SC120EVB [SEMTECH]

Low Voltage Synchronous Boost Converter; 低电压同步升压转换器
SC120EVB
型号: SC120EVB
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Low Voltage Synchronous Boost Converter
低电压同步升压转换器

转换器 升压转换器
文件: 总21页 (文件大小:449K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC120  
Low Voltage Synchronous  
Boost Converter  
POWER MANAGEMENT  
Features  
Description  
„
„
„
Input voltage — 0.7V to 3.8V  
The SC120 is a high efficiency, low noise, synchronous  
step-up DC-DC converter that provides boosted voltage  
levels in low-voltage handheld applications. The wide  
input voltage range allows use in systems with single  
NiMH or alkaline battery cells as well as in systems with  
higher voltage battery supplies. It features an internal  
1.2A switch and synchronous rectifier to achieve up to  
94% efficiency and to eliminate the need for an external  
Schottky diode. The output voltage can be set to 3.3V  
with internal feedback, or to any voltage within the speci-  
fied range using a standard resistor divider.  
Minimum start-up voltage — 0.85V  
Output voltage — fixed at 3.3V; adjustable from 1.8V  
to 4.0V  
Peak input current limit — 1.2A typically  
Output current at 3.3 VOUT — 100mA with VIN = 1.0V,  
150mA with VIN = 1.5V  
„
„
„
„
„
„
„
„
„
„
„
Efficiency up to 94%  
Internal synchronous rectifier  
Switching frequency — 1.2MHz  
Automatic power save  
Anti-ringing circuit  
The SC120 operates in Pulse Width Modulation (PWM)  
mode for moderate to high loads and Power Save Mode  
(PSAVE) for improved efficiency under light load condi-  
tions. It features anti-ringing circuitry for reduced EMI in  
noise sensitive applications. Output disconnect capability  
is included to reduce leakage current, improve efficiency,  
and eliminate external components sometimes needed to  
disconnect the load from the supply during shutdown.  
Operating supply current (measured at OUT) — 50μA  
Shutdown current — 0.1μA (typ)  
No forward conduction path during shutdown  
Available in ultra-thin 1.5 x 2.0 x 0.6 (mm) MLPD-6  
package  
„
Fully WEEE and RoHS compliant  
Applications  
„
„
„
„
„
„
„
„
„
MP3 players  
Low quiescent current is maintained with a high 1.2MHz  
operating frequency. Small external components and the  
space saving MLPD-6, 1.5x2.0x0.6mm package make this  
device an excellent choice for small handheld applications  
that require the longest possible battery life.  
Smart Phones and cellular phones  
Palmtop computers and handheld Instruments  
PCMCIA cards  
Memory cards  
Digital cordless phones  
Personal medical products  
Wireless VoIP phones  
Small motors  
Typical Application Circuit  
L1  
IN  
LX  
OUT  
FB  
Single  
Cell  
EN  
3.3V  
(1.2V)  
GND  
CIN  
COUT  
SC120  
August 6, 2009  
1
PRELIMINARY  
SC120  
Pin Configuration  
Ordering Information  
Device  
Package  
SC120ULTRT(1)(2)  
MLPD-UT-6 1.5×2  
Evaluation Board  
SC120EVB  
Notes:  
(1) Available in tape and reel only. A reel contains 3,000 devices.  
(2) Lead-free package only. Device is WEEE and RoHS compliant.  
1
2
3
LX  
GND  
IN  
6
5
4
OUT  
FB  
TOP VIEW  
T
EN  
MLPD-UT; 1.5x2, 6 LEAD  
θJA = 84°C/W  
Marking Information  
120  
yw  
y = year of manufacture  
w = week of manufacture  
2
PRELIMINARY  
SC120  
Absolute Maximum Ratings  
Recommended Operating Conditions  
IN, OUT, LX, FB (V) . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to +6.0  
EN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 to (VIN + 0.3)  
ESD Protection Level(1) (kV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ambient Temperature Range (°C). . . . . . . . . . . . -40 to +85  
VIN (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.7 to 3.8  
VOUT (V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8 to 4.0  
Thermal Information  
Thermal Resistance, Junction to Ambient(2) (°C/W) . . . . 84  
Maximum Junction Temperature (°C) . . . . . . . . . . . . . . . 150  
Storage Temperature Range (°C) . . . . . . . . . . . -65 to +150  
Peak IR Reflow Temperature (10s to 30s) (°C) . . . . . . +260  
Exceeding the above specifications may result in permanent damage to the device or device malfunction. Operation outside of the parameters  
specified in the Electrical Characteristics section is not recommended.  
NOTES:  
(1) Tested according to JEDEC standard JESD22-A114.  
(2) Calculated from package in still air, mounted to 3 x 4.5 (in), 4 layer FR4 PCB with thermal vias under the exposed pad per JESD51 standards.  
Electrical Characteristics  
Unless otherwise noted VIN = 2.5V, CIN = COUT = 22μF, L1 = 4.7μH, TA = -40 to +85°C. Typical values are at TA = 25°C.  
Parameter  
Symbol  
VIN  
Conditions  
Min  
Typ  
Max  
3.8  
Units  
V
Input Voltage Range  
0.7  
Minimum Startup Voltage  
Shutdown Current  
VIN-SU  
ISHDN  
IOUT < 1mA, TA = 0°C to 85°C  
TA = 25°C, VEN = 0V  
0.85  
1
V
0.1  
50  
μA  
μA  
MHz  
%
Operating Supply Current(1)  
Internal Oscillator Frequency  
Maximum Duty Cycle  
Minimum Duty Cycle  
Output Voltage  
IQ  
In PSAVE mode, non-switching, measured at OUT  
fOSC  
1.2  
90  
DCMAX  
DCMIN  
VOUT  
15  
%
VFB = 0V  
3.3  
V
Adjustable Output Voltage Range  
VOUT_RNG  
VOUT > VIN + 0.3V  
1.8  
-3  
4.0  
3
V
Internal Feedback Reference  
Accuracy  
VINT_FB  
VFB = 0V, (VOUT set to 3.3V)  
%
FB Pin Regulation Voltage  
FB Pin Input Current  
Startup Time  
VFB  
IFB  
1.182  
1.200  
1.218  
0.1  
V
VFB = 1.2V  
ꢀA  
ms  
Ω
tSU  
1
P-Channel ON Resistance  
RDSP  
VOUT = 3.3V  
0.6  
3
PRELIMINARY  
SC120  
Electrical Characteristics (continued)  
Parameter  
Symbol  
RDSN  
ILIM(N)  
ILIM(P)-SU  
ILXP  
Conditions  
VOUT = 3.3V  
Min  
Typ  
0.5  
Max  
Units  
Ω
N-Channel ON Resistance  
N-Channel Current Limit  
P-Channel Startup Current Limit  
LX Leakage Current PMOS  
LX Leakage Current NMOS  
Logic Input High  
VIN = 3.0V  
0.9  
1.2  
A
VIN > VOUT, VEN > VIH  
TA = 25°C, VLX = 0V  
TA = 25°C, VLX = 3.3V  
VIN = 3.0V  
150  
mA  
μA  
μA  
V
1
1
ILXN  
VIH  
0.85  
-0.2  
Logic Input Low  
VIL  
VIN = 3.0V  
0.2  
1
V
Logic Input Current High  
Logic Input Current Low  
IIH  
VEN = VIN = 3.0V  
VEN = 0V  
μA  
μA  
IIL  
NOTES:  
(1) Quiescent operating current is drawn from OUT while in regulation. The quiescent operating current projected to IN is approximately  
IQ × (VOUT/VIN).  
4
PRELIMINARY  
SC120  
Typical Characteristics  
Efficiency vs. IOUT (VOUT = 1.8V)  
Efficiency vs. IOUT (VOUT = 1.8V)  
R1 = 499k , R2 = 1M , L = 4.7 H, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, VIN = 1.1V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
TA = –40°C  
VIN = 1.5V  
VIN = 1.1V  
TA = 85°C  
VIN = 0.7V  
TA = 25°C  
0.1 0.2  
0.5  
1
2
5
10  
20  
50 100 200  
500  
0.1 0.2  
0.5  
1
2
5
10  
20  
50 100 200  
500  
IOUT (mA)  
IOUT (mA)  
Efficiency vs. IOUT (VOUT = 3.3V)  
Efficiency vs. IOUT (VOUT = 3.3V)  
FB grounded, L = 4.7 H, TA = 25οC  
μ
μ
FB grounded, L = 4.7 H, VIN = 1.5V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.0V  
TA = –40°C  
VIN = 1.0V  
TA = 85°C  
VIN = 2.0V  
TA = 25°C  
0.1 0.2  
0.5  
1
2
5
10  
20  
50 100 200  
500  
0.1 0.2  
0.5  
1
2
5
10  
20  
50 100 200  
500  
IOUT (mA)  
IOUT (mA)  
Efficiency vs. IOUT (VOUT = 4.0V)  
Efficiency vs. IOUT (VOUT = 4.0V)  
R1 = 1.37M , R2 = 590k , L = 4.7 H, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
R1 = 1.37M , R2 = 590k , L = 4.7 H, VIN = 2.4V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VIN = 3.0V  
TA = –40°C  
TA = 25°C  
VIN = 1.0V  
VIN = 2.0V  
TA = 85°C  
0.1 0.2  
0.5  
1
2
5
10  
20  
50 100 200  
500  
0.1 0.2  
0.5  
1
2
5
10  
20  
50 100 200  
500  
IOUT (mA)  
IOUT (mA)  
5
PRELIMINARY  
SC120  
Typical Characteristics (continued)  
Load Regulation (VOUT = 1.8V)  
Load Regulation (VOUT = 1.8V)  
R1 = 499k , R2 = 1M , L = 4.7 H, VIN = 1.1V  
R1 = 499k , R2 = 1M , L = 4.7 H, TA = 25οC  
Ω
Ω
μ
Ω
Ω
μ
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
TA = –40°C  
TA = 25°C  
VIN = 1.5V  
VIN = 1.1V  
VIN = 0.7V  
1.79  
1.78  
1.77  
1.79  
1.78  
1.77  
TA = 85°C  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
IOUT (mA)  
IOUT (mA)  
Load Regulation (VOUT = 3.3V)  
Load Regulation (VOUT = 3.3V)  
FB grounded, L = 4.7 H, TA = 25οC  
FB grounded, L = 4.7 H, VIN = 1.5V  
μ
μ
3.34  
3.32  
3.3  
3.34  
3.32  
3.3  
TA = 85°C  
VIN = 3.0V  
3.28  
3.26  
3.24  
3.22  
3.2  
3.28  
3.26  
3.24  
3.22  
3.2  
VIN = 2.0V  
TA = –40°C  
VIN = 1.0V  
TA = 25°C  
TA = 85°C  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
0
50  
100  
150  
200  
250  
IOUT (mA)  
300  
350  
400  
450  
500  
IOUT (mA)  
Load Regulation vs. (VOUT = 4.0V)  
Load Regulation (VOUT = 4.0V)  
R1 = 1.37M , R2 = 590k , L = 4.7 H, TA = 25οC  
R1 = 1.37M , R2 = 590k , L = 4.7 H, VIN = 2.4V  
Ω
Ω
μ
Ω
Ω
μ
4.05  
4
4.05  
4
TA = 85°C  
TA = 25°C  
VIN = 3.0V  
3.95  
3.9  
3.95  
3.9  
TA = –40°C  
TA = –40°C  
VIN = 1.0V  
VIN = 2.0V  
TA = 25°C  
TA = 85°C  
350 400  
3.85  
3.85  
0
50  
100  
150  
200  
250  
300  
350  
400  
450  
500  
0
50  
100  
150  
200  
250  
300  
450  
500  
IOUT (mA)  
IOUT (mA)  
6
PRELIMINARY  
SC120  
Typical Characteristics (continued)  
Line Regulation — PSAVE Mode (VOUT = 1.8V)  
Line Regulation — PWM Mode (VOUT = 1.8V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, IOUT = 45mA  
R1 = 499k , R2 = 1M , L = 4.7 H, IOUT = 4mA  
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
TA = 25°C  
TA = 85°C  
TA = –40°C  
TA = –40°C  
TA = 85°C  
1.79  
1.78  
1.77  
1.79  
1.78  
1.77  
TA = 25°C  
0.7  
0.8  
0.9  
1
1.1  
VIN (V)  
1.2  
1.3  
1.4  
1.5  
0.7  
0.8  
0.9  
1
1.1  
VIN (V)  
1.2  
1.3  
1.4  
1.5  
Line Regulation — PWM Mode (VOUT = 3.3V)  
Line Regulation — PSAVE Mode (VOUT = 3.3V)  
μ
μ
FB grounded, L = 4.7 H, IOUT = 4mA  
FB grounded, L = 4.7 H, IOUT = 75mA  
3.34  
3.32  
3.3  
3.34  
3.32  
3.3  
TA = 85°C  
TA = –40°C  
3.28  
3.26  
3.24  
3.22  
3.2  
3.28  
3.26  
3.24  
3.22  
3.2  
TA = –40°C  
TA = 25°C  
TA = 25°C  
TA = 85°C  
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
2.75  
3
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
2.75  
3
VIN (V)  
VIN (V)  
Line Regulation — PSAVE Mode (VOUT = 4.0V)  
R1 = 1.37M , R2 = 590k , L = 4.7 H, IOUT = 4mA  
Line Regulation — PWM Mode (VOUT = 4.0V)  
Ω
Ω
μ
Ω
Ω
μ
R1 = 1.37M , R2 = 590k , L = 4.7 H, IOUT = 75mA  
4.05  
4
4.05  
4
TA = 85°C  
TA = –40°C  
TA = 25°C  
TA = –40°C  
3.95  
3.9  
3.95  
3.9  
TA = 25°C  
TA = 85°C  
3.85  
3.85  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0.5  
1
1.5  
2
2.5  
3
3.5  
4
VIN (V)  
VIN (V)  
7
PRELIMINARY  
SC120  
Typical Characteristics (continued)  
Temperature Reg. — PSAVE Mode (VOUT = 1.8V)  
Temperature Reg. — PWM Mode (VOUT = 1.8V)  
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, IOUT = 4mA  
Ω
Ω
μ
R1 = 499k , R2 = 1M , L = 4.7 H, IOUT = 45mA  
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
1.85  
1.84  
1.83  
1.82  
1.81  
1.8  
VIN = 1.5V  
VIN = 0.7V  
VIN = 1.5V  
VIN = 1.1V  
VIN = 1.1V  
1.79  
1.78  
1.77  
1.79  
1.78  
1.77  
VIN = 0.7V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
Temperature Reg. — PSAVE Mode (VOUT = 3.3V)  
FB grounded, L = 4.7 H, IOUT = 4mA  
Temperature Reg. — PWM Mode (VOUT = 3.3V)  
μ
μ
FB grounded, L = 4.7 H, IOUT = 75mA  
3.34  
3.32  
3.3  
3.34  
3.32  
3.3  
VIN = 3.0V  
VIN = 1.0V  
VIN = 3.0V  
VIN = 2.0V  
VIN = 2.0V  
3.28  
3.26  
3.24  
3.22  
3.2  
3.28  
3.26  
3.24  
3.22  
3.2  
VIN = 1.0V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
Temperature Reg. — PWM Mode (VOUT = 4.0V)  
R1 = 1.37M , R2 = 590k , L = 4.7 H, IOUT = 75mA  
Temperature Reg. — PSAVE Mode (VOUT = 4.0V)  
R1 = 1.37M , R2 = 590k , L = 4.7 H, IOUT = 4mA  
Ω
Ω
μ
Ω
Ω
μ
4.05  
4
4.05  
VIN = 3.0V  
4
VIN = 3.0V  
VIN = 2.0V  
VIN = 1.0V  
3.95  
3.9  
VIN = 2.0V  
VIN = 1.0V  
3.95  
3.9  
3.85  
3.85  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Junction Temperature (oC)  
Junction Temperature (oC)  
8
PRELIMINARY  
SC120  
Typical Characteristics (continued)  
Startup Min. Load Resistance vs. VIN (VOUT = 1.8V)  
Startup Max. Load Current vs. VIN (VOUT = 1.8V)  
Ω
Ω
Ω
Ω
R1 = 499k , R2 = 1M  
R1 = 499k , R2 = 1M  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
TA = 25°C  
TA = –40°C  
TA = 85°C  
60  
TA = 85°C  
40  
TA = –40°C  
TA = 25°C  
20  
0
0.7  
0.8  
0.9  
1
1.1  
VIN (V)  
1.2  
1.3  
1.4  
1.5  
0.7  
0.8  
0.9  
1
1.1  
1.2  
1.3  
1.4  
1.5  
VIN (V)  
Startup Min. Load Resistance vs. VIN (VOUT = 3.3V)  
Startup Max. Load Current vs. VIN (VOUT = 3.3V)  
FB grounded  
FB grounded  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
160  
140  
120  
100  
80  
TA = 25°C  
TA = 85°C  
TA = –40°C  
60  
TA = –40°C  
TA = 85°C  
40  
20  
TA = 25°C  
0
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
2.75  
3
0.5  
0.75  
1
1.25  
1.5  
1.75  
2
2.25  
2.5  
2.75  
3
VIN (V)  
VIN (V)  
Startup Max. Load Current vs. VIN (VOUT = 4.0V)  
Startup Min. Load Resistance vs. VIN (VOUT = 4.0V)  
Ω
Ω
Ω
Ω
R1 = 1.37M , R2 = 590k  
R1 = 1.37M , R2 = 590k  
100  
80  
60  
40  
20  
0
160  
140  
120  
100  
80  
TA = 25°C  
TA = 85°C  
TA = –40°C  
TA = –40°C  
60  
TA = 25°C  
40  
TA = 85°C  
20  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0.5  
1
1.5  
2
2.5  
3
3.5  
4
VIN (V)  
VIN (V)  
9
PRELIMINARY  
SC120  
Typical Characteristics (continued)  
IOUT (max) vs. VIN  
Minimum Start-up Voltage vs. Temperature  
VOUT = 3.3V  
0.6  
VOUT = 3.3V, IOUT = 1mA  
0.9  
0.85  
0.5  
T = 25°C  
0.8  
0.75  
0.7  
0.4  
T = 85°C  
0.3  
T = -40°C  
0.2  
0.65  
0.6  
0.1  
0
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
2.1  
2.3  
2.5  
-40  
0
20  
40  
60  
-20  
80  
100  
Input Voltage (V)  
Temperature (°C)  
Load Transient (PSAVE to PWM)  
VOUT = 3.3V, VIN = 1.2V, TA = 25°C  
Load Transient (PWM to PWM)  
VOUT = 3.3V, VIN = 1.5V, TA =25°C  
IOUT = 40mA to  
140mA  
IOUT = 5mA to  
100mA  
(50mA/div)  
(50mA/div)  
VOUT  
(100mV/div)  
AC Coupled  
VOUT  
(100mV/div)  
AC Coupled  
Time = (100μs/div)  
Time = (100μs/div)  
PWM Operation  
PSAVE Operation  
VOUT = 3.3V, VIN = 1.5V, IOUT = 50mA  
V
OUT = 3.3V, VIN = 1.5V, IOUT = 20mA  
V
OUT ripple  
VOUT ripple  
(10mV/div)  
(50mV/div)  
IL  
IL  
(100mA/div)  
(100mA/div)  
VLX  
VLX  
(5V/div)  
(5V/div)  
Time = (10μs/div)  
Time = (400ns/div)  
10  
PRELIMINARY  
SC120  
Pin Descriptions  
Pin #  
Pin Name  
Pin Function  
1
2
3
4
LX  
GND  
IN  
Switching node — connect an inductor from the input supply to this pin.  
Signal and power ground.  
Battery input and damping switch connection.  
Enable digital control input — active high.  
EN  
Feedback input — connect to GND for preset 3.3V output. A voltage divider is connected from OUT to GND to  
adjust output from 1.8V to 4.0V.  
5
6
T
FB  
Output voltage supply pin — requires an external 10μF bypass capacitor (while under VOUT bias) for normal  
operation.  
OUT  
Thermal  
Pad  
Thermal Pad is for heat sinking purposes — connect to ground using multiple vias — not connected internally.  
11  
PRELIMINARY  
SC120  
Block Diagram  
VOUT  
Comp.  
IN  
3
+
-
6
OUT  
+
1.7 V  
-
+
-
Start-up  
Oscillator  
4
EN  
P
LIM  
Amp.  
Gate Drive  
and  
Logic  
Bulk  
Bias  
Oscillator and  
Slope  
Generator  
Slope  
Comp.  
Control  
1
LX  
PWM  
Comp.  
+
PWM  
Control  
-
+
-
NLIM  
Amplifier  
Error  
+
-
Amp.  
Output Voltage  
Selection Logic  
-
FB  
5
Current  
Amplifier  
+
2
GND  
VREF  
+
-
1.2 V  
12  
PRELIMINARY  
SC120  
Applications Information  
Detailed Description  
The SC120 is a synchronous step-up Pulse Width  
Modulated (PWM) DC-DC converter utilizing a 1.2MHz  
fixed frequency current mode architecture. It is designed  
to provide output voltages in the range 1.8V to 4.0V from  
an input voltage as low as 0.7V, with a (output unloaded)  
start up input voltage of 0.85V.  
LX  
OUT  
CFB  
(optional)  
R1  
R2  
FB  
The device operates in two modes: PWM and automatic  
PSAVE mode. In PWM operation, the devices uses pulse  
width modulation control to regulate the output under  
moderate to heavy load conditions. It switches to PSAVE  
mode when lightly loaded. Quiescent current consump-  
tion is as little as 50μA, into the OUT pin, when in PSAVE  
mode.  
Figure 1 — Output Voltage Feedback Circuit  
The values of the resistors in the voltage divider network  
are chosen to satisfy the equation:  
§
·
R1  
R2  
¨
¸
¸
VOUT   VFB u 1  
¨
©
¹
The regulator control circuitry is shown in the Block  
Diagram. It is comprised of a programmable feedback  
controller, an internal 1.2MHz oscillator, an n-  
channel Field Effect Transistor (FET) between the LX and  
GND pins, and a p-channel FET between the LX and OUT  
pins. The current flowing through both FETs is monitored  
and limited as required for startup, PWM operation, and  
PSAVE operation. An external inductor must be connected  
between the IN pin and the LX pin. When the n-channel  
FET is turned on, the LX pin is internally grounded, con-  
necting the inductor between IN and GND. This is called  
the on-state. During the on-state, inductor current flows  
to ground and is increasing. When the n-channel FET is  
turned off and the p-channel FET is turned on (known as  
the off-state), the inductor is then connected between IN  
and OUT. The (now decreasing) inductor current flows  
from the input to the output, boosting the output voltage  
above the input voltage.  
The value of R2 should be 590kΩ or larger for stability.  
Otherwise, the values of R1 and R2 can be as large as  
desired to achieve low quiescent current.  
PWM Operation  
The PWM cycle runs at a fixed frequency (fosc = 1.2MHz),  
with a variable duty cycle (D). PWM operation continu-  
ally draws current from the input supply (except for dis-  
continuous mode, described below). During the on-state,  
of the PWM cycle, the n-channel FET is turned on, ground-  
ing the inductor at the LX pin. This causes the current  
flowing from the input supply through the inductor to  
ground to ramp up. During the off-state, the n-channel  
FET is turned off and the p-channel FET (synchronous  
rectifier) is turned on. This causes the inductor current to  
flow from the input supply through the inductor into the  
output capacitor and load, boosting the output voltage  
above the input voltage. The cycle then repeats to re-  
energize the inductor.  
Output Voltage Selection  
The SC120 output voltage can be programmed to an  
internally preset value or it can be programmed with  
external resistors. The output is internally programmed to  
3.3V when the FB pin is connected to GND. Any output  
voltage in the range 1.8V to 4.0V can be programmed with  
a resistor voltage divider between OUT and the FB pin as  
shown in Figure 1.  
Ideally, the steady state (constant load) duty cycle is  
determined by D = 1 – (VIN/VOUT), but must be greater in  
practice to overcome dissipative losses. The SC120 PWM  
controller constrains the value of D such that 0.15 < D < 0.9,  
(approximately).  
The average inductor current during the off-state multi-  
plied by (1-D) is equal to the average load current. The  
inductor current is alternately ramping up (on-state) and  
down (off-state) at a rate and amplitude determined by  
13  
PRELIMINARY  
SC120  
Applications Information (continued)  
the inductance value, the input voltage, and the on-time  
(D×T). Therefore, the instantaneous inductor current will  
be alternately larger and smaller than the average. If the  
average output current is sufficiently small, the minimum  
inductor current can reach zero during the off-state. If  
the energy stored in the inductor is depleted (if the induc-  
tor current decreases to zero) during the off-state, both  
FETs turn off for the remainder of the off-state. If this dis-  
continuous mode (DM) operation persists, the SC120  
transitions to PSAVE operation.  
PSAVE mode requires fewer circuit resources than PWM  
mode. All unused circuitry is disabled to reduce quies-  
cent power dissipation. In PSAVE mode, the OUT pin  
voltage monitoring circuit remains active and the output  
voltage error amplifier operates as a comparator. PSAVE  
regulation is shown in Figure 2. When VOUT < 1.008xVREG  
,
where VREG is the programmed output voltage, a burst of  
fixed-period switching occurs to boost the output voltage.  
The n-channel FET turns on (on-state) until the inductor  
current rises to approximately 240mA. Then the n-channel  
FET turns off and the p-channel FET turns on to transfer  
the inductor energy to the output capacitor and load for  
the duration of the off-state. This cycle repeats until  
PSAVE Operation  
At light loads, the SC120 will operate in PSAVE mode.  
PSAVE mode ensures proper regulation when VIN is too  
close to VOUT while the output load is too small to keep the  
duty cycle above its minimum value. At very low output  
load, PSAVE mode will operate more efficiently than PWM  
mode. PSAVE operation is triggered by 256 consecutive  
cycles of DM operation in PWM mode, when the output  
of the PLIM amplifier falls to 0V during the off-state due to  
low load current.  
V
OUT > 1.018×VREG, at which point bot FETs are turned off.  
The output capacitor then discharges into the load until  
OUT < 1.008×VREG, and the burst cycle repeats.  
V
When the output current increases above a predeter-  
mined level, either of two PSAVE exit conditions will force  
the resumption of PWM operation. The first PSAVE exit  
criterion is shown in Figure 2. If the PSAVE burst cycle  
cannot provide sufficient current to the output, the  
output voltage will decrease during the burst. If  
PWM Mode at  
High Load  
PSAVE Mode at  
Moderate Load  
Higher Load  
Applied  
PSAVE exit due  
to output decay  
BURST  
OFF  
BURST  
OFF  
BURST  
PWM Mode  
+1.8%  
+0.8%  
Prog’d  
VOUT  
Voltage  
-2%  
Inductor  
Current  
240mA  
0A  
Time  
Figure 2 — PSAVE Operation With Exit to PWM Due To Output Voltage Decay  
14  
PRELIMINARY  
SC120  
Applications Information (continued)  
PWM Mode at  
High Load  
PSAVE Mode at  
Moderate Load  
Higher Load  
Applied  
PSAVE exit due to  
off-time reduction  
OFF  
(> 5μs)  
OFF  
(< 5μs)  
BURST  
BURST  
PWM Mode  
+1.8%  
+0.8%  
VOUT  
Prog’d  
Voltage  
-2%  
Inductor  
Current  
240mA  
0A  
Time  
Figure 3 — PSAVE Operation With Exit to PWM Due To Off-time < 5μs  
OUT < 0.98 × VREG, PWM operation will resume. The second  
V
phenomenon is advantageous. Reverting to PWM opera-  
tion with high VIN can result in VOUT rising above VREG, due  
to the PWM minimum duty cycle. PSAVE operation avoids  
this voltage rise because of its voltage-threshold on/off  
control. If the load remains low enough to remain in  
PSAVE, VIN can approach and even slightly exceed VOUT. To  
initally enter PSAVE mode, the initial startup load must be  
small enough to cause discontinuous mode PWM opera-  
tion. This PSAVE mode startup load upper limit can be  
increased if needed by reducing the inductance (refer to  
the section Inductor Selection). Sufficiently large output  
capacitance will prevent PSAVE exit due to the second exit  
criterion (Figure 3).  
PSAVE exit criterion, illustrated in Figure 3, depends on the  
rate of discharge of the output capacitor between PSAVE  
bursts. If the time between bursts is less than 5μs, then  
PWM operation resumes. The output capacitance value  
will affect the second criterion, but not the first. Reducing  
the output capacitor will reduce the output load at which  
PSAVE mode exits to PWM mode.  
Within each on/off cycle of a PSAVE burst, the rate of  
decrease of the inductor current during the off-state is  
proportional to (VOUT − VIN). If VIN is sufficiently close to VOUT  
,
the decrease in current during the off-state may not over-  
come the increase in current during the minimum on-time  
of the on-state, approximately 100ns. This can result in  
the peak inductor current rising above the PSAVE mode  
n-channel FET current limit. (Normally, when the  
n-channel FET current limit is reached, the on-state ends  
immediately and the off-state begins. This sets the duty  
cycle on a cycle-by-cycle basis.) This inductor current rise  
accumulates with each successive cycle in the burst. The  
result is that the output load current that can be sup-  
ported in PSAVE under this high VIN condition will be  
greater than occurs if the 240mA current limit can be  
enforced. Therefore the PSAVE exit load due to the first  
exit criterion (Figure 2) can increase significantly. This  
PSAVE VOUT ripple may increase due to parasitic capaci-  
tance on the external FB pin network. If using external  
feedback programming, it is prudent to add a small capaci-  
tor between OUT and FB to the circuit board layout. When  
operating the SC120 in the final configuration in PSAVE,  
observe the amplitude of PSAVE ripple. If the ripple  
exceeds 50mV for the expected range of input voltage, a  
small-value capacitor should be tried. Capacitance on the  
order of a few picofarads is often sufficient to bring the  
ripple amplitude to approximately 50mV.  
15  
PRELIMINARY  
SC120  
Applications Information (continued)  
Note that startup with a regulated active load is not the  
same as startup with a resistive load. The resistive load  
output current increases proportionately as the output  
voltage rises until it reaches programmed VOUT/RLOAD, while  
a regulated active load presents a constant load as the  
output voltage rises from 0V to programmed VOUT. Note  
also that if the load applied to the output exceeds an  
applicable VOUT–dependent startup current limit or duty  
cycle limit, the criterion to advance to the next startup  
stage may not be achieved. In this situation startup may  
pause at a reduced output voltage until the load is reduced  
further.  
The Enable Pin  
The EN pin is a high impedance logical input that can be  
used to enable or disable the SC120 under processor  
control. VEN < 0.2V will disable regulation, set the LX pin in  
a high-impedance state (turn off both FET switches), and  
turn on an active discharge device to discharge the output  
capacitor via the OUT pin. VEN > 0.85V will enable the  
output. The startup sequence from the EN pin is identical  
to the startup sequence from the application of input  
power.  
Regulator Startup, Short Circuit Protection, and  
Current Limits  
Output Overload and Recovery  
The SC120 permits power up at input voltages from 0.85V  
to 3.8V. Startup current limiting of the internal switching  
n-channel and p-channel FET power devices protects  
them from damage in the event of a short between OUT  
and GND. As the output voltage rises, progressively less-  
restrictive current limits are applied. This protection  
unavoidably prevents startup into an excessive load.  
When in PSAVE operation, an increasing load will eventu-  
ally satisfy one of the PSAVE exit criteria and regulation  
will revert to PWM operation. As previously noted, the  
PWM steady state duty cycle is determined by  
D = 1 – (VIN/VOUT), but must be somewhat greater in prac-  
tice to overcome dissipative losses. As the output load  
increases, the dissipative losses also increase. The PWM  
controller must increase the duty cycle to compensate.  
Eventually, one of two overload conditions will occur,  
determined by VIN, VOUT, and the overall dissipative losses  
due to the output load current. Either the maximum duty  
cycle of 90% will be reached or the n-channel FET 1.2A  
(nominal) peak current limit will be reached, which effec-  
tively limits the duty cycle to a lower value. Above that  
load, the output voltage will decrease rapidly and in  
reverse order the startup current limits will be invoked as  
the output voltage falls through its various voltage thresh-  
olds. How far the output voltage drops depends on the  
load V-I characteristics.  
To begin, the p-channel FET between the LX and OUT pins  
turns on with its current limited to approximately 150mA,  
the short-circuit output current. When VOUT approaches VIN  
(but is still below 1.7V), the n-channel current limit is set  
to 350mA (the p-channel limit is disabled), the internal  
oscillator turns on (approximately 200kHz), and a fixed  
75% duty cycle PWM operation begins. (See the section  
PWM Operation.) When the output voltage exceeds 1.7V,  
normal fixed frequency variable duty cycle PWM opera-  
tion begins, with the n-channel FET’s current limited to  
350mA to prevent excessive output voltage overshoot. If  
the n-channel FET current limit is exceeded, the on-state  
ends immediately and the off-state begins, overriding the  
output voltage regulation controller. This reduces the  
duty cycle on a cycle-by-cycle basis. When VOUT is within  
2% of the programmed regulation voltage, the n-channel  
FET current limit is raised to 1.2A.  
A reduction in input voltage, such as due to a discharging  
battery, will lower the load current at which overload  
occurs. Lower input voltage increases the duty cycle  
required to produce a given output voltage. And lower  
input voltage also increases the input current to maintain  
the input power, which increases dissipative losses and  
further increases the required duty cycle. Therefore an  
increase in load current or a decrease in input voltage can  
result in output overload.  
Once variable duty cycle PWM operation is initiated, the  
output becomes independent of VIN and output regula-  
tion can be maintained for VIN as low as 0.7V, subject to the  
maximum duty cycle and peak current limits. The duty  
cycle must remain between 15% and 90% for the device  
to operate within specification.  
Once an overload has occurred, the load must be  
decreased to permit recovery. The conditions required for  
16  
PRELIMINARY  
SC120  
Applications Information (continued)  
overload recovery are identical to those required for suc-  
cessful initial startup.  
The governing equations for inductor selection are the  
following. Equating input power to output power, noting  
that input current equals inductor current, and averaging  
over a full PWM switching cycle,  
Anti-ringing Circuitry  
In PWM operation, the n-channel and p-channel FETs are  
simultaneously turned off when the inductor current  
reaches zero. They remain off for the zero-inductor-  
current portion of the off-state. Note that discontinuous  
mode is a marginal-load condition, which if persistent will  
trigger a transition to PSAVE operation.  
1 VOUT uIOUT  
ILavg  
 
u
K
V
IN  
where η is efficiency.  
ΔIL is the inductor (and thus the input) peak-to-peak  
current. Neglecting the n-channel FET RDS-ON and the  
inductor DCR, for duty cycle D, and with T = 1/fosc,  
When both FET switches are simultaneously turned off, an  
internal switch between the IN and LX pins is closed, pro-  
viding a moderate resistance path across the inductor to  
dampen the oscillations at the LX pin. This effectively  
reduces EMI that can develop from the resonant circuit  
formed by the inductor and the drain capacitance at LX.  
DT  
1
L
V uDuT  
IN  
'ILon  
 
V dt   
IN  
³
0
L
This is the change in IL during the on-state. During the  
off-state, again neglecting the p-channel FET RDS-ON and  
the inductor DCR,  
The anti-ringing circuitry is disabled between PSAVE  
bursts.  
Component Selection  
'ILoff  
 
T V  VOUT  
dt   
1D  
1
L
V  VOUT  
uT  
IN  
The SC120 provides optimum performance when a 4.7μH  
inductor is used with a 10μF output capacitor. Different  
component values can be used to modify PSAVE exit or  
entry loads, modify output voltage ripple in PWM mode,  
improve transient response, or to reduce component size  
or cost.  
IN  
³
DT  
L
Note that this is a negative quantity, since VOUT > VIN and  
0 < D < 1. For a constant load in steady-state, the inductor  
current must satisfy ΔIL-on + ΔIL-off = 0. Substituting the two  
expressions and solving for D, obtain D = 1 – VIN/VOUT  
.
Using this expression, and the positive valued expression  
Inductor Selection  
ΔIL = ΔIL-on for current ripple amplitude, obtain expanded  
The inductance value primarily affects the amplitude of  
inductor current ripple (ΔIL). Reducing inductance  
increases ΔIL. This raises the inductor peak current,  
expression for IL-max and IL-min  
.
VOUT uIOUT  
T
V
I
L-max = IL-avg + ΔIL/2, where IL-avg is the inductor current aver-  
IN  
ILmax,min  
 
r
u
u
VOUT  VIN  
aged over a full on/off cycle. IL-max is subject to the  
n-channel FET current limit ILIM(N), therefore reducing the  
inductance may lower the output overload current thresh-  
old. Increasing ΔIL also lowers the inductor minimum  
current, IL-min = IL-avg ΔIL/2, thus raising the PSAVE entry  
load current threshold. This is the output load below  
which IL-min = 0, the boundary between continuous mode  
and discontinuous mode PWM regulation, which signals  
the SC120 controller to switch to PSAVE operation. In the  
extreme case of VIN approaching VOUT, smaller inductance  
can also reduce the PSAVE inductor burst-envelope current  
ripple and voltage ripple.  
V uK  
2uL VOUT  
IN  
If the value of IOUT decreases until IL-min = 0, which is the  
boundary of continuous and discontinuous PWM opera-  
tion, the SC120 will transition from PWM operation to  
PSAVE operation. Define this value of IOUT as IPSAVE-entry  
Setting the expression for IL-min to 0 and solving,  
.
2
§
·
KuT  
V
IN  
¨
¨
¸
¸
IPSAVEentry  
 
VOUT  VIN  
2uL VOUT  
©
¹
17  
PRELIMINARY  
SC120  
Applications Information (continued)  
The programmed value of VOUT is constant. IPSAVE-entry is a  
polynomial function of VIN. Equating dIPSAVE-entry/dVIN = 0  
and solving for VIN reveals that there is one non-zero extre-  
mum of this function, a maximum, atVIN = 2/3 VOUT. Applying  
this value of VIN,  
Table 1 — Recommended Inductors  
Rated  
Current  
(mA)  
Dimensions  
LxWxH  
Manufacturer/  
Part #  
Value DCR  
Tolerance  
(%)  
(ꢀH)  
(Ω)  
(mm)  
Murata  
4.7  
0.4  
500  
10  
4.5 x 3.2 x 2.6  
LQH43MN4R7K03L  
KuT  
L
2
27  
IPSAVEentrymax  
 
u
uVOUT  
Capacitor Selection  
Input and output capacitors must be chosen carefully to  
ensure that they are of the correct value and rating. The  
output capacitor requires a minimum capacitance value  
of 10μF at the programmed output voltage to ensure sta-  
bility over the full operating range. This must be consid-  
ered when choosing small package size capacitors as the  
DC bias must be included in their derating to ensure this  
required value. For example, a 10μF 0805 capacitor may  
provide sufficient capacitance at low output voltages but  
may be too low at higher output voltages. Therefore, a  
higher capacitance value may be required to provide the  
minimum of 10μF at these higher output voltages.  
Additional output capacitance may be required for VIN  
close to VOUT to reduce ripple in PSAVE mode and to ensure  
stability in PWM mode, especially at higher output load  
currents.  
The value of the inductor determines the PSAVE entry  
output load current. Evaluate IPSAVE-entry at the smallest and  
largest expected values of VIN. If the input range includes  
VIN = 2/3 VOUT, also determine IPSAVE-entry-max. If the largest VIN  
exceeds approximately 90% of VOUT, then instead evaluate  
PSAVE entry at VIN = 0.9VOUT. Since PSAVE exit will require  
an unusually high output load current at high VIN. This was  
explained in a previous section, therefore PSAVE entry  
under this condition may not be relevant.  
The inductor selection should also consider the n-channel  
FET current limit for the expected range of input voltage  
and output load current. The largest IL-avg will occur at the  
expected smallest VIN and largest IOUT. Determine the  
largest allowable ΔIL, based on the largest expected IL-avg  
,
the minimum n-channel FET current limit, and the  
inductor tolerance. Ensure that in the worst case,  
Low ESR capacitors such as X5R or X7R type ceramic  
capacitors are recommended for input bypassing and  
output filtering. Low-ESR tantalum capacitors are not rec-  
ommended due to possible reduction in capacitance seen  
at the switching frequency of the SC120. Ceramic capaci-  
tors of type Y5V are not recommended as their tempera-  
ture coefficients make them unsuitable for this application.  
Table 2 lists the manufacturer of the recommended  
capacitor.  
I
L-avg + ΔIL/2 < ILIM(N).  
These calculations include the parameter η, efficiency.  
Efficiency varies with VIN, IOUT, and temperature. Estimate η  
using the plots provided in this datasheet, or from experi-  
mental data, at the operating condition of interest when  
computing the effect of a new inductor value on PSAVE  
entry and I-limit margin.  
Any chosen inductor should have low DCR, compared to  
the RDS-ON of the FET switches, to maintain efficiency,  
though for DCR << RDS-ON, further reduction in DCR will  
provide diminishing benefit. The inductor ISAT value should  
exceed the expected IL-max. The inductor self-resonant fre-  
quency should exceed 5×fosc. Any inductor with these  
properties should provide satisfactory performance.  
Table 2 — Recommended Capacitor  
Manufacturer/  
Part Number  
Value  
(ꢀF)  
Rated Voltage  
(VDC)  
Type  
Case  
Size  
Murata  
22  
6.3  
X5R  
0805  
GRM21BR60J226ME39B  
Table 1 lists the manufacturers of recommended inductor  
options.  
18  
PRELIMINARY  
SC120  
Applications Information (continued)  
Route the output voltage feedback path away  
PCB Layout Considerations  
Poor layout can degrade the performance of the DC-DC  
converter and can contribute to EMI problems, ground  
bounce, and resistive voltage losses. Poor regulation and  
instability can result.  
from the inductor and LX node to minimize  
noise and magnetic interference.  
Maximize ground metal on the component side  
to improve the return connection and thermal  
dissipation. Separation between the LX node  
and GND should be maintained to avoid cou-  
pling capacitance between the LX node and the  
ground plane.  
Use a ground plane with several vias connecting  
to the component side ground to further reduce  
noise interference on sensitive circuit nodes.  
A few simple design rules can be implemented to ensure  
good layout:  
Place the inductor and filter capacitors as close  
to the device as possible and use short wide  
traces between the power components.  
6.7mm  
VOUT  
COUT  
LX  
OUT  
R1  
FB  
GND  
SC120  
5.2mm  
LX  
(2nd layer)  
IN  
EN  
R2  
VIN  
CIN  
19  
PRELIMINARY  
SC120  
Outline Drawing — MLPD-UT-6 1.5x2  
DIMENSIONS  
INCHES  
B
A
D
MILLIMETERS  
DIM  
MIN  
.020  
.000  
NOM  
-
MAX  
.024  
.002  
MIN  
0.50  
0.00  
NOM MAX  
-
A
A1  
A2  
b
0.60  
-
-
0.05  
(.006)  
.010  
(.152)  
0.25  
E
PIN 1  
INDICATOR  
.007  
.055  
.035  
.075  
.026  
.012  
.063  
.055  
.083  
.035  
0.18  
1.40  
0.90  
1.90  
0.65  
0.30  
1.60  
1.40  
2.10  
0.90  
D
.059  
-
1.50  
-
(LASER MARK)  
D1  
E
.079  
.031  
2.00  
0.80  
E1  
e
.020 BSC  
.014  
0.50 BSC  
0.35  
A2  
C
L
N
aaa  
.012  
.016  
0.30  
0.40  
A
6
6
SEATING  
PLANE  
.003  
0.08  
aaa  
C
bbb  
.004  
0.10  
A1  
D1  
2
1
LxN  
E1  
N
bxN  
bbb  
C A B  
e
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS TERMINALS.  
20  
PRELIMINARY  
SC120  
Land Pattern — MLPD-UT-6 1.5x2  
H
R
DIMENSIONS  
INCHES  
DIM  
MILLIMETERS  
(.077)  
.047  
.051  
.031  
.020  
.006  
.012  
.030  
.106  
(1.95)  
1.20  
1.30  
0.80  
0.50  
0.15  
0.30  
0.75  
2.70  
C
G
H
K
P
R
X
Y
Z
Z
G
Y
(C)  
K
P
X
NOTES:  
1.  
2.  
CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
THERMAL VIAS IN THE LAND PATTERN OF THE EXPOSED PAD  
3.  
SHALL BE CONNECTED TO A SYSTEM GROUND PLANE.  
FAILURE TO DO SO MAY COMPROMISE THE THERMAL AND/OR  
FUNCTIONAL PERFORMANCE OF THE DEVICE.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805) 498-2111 Fax: (805) 498-3804  
www.semtech.com  
21  
PRELIMINARY  

相关型号:

SC120SKEVB

Low Voltage Synchronous Boost Regulator
SEMTECH

SC120SKTRT

Low Voltage Synchronous Boost Regulator
SEMTECH

SC120ULTRT

Low Voltage Synchronous Boost Converter
SEMTECH

SC120_10

Low Voltage Synchronous Boost Regulator
SEMTECH

SC121

LI+ BATTERY PROTECTION CIRCUIT
SILAN

SC121

Low Voltage Synchronous Boost Regulator
SEMTECH

SC1210

High Speed, 12 V, Synchronous Power MOSFET Driver
SEMTECH

SC1210-100

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-101

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-150BSMD

Surface Mount 2-Electrode Gas Discharge Tube (GDT)
SOCAY

SC1210-1R0

SMD POWER INDUCTORS Open frame construction
BEL

SC1210-200BSMD

Surface Mount 2-Electrode Gas Discharge Tube (GDT)
SOCAY