SC1185CSWT [SEMTECH]

暂无描述;
SC1185CSWT
型号: SC1185CSWT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

暂无描述

转换器 控制器
文件: 总12页 (文件大小:124K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com  
DESCRIPTION  
FEATURES  
The SC1185 combines a synchronous voltage mode  
controller with two low-dropout linear regulators  
providing most of the circuitry necessary to  
Synchronous design, enables no heatsink solution  
95% efficiency (switching section)  
5 bit DAC for output programmability  
On chip power good function  
implement three DC/DC converters for powering  
advanced microprocessors such as Pentium® II .  
Designed for Intel Pentium® ll requirements  
1.5V, 2.5V @ 1% for linear section  
1.265V ± 1.5% Reference available  
The SC1185 switching section features an integrated  
5 bit D/A converter, pulse by pulse current limiting,  
integrated power good signaling, and logic compatible  
shutdown. The SC1185 switching section operates at  
a fixed frequency of 140kHz, providing an optimum  
compromise between size, efficiency and cost in the  
intended application areas. The integrated D/A con-  
verter provides programmability of output voltage  
from 2.0V to 3.5V in 100mV increments and 1.30V to  
2.05V in 50mV increments with no external compo-  
nents.  
APPLICATIONS  
Pentium® ll microprocessor supplies  
Flexible motherboards  
1.3V to 3.5V microprocessor supplies  
Programmable triple power supplies  
ORDERING INFORMATION  
Linear  
Voltage  
Temp.  
Range (TJ)  
Part Number(1)  
Package  
The SC1185 linear sections are low dropout regula-  
tors supplying 1.5V for GTL bus and 2.5V for non-  
GTL I/O. The Reference voltage is made available for  
external linear regulators.  
SC1185CSW  
SC1185ACSW(2) SO-24 1.5V/2.5V 0° to 125°C  
SO-24 1.5V/2.5V 0° to 125°C  
Note:  
(1) Add suffix ‘TR’ for tape and reel.  
(2) SC1185A provides improved output tolerance. See  
Output Voltage Table.  
PIN CONFIGURATION  
BLOCK DIAGRAM  
VCC  
CS- CS+  
EN  
BSTH  
DH  
REF.  
D/A  
Top View  
VID4  
VID3  
VID2  
VID1  
VID0  
AGND  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GATE2  
LDOV  
VID0  
VID1  
VID2  
GATE1  
LDOS1  
LDOS2  
PGNDH  
3
4
5
6
7
8
9
VCC  
REF  
PWRGOOD  
CS-  
VID3  
VID4  
VOSENSE  
VOSENSE  
EN  
BSTH  
BSTL  
DL  
CS+  
PGNDH  
DH  
PWRGOOD  
10  
11  
12  
BSTL  
DL  
PGNDL  
(24 Pin SOIC)  
PGNDL  
LDOS1  
GATE1  
FET  
CONTROLLER  
2.5V/ADJ.  
FET  
CONTROLLER  
1.5V/ADJ.  
1.265V  
REF.  
LDOV  
REF  
GATE2 LDOS2  
AGND  
1
Pentium is a registered trademark of Intel Corporation  
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
VCC to GND  
Symbol  
Maximum  
-0.3 to +7  
Units  
V
VIN  
PGND to GND  
± 1  
V
BST to GND  
Operating Temperature Range  
Junction Temperature Range  
-0.3 to +15  
0 to +70  
0 to +125  
V
°C  
°C  
TA  
TJ  
Storage Temperature Range  
Lead Temperature (Soldering) 10 seconds  
Thermal Impedance Junction to Ambient  
TSTG  
TL  
-65 to +150  
°C  
°C  
°C/W  
300  
80  
θJA  
Thermal Impedance Junction to Case  
25  
°C/W  
θJC  
ELECTRICAL CHARACTERISTICS  
Unless specified: VCC = 4.75V to 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; LDOV = 11.4V to 12.6V; TA = 0 to 70°C  
PARAMETER  
CONDITIONS  
MIN TYP MAX UNITS  
Switching Section  
Output Voltage  
IO = 2A in Application Circuit  
VCC  
See Output Voltage Table  
Supply Voltage  
4.5  
7
V
mA  
%
Supply Current  
VCC = 5.0V  
8
1
15  
Load Regulation  
IO = 0.8A to 15A  
Line Regulation  
±0.15  
70  
%
Current Limit Voltage  
Oscillator Frequency  
Oscillator Max Duty Cycle  
Peak DH Sink/Source Current  
60  
125  
90  
1
85  
mV  
kHz  
%
140  
95  
160  
BSTH-DH = 4.5V, DH-PGNDH = 3.1V  
A
DH-PGNDH = 1.5V 100  
mA  
Peak DL Sink/Source Current  
BSTL-DL = 4.5V, DL-PGNDL = 3.1V  
1
A
DL-PGNDL = 1.5V 100  
mA  
Gain (AOL)  
VOSENSE to VO  
35  
10  
dB  
µA  
µA  
%
VID Source Current  
VID Leakage  
1
VIDx 2.4V  
VIDx = 5V  
10  
Power good threshold voltage  
Dead time  
88  
40  
112  
100  
ns  
Linear Sections  
Quiescent current  
Output Voltage LDO1  
Output Voltage LDO2  
Reference Voltage  
Gain (AOL)  
LDOV = 12V  
5
mA  
V
2.469 2.500 2.531  
1.481 1.500 1.519  
V
1.246 1.265 1.284  
V
Iref 100µA  
LDOS (1,2) to GATE (1,2)  
IO = 0 to 8A  
90  
dB  
%
Load Regulation  
0.3  
0.3  
Line Regulation  
%
Output Impedance  
Gate Pulldown Impedance  
VOSENSE Impedance  
V
GATE = 6.5V  
1
1.5  
kΩ  
kΩ  
kΩ  
GATE(1,2)-AGND;VCC=LDOV=0V  
80  
10  
300  
750  
2
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
PIN DESCRIPTION  
Pin Pin Name  
Pin Function  
Small Signal Analog and Digital Ground  
Gate Drive Output LDO1  
Sense Input for LDO1  
Sense Input for LDO2  
Input Voltage  
1
2
3
4
5
6
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
Top View  
REF  
Buffered Reference Voltage output  
Open collector logic output, high if VO  
AGND  
1
2
3
4
5
6
7
8
9
24  
GATE2  
LDOV  
VID0  
VID1  
VID2  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
GATE1  
LDOS1  
LDOS2  
7
8
9
PWRGOOD(1) within 10% of setpoint  
CS-  
Current Sense Input (negative)  
VCC  
REF  
PWRGOOD  
CS-  
VID3  
VID4  
CS+  
Current Sense Input (positive)  
Power Ground for High Side Switch  
High Side Driver Output  
10 PGNDH  
11 DH  
VOSENSE  
EN  
BSTH  
BSTL  
DL  
CS+  
PGNDH  
DH  
PGNDL  
10  
11  
12  
12 PGNDL  
13 DL  
Power Ground for Low Side Switch  
Low Side Driver Output  
14 BSTL  
15 BSTH  
16 EN(1)  
Supply for Low Side Driver  
Supply for High Side Driver  
Logic low shuts down the converter;  
High or open for normal operation.  
Top end of internal feedback chain  
(24 Pin SOIC)  
17 VOSENSE  
VID4(1)  
Programming Input (MSB)  
Programming Input  
Programming Input  
18  
VID3(1)  
19  
VID2(1)  
20  
VID1(1)  
21  
Programming Input  
VID0(1)  
Programming Input (LSB)  
+12V for LDO section  
Gate Drive Output LDO2  
22  
Note:  
23 LDOV  
24 GATE2  
(1) All logic level inputs and outputs are open  
collector TTL compatible.  
3
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
OUTPUT VOLTAGE  
Unless specified: 4.75V < VCC < 5.25V; GND = PGND = 0V; VOSENSE = VO; 0mV < (CS+-CS-) < 60mV; = 0°C < Tj < 85°C  
Standard  
TYP  
“A” Version  
TYP  
PARAMETER  
VID  
43210  
MIN  
MAX  
MIN  
MAX  
UNITS  
Output Voltage  
01111  
01110  
01101  
01100  
01011  
01010  
01001  
01000  
00111  
00110  
00101  
00100  
00011  
00010  
00001  
00000  
11111  
11110  
11101  
11100  
11011  
11010  
11001  
11000  
10111  
10110  
10101  
10100  
10011  
10010  
10001  
10000  
1.277  
1.326  
1.375  
1.424  
1.478  
1.527  
1.576  
1.625  
1.675  
1.724  
1.782  
1.832  
1.881  
1.931  
1.980  
2.030  
1.970  
2.069  
2.167  
2.266  
2.364  
2.463  
2.561  
2.660  
2.758  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.000  
2.100  
2.200  
2.300  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.500  
1.323  
1.374  
1.425  
1.476  
1.523  
1.573  
1.624  
1.675  
1.726  
1.776  
1.818  
1.869  
1.919  
1.970  
2.020  
2.071  
2.030  
2.132  
2.233  
2.335  
2.436  
2.538  
2.639  
2.741  
2.842  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
1.287  
1.337  
1.386  
1.436  
1.485  
1.535  
1.584  
1.634  
1.683  
1.733  
1.782  
1.832  
1.881  
1.931  
1.980  
2.030  
1.970  
2.069  
2.167  
2.266  
2.364  
2.463  
2.561  
2.660  
2.758  
2.842  
2.940  
3.038  
3.136  
3.234  
3.332  
3.430  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
1.600  
1.650  
1.700  
1.750  
1.800  
1.850  
1.900  
1.950  
2.000  
2.050  
2.000  
2.100  
2.200  
2.300  
2.400  
2.500  
2.600  
2.700  
2.800  
2.900  
3.000  
3.100  
3.200  
3.300  
3.400  
3.500  
1.313  
1.364  
1.414  
1.465  
1.515  
1.566  
1.616  
1.667  
1.717  
1.768  
1.818  
1.869  
1.919  
1.970  
2.020  
2.071  
2.030  
2.132  
2.233  
2.335  
2.436  
2.538  
2.639  
2.741  
2.842  
2.958  
3.060  
3.162  
3.264  
3.366  
3.468  
3.570  
V
4
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
APPLICATION CIRCUIT  
5
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
MATERIALS LIST  
Qty. Reference  
Part/Description  
C1,C5,C13,C18 0.1µF Ceramic  
C2,C3,C14-C17 1500µF/6.3V  
Vendor  
Various  
SANYO  
Notes  
4
6
1
2
1
2
MV-GX or equiv. Low ESR  
C9  
1000µF  
330µF/6.3V  
4µH  
C11,C21  
L1  
Various  
8 Turns 16AWG on MICROMETALS T50-52D core  
Q1,Q2  
See notes  
See notes FET selection requires trade-off between efficiency and  
cost. Absolute maximum RDS(ON) = 22 mfor Q1,Q2  
1
1
1
1
1
1
1
Q3  
Q4  
R4  
R5  
R6  
R1  
U1  
IRLML2803  
IRFZ14S  
IR  
.2530V SOT23 (or equavilent)  
Or equivalent  
IR  
IRC  
OAR-1 Series  
5mΩ  
Various  
Various  
Various  
SEMTECH  
2.32k, 1%, 1/8W  
1k, 1%, 1/8W  
10, 5%, 1/8W  
SC1185CSW  
6
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
95%  
90%  
85%  
80%  
95%  
90%  
85%  
80%  
2.8V Std  
3.5V Std  
2.8V Sync  
3.5V Sync  
2.8V Sync Lo Rds  
75%  
3.5V Sync Lo Rds  
75%  
70%  
70%  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Io (Amps)  
Io (Amps)  
Typical Efficiency at Vo=3.5V  
Typical Efficiency at Vo=2.8V  
95%  
95%  
90%  
85%  
90%  
85%  
80%  
80%  
2.0V Std  
2.0V Sync  
2.5V Std  
2.5V Sync  
2.0V Sync Lo Rds  
75%  
2.5V Sync Lo Rds  
75%  
70%  
70%  
0
2
4
6
8
10  
12  
14  
16  
0
2
4
6
8
10  
12  
14  
16  
Io (Amps)  
Io (Amps)  
Typical Efficiency at Vo=2.5V  
Typical Efficiency at Vo=2.0V  
Typical Ripple, Vo=2.8V, Io=10A  
© 1999 SEMTECH CORP.  
Transient Response Vo=2.8V, Io=300mA to 10A  
7
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
as small as possible. This loop contains all the high cur-  
rent, fast transition switching. Connections should be as  
wide and as short as possible to minimize loop induc-  
tance. Minimizing this loop area will a) reduce EMI, b)  
lower ground injection currents, resulting in electrically  
“cleaner” grounds for the rest of the system and c) mini-  
mize source ringing, resulting in more reliable gate  
switching signals.  
LAYOUT GUIDELINES  
Careful attention to layout requirements are necessary  
for successful implementation of the SC1185 PWM  
controller. High currents switching at 140kHz are pre-  
sent in the application and their effect on ground plane  
voltage differentials must be understood and mini-  
mized.  
1). The high power parts of the circuit should be laid out  
first. A ground plane should be used, the number and  
position of ground plane interruptions should be such  
as to not unnecessarily compromise ground plane in-  
tegrity. Isolated or semi-isolated areas of the ground  
plane may be deliberately introduced to constrain  
ground currents to particular areas, for example the in-  
put capacitor and bottom FET ground.  
3). The connection between the junction of Q1, Q2 and  
the output inductor should be a wide trace or copper  
region. It should be as short as practical. Since this  
connection has fast voltage transitions, keeping this  
connection short will minimize EMI. The connection be-  
tween the output inductor and the sense resistor should  
be a wide trace or copper area, there are no fast volt-  
age or current transitions in this connection and length  
is not so important, however adding unnecessary  
impedance will reduce efficiency.  
2). The loop formed by the Input Capacitor(s) (Cin), the  
Top FET (Q1) and the Bottom FET (Q2) must be kept  
12V IN  
5V  
10  
1
2
24  
AGND  
GATE1  
LDOS1  
LDOS2  
VCC  
GATE2  
LDVO  
VID0  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
2.32k  
3
Cin  
+
4
Q1  
Q2  
1.00k  
VID1  
0.1uF  
0.1uF  
5
5mOhm  
VID2  
Vout  
6
REF  
VID3  
4uH  
+
7
PWRGOOD  
CS-  
VID4  
Cout  
8
VOSENSE  
EN  
9
CS+  
10  
11  
12  
PGNDH  
DH  
BSTH  
BSTL  
DL  
PGNDL  
SC1185  
Heavy lines indicate  
high current paths.  
3.3V  
Vo Lin1  
Q3  
+
+
Cout Lin1  
Cin Lin  
Vo Lin2  
Q4  
+
Cout Lin2  
Layout diagram for the SC1185  
8
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
4) The Output Capacitor(s) (Cout) should be located  
as close to the load as possible, fast transient load  
currents are supplied by Cout only, and connections  
between Cout and the load must be short, wide cop-  
per areas to minimize inductance and resistance.  
supply through a 10resistor, the Vcc pin should be  
decoupled directly to AGND by a 0.1µF ceramic ca-  
pacitor, trace lengths should be as short as possible.  
7) The Current Sense resistor and the divider across  
it should form as small a loop as possible, the traces  
running back to CS+ and CS- on the SC1185 should  
run parallel and close to each other. The 0.1µF ca-  
pacitor should be mounted as close to the CS+ and  
CS- pins as possible.  
5) The SC1185 is best placed over a quiet ground  
plane area, avoid pulse currents in the Cin, Q1, Q2  
loop flowing in this area. PGNDH and PGNDL should  
be returned to the ground plane close to the package.  
The AGND pin should be connected to the ground  
side of (one of) the output capacitor(s). If this is not  
possible, the AGND pin may be connected to the  
ground path between the Output Capacitor(s) and the  
Cin, Q1, Q2 loop. Under no circumstances should  
AGND be returned to a ground inside the Cin, Q1, Q2  
loop.  
8) Ideally, the grounds for the two LDO sections  
should be returned to the ground side of (one of) the  
output capacitor(s).  
6) Vcc for the SC1185 should be supplied from the 5V  
5V  
+
Vout  
+
Currents in various parts of the power section  
9
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
fast enough to reduce the voltage dropped across the  
COMPONENT SELECTION  
ESR at a faster rate than the capacitor sags, hence en-  
suring a good recovery from transient with no additional  
excursions.  
We must also be concerned with ripple current in the  
output inductor and a general rule of thumb has been to  
allow 10% of maximum output current as ripple current.  
Note that most of the output voltage ripple is produced  
by the inductor ripple current flowing in the output capac-  
itor ESR. Ripple current can be calculated from:  
SWITCHING SECTION  
OUTPUT CAPACITORS - Selection begins with the  
most critical component. Because of fast transient load  
current requirements in modern microprocessor core  
supplies, the output capacitors must supply all transient  
load current requirements until the current in the output  
inductor ramps up to the new level. Output capacitor  
ESR is therefore one of the most important criteria. The  
maximum ESR can be simply calculated from:  
V
IN  
IL  
=
Vt  
RIPPLE  
4 L fOSC  
RESR  
It  
Ripple current allowance will define the minimum permit-  
ted inductor value.  
Where  
Vt = Maximum transient voltage excursion  
It = Transient current step  
POWER FETS - The FETs are chosen based on several  
criteria with probably the most important being power  
dissipation and power handling capability.  
TOP FET - The power dissipation in the top FET is a  
combination of conduction losses, switching losses and  
bottom FET body diode recovery losses.  
For example, to meet a 100mV transient limit with a  
10A load step, the output capacitor ESR must be less  
than 10m. To meet this kind of ESR level, there are  
three available capacitor technologies.  
a) Conduction losses are simply calculated as:  
PCOND = IO2 RDS(on)  
δ
Each Capacitor  
Total  
where  
Technology  
C
ESR Qty.  
C
ESR  
(m)  
(µF)  
Rqd. (µF)  
(m)  
60  
VO  
δ = duty cycle ≈  
Low ESR Tantalum  
OS-CON  
330  
6
3
5
2000  
990  
10  
8.3  
8.8  
V
IN  
330  
25  
44  
b) Switching losses can be estimated by assuming a  
switching time, if we assume 100ns then:  
Low ESR Aluminum  
1500  
7500  
PSW = IO VIN 10 2  
The choice of which to use is simply a cost/perfor-  
mance issue, with Low ESR Aluminum being the  
cheapest, but taking up the most space.  
or more generally,  
INDUCTOR - Having decided on a suitable type and  
value of output capacitor, the maximum allowable  
value of inductor can be calculated. Too large an in-  
ductor will produce a slow current ramp rate and will  
cause the output capacitor to supply more of the tran-  
sient load current for longer - leading to an output volt-  
age sag below the ESR excursion calculated above.  
The maximum inductor value may be calculated from:  
IO VIN (tr + tf ) fOSC  
PSW  
=
4
c) Body diode recovery losses are more difficult to esti-  
mate, but to a first approximation, it is reasonable to as-  
sume that the stored charge on the bottom FET body  
diode will be moved through the top FET as it starts to  
turn on. The resulting power dissipation in the top FET  
will be:  
RESR  
It  
C
L ≤  
(
VIN VO  
)
PRR = QRR VIN fOSC  
The calculated maximum inductor value assumes 100% To a first order approximation, it is convenient to only  
duty cycle, so some allowance must be made. Choosing consider conduction losses to determine FET suitability.  
an inductor value of 50 to 75% of the calculated maxi-  
mum will guarantee that the inductor current will ramp  
For a 5V in; 2.8V out at 14.2A requirement, typical FET  
losses would be:  
10  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
© 1999 SEMTECH CORP.  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
Using 1.5X Room temp RDS(ON) to allow for temperature  
rise.  
INPUT CAPACITORS - since the RMS ripple current in  
the input capacitors may be as high as 50% of the out-  
put current, suitable capacitors must be chosen ac-  
cordingly. Also, during fast load transients, there may  
be restrictions on input di/dt. These restrictions require  
useable energy storage within the converter circuitry,  
either as extra output capacitance or, more usually,  
additional input capacitors. Choosing low ESR input  
capacitors will help maximize ripple rating for a given  
size.  
FET type  
PD (W) Package  
DS(on) (m)  
R
IRL34025 15  
1.69  
1.19  
2.26  
D2PAK  
D2PAK  
SO-8  
IRL2203  
Si4410  
10.5  
20  
BOTTOM FET - Bottom FET losses are almost entirely  
due to conduction. The body diode is forced into conduc-  
tion at the beginning and end of the bottom switch con-  
duction period, so when the FET turns on and off, there  
is very little voltage across it, resulting in low switching  
losses. Conduction losses for the FET can be deter-  
mined by:  
P
COND =IO2 RDS(on) (1δ)  
For the example above:  
FET type  
PD (W) Package  
DS(on) (m)  
R
IRL34025 15  
1.33  
0.93  
1.77  
D2PAK  
D2PAK  
SO-8  
IRL2203  
Si4410  
10.5  
20  
Each of the package types has a characteristic thermal  
impedance, for the TO-220 package, thermal impedance  
is mostly determined by the heatsink used. For the sur-  
face mount packages on double sided FR4, 2 oz printed  
circuit board material, thermal impedances of 40oC/W  
for the D2PAK and 80oC/W for the SO-8 are readily  
achievable. The corresponding temperature rise is de-  
tailed below:  
Temperature rise (oC)  
FET type Top FET  
IRL34025 67.6  
Bottom FET  
53.2  
37.2  
141.6  
IRL2203  
Si4410  
47.6  
180.8  
It is apparent that single SO-8 Si4410 are not adequate for  
this application, but by using parallel pairs in each posi-  
tion, power dissipation will be approximately halved and  
temperature rise reduced by a factor of 4.  
11  
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  
PROGRAMMABLE SYNCHRONOUS DC/DC  
CONVERTER, DUAL LOW DROPOUT  
REGULATOR CONTROLLER  
SC1185  
SC1185A  
PRELIMINARY - January 6, 1999  
OUTLINE DRAWING  
JEDEC MS-013AD  
B17104B  
12  
© 1999 SEMTECH CORP.  
652 MITCHELL ROAD NEWBURY PARK CA 91320  

相关型号:

SC1185CSWTR

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, BIPolar, PDSO24, MO-013AD, SOIC-24
SEMTECH

SC1185CSWTRT

Switching Controller, Voltage-mode, 160kHz Switching Freq-Max, PDSO24, MO-013AD, SOIC-24
SEMTECH

SC1185_05

Programmable Synchronous DC/DC
SEMTECH

SC1186

PROGRAMMABLE SYNCHRONOUS DC/DC CONVERTER, DUAL LOW DROPOUT REGULATOR CONTROLLER
SEMTECH

SC1186CSW

PROGRAMMABLE SYNCHRONOUS DC/DC CONVERTER, DUAL LOW DROPOUT REGULATOR CONTROLLER
SEMTECH

SC1186CSW.TR

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSW.TRT

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSWT

Switching Controller, Voltage-mode, 160kHz Switching Freq-Max, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSWTR

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, BIPolar, PDSO24, MS-013AD, SOIC-24
SEMTECH

SC1186CSWTRT

Switching Controller, Voltage-mode, 1A, 160kHz Switching Freq-Max, BIPolar, PDSO24, ROHS COMPLIANT, MS-013AD, SOIC-24
SEMTECH

SC1186_04

Programmable Synchronous DC/DC Converter, Dual LDO Controller
SEMTECH

SC1187SWTR

Switching Controller, Voltage-mode, 1A, 225kHz Switching Freq-Max, PDSO24, SOIC-24
SEMTECH