SC2602LSTRT [SEMTECH]

Synchronous Voltage Mode Controller for Distributed Power Supply; 同步电压模式控制器的分布式电源
SC2602LSTRT
型号: SC2602LSTRT
厂家: SEMTECH CORPORATION    SEMTECH CORPORATION
描述:

Synchronous Voltage Mode Controller for Distributed Power Supply
同步电压模式控制器的分布式电源

稳压器 开关式稳压器或控制器 电源电路 开关式控制器 光电二极管
文件: 总14页 (文件大小:463K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SC2602L  
Synchronous Voltage Mode Controller  
for Distributed Power Supply  
POWER MANAGEMENT  
Description  
Features  
The SC2602L is low-cost, full featured, synchronous volt-  
age-mode controller designed for use in single ended  
power supply applications where efficiency is of primary  
concern. Synchronous operation allows for the elimina-  
tion of heat sinks in many applications. The SC2602L is  
ideal for implementing DC/DC converters needed to  
power advanced microprocessors in low cost systems,  
or in distributed power applications where efficiency is  
important. Internal level-shift, high-side drive circuitry, and  
preset shoot-through control, allows the use of inexpen-  
sive N-channel power MOSFETs.  
‹ Synchronous operation for high efficiency (95%)  
‹ RDS(ON) current sensing  
‹ Output voltage can be programmed as low as 0.8V  
‹ On-chip power good and OVP functions  
‹ Small size with minimum external components  
‹ Soft Start  
‹ Enable function  
‹ SO-14 package is fully WEEE and RoHS compliant  
Applications  
‹ Microprocessor core supply  
‹ Low cost synchronous applications  
‹ Voltage Regulator Modules (VRM)  
‹ DDR termination supplies  
‹ Networking power supplies  
‹ Sequenced power supplies  
SC2602L features include temperature compensated  
voltage reference, triangle wave oscillator and current  
sense comparator circuitry. Power good signaling, shut-  
down, and over voltage protection are also provided.  
The SC2602L operates at a fixed 200kHz which is for  
optimum compromise between efficiency, external com-  
ponent size, and cost.  
Two SC2602L can be used together to sequence two  
voltage regulators for power up in telecom systems. The  
power good of the first SC2602L connected to the en-  
able of the second SC2602L makes this possible.  
Typical Application Circuit  
V_pullup  
5V IN  
R1  
R2  
R3  
C1  
+
C3  
C2  
U1  
GND  
C4  
C5  
C6  
1
14  
13  
12  
11  
10  
9
SS/SHDN  
VCC  
GND  
2
3
4
5
6
7
PWRGD SS/SHDN  
PWRGD  
OVP  
OVP  
COMP  
SENSE  
BSTH  
R4  
R5  
C7  
OCSET  
PHASE  
DH  
Q1  
Q2  
L1  
12V IN  
BSTL  
C8  
2.5VOUT  
D1  
8
R6  
R7  
PGND  
DL  
SC2602L  
+
C10  
C9  
GND  
R8  
Figure 1. Typical distributed power supply  
Revision: January 05, 2006  
1
www.semtech.com  
SC2602L  
POWER MANAGEMENT  
Absolute Maximum Ratings  
Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified  
in the Electrical Characteristics section is not implied. Exposure to Absolute Maximum rated conditions for extended periods of time may affect device  
reliability.  
Parameter  
Symbol  
Maximum  
Units  
VCC, BST L to GND  
VIN  
-1.0 to 16 (20V Surge)  
V
V
PGND to GND  
± 0.5  
PHASE to GND(1)  
-0.5 to 18 (20V Surge)  
V
BST H to PHASE  
16 (20V Surge)  
V
T hermal Resistance Junction to Case  
T hermal Resistance Junction to Ambient  
Operating T emperature Range  
Maximum Junction T emperature  
Storage T emperature Range  
Lead T emperature (Soldering) 10 Sec.  
45  
115  
°C/W  
°C/W  
°C  
θJC  
θJA  
TA  
-40 to +85  
125  
TJ  
°C  
TST G  
TLEAD  
ESD  
-65 to +150  
300  
°C  
°C  
ESD Rating (Human Body Model)  
2
kV  
Note: (1) -1.5V to 20V for 25ns repetitive every cycle.  
Electrical Characteristics  
Unless specified: VCC = 4.75V to 12.6V; GND = PGND = 0V; VBSTL = 12V; VBSTH-PHASE = 12V; TJ = 25oC  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Power Supply  
Supply Voltage  
Supply Current  
VCC  
4.2  
12.6  
10  
V
mA  
%
EN = VCC  
VO = 2.5V  
6
Line Regulation  
Error Amplifier  
Transconductance  
Gain (AOL)  
0.5  
G
1.8  
50  
5
mS  
dB  
µA  
m
Input Bias  
8
Oscillator  
Oscillator Frequency  
Oscillator Max Duty Cycle  
Internal Ramp Peak to Peak  
MOSFET Drivers  
DH Source/Sink  
200  
95  
1
kHz  
%
90  
V
BST H - DH = 4.5V,  
DH - PHASE = 2V  
1
1
A
DL Source/Sink  
BST L - DL = 4.5V.  
DL - PGND. = 2V  
A
www.semtech.com  
2005 Semtech Corp.  
2
SC2602L  
POWER MANAGEMENT  
Electrical Characteristics (Cont.)  
Unless specified: VCC = 4.75V to 12.6V; GND = PGND = 0V; VBSTL = 12V; VBSTH-PHASE = 12V; TJ = 25oC  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
PROTECTION  
OVP T hreshold Voltage  
OVP Source Current  
Power Good T hreshold  
Dead T ime  
20  
%
mA  
%
V
OVP = 3V  
10  
88  
112  
100  
220  
45  
nS  
µA  
Over Current Set (Isink)  
Reference  
2.0V < VOCSET < 12V  
180  
200  
0.8  
O
O
Reference Voltage  
Soft Start  
0 C to 70 C  
0.792  
8.0  
0.808  
12  
V
Charge Current  
VSS = 1.5V  
VSS = 1.5V  
10  
µA  
µA  
Discharge Current  
Power Good  
1.5  
Sink Current Capability  
Shut Down  
Sink 1mA  
0.4  
V
V
Shut Down T hreshold  
0.6  
Note:  
(1) Specification refers to application circuit (Figure 1).  
www.semtech.com  
2005 Semtech Corp.  
3
SC2602L  
POWER MANAGEMENT  
Pin Configuration  
Ordering Information  
Device(2)  
Frequency  
Package(1)  
Top View  
SC2602LST RT  
SC2602LEVB  
200kHz  
SO-14  
VCC  
GND  
SS / SHDN  
COMP  
SENSE  
BSTH  
Evaluation Board  
PWRGD  
OVP  
Notes:  
(1) Only available in tape and reel packaging. A reel contains  
OCSET  
PHASE  
DH  
2500 devices.  
(2) Lead free product. This product is fully WEEE and RoHS  
compliant.  
BSTL  
PGND  
DL  
(14-Pin SOIC)  
Pin Descriptions  
Pin #  
Pin Name  
Pin Function  
1
VCC  
Chip supply voltage.  
2
PWRGD  
OVP  
Open collector output. Logic high indicates correct ouput voltage.  
Over voltage protection output. Source at least 10mA when Vsense > 1.2 * VBG.  
Set the converter over current trip point.  
Input from the phase node between the MOSFET s.  
High side driver output.  
3
4
OCSET  
PHASE  
DH  
5
6
7
PGND  
DL  
Power ground.  
8
Low side driver output.  
9
BST L  
Bootstrap, low side driver.  
10  
11  
12  
13  
14  
BST H  
Bootstrap, high side driver.  
SENSE  
COMP  
SS/SHDN  
GND  
Voltage sense input.  
Compensation pin.  
Gate Drive return Ground for the 1.5V GMCH regulator. Connect to Source of bottom FET .  
Signal ground.  
Note:  
(1) All logic level inputs and outputs are open collector TTL compatible.  
www.semtech.com  
2005 Semtech Corp.  
4
SC2602L  
POWER MANAGEMENT  
Block Diagram  
VCC  
200uA  
Vbg  
Over Current  
+10%  
-10%  
Under  
Voltage  
OCSET  
PWRGD  
0.8V  
+20%  
VCC  
One Shot  
Oscillator  
OVP  
Error Amp  
SENSE  
PWM  
Vbg  
BSTH  
DH  
DRVH  
COMP  
S
Cross  
Current  
Control  
VCC  
0.8V  
PHASE  
R
QB  
10uA  
SS/SHDN  
Fault  
BSTL  
DL  
GND  
1.5uA  
DRVL  
0.6V  
PGND  
Theory of Operation  
Synchronous Buck Converter  
The output rail is regulated by a synchronous, voltage- As SENSE increases, the output voltage of the error  
mode pulse width modulated (PWM) controller. This amplifier decreases. This causes a reduction in the on-  
section has all the features required to build a high effi- time of the high-side MOSFET connected to DH, hence  
ciency synchronous buck converter, including “Power lowering the output voltage.  
Good” flag, shut-down, and cycle-by-cycle current limit.  
Under Voltage Lockout  
The output voltage of the synchronous converter is set The under voltage lockout circuit of the SC2602L as-  
and controlled by the output of the error amplifier. The sures that the high-side MOSFET driver outputs remain  
external resistive divider reference voltage is derived from in the off state whenever the supply voltage drops below  
an internal trimmed-bandgap voltage reference (See Fig. set parameters. Lockout occurs if VCC falls below 4.1V.  
1). The inverting input of the error amplifier receives its Normal operation resumes once VCC rises above 4.2V.  
voltage from the SENSE pin.  
Over-Voltage Protection  
The internal oscillator uses an on-chip capacitor and The over-voltage protection pin (OVP) is high only when  
trimmed precision current sources to set the oscillation the voltage at SENSE is 20% higher than the target value  
frequency to 200kHz. The triangular output of the oscil- programmed by the external resistor divider. The OVP  
lator sets the reference voltage at the inverting input of pin is internally connected to a PNP’s collector.  
the comparator. The non-inverting input of the compara-  
tor receives it’s input voltage from the error amplifier. Power Good  
When the oscillator output voltage drops below the er- The power good function is to confirm that the regulator  
ror amplifier output voltage, the comparator output goes outputs are within +/-10% of the programmed level.  
high. This pulls DL low, turning off the low-side FET, and PWRGD remains high as long as this condition is met.  
DH is pulled high, turning on the high-side FET (once PWRGD is connected to an internal open collector NPN  
the cross-current control allows it). When the oscillator transistor.  
voltage rises back above the error amplifier output volt-  
age, the comparator output goes low. This pulls DH low,  
turning off the high-side FET, and DL is pulled high, turn-  
ing on the low-side FET (once the cross-current control  
allows it).  
2005 Semtech Corp.  
www.semtech.com  
5
SC2602L  
POWER MANAGEMENT  
Applications Information (Cont.)  
Soft Start  
Initially, SS/SHDN sources 10µA of current to charge an  
external capacitor. The outputs of the error amplifiers  
are clamped to a voltage proportional to the voltage on  
SS/SHDN. This limits the on-time of the high-side  
MOSFETs, thus leading to a controlled ramp-up of the  
output voltages.  
An over-current condition occurs when the high-side drive  
is turned on, but the PHASE node does not reach the  
voltage level set at the OCSET pin. The PHASE node is  
sampled only once per cycle during the valley of the tri-  
angular oscillator. Once an over-current occurs, the high-  
side drive is turned off and the low-side drive turns on  
and the SS/SHDN pin begins to sink 1.5µA. The soft-  
start voltage will begin to decrease as the 1.5µA of cur-  
rent discharges the external capacitor. When the soft-  
start voltage reaches 0.8V, the SS/SHDN pin will begin  
to source 10µA and begin to charge the external capaci-  
tor causing the soft-start voltage to rise again. Again,  
when the soft-start voltage reaches the level of the in-  
ternal oscillator, switching will occur.  
RDS(ON) Current Limiting  
The current limit threshold is set by connecting an ex-  
ternal resistor from the VCC supply to OCSET. The volt-  
age drop across this resistor is due to the 200µA inter-  
nal sink sets the voltage at the pin. This voltage is com-  
pared to the voltage at the PHASE node. This compari-  
son is made only when the high-side drive is high to  
avoid false current limit triggering due to uncontributing  
measurements from the MOSFETs off-voltage. When  
the voltage at PHASE is less than the voltage at OCSET,  
an overcurrent condition occurs and the soft start cycle  
is initiated. The synchronous switch turns off and SS/  
SHDN starts to sink 1.5µA. When SS/SHDN reaches  
0.8V, it then starts to source 10µA and a new cycle be-  
gins.  
If the over-current condition is no longer present, nor-  
mal operation will continue. If the over-current condition  
is still present, the SS/SHDN pin will again begin to sink  
1.5µA. This cycle will continue indefinitely until the over-  
current condition is removed.  
In conclusion, below is shown a typical “12V Application  
Circuit” which has a BSTH voltage derived by  
bootstrapping input voltage to the PHASE node through  
diode D1. This circuit is very useful in cases where only  
input power of 12V is available.  
Hiccup Mode  
During power up, the SS/SHDN pin is internally pulled  
low until VCC reaches the undervoltage lockout level of  
4.2V. Once V has reached 4.2V, the SS/SHDN pin is  
released and CbCegins to source 10µA of current to the  
external soft-start capacitor. As the soft-start voltage  
rises, the output of the internal error amplifier is clamped  
to this voltage. When the error signal reaches the level  
of the internal triangular oscillator, which swings from  
1V to 2V at a fixed frequency of 200kHz, switching oc-  
curs. As the error signal crosses over the oscillator sig-  
nal, the duty cycle of the PWM signal continues to in-  
crease until the output comes into regulation. If an over-  
current condition has not occurred the soft-start voltage  
will continue to rise and level off at about 2.2V.  
In order to prevent substrate glitching, a small-signal di-  
ode should be placed in close proximity to the chip with  
cathode connected to PHASE and anode connected to  
PGND.  
www.semtech.com  
2005 Semtech Corp.  
6
SC2602L  
POWER MANAGEMENT  
Application Circuit  
Typical 12V Application Circuit with Bootstrapped BSTH  
+5V  
12V IN  
GND  
R2  
C1  
R3  
C2  
10  
R1  
5K  
1.74K  
0.1u  
C4  
+
C3  
1.0u  
D1  
1N1418  
10u  
C5  
C6  
C7  
U1  
0.1u  
0.1u  
1.0u  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
PWRGD  
SS/SHDN  
VCC  
GND  
C8 1.0u  
PWRGD SS/SHDN  
R5  
C9  
OVP  
COMP  
SENSE  
BSTH  
R4 1K  
9.6K  
36n  
OCSET  
PHASE  
DH  
Q1  
Q2  
OVP  
L1 4uH  
BSTL  
D2  
1N4148  
3.3VOUT  
8
R6  
R7  
PGND  
DL  
C11  
10u  
+ C10  
SC2602L  
GND  
R8  
2.2  
www.semtech.com  
2005 Semtech Corp.  
7
SC2602L  
POWER MANAGEMENT  
Typical Characteristics  
Output Ripple Voltage  
Ch1: Vo_rpl  
Gate Drive Waveforms  
Ch1: Top FET  
Ch2: Bottom FET  
1. VIN = 5V; VO = 3.3V; IOUT = 12A  
PIN Descriptions  
Ch1: Vo_rpl  
2. VIN = 5V; VOUT = 1.3V; IOUT = 12A  
Ch1: oT p FET  
Ch2: Bottom FET  
www.semtech.com  
2005 Semtech Corp.  
8
SC2602L  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
Ch1: Vo_rpl  
2. VIN = 5V; VOUT = 1.3V; IOUT = 12A  
Ch1: Top FET  
Ch2: Bottom FET  
www.semtech.com  
2005 Semtech Corp.  
9
SC2602L  
POWER MANAGEMENT  
Typical Characteristics (Cont.)  
Hiccup Mode  
Ch1: Vin  
Ch2: Vss  
Ch3: Top Gate  
Ch4: Vout  
Vin = 5V  
Vout = 3.3V  
Vbst = 12V  
Iout = S.C.  
Start Up Mode  
Ch1: Vin  
Ch2: Vss  
Ch3: Top Gate  
Ch4: Vout  
Vin = 5V  
Vout = 3.3V  
Iout = 2A  
Vbst = 12V  
www.semtech.com  
2005 Semtech Corp.  
10  
SC2602L  
POWER MANAGEMENT  
The task here is to properly choose the compensation  
network for a nicely shaped loop-gain Bode plot. The  
following design procedures are recommended to ac-  
complish the goal:  
Gpwm  
L
EA  
R1  
R2  
R
Rc  
Co  
(1) Calculate the corner frequency of the output filter:  
Vbg  
Vin  
Ro  
C
0.8Vdc  
1
F :=  
o
2⋅π⋅ LC  
o
Fig. 2. SC2602L small signal model.  
(2) Calculate the ESR zero frequency of the output filter  
capacitor:  
The control model of SC2602L control loop small signal  
can be depicted in Fig. 2. This model can also be used in  
SPICE kind of simulator to generate loop gain Bode plots.  
The bandgap reference is 0.8V and trimmed to +/-1%  
accuracy. The desired output voltage can be achieved  
by setting the resistive divider network, R1 and R2.  
1
F
:=  
esr  
2⋅π⋅R C  
c
o
(3) Check that the ESR zero frequency is not too high.  
F
sw  
5
F
<
esr  
The error amplifier is transconductance type with fixed  
gain of:  
If this condition is not met, the compensation structure  
may not provide loop stability. The solution is to add  
some electrolytic capacitors to the output capacitor bank  
to correct the output filter corner frequency and the ESR  
zero frequency. In some cases, the filter inductance  
may also need to be adjusted to shift the filter corner  
frequency. It is not recommended to use only high fre-  
quency multi-layer ceramic capacitors for output filter.  
1.8.mA  
G
m
V
The compensation network includes a resistor and a  
capacitor in series, which terminates from the output of  
the error amplifier to the ground.  
(4) Choose the loop gain cross over frequency (0 dB  
frequency). It is recommended that the crossover fre-  
quency is always less than one fifth of the switching  
frequency :  
This device uses voltage mode control with input volt-  
age feed forward. The peak-to-peak ramp voltage is  
proportional to the input voltage, which results in an ex-  
cellent performance to reject input voltage variation. The  
PWM gain is inversion of the ramp amplitude, and this  
gain is given by:  
F
sw  
F
x_over  
5
1
G
If the transient specification is not stringent, it is better to  
choose a crossover frequency that is less than one tenth  
of the switching frequency for good noise immunity. The  
resistor in the compensation network can then be cal-  
culated as:  
pwm  
V
ramp  
where the ramp amplitude (peak-to-peak) is 1.0 volts  
when input voltage is 12 volts.  
The total control loop-gain can then be derived as  
follows:  
2
F
F
V
1
esr   x_over  o   
R :=  
G
V G  
pwm in  
F
F
esr  
V
m
o
   
  bg   
.
s. R C  
c o  
1
1
s. R. C  
s. R. C  
.
.
T(s) T  
o
R
R
L
c
2.  
.
.
1
s. R C  
s L. C  
1
c
o
o
when  
R
o
o
F
< F  
< F  
esr x_over  
o
V
bg   
T
:= G G  
V R⋅  
pwm in  
o
m
V
o
www.semtech.com  
2005 Semtech Corp.  
11  
SC2602L  
POWER MANAGEMENT  
Step 1. Output filter corner frequency  
Applications Information (Cont.)  
or  
F
= 2.516 KHz  
o
2
F
F
V
1
o   x_over  o   
Step 2. ESR zero frequency:  
R :=  
G
V G  
pwm in  
F
F
V
esr    
  bg   
m
o
F
= 7.958 KHz  
esr  
when  
Step 3. Check the following condition:  
F
< F < F  
o x_over  
esr  
(5) The compensation capacitor is determined by choos-  
ing the compensator zero to be about one fifth of the  
output filter corner frequency:  
F
sw  
5
F
<
esr  
Which is satisfied in this case.  
F
o
F
zero  
5
Step 4. Choose crossover frequency and calculate  
compensator R:  
1
C
2 . . R . F  
π
F
20 KHz  
x_over =  
zero  
(6) The final step is to generate the Bode plot, either by  
using the simulation model in Fig. 2 or using the equa-  
tions provided here with Mathcad. The phase margin  
can then be checked using the Bode plot. Usually, this  
design procedure ensures a healthy phase margin.  
(7) An additional capacitor should be reserved at the  
compensation pin to ground to have another high fre-  
quency pole.  
R
=
4.8 K  
Step 5. Calculate the compensator C:  
C
= 65.886 nF  
Step 6. Generate Bode plot and check the phase mar-  
gin. In this case, the phase margin is about 85oC that  
ensures the loop stability.  
An example is given below to demonstrate the proce-  
dure introduced above. The parameters of the power  
supply are given as :  
The parameters of the power supply are given as :  
V
V
I
12.V  
3.3.V  
12.A  
in  
o
o
F
200.KHz  
sw  
L
C
4.  
µH  
.
1200µF  
o
.
0.02 Ω  
R
V
V
c
0.8.V  
1.V  
bg  
ramp  
1.8.mA  
V
G
m
www.semtech.com  
2005 Semtech Corp.  
12  
SC2602L  
POWER MANAGEMENT  
Applications Information (Cont.)  
Loop Gain Mag (dB)  
100  
50  
mag( i)  
0
50  
3
.
1 10  
0.01  
0.1  
1
10  
100  
F
i
kHz  
Loop Gain Phase (Degree)  
0
45  
phase( i)  
90  
135  
180  
3
.
1 10  
0.01  
0.1  
1
10  
100  
F
i
kHz  
Bode plot of the control loop  
www.semtech.com  
2005 Semtech Corp.  
13  
SC2602L  
POWER MANAGEMENT  
Outline Drawing - S0-14  
DIMENSIONS  
INCHES MILLIMETERS  
MIN NOM MAX MIN NOM MAX  
A
DIM  
A
D
E
e
-
-
-
-
-
-
-
-
-
-
.053  
.069 1.35  
.010 0.10  
.065 1.25  
.020 0.31  
.010 0.17  
1.75  
0.25  
1.65  
0.51  
0.25  
N
A1 .004  
A2 .049  
2X  
E/2  
b
c
D
.012  
.007  
.337 .341 .344 8.55 8.65 8.75  
E1 .150 .154 .157 3.80 3.90 4.00  
E1  
E
e
h
L
.236 BSC  
6.00 BSC  
1.27 BSC  
.050 BSC  
-
-
.010  
.020 0.25  
0.50  
1
2
3
ccc C  
.016 .028 .041 0.40 0.72 1.04  
B
(.041)  
14  
-
.004  
.010  
.008  
(1.04)  
14  
-
0.10  
0.25  
0.20  
L1  
N
01  
aaa  
bbb  
ccc  
2X N/2 TIPS  
0°  
8°  
0°  
8°  
D
aaa  
C
h
A2 A  
SEATING  
PLANE  
h
C
A1  
A-B D  
H
bxN  
bbb  
C
c
GAGE  
PLANE  
0.25  
L
01  
(L1)  
SEE DETAIL A  
DETAIL A  
SIDE VIEW  
NOTES:  
1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (ANGLES IN DEGREES).  
2. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE  
-H-  
3. DIMENSIONS "E1" AND "D" DO NOT INCLUDE MOLD FLASH, PROTRUSIONS  
OR GATE BURRS.  
4. REFERENCE JEDEC STD MS-012, VARIATION AB.  
Land Pattern - S0-14  
X
DIMENSIONS  
DIM  
INCHES  
(.205)  
.118  
.050  
.024  
MILLIMETERS  
(5.20)  
3.00  
1.27  
0.60  
2.20  
7.40  
C
G
P
X
Y
Z
(C)  
G
Y
Z
.087  
.291  
P
NOTES:  
1. THIS LAND PATERN IS FOR REFERENCE PURPOSES ONLY.  
CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR  
COMPANY'S MANUFACTURING GUIDELINES ARE MET.  
2. REFERENCE IPC-SM-782A, RLP NO. 302A.  
Contact Information  
Semtech Corporation  
Power Management Products Division  
200 Flynn Road, Camarillo, CA 93012  
Phone: (805)498-2111 FAX (805)498-3804  
www.semtech.com  
2005 Semtech Corp.  
14  

相关型号:

SC2602STR

Switching Controller, Voltage-mode, 220kHz Switching Freq-Max, PDSO14, SOIC-14
SEMTECH

SC2602STRT

Synchronous Voltage Mode Controller for Distributed Power Supply Applications
SEMTECH

SC2602_0411

Synchronous Voltage Mode Controller for Distributed Power Supply Applications
SEMTECH

SC2603

Simple PWM Boost Controller
SEMTECH

SC2603

Triacs Bidirectional Triode Thyristors
MOTOROLA

SC2603A

Simple PWM Boost Converter In Small SOT23-6 Package
SEMTECH

SC2603AEVB

Simple PWM Boost Converter In Small SOT23-6 Package
SEMTECH

SC2603ASKTRT

Simple PWM Boost Converter In Small SOT23-6 Package
SEMTECH

SC2603EVB

Simple PWM Boost Controller
SEMTECH

SC2603SKTRT

Simple PWM Boost Controller
SEMTECH

SC2604

Simple PWM Boost Controller with Input Disconnect FET Drive
SEMTECH

SC2604EVB

Simple PWM Boost Controller with Input Disconnect FET Drive
SEMTECH