mute.  
Note: If passing non-standard rates  
through the device or using the PRBS  
generator, set this parameter to 0.  
Force manual mute mode for DDO.  
0 = Unmute  
1 = Mute  
CTRL_OUTPUT1_  
MANUAL_MUTE  
3
R/W  
0
Controls mute for DDO when auto mute  
(CTRL_OUTPUT1_AUTO_MUTE) is  
disabled.  
GS12190  
Final Data Sheet  
PDS-061916  
101 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Select automatic or manual mute  
control for DD0.  
0 = Disable auto mute mode  
1 = Enable auto mute mode  
CTRL_OUTPUT1_  
AUTO_MUTE  
2
1
R/W  
1
0
If CTRL_OUTPUT1_AUTO_MUTE = 0,  
then CTRL_OUTPUT1_MANUAL_MUTE  
controls mute for DDO.  
CONTROL_  
OUTPUT_  
MUTE  
49  
(Continued)  
Force manual mute mode for SDIO.  
CTRL_OUTPUT0_  
MANUAL_MUTE  
(Continued)  
R/W  
Same settings description as  
CTRL_OUTPUT1_ MANUAL_MUTE.  
Select automatic or manual mute  
control for SDIO  
CTRL_OUTPUT0_  
AUTO_MUTE  
0
R/W  
R/W  
1
0
Same settings description as  
CTRL_OUTPUT1_ AUTO_MUTE.  
RSVD  
15:4  
Reserved—do not modify.  
Force manual disable mode for DDO.  
0 = Enable output driver  
CTRL_OUTPUT1_  
MANUAL_DISABLE  
1 = Disable (power-down) output driver.  
3
2
R/W  
0
Controls disable for DDO when auto  
mute (CTRL_OUTPUT1_AUTO_DISABLE)  
is disabled.  
Select automatic or manual disable  
control for DD0.  
0 = Disable auto disable mode  
1 = Enable auto disable mode  
CONTROL_  
OUTPUT_  
DISABLE  
CTRL_OUTPUT1_  
AUTO_DISABLE  
4A  
R/W  
0
If CTRL_OUTPUT1_AUTO_DISABLE = 0,  
then  
CTRL_OUTPUT1_MANUAL_DISABLE  
controls disable for DDO.  
Force manual disable mode for SDIO.  
CTRL_OUTPUT0_  
MANUAL_DISABLE  
1
0
R/W  
R/W  
0
0
Same settings description as  
CTRL_OUTPUT1_ MANUAL_DISABLE.  
Select automatic or manual disable  
control for SDIO.  
CTRL_OUTPUT0_  
AUTO_DISABLE  
Same settings description as  
CTRL_OUTPUT1_ AUTO_DISABLE.  
GS12190  
Final Data Sheet  
PDS-061916  
102 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:13  
R/W  
0
Reserved—do not modify.  
Controls whether common or per rate  
trace driver output (DDO) settings are  
used:  
0 = Common trace driver settings:  
CFG_OUTPUT1_TD_SD_* settings are  
used for all rates  
CTRL_OUTPUT1_  
TRDR_PER_RATE  
12  
R/W  
0
1 = Per rate trace driver settings:  
CFG_OUTPUT1_TD_<rate>_* are used  
when the reclocker is locked to <rate>  
(See Table 2-3).  
Note: CFG_OUTPUT1_TD_12G_* are  
used when the reclocker is not locked.  
RSVD  
11:3  
2:1  
R/W  
R/W  
A0  
2
Reserved—do not modify.  
CONTROL_  
OUTPUT_  
SLEW  
4B  
Selects slew rate for SDIO when auto  
slew rate is disabled.  
CTRL_OUTPUT0_  
MANUAL_SLEW  
0 = SD/MADI slew  
1 = HD/3G slew  
2 = 6G/12G slew  
Selects between auto or manual slew  
rate selection for SDIO.  
0 = Disable auto slew rate selection  
1 = Enable auto slew rate selection  
Note: In auto slew mode (CTRL_  
CTRL_OUTPUT0_  
AUTO_SLEW  
OUTPUT0_AUTO_SLEW = 1), the slew  
rate is determined by the rate at which  
the reclocker is locked. If the reclocker is  
unlocked, the slew will default to  
6G/12G Slew. See Table 2-3 for Rise/Fall  
times, and Section 4.8.3 for more details  
on output driver selection.  
0
R/W  
1
GS12190  
Final Data Sheet  
PDS-061916  
103 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:4  
3
R/W  
0
0
Reserved—do not modify.  
Controls reclocker bypass for DDO when  
auto mode is disabled.  
CTRL_OUTPUT1_  
RETIMER_MANUAL_  
BYPASS  
R/W  
R/W  
R/W  
0 = Disable reclocker bypass  
1 = Enable reclocker bypass  
Selects between auto and manual  
control of reclocker bypass for DDO.  
CTRL_OUTPUT1_  
RETIMER_AUTO_  
BYPASS  
2
1
1
0
0 = Disable auto mode  
1 = Enable auto mode  
CONTROL_  
RETIMER_  
BYPASS  
4C  
Controls reclocker bypass for SDIO  
when auto mode is disabled.  
CTRL_OUTPUT0_  
RETIMER_MANUAL_  
BYPASS  
0 = Disable reclocker bypass  
1 = Enable reclocker bypass  
Selects between auto and manual  
control of reclocker bypass for SDIO.  
CTRL_OUTPUT0_  
RETIMER_AUTO_  
BYPASS  
0
R/W  
R/W  
1
0
0 = Disable auto mode  
1 = Enable auto mode  
RSVD  
15:1  
Reserved—do not modify.  
Enable or disable balanced mode on  
SDIO for powered output return loss  
measurement.  
CONTROL_  
BALANCED_  
MODE  
4D  
CTRL_OUTPUT0_  
BALANCED  
0
R/W  
R/W  
0
0
0 = Disable  
1 = Enable  
4E to 4F  
RSVD  
RSVD  
15:0  
Reserved—do not modify.  
GS12190  
Final Data Sheet  
PDS-061916  
104 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Test Functions  
RSVD  
15  
R/W  
0
0
Reserved—do not modify.  
Adjusts the phase of the clock to the  
PRBS Checker. Values are:  
0 = 0°  
1 = 90°  
2 = 180°  
3 = 270°  
CFG_PRBS_CHECK_  
PHASEADJUST  
14:13  
R/W  
Note: A setting of 0° is ideal for most  
applications. Adjustment is not  
expected.  
Optionally inverts the reclocked data at  
the input to the PRBS Checker:  
CFG_PRBS_CHECK_  
INVERT  
12  
R/W  
0
0 = no inversion  
1 = data inverted  
PRBS_  
CHK_CFG  
50  
Selects pre-divider for PRBS check  
measurement timer:  
0 = 4  
1 = 8  
2 = 16  
3 = 32  
4 = 64  
5 = 128  
6 = 256  
7 = 512  
8 = 1024  
9 = 2048  
CFG_PRBS_CHECK_  
PREDIVIDER  
11:8  
R/W  
R/W  
0
3
Selects PRBS check measurement  
interval for timed measurements.  
CFG_PRBS_CHECK_  
MEAS_TIME  
7:0  
See Section 4.5.1 for more details.  
RSVD  
15:9  
8
R/W  
R/W  
R/W  
0
0
0
Reserved—do not modify.  
0 = Selects continuous PRBS check  
mode  
1 = Selects timed PRBS check mode  
CTRL_PRBS_CHECK_  
TIMED_CONT_B  
RSVD  
7:1  
Reserved—do not modify.  
PRBS_CHK_  
CTRL  
Set to 1 by host to start a timed  
operation.  
51  
Set to 0 by host after completion or  
abort of the operation (by the device  
due to LOL) to tell the device that PRBS  
result has been read by the host.  
CTRL_PRBS_CHECK_  
START  
0
R/W  
0
See Section 4.5 PRBS Checker for more  
details on PRBS checker function.  
GS12190  
Final Data Sheet  
PDS-061916  
105 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:10  
R/W  
0
Reserved—do not modify.  
Selects whether the PRBS generator is  
enabled or not:  
0 = PRBS Generator disabled  
1 = PRBS Generator enabled  
Note: enabling the PRBS Generator  
does not automatically override other  
device modes such as auto-sleep,  
auto-output-mute,auto-output-disable,  
etc. These continue to function  
CTRL_PRBS_GEN_  
ENABLE  
9
R/W  
0
normally. The user/host may need to  
adjust those settings to ensure the part  
will output the PRBS signal.  
Select output signal from PRBS  
Generator as either PRBS7 or divided  
clock (divided version of the PRBS  
Generator’s clock source):  
CTRL_PRBS_GEN_  
SIGNAL_SELECT  
8
R/W  
R/W  
1
0
0 = clock divider (using ratio set by  
CTRL_PRBS_GEN_CLK_DIVIDER)  
PRBS_GEN_  
CTRL  
52  
1 = PRBS7  
Selects clock source for PRBS Generator:  
0 = VCO (free running)  
1 = Reserved.  
2 = Reserved.  
CTRL_PRBS_GEN_  
CLK_SRC  
7:6  
3 = Data reference PLL (reclocker  
recovered clock)  
Selects clock divider ratio for when host  
selects divided clock to output on PRBS  
Generator  
CTRL_PRBS_GEN_  
CLK_DIVIDER  
(CTRL_PRBS_GEN_SIGNAL_SELECT = 0):  
5:4  
R/W  
R/W  
0
0
0 = Divide by 2  
1 = Divide by 4  
2 = Divide by 8  
3 = Divide by 16  
Controls optional inversion of the  
generated PRBS pattern:  
CTRL_PRBS_GEN_  
INVERT  
3
0 = true sense  
1 = inverted  
GS12190  
Final Data Sheet  
PDS-061916  
106 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Select PRBS7 data rate when PRBS clock  
source not recovered clock  
(CTRL_PRBS_GEN_CLK_SRC ≠ 3)  
0 = Reserved—do not use  
1 = MADI  
2 = SD  
3 = HD  
4 = 3G  
5 = 6G  
6 = 12G  
7 = Reserved - do not use.  
PRBS_GEN_  
CTRL  
(Continued)  
CTRL_PRBS_GEN_  
DATA_RATE  
52  
2:0  
R/W  
6
(Continued)  
If CTRL_PRBS_GEN_CLK_SRC = 3, then  
CTRL_PRBS_GEN_DATA_RATE setting  
has no effect and the reclocker rate is  
used (based on automatic rate  
detection or manual rate selection).  
Additionally, if the device is locked to an  
input signal, only the same rate can be  
selected for the PRBS Generator.  
53  
54  
RSVD  
RSVD  
15:0  
15:0  
R/W  
R/W  
0
0
Reserved—do not modify.  
CFG_EYE_MON_TIMEOUT[31:16] Most  
significant 16 bits of the measurement  
time. This is the time spent measuring  
bit errors at each point in the eye scan,  
i.e. the time to measure one point in the  
eye. Units are in microseconds. The Eye  
Scanner scans each point twice and  
there is some overhead, so the actual  
measurement time is twice the number  
entered.  
CFG_EYE_MON_  
TIMEOUT_MS  
EYE_MON_  
INT_CFG_0  
Valid range:  
1 to 6555d  
65536 d to 104895d  
131072d to 3350000d  
CFG_EYE_MONT_TIMEOUT[15:0] Least  
significant 16 bits of the measurement  
time.  
CFG_EYE_MON_  
TIMEOUT_LS  
EYE_MON_  
INT_CFG_1  
55  
56  
15:0  
15:0  
R/W  
R/W  
64  
64  
See CFG_EYE_MON_ TIMEOUT_MS.  
Threshold of bit error counts to define  
good vs bad points in eye for  
shape-scan.  
CFG_EYE_BER_  
THRESHOLD  
EYE_MON_  
INT_CFG_2  
See Section 4.6 for further details.  
GS12190  
Final Data Sheet  
PDS-061916  
107 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
The vertical offset slice that will be used  
for eye shape queries. Offset values: 0 to  
255d. 0 represents the most negative  
slice since 128d is the 0V slice level and  
255d is the most positive slice level.  
Default is 128d.  
CFG_EYE_DEFAULT_  
VERT_OFFSET  
15:8  
R/W  
80  
EYE_MON_  
INT_CFG_3  
57  
RSVD  
7:3  
2
R/W  
R/W  
0
0
Reserved—do not modify.  
Eye monitor initialization bit. Set HIGH  
during Device Power-up Sequence. See  
Section 4.10.12 for details.  
CFG_EYE_INIT_RESET  
RSVD  
RSVD  
RSVD  
1:0  
15:0  
15  
R/W  
R/W  
R/W  
2
0
0
Reserved—do not modify.  
Reserved—do not modify.  
Reserved—do not modify.  
58 to 59  
RSVD  
Starting phase offset. Valid range is 0d to  
127d. Reset value must be used for  
shape-scan.  
CTRL_EYE_PHASE_  
START  
14:8  
7
R/W  
R/W  
0
0
EYE_MON_  
SCAN_CTRL_0  
RSVD  
Reserved—do not modify.  
5A  
Phase offset limit. Valid range is 0d to  
127d. CTRL_EYE_PHASE_STOP must be  
greater or equal to  
CTRL_EYE_PHASE_START. Reset value  
must be used for shape-scan.  
CTRL_EYE_PHASE_  
STOP  
6:0  
15  
R/W  
R/W  
7F  
0
RSVD  
Reserved—do not modify.  
Unsigned value for phase step size. Valid  
values are 1,2, and 4. Reset value must  
be used for shape-scan. Behaviour is  
undefined for other values.  
CTRL_EYE_PHASE_  
STEP  
14:8  
R/W  
1
In order to use a step size of 2 or 4,  
CTRL_EYE_PHASE_START and  
CTRL_EYE_PHASE_STOP must be set to  
their default values.  
EYE_MON_  
SCAN_CTRL_1  
5B  
RSVD  
7
R/W  
R/W  
0
0
Reserved—do not modify.  
Starting voltage offset. Valid range is 0d  
to 255d.  
CTRL_EYE_VERT_  
OFFSET_START  
6:0  
GS12190  
Final Data Sheet  
PDS-061916  
108 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-3: Control Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Voltage offset limit. Valid range is 0 to  
255d. CTRL_EYE_VERT_OFFSET_STOP  
must be greater or equal to  
CTRL_EYE_VERT_OFFSET_START. Reset  
value must be used for shape-scan.  
CTRL_EYE_VERT_  
OFFSET_STOP  
15:8  
7
R/W  
R/W  
FF  
0
RSVD  
Reserved—do not modify.  
EYE_MON_  
SCAN_CTRL_2  
5C  
Unsigned value for voltage offset step  
size. Valid values are 1,2, and 4.  
Behaviour is undefined for other values.  
In order to use a step size of 2 or 4,  
CTRL_EYE_VERT_OFFSET_START and  
CTRL_EYE_VERT_OFFSET_STOP mustbe  
set to their default values.  
CTRL_EYE_VERT_  
OFFSET_STEP  
6:0  
R/W  
1
RSVD  
15:9  
8
R/W  
R/W  
R/W  
0
0
0
Reserved—do not modify.  
Selects whether the Eye Monitor should  
perform an eye scan or eye shape  
capture:  
CTRL_EYE_SHAPE_  
SCAN_B  
0 = Selects eye scan (new or continued)  
1 = Selects eye shape capture  
RSVD  
7:2  
Reserved—do not modify.  
Power control for the Eye Monitor:  
0 = Power-down the Eye Monitor  
1 = Power-up the Eye Monitor  
Host is permitted to change this any  
time between eye scans (but not  
between partial eye scans).  
CTRL_EYE_MON_  
POWER_CTRL  
1
R/W  
0
EYE_MON_  
SCAN_CTRL_3  
5D  
This must be set to 1 to run an eye scan.  
Behaviour is undefined if host sets  
CTRL_EYE_MON_START = 1 without  
setting this bit to 1.  
Part of a four way handshake with  
STAT_EYE_MON_STATUS:  
0 = Set by host to tell the device to clear  
the status bit  
1 = Set by host only in order to  
begin/continue an eye scan or start an  
eye shape capture  
CTRL_EYE_MON_START  
0
R/W  
0
See Section 4.6 for more details on  
implementing the four way hand shake  
for this operation.  
5E to 5F  
60 to 7E  
RSVD  
RSVD  
RSVD  
RSVD  
15:0  
Reserved.  
Factory Settings  
15:0  
Reserved.  
GS12190  
Final Data Sheet  
PDS-061916  
109 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
5.3.2 Status Register Descriptions  
Table 5-4: Status Register Descriptions  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
80  
RSVD  
RSVD  
15:0  
15:0  
RO  
Reserved—do not modify.  
This register contains the first part of  
the device configuration version. Please  
contact your local technical sales  
representative for more details.  
81  
82  
83  
VERSION_0  
VERSION_1  
VERSION_2  
STAT_CONFIG_VER0  
STAT_CONFIG_VER1  
STAT_HW_VERSION  
RO  
RO  
RO  
This register contains the second part  
of the device configuration version.  
Please contact your local technical sales  
representative for more details.  
15:0  
15:0  
This register contains the devices  
identification, including revision. Please  
contact your local technical sales  
representative for more details.  
Count of primary carrier detection  
status changes (ignoring CLI squelch in  
Cable Equalizer Mode). The count  
saturates at 255d (0xFF).  
STAT_CNT_PRI_CD_  
CHANGES  
15:8  
RO  
See Section 4.10.11 for procedure to  
clear the counts.  
Count of secondary carrier detection  
status changes (based on STAT_CLI_  
SQUELCH if CFG_SEC_CD_ INCL_  
CLI_SQUELCH = 1; otherwise this  
parameter is based on STAT_PRI_CD).  
STICKY_  
COUNTS_0  
84  
STAT_CNT_SEC_CD_  
CHANGES  
7:0  
RO  
The count saturates at 255d (0xFF). See  
Section 4.10.11 for procedure to clear  
the counts.  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
Count of rate changes. The count  
saturates at 255d (0xFF).  
STAT_CNT_RATE_  
CHANGES  
15:8  
7:0  
RO  
RO  
See Section 4.10.11 for procedure to  
clear the counts.  
STICKY_  
COUNTS_1  
85  
Count of PLL lock status changes. The  
count saturates at 255d (0xFF).  
STAT_CNT_PLL_  
LOCK_CHANGES  
See Section 4.10.11 for procedure to  
clear the counts.  
GS12190  
Final Data Sheet  
PDS-061916  
110 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15  
RO  
Reserved—do not modify.  
0 = Idle  
1 = Reserved  
2 = Indicates device has cleared the  
sticky counts  
3 = Reserved  
STAT_CLEAR_COUNTS_  
STATUS  
14:13  
RO  
Part of a four way handshake with  
CTRL_CLEAR_COUNTS.  
See Section 4.10.11 for more details on  
implementing the four way handshake  
for this operation.  
0 = PLL is unlocked  
1 = PLL is locked  
STAT_LOCK  
12  
RO  
0 = Device is not in sleep  
1 = Device is currently in sleep  
STAT_SLEEP  
RSVD  
11  
10  
RO  
RO  
Reserved—do not modify.  
Indicates currently selected direction of  
device:  
STAT_ACTIVE_  
DIRECTION  
9
8
RO  
RO  
0 = Cable Equalizer / receiver mode  
1 = Cable Driver / transmitter mode  
CURRENT_  
STATUS_0  
86  
Cable Equalizer squelch status.  
0 = CLI squelch is de-asserted  
1 = CLI squelch is asserted  
STAT_CLI_SQUELCH  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
DDO output status:  
0 = Mission Trace Driver <= SD rate  
1 = Mission Trace Driver HD rate  
2 = Mission Trace Driver 3G rate  
3 = Mission Trace Driver 6G rate  
4 = Mission Trace Driver 12G  
5 = Reserved  
6 = Muted  
7 = Disabled  
STAT_OUTPUT1_MODE  
7:4  
RO  
Note: The device will only indicate 1-4 if  
the per rate settings are enabled,  
otherwise, it will always indicate 0 if it is  
locked to a valid signal and the output  
is not muted or disabled. See section  
Section 4.8.3 Output Driver Data Rate  
Selection for more details.  
GS12190  
Final Data Sheet  
PDS-061916  
111 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
SDIO output status:  
0 = Mission Cable Driver SD/MADI slew  
rate  
1 = Mission Cable Driver HD/3G slew  
rate  
86  
CURRENT_  
STATUS_0  
(Continued)  
2 = Mission Cable Driver 6G/12G slew  
rate  
(Continued)  
STAT_OUTPUT0_MODE  
3:0  
RO  
3 = Reserved  
4 = Reserved  
5 = Balanced  
6 = Muted  
7 = Disabled  
DDO Disable Status  
0 = DDO is not disabled  
1 = DDO is disabled  
STAT_OUTPUT1_  
DISABLE  
15  
14  
13  
12  
RO  
RO  
RO  
RO  
SDIO Disable Status  
0 = SDIO is not disabled  
1 = SDIO is disabled  
STAT_OUTPUT0_  
DISABLE  
DDO Mute Status  
0 = DDO is not muted  
1 = DDO is muted  
STAT_OUTPUT1_  
MUTE  
SDIO Mute Status  
0 = SDIO is not muted  
1 = SDIO is muted  
STAT_OUTPUT0_MUTE  
DDO Reclocker Status  
STAT_OUTPUT1_  
RETIMER_BYPASS  
0 = reclocker path to DDO is not  
bypassed  
1 = reclocker path to DDO is bypassed  
CURRENT_  
STATUS_1  
11  
10  
RO  
RO  
87  
SDIO Reclocker Status  
0 = reclocker path to SDIO is not  
bypassed  
STAT_OUTPUT0_  
RETIMER_BYPASS  
1 = reclocker path to SDIO is bypassed  
Secondary carrier detection status  
(based on STAT_CLI_SQUELCH if  
CFG_SEC_CD_INCL_CLI_SQUELCH=1;  
otherwise this parameter is based on  
STAT_PRI_CD).  
STAT_SEC_CD  
9
RO  
0 = Secondary carrier is not detected  
1 = Secondary carrier is detected  
Note: This status is only applicable to  
the cable equalizer input (SDIO).  
GS12190  
Final Data Sheet  
PDS-061916  
112 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Primary carrier detection status  
(ignoring CLI squelch for Cable  
Equalizer input (SDIO)).  
STAT_PRI_CD  
8
7
RO  
0 = Primary carrier is not detected  
1 = Primary carrier is detected  
Cable Equalizer bypass status:  
0 = CEQ is not bypassed  
1 = CEQ is bypassed  
STAT_CEQ_BYPASS  
RSVD  
RO  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
6:5  
4:3  
RO  
RO  
Reserved—do not modify.  
CURRENT_  
STATUS_1  
(Continued)  
87  
SDIO slew rate when in Cable Driver  
Mode.  
(Continued)  
STAT_OUTPUT0_  
SLEW_RATE  
0 = SD/MADI slew  
1 = HD/3G slew  
2 = 6G/12G slew  
Rate at which the reclocker is locked.  
0 = Unlocked  
1 = MADI (125Mb/s)  
2 = SD (270Mb/s)  
3 = HD (1.485Gb/s)  
4 = 3G (2.97Gb/s)  
5 = 6G (5.94Gb/s)  
6 = 12G (11.88Gb/s)  
7 = Reserved  
STAT_DETECTED_RATE  
2:0  
RO  
RO  
RSVD  
15:8  
Reserved—do not modify.  
SDIO cable length indication when in  
Cable Equalizer Mode.  
Range = 0 to 64d (64d is max cable  
reach determined for specific rate,  
cable type, and launch swing  
compensation).  
88  
EQ_GAIN_IND  
STAT_CABLE_LEN_  
INDICATION  
7:0  
RO  
0xFF = Unknown cable length  
Note: This parameter is only applicable  
to the cable equalizer input (SDIO).  
PRBS Checker error count. Cleared to 0  
at the start of a measurement. Updated  
by the device on completion of a  
measurement. Value is undefined in  
case of abort due to loss of the  
reclocker lock  
STAT_PRBS_CHK_  
ERR_CNT  
PRBS_  
CHK_ERR_CNT  
89  
15:0  
RO  
(STAT_PRBS_CHECK_LAST_ABORT = 1).  
GS12190  
Final Data Sheet  
PDS-061916  
113 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:10  
RO  
Reserved—do not modify.  
0 = Normal  
1 = No data transitions were seen  
during the previous PRBS check  
This bit is set to 1 to indicate that the  
input data was all 0’s during a PRBS  
check. When that happens, the error  
count will be zero when in fact there  
was no valid PRBS pattern.  
STAT_PRBS_CHECK_  
NODATA  
9
RO  
This bit is updated by the device on  
completion of a measurement. It  
retains its value until the next PRBS  
check operation is requested. Value is  
undefined in case of abort  
(STAT_PRBS_CHECK_LAST_ABORT = 1).  
Value does not increment during a  
measurement until it completes.  
This bit retains its value until the next  
PRBS operation is requested.  
STAT_PRBS_CHECK_  
LAST_ABORT  
8
RO  
RO  
0 = Normal  
1 = PRBS check was aborted due to loss  
of lock or sleep  
PRBS_  
CHK_STATUS  
8A  
RSVD  
7:2  
Reserved—do not modify.  
Status for PRBS Checker:  
0 = PRBS check idle; ready for new  
operation  
1 = PRBS check timed or continuous  
operation in progress  
2 = PRBS check timed operation  
completed (success)  
3 = PRBS check timed or continuous  
operation aborted (error)  
STAT_PRBS_CHECK_  
STATUS  
1:0  
RO  
Part of a four way handshake with  
CTRL_PRBS_CHECK_START  
(Section 4.5).  
Abort will be reported if loss of lock or  
sleep occurred during a PRBS check  
operation or those conditions existed  
when the operation was requested by  
the host.  
EYE_MON_  
SCAN_  
SIZE_OUTPUT  
The size in bytes of the last partial scan  
segment.  
8B  
STAT_EYE_IMAGE_SIZE  
15:0  
RO  
GS12190  
Final Data Sheet  
PDS-061916  
114 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
Left Edge Voltage Offset—Offset values  
0 to 255d, 0 represents most negative  
voltage, 127d is 0V 255d is most positive  
voltage.  
STAT_EYE_SHAPE_  
LEFT_EDGE_OFFSET  
15:8  
7:0  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
RO  
EYE_MON_  
SHAPE_  
OUTPUT_0  
8C  
Left Edge Phase of eye shape-scan.  
Phase values 0 to 127d.  
STAT_EYE_SHAPE_  
LEFT_EDGE_PHASE  
Positive (top) Edge Voltage Offset—  
Offset values 0 to 255d, 0 represents  
most negative voltage, 127d is 0V 255d  
is most positive voltage.  
STAT_EYE_SHAPE_  
POS_EDGE_OFFSET  
15:8  
7:0  
EYE_MON_  
SHAPE_  
8D  
8E  
8F  
OUTPUT_1  
Positive (top) Edge Phase of eye  
shape-scan. Phase values 0 to 127d.  
STAT_EYE_SHAPE_  
POS_EDGE_PHASE  
Right Edge Voltage Offset—Offset  
values 0 to 255d, 0 represents most  
negative voltage, 127d is 0V 255d is  
most positive voltage.  
STAT_EYE_SHAPE_  
RIGHT_EDGE_OFFSET  
15:8  
7:0  
EYE_MON_  
SHAPE_  
OUTPUT_2  
Right Edge Phase of eye shape-scan.  
Phase values 0 to 127d.  
STAT_EYE_SHAPE_  
RIGHT_EDGE_PHASE  
Negative (bottom) Edge Voltage  
Offset—Offset values 0 to 255d, 0  
represents most negative voltage, 127d  
is 0V 255d is most positive voltage.  
STAT_EYE_SHAPE_  
NEG_EDGE_OFFSET  
15:8  
7:0  
EYE_MON_  
SHAPE_  
OUTPUT_3  
Negative (bottom) Edge Phase of eye  
shape-scan. Phase values 0 to 127d.  
STAT_EYE_SHAPE_  
NEG_EDGE_PHASE  
GS12190  
Final Data Sheet  
PDS-061916  
115 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
Table 5-4: Status Register Descriptions (Continued)  
Reset  
Valueh  
Register  
Name  
Bit  
Slice  
Addressh  
Parameter Name  
R/W  
Description  
RSVD  
15:9  
RO  
Reserved—do not modify.  
0 = Full scan  
1 = Partial scan  
On completion of an Eye Monitor eye  
scan (CRTL_EYE_SHAPE_SCAN_B = 0),  
indicates whether the Eye Monitor  
completed the full scan or a partial  
scan.  
STAT_EYE_SCAN_  
PARTIAL_OR_FULL  
8
RO  
RO  
Undefined for eye shape-scan  
(CTRL_EYE_SHAPE_SCAN_B = 1).  
RSVD  
7:2  
Reserved—do not modify.  
0 = Eye Monitor idle; ready for new  
operation  
EYE_MON_  
STATUS  
90  
1 = Eye Monitor operation in progress  
2 = Eye Monitor operation completed  
(success)  
3 = Eye Monitor operation aborted  
(error)  
Part of a four way handshake with  
CTRL_EYE_MON_START, see Section 4.6  
for procedure.  
STAT_EYE_MON_  
STATUS  
1:0  
RO  
Abort will be reported by device if loss  
of lock or sleep occurred during an Eye  
Monitor operation or those conditions  
existed when the operation was  
requested by the host.  
91 to BF  
RSVD  
RSVD  
15:0  
RO  
Reserved—do not modify.  
GS12190  
Final Data Sheet  
PDS-061916  
116 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
6. Application Information  
6.1 Typical Application Circuit  
VCC1V8  
VCC1V8  
470nF  
C14  
C11  
100nF  
10μF  
C13  
35  
C12 10μF  
34  
40  
39 38  
37  
36  
33 32  
31  
30 29  
1
VEE_DDI  
28  
VEEO  
4.7μF  
C10  
27  
26  
2
3
SDIO  
IO  
NC  
4.7μF  
C2  
4.7μF  
C9  
2Ω  
75Ω  
SDI_TERM  
SDO  
VCCSDIO2V5  
100nF  
VCC1V8  
C8  
25  
24  
VCCO_0  
VCCO_1  
4
5
VCC_DDI  
TERM  
GS12190  
C3 1μF  
VCCDDO1V8  
100nF  
Note: The device central paddle is not an electrical  
connection. Refrain from connecting device pins to  
the central paddle.  
C7  
23  
22  
DDO  
OUT  
OUT  
C4 100nF  
6
7
8
IN  
IN  
DDI  
DDO  
21  
DDI  
VEEO  
VEE_DDI  
9
10  
11  
12  
13 14  
15  
16  
17  
18  
19  
20  
VCC1V8  
100nF  
VCCD1V8  
100nF  
C5  
C6  
Figure 6-1: Typical Application Circuit  
Note 1: 4.7µF AC-coupling capacitors are required on DDO/DDO when the downstream  
IC has an input common mode range that is incompatible with the output common  
mode range of the GS12190.  
Note 2: It is recommended that separate filtered supplies are used for the following  
three groups: (VCC_DDI, VCC_CORE), (VCCO1P8_0, VCCO1P8_1, VDD, VCCO_1*), (VCCO_0).  
*Assuming VCCO_1 supply is chosen as 1.8V.  
Multiple devices can share the same filtered supply plane.  
GS12190  
Final Data Sheet  
PDS-061916  
117 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
7. Package & Ordering Information  
7.1 Package Dimensions  
DIMENSIONS  
MILLIMETERS  
MIN NOM MAX  
0.80 0.90 1.00  
A1 0.00 0.02  
A
D
B
E
DIM  
A
0.05  
(0.02)  
0.20 0.25  
5.95 6.00 6.05  
A2  
b
D
PIN 1  
INDICATOR  
(LASER MARK)  
0.15  
D1 3.45 3.60 3.70  
3.95 4.00 4.05  
E1 1.43 1.58 1.68  
E
e
0.40 BSC  
L
0.30 0.40 0.50  
N
40  
aaa  
bbb  
0.08  
0.10  
A
SEATING  
PLANE  
aaa  
C
C
A1  
A2  
D1  
LxN  
E/1  
E1  
2
1
N
bxN  
0.30 x 45°  
NOTES:  
e/2  
bbb  
C A B  
e
D/2  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS.  
3. DIMENSION OF LEAD WIDTH APPLIES TO TERMINAL AND IS MEASURED BETWEEN  
0.15 to 0.30mm FROM THE TERMINAL TIP.  
Figure 7-1: Package Dimensions  
GS12190  
Final Data Sheet  
PDS-061916  
118 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
7.2 Recommended PCB Footprint  
0.20  
0.60  
Pin #1  
3.60  
0.40  
5.20  
Figure 7-2: Recommended PCB Footprint  
7.3 Packaging Data  
Table 7-1: Packaging Data  
Parameter  
Value  
Package Type  
6mm x 4mm 40-pin QFN  
Moisture Sensitivity Level  
3
Junction to Air Thermal Resistance, j-a (at zero airflow)  
Junction to Board Thermal Resistance, j-b  
Junction to Case Thermal Resistance, j-c  
40.0°C/W  
32.0°C/W  
36.0°C/W  
<1.0°C/W  
Yes  
Junction-to-Top Characterization Parameter, Psi,   
Pb-free and RoHS compliant  
GS12190  
Final Data Sheet  
PDS-061916  
119 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
7.4 Marking Diagram  
Pin 1  
GS12190  
XXXXE3  
YYWW  
XXXX = Last 4 Digits of Assembly lot  
E3 = Pb-free & Green Indicator  
YYWW = Date Code  
Figure 7-3: Marking Diagram  
7.5 Solder Reflow Profile  
Temperature  
60-150 sec.  
20-40 sec.  
260°C  
250°C  
3°C/sec max  
217°C  
6°C/sec max  
200°C  
150°C  
25°C  
Time  
60-180 sec. max  
8 min. max  
Figure 7-4: Maximum Pb-free Solder Reflow Profile  
7.6 Ordering Information  
Table 7-2: Ordering Information  
Minimum Order  
Part Number  
Format  
Quantity  
GS12190-INE3  
GS12190-INTE3  
GS12190-INTE3Z  
490  
250  
Tray  
Tape and Reel  
Tape and Reel  
2500  
GS12190  
Final Data Sheet  
PDS-061916  
120 of 121  
Semtech  
Proprietary & Confidential  
www.semtech.com  
Rev.3  
May 2020  
IMPORTANT NOTICE  
Information relating to this product and the application or design described herein is believed to be reliable, however such information is  
provided as a guide only and Semtech assumes no liability for any errors in this document, or for the application or design described herein.  
Semtech reserves the right to make changes to the product or this document at any time without notice. Buyers should obtain the latest relevant  
information before placing orders and should verify that such information is current and complete. Semtech warrants performance of its  
products to the specifications applicable at the time of sale, and all sales are made in accordance with Semtech’s standard terms and conditions  
of sale.  
SEMTECH PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,  
DEVICES OR SYSTEMS, OR IN NUCLEAR APPLICATIONS IN WHICH THE FAILURE COULD BE REASONABLY EXPECTED TO RESULT IN PERSONAL  
INJURY, LOSS OF LIFE OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. INCLUSION OF SEMTECH PRODUCTS IN SUCH APPLICATIONS IS  
UNDERSTOOD TO BE UNDERTAKEN SOLELY AT THE CUSTOMER’S OWN RISK. Should a customer purchase or use Semtech products for any such  
unauthorized application, the customer shall indemnify and hold Semtech and its officers, employees, subsidiaries, affiliates, and distributors  
harmless against all claims, costs damages and attorney fees which could arise.  
The Semtech name and logo are registered trademarks of the Semtech Corporation. All other trademarks and trade names mentioned may be  
marks and names of Semtech or their respective companies. Semtech reserves the right to make changes to, or discontinue any products  
described in this document without further notice. Semtech makes no warranty, representation or guarantee, express or implied, regarding the  
suitability of its products for any particular purpose. All rights reserved.  
© Semtech 2020  
Contact Information  
Semtech Corporation  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111, Fax: (805) 498-3804  
www.semtech.com  
GS12190  
Final Data Sheet  
PDS-061916  
121 of 121  
Semtech  
121Proprietary & Confidential  
Rev.3  
May 2020  

相关型号:

GS12190-INE3

Bidirectional 12G UHD-SDI Reclocking Adaptive Cable Equalizer/Cable Driver
SEMTECH

GS12190-INTE3

Bidirectional 12G UHD-SDI Reclocking Adaptive Cable Equalizer/Cable Driver
SEMTECH

GS12190-INTE3Z

Bidirectional 12G UHD-SDI Reclocking Adaptive Cable Equalizer/Cable Driver
SEMTECH

GS12281

12G UHD-SDI Re-timing Cable Driver
SEMTECH

GS12281-INE3

12G UHD-SDI Re-timing Cable Driver
SEMTECH

GS12281-INTE3

12G UHD-SDI Re-timing Cable Driver
SEMTECH

GS12281-INTE3Z

12G UHD-SDI Re-timing Cable Driver
SEMTECH

GS123

NPN EPITAXIAL TRANSISTOR
GTM

GS12341

12G UHD-SDI Reclocking Adaptive Cable Equalizer
SEMTECH

GS12341-INE3

12G UHD-SDI Reclocking Adaptive Cable Equalizer
SEMTECH

GS12341-INTE3

12G UHD-SDI Reclocking Adaptive Cable Equalizer
SEMTECH

GS12341-INTE3Z

12G UHD-SDI Reclocking Adaptive Cable Equalizer
SEMTECH