SGM6611C [SGMICRO]

12.6V, 7A Fully-Integrated Synchronous Boost Converter;
SGM6611C
型号: SGM6611C
厂家: Shengbang Microelectronics Co, Ltd    Shengbang Microelectronics Co, Ltd
描述:

12.6V, 7A Fully-Integrated Synchronous Boost Converter

文件: 总20页 (文件大小:973K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SGM6611C  
12.6V, 7A Fully-Integrated  
Synchronous Boost Converter  
GENERAL DESCRIPTION  
FEATURES  
The SGM6611C is a fully-integrated synchronous Boost  
converter. The 2.7V to 12V operating input voltage is  
suitable for single-cell or two-cell Li-Ion/Polymer  
batteries. This device is capable of providing 7A  
continuous switch current and an output voltage range  
of 4.5V to 12.6V.  
2.7V to 12V Input Voltage Range  
4.5V to 12.6V Output Voltage Range  
Up to 90% Efficiency  
(VIN = 3.3V, VOUT = 9V and IOUT = 1.5A)  
Adjustable Peak Current Limit up to 9.5A for  
High Pulse Current  
The SGM6611C has two operation modes, the pulse  
width modulation (PWM) mode and pulse frequency  
modulation (PFM). The PWM mode is applied at  
moderate to heavy load. The PFM mode is applied at  
light load to improve the efficiency. The protection  
features include output over-voltage protection at 13.2V,  
cycle-by-cycle over-current protection and thermal  
shutdown. The device also involves the functions of  
4ms built-in soft-start and adjustable switch peak  
current limit.  
1.1MHz Fixed Switching Frequency (PWM Mode)  
4ms Built-in Soft-Start  
PFM Operation Mode at Light Load  
13.2V Internal Output Over-Voltage Protection  
Cycle-by-Cycle Over-Current Protection  
Thermal Shutdown  
Available in a Green TQFN-2×2.5-11L Package  
APPLICATIONS  
The SGM6611C is available in a Green TQFN-2×2.5-  
11L package.  
Portable POS Machine  
Bluetooth Speaker  
E-Cigarette  
Fast-Charging Power Bank  
TYPICAL APPLICATION  
C4  
BOOT  
L
VIN  
VOUT  
VOUT  
GND  
SW  
C1  
(CIN)  
C2  
(COUT  
)
VIN  
EN  
R1  
R2  
SGM6611C  
ON  
OFF  
C6  
FB  
COMP  
VCC  
ILIM  
R5  
C5  
R4  
(RILIM  
C3  
)
Figure 1. Typical Application Circuit  
SG Micro Corp  
www.sg-micro.com  
DECEMBER2022REV. B.2  
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
PACKAGE/ORDERING INFORMATION  
SPECIFIED  
TEMPERATURE  
RANGE  
PACKAGE  
DESCRIPTION  
ORDERING  
NUMBER  
PACKAGE  
MARKING  
PACKING  
OPTION  
MODEL  
6611C  
XXXXX  
SGM6611C  
TQFN-2×2.5-11L  
SGM6611CYTQV11G/TR  
Tape and Reel, 3000  
-40to +85℃  
MARKING INFORMATION  
NOTE: XXXXX = Date Code, Trace Code and Vendor Code.  
X X X X X  
Vendor Code  
Trace Code  
Date Code - Year  
Green (RoHS & HSF): SG Micro Corp defines "Green" to mean Pb-Free (RoHS compatible) and free of halogen substances. If  
you have additional comments or questions, please contact your SGMICRO representative directly.  
OVERSTRESS CAUTION  
ABSOLUTE MAXIMUM RATINGS  
Stresses beyond those listed in Absolute Maximum Ratings  
may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods  
may affect reliability. Functional operation of the device at any  
conditions beyond those indicated in the Recommended  
Operating Conditions section is not implied.  
BOOT Voltage ........................................... -0.3V to VSW + 6V  
VIN, SW, VOUT Voltages................................ -0.3V to 14.5V  
EN, VCC, COMP, ILIM, FB Voltages.................... -0.3V to 6V  
SW Node (Transient: 10ns) ............................... -2V to 16.5V  
Package Thermal Resistance  
TQFN-2×2.5-11L, θJA ................................................. 60/W  
Junction Temperature .................................................+150℃  
Storage Temperature Range........................-65to +150℃  
Lead Temperature (Soldering, 10s) ............................+260℃  
ESD Susceptibility  
ESD SENSITIVITY CAUTION  
This integrated circuit can be damaged if ESD protections are  
not considered carefully. SGMICRO recommends that all  
integrated circuits be handled with appropriate precautions.  
Failureto observe proper handlingand installation procedures  
can cause damage. ESD damage can range from subtle  
performance degradation tocomplete device failure. Precision  
integrated circuits may be more susceptible to damage  
because even small parametric changes could cause the  
device not to meet the published specifications.  
HBM.............................................................................1500V  
CDM ............................................................................1000V  
RECOMMENDED OPERATING CONDITIONS  
Input Voltage Range ............................................2.7V to 12V  
Output Voltage Range ......................................4.5V to 12.6V  
Inductance, Effective Value, L...................... 0.47μH to 2.2μH  
Input Capacitance, Effective Value, CIN ............... 10μF (MIN)  
Output Capacitance, Effective Value, COUT ...10μF to 1000μF  
Operating Junction Temperature Range......-40to +125℃  
Operating Ambient Temperature Range.........-40to +85℃  
DISCLAIMER  
SG Micro Corp reserves the right to make any change in  
circuit design, or specifications without prior notice.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
2
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
PIN CONFIGURATION  
(TOP VIEW)  
SW  
NC  
1
2
3
4
10  
9
BOOT  
VIN  
11  
VCC  
FB  
8
ILIM  
EN  
5
6
COMP  
7
GND  
VOUT  
TQFN-2×2.5-11L  
PIN DESCRIPTION  
PIN  
1
NAME  
NC  
I/O  
I
FUNCTION  
No Connection.  
Output of the Internal Regulator. The VCC pin connects a ceramic capacitor (> 1.0μF) to  
ground.  
2
VCC  
FB  
O
I
3
Feedback Output Pin.  
Output of the Internal Error Amplifier. Connect a loop compensation network between COMP  
pin and the GND pin.  
4
COMP  
GND  
VOUT  
EN  
O
-
5
Ground.  
6
O
I
Boost Converter Output.  
Enable Logic Input. Logic high makes the circuit enabled, and logic low makes it disabled  
and the device enters shutdown mode.  
7
Adjustable Switch Peak Current Limit. Connect an external resistor between ILIM pin and the  
GND pin.  
8
ILIM  
VIN  
O
I
9
IC Power Supply Input.  
Power Supply for High-side MOSFET Gate Driver. Connect a capacitor between the BOOT  
pin and the SW pin.  
10  
11  
BOOT  
SW  
O
I
Switching Node Pin. Drain connection of low-side power MOSFET and source connection of  
the high-side power MOSFET.  
NOTE: I = input, O = output.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
3
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
ELECTRICAL CHARACTERISTICS  
(VIN = 2.7V to 5.5V, VOUT = 9V. Full = -40to +85, typical values are at TJ = +25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
TEMP  
MIN  
TYP  
MAX  
UNITS  
Power Supply  
Input Voltage Range  
VIN  
Full  
+25  
Full  
2.7  
12  
2.62  
2.7  
V
V
2.5  
2.5  
2.4  
100  
5
VIN rising  
VIN falling  
VIN Under-Voltage Lockout Threshold  
VIN_UVLO  
+25℃  
+25℃  
+25℃  
+25℃  
+25℃  
Full  
VIN Under-Voltage Lockout Hysteresis  
VCC Regulation  
VIN_HYS  
VCC  
VCC_UVLO VCC falling  
mV  
V
ICC = 5mA, VIN = 8V  
VCC Under-Voltage Lockout Threshold  
2.1  
0.23  
0.23  
90  
V
0.4  
0.5  
130  
160  
1.1  
1.5  
VIN Pin  
IC enabled, no load, VFB = 1.3V,  
OUT = 12V  
Operating Quiescent Current  
IQ  
μA  
μA  
V
+25℃  
Full  
VOUT Pin  
90  
0.6  
0.6  
+25℃  
Full  
Shutdown Current into the VIN Pin  
ISHDN  
VIN = 3.6V, IC disabled  
Output  
Output Voltage Range  
VOUT  
VREF  
Full  
Full  
4.5  
12.6  
V
V
PWM mode  
PFM mode  
VFB = 1.2V  
VOUT rising  
1.181  
1.205  
1.207  
10  
1.229  
Reference Voltage at the FB Pin  
+25℃  
+25℃  
Full  
Leakage Current into the FB Pin  
IFB_LKG  
VOVP  
100  
nA  
V
Output Over-Voltage Protection Threshold  
Output Over-Voltage Protection Hysteresis  
Soft Startup Time  
12.95  
13.2  
0.15  
4
13.55  
VOVP_HYS VOUT falling below VOVP  
V
+25℃  
+25℃  
tSS  
COUT (effective) = 47μF, IOUT = 0A  
ms  
Error Amplifier  
COMP Pin Sink Current  
ISINK  
ISOURCE  
VCCLPH  
VCCLPL  
GEA  
VFB = VREF + 100mV, VCOMP = 1.2V  
VFB = VREF - 100mV, VCOMP = 1.2V  
VFB = 1.1V, RILIM = 127kΩ  
VFB = 1.3V, RILIM = 127kΩ  
VCOMP = 1.2V  
120  
15  
μA  
μA  
V
+25℃  
+25℃  
+25℃  
+25℃  
+25℃  
COMP Pin Source Current  
High Clamp Voltage at the COMP Pin  
Low Clamp Voltage at the COMP Pin  
Error Amplifier Transconductance  
Power Switch  
2
0.4  
135  
V
μS  
27  
27  
15  
15  
34  
44  
20  
26  
+25℃  
Full  
High-side MOSFET On-Resistance  
V
CC = 5V  
mΩ  
mΩ  
RDS(ON)  
+25℃  
Full  
Low-side MOSFET On-Resistance  
Switching Frequency  
VCC = 5V  
980  
930  
1100  
1100  
120  
1270  
1320  
+25℃  
Full  
Switching Frequency  
fSW  
kHz  
ns  
Minimum On-Time  
tON_MIN  
VCC = 5V  
+25℃  
Current Limit  
Switch Peak Current Limit  
Reference Voltage at the ILIM Pin  
ILIM  
RILIM = 127kΩ  
8.5  
9.5  
10.8  
A
V
+25℃  
+25℃  
VILIM  
1.205  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
4
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
ELECTRICAL CHARACTERISTICS (continued)  
(VIN = 2.7V to 5.5V, VOUT = 9V. Full = -40to +85, typical values are at TJ = +25, unless otherwise noted.)  
PARAMETER  
SYMBOL  
CONDITIONS  
TEMP  
MIN  
TYP  
MAX  
UNITS  
EN Logic Input  
EN Logic High Threshold  
EN Logic Low Threshold  
EN Pull-Down Resistor  
VENH  
VENL  
REN  
Full  
Full  
1.2  
V
V
0.4  
800  
kΩ  
+25℃  
Thermal Shutdown  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSD  
TJ rising  
TJ falling below TSD  
160  
20  
TSD_HYS  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
5
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
TYPICAL PERFORMANCE CHARACTERISTICS  
At TJ = +25, VIN = 3.6V, VOUT = 9V, unless otherwise noted.  
Efficiency vs. Output Current  
Efficiency vs. Output Current  
VOUT = 9V  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
VIN = 3.6V  
VIN = 3V  
VOUT = 5V  
V
V
IN = 3.6V  
IN = 4.2V  
V
V
OUT = 9V  
OUT = 12V  
0.0001  
0.001  
0.01  
0.1  
1
10  
0.0001  
0.001  
0.01  
0.1  
1
10  
Output Current (A)  
Output Current (A)  
Current Limit vs. Setting Resistance  
Reference Voltage vs. Temperature  
12  
10  
8
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
1.180  
6
4
2
120 160 200 240 280 320 360 400  
-40 -20  
0
20 40 60 80 100 120 140  
Resistance (kΩ)  
Temperature ()  
Shutdown Current vs. Temperature  
Quiescent Current vs. Temperature  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
160  
140  
120  
100  
80  
60  
40  
20  
0
-40  
-20  
0
20  
40  
60  
80  
100  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature ()  
Temperature ()  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
6
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = +25, VIN = 3.6V, VOUT = 9V, unless otherwise noted.  
Switching Waveforms in DCM  
Switching Waveforms in CCM  
AC Coupled  
AC Coupled  
VOUT  
VOUT  
IL  
IL  
VSW  
VSW  
VIN = 3.6V, VOUT = 9V, IOUT = 2A  
VIN = 3.6V, VOUT = 9V, IOUT = 200mA  
Time (500ns/div)  
Time (500ns/div)  
Load Transient Response  
Line Transient Response  
IOUT  
VIN  
AC Coupled  
AC Coupled  
VOUT  
VOUT  
VIN = 3.6V, VOUT = 9V, IOUT = 1A to 2A  
VIN = 3.3V to 4V, VOUT = 9V, IOUT = 1A  
Time (500μs/div)  
Time (500μs/div)  
Startup Waveforms  
Shutdown Waveforms  
VEN  
VEN  
VOUT  
VOUT  
IL  
IL  
Time (1ms/div)  
Time (200μs/div)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
7
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
At TJ = +25, VIN = 3.6V, VOUT = 9V, unless otherwise noted.  
Switching Waveforms in PFM Mode  
Maximum Output Current vs. Input Voltage  
5.0  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
AC Coupled  
VOUT = 5V  
V
V
OUT = 9V  
OUT = 12V  
VOUT  
IL  
VSW  
VIN = 3.6V, VOUT = 9V, IOUT = 20mA  
Time (s/div)  
2.5  
3.0  
3.5  
4.0  
4.5  
Input Voltage (V)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
8
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
FUNCTIONAL BLOCK DIAGRAM  
L
CBOOT  
SW  
BST  
VIN  
VOUT  
CIN  
VREF  
VIN  
COUT  
Gate  
Drivers  
VCC  
VCC  
CL  
Regulator  
VOUT  
ILIM  
CVCC  
R4  
(RILIM  
)
CL  
PWM  
Control  
R1  
CLOCK  
ON  
Logic,  
FB  
Thermal Shutdown,  
OCP, OVP  
EN  
OFF  
R2  
VREF  
Soft-Start  
COMP  
RCOMP  
CCOMP  
GND  
Figure 2. Block Diagram  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
9
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
DETAILED DESCRIPTION  
The SGM6611C is a synchronous Boost converter with  
two integrated power FETs and is capable of delivering  
up to 9.5A (TYP) switch current. The device adopts the  
1.1MHz fixed frequency peak current mode control  
architecture to regulate the output voltage. The  
SGM6611C automatically operates in pulse frequency  
modulation (PFM) mode at light load to improve the  
efficiency. As the load current increases, the device  
enters PWM operation to provide a fixed switching  
frequency. The device can offer excellent line and load  
transient responses, in addition, the compensation  
network is configured externally which brings flexibility  
to applications with different output capacitor and  
inductor selections. The device also implements  
various protection features such as cycle-by-cycle  
current limit for abnormal load conditions, output  
over-voltage protection and thermal shutdown.  
pin and ground, and ILIM is the peak current limit.  
When ILIM is 9.5A (TYP), the value of the resistor is  
127k.  
Soft-Start  
The SGM6611C implements internal soft-start function  
of 4ms (TYP). When enabled, the device slowly ramps  
the reference voltage to prevent large inrush current  
during startup.  
Over-Voltage Protection (OVP)  
The device implements over-voltage protection to  
prevent the device from damage and protect the device  
connected to the output of SGM6611C. When the  
voltage present on the VOUT pin exceeds 13.2V (TYP),  
the device stops switching immediately to prevent the  
output voltage from rising. As the output voltage drops  
below 150mV (TYP) of hysteresis voltage that is lower  
than the OVP threshold, the device resumes operation.  
Enable and Disable  
The input voltage applied to SGM6611C needs to be  
higher than the maximum UVLO threshold of 2.5V and  
the EN pin voltage is higher than 1.2V to enable the  
device. Pulling the EN pin below 0.4V disables the  
device, where all internal blocks are turned off, and no  
voltage is present on VCC pin. While disabled, the  
device stops switching and enters shutdown mode with  
less than 1.1μA current consumed. VIN and VOUT are  
connected through the body diode of the high-side  
rectifier FET in the shutdown mode.  
Under-Voltage Lockout (UVLO)  
An under-voltage lockout (UVLO) circuit prevents the  
device from malfunctioning at low input voltage and the  
battery from excessive discharge. The SGM6611C has  
both VIN UVLO function and VCC UVLO function. It  
disables the device from switching when the falling  
voltage at the VIN pin trips the UVLO threshold VIN_UVLO  
which is typically 2.4V. The input UVLO function  
implements a 100mV hysteresis to prevent the false  
turn-on due to line voltage variations, where the device  
cannot be turned on until the input voltage increases to  
2.5V or higher. When the falling voltage at the VCC pin  
trips the UVLO threshold VCC_UVLO, typically 2.1V, the  
device is also disabled.  
,
Adjustable Peak Current Limit  
The peak current mode control provides inherent  
over-current protection as the device monitors the  
changes of inductor current. As the peak current  
reaches 9.5A (TYP), the device stops switching and  
turning off the low-side FET to stop inductor current to  
rise. The peak current limit threshold is programmable  
via a resistor connected on ILIM pin to ground. Use  
Equation below to calculate the desired current limit  
threshold.  
Thermal Shutdown  
A thermal shutdown function is implemented to prevent  
damage caused by excessive heat and power  
dissipation. Once a junction temperature of +160℃  
(TYP) is exceeded, the device is shut down. The device  
is released from shutdown automatically when the  
1.2×106  
RILIM  
(1)  
ILIM  
=
junction temperature decreases by 20.  
where RILIM is the resistor connected between the ILIM  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
10  
 
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
DETAILED DESCRIPTION (continued)  
amplifier reaches a voltage that is corresponds to  
Device Functional Modes  
I
LIM/10. The output of the error amplifier is clamped at  
this value and no longer decreases. The SGM6611C  
automatically adjusts the off-time in PFM mode to meet  
the load demand, and lower load current results in  
longer off-time. The output voltage is regulated to 0.2%  
higher than the nominal programmed output voltage at  
PFM mode. The SGM6611C is capable of achieving  
above 70% efficiency when the load current is less than  
1mA. Output voltage ripple is also lower in PFM mode  
since the peak inductor current is lower.  
Operation  
The SGM6611C adopts the fixed frequency pulse width  
modulation (PWM) mode in moderate to heavy load  
condition. At the start of each clock cycle, the low-side  
power FET is turned on to ramp up the inductor current  
until the inductor current reaches the level determined  
by the output of the internal error amplifier. When the  
current is reached, LS FET is turned off, and a dead  
time is issued which is used to prevent shoot-through.  
During the dead time, the inductor current flows  
through the body diode of the high-side FET. As the  
dead time ends, the high-side FET is turned on to ramp  
down the inductor current to replenish the output  
capacitor and deliver current to the load. This cycle  
repeats with a 1.1MHz switching frequency.  
VOUT  
PFM Mode at Light Load  
1.002 × VOUT_NOM  
PFM Mode  
In order to improve the light load efficiency, the  
SGM6611C implements PFM operation at light load. At  
light load, the internal error amplifier’s output decreases  
to lower the inductor current. As the current reaches  
zero during the low-side off-time, the high-side FET  
turns off till the next switching cycle starts. As the load  
current decreases further, the output of the error  
VOUT_NOM  
PWM Mode at Heavy Load  
Figure 3. Output Voltage in PWM Mode and PFM Mode  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
11  
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
APPLICATION INFORMATION  
The SGM6611C is capable of supporting up to 12.6V  
output voltage, while providing 9.5A (TYP) continuous  
switch current. The device automatically operates in  
PFM mode in light load. At medium to heavy load, the  
device switches to PWM operation. PFM mode  
provides high light load efficiency while PWM mode  
provides constant switching frequency. The fixed  
frequency peak current mode control offers excellent  
line and load transient responses. The external loop  
compensation enables design flexibility with various  
inductor and output capacitor combinations.  
Setting Peak Current Limit  
The peak current limit is programmed via an external  
resistor on ILIM pin. The resistor value can be  
calculated by Equation 2:  
1.2×106  
RILIM  
(2)  
ILIM  
=
where RILIM is the resistor connected between the ILIM  
pin and ground, and ILIM is the switching peak current  
limit.  
A standard 127kprovides the 9.5A typical current  
limit. Considering variation due to tolerance and  
temperature, the worst-case required peak current  
should be lower than the minimal current limit rating to  
ensure that the SGM6611C can regulate the output  
voltage. For Boost converter, the worst case occurs at  
the lowest VIN and the highest load current.  
Table 1. Design Parameters  
Design Parameters  
Input Voltage Range  
Output Voltage  
Example Values  
3.0V to 4.35V  
9V  
Output Voltage Ripple  
Output Current Rating  
Operating Frequency  
Operation Mode at Light Load  
100mV peak-to-peak  
1.5A  
1.1MHz  
PFM (SGM6611C)  
C4  
0.1μF  
L
1μH  
BOOT  
SW  
VOUT  
GND  
FB  
VOUT = 9V  
VIN = 3V to 4.35V  
C1 (CIN)  
22μF  
C2 (COUT  
3 × 22μF  
)
VIN  
EN  
R1  
681kΩ  
ON  
SGM6611C  
OFF  
R2  
107kΩ  
COMP  
VCC  
R5  
30kΩ  
ILIM  
C6  
C5  
4.7nF  
C3  
2.2μF  
R4 (RILIM  
127kΩ  
)
Figure 4. SGM6611C Single-Cell Li-Ion Battery to 9V/1.5A Output Converter  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
12  
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
APPLICATION INFORMATION (continued)  
efficiency.  
Setting Output Voltage  
The output voltage of SGM6611C is programmed by a  
resistive divider connected to FB pin. Use Equation  
below to program the output voltage. R1 is the top  
feedback resistor and R2 is the bottom feedback  
resistor. The recommended value for R2 should be less  
than 120kΩ.  
For Boost converter, the average inductor current is the  
average input current, Equation 4 is used to calculate  
the average inductor current:  
VOUT ×IOUT  
(4)  
IDC  
=
V ×η  
IN  
(VOUT - VREF )×R2  
where VOUT is the output voltage, IOUT is the output  
current, VIN is the input voltage, and η is the power  
conversion efficiency.  
(3)  
R1 =  
VREF  
Inductor Selection  
Use Equation 5 below to set the inductor current  
peak-to-peak ripple.  
Inductor is an essential element for DC/DC switch  
mode power supplies regardless of topology. Inductor  
serves as the energy storage element for power  
conversion. Inductance and inductor’s saturation  
current are the two most important criterions for  
inductor selection. For general rule of thumb, the  
selected inductance should provide a peak-to-peak  
ripple current that is around 30% of the average  
inductor current at full load and nominal input voltage.  
The average inductor current for a Boost converter is  
the input current. The SGM6611C is optimized to  
operate with inductor values between 0.47μH and  
2.2μH. Lower inductance part generally has smaller  
size while providing sufficient saturation current rating,  
and larger inductance provides lower peak-to-peak  
ripple current, which helps to maximize the output  
current delivery.  
1
IPP  
=
(5)  
1
1
L×(  
+
)× fSW  
VOUT - V  
V
IN  
IN  
where IPP is the inductor peak-to-peak ripple, L is the  
inductor value, fSW is the switching frequency, VOUT is  
the output voltage, and VIN is the input voltage.  
The peak inductor current is the sum of average current  
plus half of the peak-to-peak inductor current shown in  
Equation 6:  
IPP  
(6)  
ILPEAK = IDC  
+
2
The selected inductor should have the saturation  
current rating higher than the calculated peak current,  
and the calculated peak current should be lower than  
the peak current limit of SGM6611C.  
Equations 4 to 6 show the calculated key parameters  
for selecting the inductor. The selected inductor should  
meet the worst case that occurs at minimum input  
voltage and maximal load current. Margin should be  
added to cover inductance de-rating and conversion  
Inductor’s DCR, material type, DC/DC’s power FET  
resistance and switching speed affect the overall  
efficiency of the converter, therefore, careful inductor  
selection is critical to ensure good performance.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
13  
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
APPLICATION INFORMATION (continued)  
Table 2 lists the recommended inductors for SGM6611C.  
Table 2. Recommended Inductors  
L
(µH)  
DCR MAX  
(mΩ)  
Saturation Current/  
Heat Rating Current (A)  
Size MAX  
(L mm × W mm × H mm)  
Part Number  
Manufacturer  
HTTH25201T-1R0MSR  
74439344010  
1.0  
1.0  
1.5  
1.8  
1.8  
2.2  
2.2  
2.2  
29  
5.5  
5.0/5.0  
2.5 × 2.0 × 1.0  
6.65 × 6.45 × 3.0  
7.3 × 7.2 × 4.0  
9.5 × 8.7 × 3.0  
10.5 × 10.2 × 4.7  
7.3 × 7.2 × 4.0  
11.2 × 10.3 × 3.0  
7.4 × 6.8 × 5.0  
Cyntec  
Wurth-Elektronik  
Wurth-Elektronik  
Sumida  
27.5/12  
14.0/11.0  
9.4/9.3  
18/14  
744311150  
7.2  
CDMC8D28NP-1R8MC  
744325180  
12.6  
3.5  
Wurth-Elektronik  
Wurth-Elektronik  
Cyntec  
744311220  
12.5  
9.0  
13.0/9.0  
16/13  
PIMB103T-2R2MS  
PIMB065T-2R2MS  
12.5  
12/10.5  
Cyntec  
output voltage ripple and load transient response.  
Equation 7 is used to estimate the necessary  
capacitance to achieve the desired output voltage  
ripple, where ΔV is the maximum allowed ripple. Three  
22μF ceramic output capacitors are recommended for  
SGM6611C. Due to the DC de-rating effect of the  
ceramic capacitor, margin should be considered, where  
higher capacitance improves the transient response.  
Input Capacitor Selection  
Boost converter’s input capacitor has continuous  
current throughout the entire switching cycle. A 10µF  
ceramic capacitor is recommended to place between  
the VIN pin and GND pin of SGM6611C as close as  
possible. For the applications where the SGM6611C is  
located far away from the input source, a 47µF or  
higher capacitance capacitor is recommended to damp  
the wiring harness’s inductance.  
(VOUT - VIN_MIN )×IOUT  
VRIPPLE _DIS  
=
(7)  
The VCC pin is the output of the internal regulator, a  
1µF ceramic capacitor is recommended to place on the  
VCC pin.  
VOUT × fSW ×COUT  
ESR of the output capacitor affects the output ripple.  
Use Equation 8 to set the output ripple caused by ESR.  
Output Capacitor Selection  
The output capacitors of Boost converter dictate the  
VRIPPLE _ESR = ILPEAK ×RESR  
(8)  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
14  
 
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
APPLICATION INFORMATION (continued)  
S
Loop Stability  
The compensation network of SGM6611C is completed  
externally to improve design flexibility. The SGM6611C  
implements a transconductance error amplifier, where  
(1+  
)
GEA ×REA × VREF  
2× π× fCOMZ  
(14)  
GC(S) =  
×
S
S
VOUT  
(1+  
)(1+  
)
2× π× fCOMP1  
2× π× fCOMP2  
where GEA is the amplifier’s transconductance, REA is  
the amplifier’s output resistance, VREF is the reference  
the COMP pin is the output of the internal error  
amplifier. A Type-II compensation network consisting of  
R5, C5 and C6 connected on COMP pin is used to  
configure the loop response of SGM6611C.  
voltage at the FB pin, VOUT is the output voltage, fCOMP1  
,
fCOMP2 are the pole's frequency of the compensation  
network, and fCOMZ is the zero's frequency of the  
compensation network.  
The power stage small signal loop response for peak  
current control can be shown by Equation 9.  
Once the error amplifier and power stage’s poles and  
zeros are determined, the compensation network’s  
component value can be designed. The designed loop  
crossover frequency fC should be within 1/5 of the  
RHPZ frequency (fRHPZ) or 1/10 of the switching  
frequency. Higher crossover frequency could improve  
the transient response. However, the crossover  
frequency should be designed to avoid instability.  
S
S
(1+  
)(1-  
)
RO ×(1- D)  
2×RSENSE  
2 × π× fESRZ  
2× π× fRHPZ  
GPS(S) =  
×
(9)  
S
1+  
2× π× fP  
where D is the switching duty cycle, RO is the output  
load resistance, RSENSE is the equivalent internal  
current sense resistor, which is 0.08. fP is the pole's  
frequency, fESRZ is the zero's frequency, and fRHPZ is the  
right-half-plane-zero's frequency.  
With a selected fC, Equation 15 can be used to  
calculate the required R5.  
The D, fP, fESRZ and fRHPZ can be set by following  
equations.  
2π× VOUT ×RSENSE × fC ×COUT  
(15)  
(16)  
(17)  
R5 =  
(1- D)× VREF ×GEA  
V ×η  
IN  
(10)  
D = 1-  
Use Equation 16 to calculate the value of C5.  
VOUT  
RO ×COUT  
where η is the power conversion efficiency.  
C5 =  
2R5  
2
fP =  
(11)  
Use Equation 17 to calculate the value of C6.  
2π×RO ×COUT  
RESR ×COUT  
where COUT is effective capacitance of the output  
C6 =  
R5  
capacitor.  
For application with only ceramic capacitor, or if the  
calculated value of C6 is less than 10pF, C6 is not  
needed.  
1
2π×RESR ×COUT  
fESRZ  
=
(12)  
where RESR is the equivalent series resistance of the  
output capacitor.  
To measure good loop compensation design, greater  
than 45° of phase margin and greater than 10dB gain  
margin could provide good loop stability and avoid  
output voltage ringing during load and line transient.  
RO ×(1- D)2  
(13)  
fRHPZ  
=
2π×L  
Equation 14 shows the small signal transfer function of  
the compensation network.  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
15  
 
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
APPLICATION INFORMATION (continued)  
For Boost converter, the output capacitor’s current loop  
from VOUT pin back to the GND pin of the device  
should be as small as possible. Use small traces and  
small copper area of all traces connected to the SW  
node to minimize SW node vias and to prevent  
radiation of high-frequency noise. It is also  
recommended to place a ground plane below the  
DC/DC to minimize inter plane coupling.  
Layout Guidelines  
In addition to component selection, layout is a critical  
step to ensure the performance of any switch mode  
power supplies. Poor layout could result in system  
instability, EMI failure, and device damage. Thus, place  
the inductor, input and output capacitors as close to the  
IC as possible, and use wide and short traces for  
current carrying traces to minimize PCB inductance.  
Figure 5. Layout Example  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
16  
12.6V, 7A Fully-Integrated  
SGM6611C  
Synchronous Boost Converter  
REVISION HISTORY  
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.  
DECEMBER 2022 ‒ REV.B.1 to REV.B.2  
Page  
Updated Maximum Output Current vs. Input Voltage in Typical Performance Characteristics section..................................................................8  
JULY 2022 ‒ REV.B to REV.B.1  
Page  
Added SW Node in Absolute Maximum Ratings ................................................................................................................................................2  
Updated Detailed Description and Application Information sections............................................................................................10, 11, 12, 13, 14  
OCTOBER 2021 ‒ REV.A.4 to REV.B  
Page  
Updated the Enable and Disable section ...........................................................................................................................................................10  
Added the Figure 1. Layout Example.................................................................................................................................................................16  
APRIL 2021 ‒ REV.A.3 to REV.A.4  
Page  
Updated Loop Stability section ..........................................................................................................................................................................15  
MARCH 2021 ‒ REV.A.2 to REV.A.3  
Page  
Updated Package Outline Dimensions section ..................................................................................................................................................17  
FEBRUARY 2021 ‒ REV.A.1 to REV.A.2  
Page  
Updated Marking Information section...................................................................................................................................................................2  
NOVEMBER 2019 ‒ REV.A to REV.A.1  
Page  
Updated the curve of Output Current vs. Input Voltage........................................................................................................................................8  
Changes from Original (AUGUST 2019) to REV.A  
Page  
Changed from product preview to production data.............................................................................................................................................All  
SG Micro Corp  
www.sg-micro.com  
DECEMBER 2022  
17  
PACKAGE INFORMATION  
PACKAGE OUTLINE DIMENSIONS  
TQFN-2×2.5-11L  
E
L1  
L1  
N10  
N7  
L
N6  
N5  
e1  
N11  
b2  
D
b1  
b
(0.18)  
N4  
N1  
PIN 1#  
b
1/2 e  
e
BOTTOM VIEW  
TOP VIEW  
2.40  
0.40  
1.00  
1.00  
2.90  
0.38  
A
1.00  
0.25  
0.70  
1.80  
0.35  
A1  
A2  
0.55  
SIDE VIEW  
0.50  
0.25  
RECOMMENDED LAND PATTERN (Unit: mm)  
Dimensions In Millimeters  
Symbol  
MIN  
0.700  
0.000  
MOD  
0.750  
MAX  
0.800  
0.050  
A
A1  
A2  
D
0.020  
0.203 REF  
2.500  
2.400  
1.900  
2.600  
2.100  
E
2.000  
e
0.500 BSC  
0.700 BSC  
0.250  
e1  
b
0.200  
0.300  
0.950  
0.300  
0.750  
0.300  
0.400  
1.050  
0.400  
0.850  
b1  
b2  
L
0.350  
1.000  
0.350  
L1  
0.800  
NOTE: This drawing is subject to change without notice.  
SG Micro Corp  
TX00150.001  
www.sg-micro.com  
PACKAGE INFORMATION  
TAPE AND REEL INFORMATION  
REEL DIMENSIONS  
TAPE DIMENSIONS  
P2  
P0  
W
Q2  
Q4  
Q2  
Q4  
Q2  
Q4  
Q1  
Q3  
Q1  
Q3  
Q1  
Q3  
B0  
Reel Diameter  
P1  
A0  
K0  
Reel Width (W1)  
DIRECTION OF FEED  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF TAPE AND REEL  
Reel Width  
Reel  
Diameter  
A0  
B0  
K0  
P0  
P1  
P2  
W
Pin1  
Package Type  
W1  
(mm)  
(mm) (mm) (mm) (mm) (mm) (mm) (mm) Quadrant  
TQFN-2×2.5-11L  
7″  
9.5  
2.20  
2.70  
0.95  
4.0  
4.0  
2.0  
8.0  
Q2  
SG Micro Corp  
TX10000.000  
www.sg-micro.com  
PACKAGE INFORMATION  
CARTON BOX DIMENSIONS  
NOTE: The picture is only for reference. Please make the object as the standard.  
KEY PARAMETER LIST OF CARTON BOX  
Length  
(mm)  
Width  
(mm)  
Height  
(mm)  
Reel Type  
Pizza/Carton  
7″ (Option)  
7″  
368  
442  
227  
410  
224  
224  
8
18  
SG Micro Corp  
www.sg-micro.com  
TX20000.000  

相关型号:

SGM6612A

20V, 10A Fully-Integrated Synchronous Boost Converter with Load Disconnect Control
SGMICRO

SGM6613A

28.5V, 7A Fully-Integrated Synchronous Boost Converter
SGMICRO

SGM6614

18V Output, 15A, Fully Integrated Synchronous Boost Converter
SGMICRO

SGM6623

4.4A, Miniature Boost Converter
SGMICRO

SGM7001

Pressure independent & temperature compensated
ETC

SGM7002

Pressure independent & temperature compensated
ETC

SGM7004

Pressure independent & temperature compensated
ETC

SGM7006

Pressure independent & temperature compensated
ETC

SGM706

Low-Cost, Microprocessor Supervisory Circuit
SGMICRO

SGM706-JYS8G/TR

Low-Cost, Microprocessor Supervisory Circuit
SGMICRO

SGM706-LYS8G/TR

Low-Cost, Microprocessor Supervisory Circuit
SGMICRO

SGM706-MYS8G/TR

Low-Cost, Microprocessor Supervisory Circuit
SGMICRO