C8051F041-GQR [SILICON]

Microcontroller, 8-Bit, FLASH, 25MHz, CMOS, PQFP64, TQFP-64;
C8051F041-GQR
型号: C8051F041-GQR
厂家: SILICON    SILICON
描述:

Microcontroller, 8-Bit, FLASH, 25MHz, CMOS, PQFP64, TQFP-64

微控制器和处理器
文件: 总328页 (文件大小:2112K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
C8051F040/1/2/3/4/5/6/7  
Mixed Signal ISP Flash MCU Family  
High-Speed 8051 µC Core  
Analog Peripherals  
-
10 or 12-Bit SAR ADC  
-
Pipelined instruction architecture; executes 70% of  
instruction set in 1 or 2 system clocks  
Up to 25 MIPS throughput with 25 MHz clock  
20 vectored interrupt sources  
12-bit (C8051F040/1) or  
10-bit (C8051F042/3/4/5/6/7) resolution  
± 1 LSB INL, guaranteed no missing codes  
Programmable throughput up to 100 ksps  
13 External Inputs; single-ended or differential  
SW programmable high voltage difference amplifier  
Programmable amplifier gain: 16, 8, 4, 2, 1, 0.5  
Data-dependent windowed interrupt generator  
Built-in temperature sensor  
-
-
Memory  
-
4352 bytes internal data RAM (4 k + 256)  
-
64 kB (C8051F040/1/2/3/4/5)  
or 32 kB (C8051F046/7) Flash; in-system program-  
mable in 512-byte sectors  
-
8-bit SAR ADC (C8051F040/1/2/3 only)  
-
External 64 kB data memory interface (programma-  
ble multiplexed or non-multiplexed modes)  
Programmable throughput up to 500 ksps  
8 External Inputs, single-ended or differential  
Programmable amplifier gain: 4, 2, 1, 0.5  
Digital Peripherals  
-
-
Two 12-bit DACs (C8051F040/1/2/3 only)  
-
-
-
8 byte-wide port I/O (C8051F040/2/4/6); 5 V tolerant  
4 byte-wide port I/O (C8051F041/3/5/7); 5 V tolerant  
Bosch Controller Area Network (CAN 2.0B), hard-  
ware SMBus™ (I2C™ Compatible), SPI™, and  
two UART serial ports available concurrently  
Programmable 16-bit counter/timer array with  
6 capture/compare modules  
Can synchronize outputs to timers for jitter-free wave-  
form generation  
Three Analog Comparators  
Programmable hysteresis/response time  
-
-
Voltage Reference  
Precision VDD Monitor/Brown-Out Detector  
-
On-Chip JTAG Debug & Boundary Scan  
-
-
-
On-chip debug circuitry facilitates full- speed, non-  
intrusive in-circuit/in-system debugging  
Provides breakpoints, single-stepping, watchpoints,  
stack monitor; inspect/modify memory and registers  
Superior performance to emulation systems using  
ICE-chips, target pods, and sockets  
-
-
5 general purpose 16-bit counter/timers  
Dedicated watch-dog timer; bi-directional reset pin  
Clock Sources  
-
Internal calibrated programmable oscillator: 3 to  
24.5 MHz  
External oscillator: crystal, RC, C, or clock  
Real-time clock mode using Timer 2, 3, 4, or PCA  
-
-
-
-
IEEE1149.1 compliant boundary scan  
Complete development kit  
Supply Voltage: 2.7 to 3.6 V  
Multiple power saving sleep and shutdown modes  
100-Pin and 64-Pin TQFP Packages Available  
-
-
Temperature Range: –40 to +85 °C  
ANALOG PERIPHERALS  
DIGITAL I/O  
CAN  
2.0B  
TEMP  
SENSOR  
Port 0  
12/10-bit  
100 ksps  
Port 1  
Port 2  
Port 3  
UART0  
UART1  
SMBus  
SPI Bus  
PCA  
PGA  
ADC  
VREF  
8-bit  
HV  
DIFF  
AMP  
Port 4  
Port 5  
Port 6  
Timer 0  
Timer 1  
Timer 2  
Timer 3  
Timer 4  
500 ksps  
PGA  
ADC  
12-Bit  
DAC  
+
-
+
-
+
-
12-Bit  
DAC  
Port 7  
C8051F041/2/3  
ONLY  
VOLTAGE COMPARATORS  
64 pin 100 pin  
HIGH-SPEED CONTROLLER CORE  
8051 CPU  
(25 MIPS)  
20  
64 kB/32 kB  
ISP FLASH  
DEBUG  
4352 B  
SRAM  
CLOCK  
CIRCUIT  
JTAG  
SANITY  
CONTROL  
INTERRUPTS  
CIRCUITRY  
Rev. 1.5 12/05  
Copyright © 2005 by Silicon Laboratories  
C8051F04x  
C8051F040/1/2/3/4/5/6/7  
2
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table of Contents  
1. System Overview.................................................................................................... 19  
1.1. CIP-51™ Microcontroller Core.......................................................................... 25  
1.1.1. Fully 8051 Compatible.............................................................................. 25  
1.1.2. Improved Throughput............................................................................... 25  
1.1.3. Additional Features .................................................................................. 26  
1.2. On-Chip Memory............................................................................................... 27  
1.3. JTAG Debug and Boundary Scan..................................................................... 28  
1.4. Programmable Digital I/O and Crossbar........................................................... 29  
1.5. Programmable Counter Array........................................................................... 30  
1.6. Controller Area Network.................................................................................... 31  
1.7. Serial Ports ....................................................................................................... 31  
1.8. 12/10-Bit Analog to Digital Converter................................................................ 32  
1.9. 8-Bit Analog to Digital Converter (C8051F040/1/2/3 Only)............................... 33  
1.10.Comparators and DACs ................................................................................... 34  
2. Absolute Maximum Ratings .................................................................................. 35  
3. Global DC Electrical Characteristic ...................................................................... 36  
4. Pinout and Package Definitions............................................................................ 37  
5. 12-Bit ADC (ADC0, C8051F040/1 Only)................................................................. 47  
5.1. Analog Multiplexer and PGA............................................................................. 47  
5.1.1. Analog Input Configuration....................................................................... 48  
5.2. High-Voltage Difference Amplifier..................................................................... 52  
5.3. ADC Modes of Operation.................................................................................. 54  
5.3.1. Starting a Conversion............................................................................... 54  
5.3.2. Tracking Modes........................................................................................ 54  
5.3.3. Settling Time Requirements..................................................................... 56  
5.4. ADC0 Programmable Window Detector ........................................................... 62  
6. 10-Bit ADC (ADC0, C8051F042/3/4/5/6/7 Only)..................................................... 69  
6.1. Analog Multiplexer and PGA............................................................................. 69  
6.1.1. Analog Input Configuration....................................................................... 70  
6.2. High-Voltage Difference Amplifier..................................................................... 74  
6.3. ADC Modes of Operation.................................................................................. 76  
6.3.1. Starting a Conversion............................................................................... 76  
6.3.2. Tracking Modes........................................................................................ 76  
6.3.3. Settling Time Requirements..................................................................... 78  
6.4. ADC0 Programmable Window Detector ........................................................... 84  
7. 8-Bit ADC (ADC2, C8051F040/1/2/3 Only)............................................................. 91  
7.1. Analog Multiplexer and PGA............................................................................. 91  
7.2. ADC2 Modes of Operation................................................................................ 92  
7.2.1. Starting a Conversion............................................................................... 92  
7.2.2. Tracking Modes........................................................................................ 92  
7.2.3. Settling Time Requirements..................................................................... 94  
7.3. ADC2 Programmable Window Detector ......................................................... 100  
7.3.1. Window Detector in Single-Ended Mode................................................ 100  
Rev. 1.5  
3
C8051F040/1/2/3/4/5/6/7  
7.3.2. Window Detector in Differential Mode.................................................... 102  
8. DACs, 12-Bit Voltage Mode (C8051F040/1/2/3 Only) ......................................... 105  
8.1. DAC Output Scheduling.................................................................................. 106  
8.1.1. Update Output On-Demand ................................................................... 106  
8.1.2. Update Output Based on Timer Overflow .............................................. 106  
8.2. DAC Output Scaling/Justification.................................................................... 106  
9. Voltage Reference (C8051F040/2/4/6)................................................................. 113  
10.Voltage Reference (C8051F041/3/5/7)................................................................. 117  
11.Comparators ......................................................................................................... 121  
11.1.Comparator Inputs.......................................................................................... 123  
12.CIP-51 Microcontroller ......................................................................................... 127  
12.1.Instruction Set................................................................................................. 129  
12.1.1.Instruction and CPU Timing ................................................................... 129  
12.1.2.MOVX Instruction and Program Memory ............................................... 129  
12.2.Memory Organization ..................................................................................... 133  
12.2.1.Program Memory ................................................................................... 133  
12.2.2.Data Memory.......................................................................................... 134  
12.2.3.General Purpose Registers.................................................................... 134  
12.2.4.Bit Addressable Locations...................................................................... 134  
12.2.5.Stack ..................................................................................................... 134  
12.2.6.Special Function Registers .................................................................... 135  
12.2.7.Register Descriptions............................................................................. 150  
12.3.Interrupt Handler............................................................................................. 153  
12.3.1.MCU Interrupt Sources and Vectors ...................................................... 153  
12.3.2.External Interrupts.................................................................................. 154  
12.3.3.Interrupt Priorities................................................................................... 156  
12.3.4.Interrupt Latency .................................................................................... 156  
12.3.5.Interrupt Register Descriptions............................................................... 156  
12.4.Power Management Modes............................................................................ 163  
12.4.1.Idle Mode ............................................................................................... 163  
12.4.2.Stop Mode.............................................................................................. 164  
13.Reset Sources....................................................................................................... 165  
13.1.Power-On Reset............................................................................................. 166  
13.2.Power-Fail Reset............................................................................................ 166  
13.3.External Reset................................................................................................ 166  
13.4.Missing Clock Detector Reset ........................................................................ 167  
13.5.Comparator0 Reset ........................................................................................ 167  
13.6.External CNVSTR0 Pin Reset........................................................................ 167  
13.7.Watchdog Timer Reset................................................................................... 167  
13.7.1.Enable/Reset WDT ................................................................................ 168  
13.7.2.Disable WDT.......................................................................................... 168  
13.7.3.Disable WDT Lockout ............................................................................ 168  
13.7.4.Setting WDT Interval.............................................................................. 168  
14.Oscillators............................................................................................................. 173  
14.1.Programmable Internal Oscillator................................................................... 173  
4
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
14.2.External Oscillator Drive Circuit...................................................................... 175  
14.3.System Clock Selection.................................................................................. 175  
14.4.External Crystal Example ............................................................................... 177  
14.5.External RC Example ..................................................................................... 178  
14.6.External Capacitor Example........................................................................... 178  
15.Flash Memory ....................................................................................................... 179  
15.1.Programming The Flash Memory................................................................... 179  
15.2.Non-volatile Data Storage .............................................................................. 180  
15.3.Security Options ............................................................................................. 180  
15.3.1.Summary of Flash Security Options....................................................... 183  
16.External Data Memory Interface and On-Chip XRAM........................................ 187  
16.1.Accessing XRAM............................................................................................ 187  
16.1.1.16-Bit MOVX Example ........................................................................... 187  
16.1.2.8-Bit MOVX Example ............................................................................. 187  
16.2.Configuring the External Memory Interface.................................................... 188  
16.3.Port Selection and Configuration.................................................................... 188  
16.4.Multiplexed and Non-multiplexed Selection.................................................... 191  
16.4.1.Multiplexed Configuration....................................................................... 191  
16.4.2.Non-multiplexed Configuration............................................................... 192  
16.5.Memory Mode Selection................................................................................. 193  
16.5.1.Internal XRAM Only ............................................................................... 193  
16.5.2.Split Mode without Bank Select.............................................................. 193  
16.5.3.Split Mode with Bank Select................................................................... 194  
16.5.4.External Only.......................................................................................... 194  
16.6.Timing .......................................................................................................... 194  
16.6.1.Non-multiplexed Mode ........................................................................... 196  
16.6.2.Multiplexed Mode................................................................................... 199  
17.Port Input/Output.................................................................................................. 203  
17.1.Ports 0 through 3 and the Priority Crossbar Decoder..................................... 204  
17.1.1.Crossbar Pin Assignment and Allocation............................................... 205  
17.1.2.Configuring the Output Modes of the Port Pins...................................... 206  
17.1.3.Configuring Port Pins as Digital Inputs................................................... 206  
17.1.4.Weak Pullups ......................................................................................... 207  
17.1.5.Configuring Port 1, 2, and 3 Pins as Analog Inputs ............................... 207  
17.1.6.External Memory Interface Pin Assignments ......................................... 208  
17.1.7.Crossbar Pin Assignment Example........................................................ 210  
17.2.Ports 4 through 7............................................................................................ 220  
17.2.1.Configuring Ports Which are Not Pinned Out......................................... 221  
17.2.2.Configuring the Output Modes of the Port Pins...................................... 221  
17.2.3.Configuring Port Pins as Digital Inputs................................................... 221  
17.2.4.Weak Pullups ......................................................................................... 221  
17.2.5.External Memory Interface..................................................................... 221  
18.Controller Area Network (CAN0)......................................................................... 227  
18.1.Bosch CAN Controller Operation.................................................................... 228  
18.1.1.CAN Controller Timing ........................................................................... 229  
Rev. 1.5  
5
C8051F040/1/2/3/4/5/6/7  
18.1.2.Example Timing Calculation for 1 Mbit/Sec Communication ................. 229  
18.2.CAN Registers................................................................................................ 231  
18.2.1.CAN Controller Protocol Registers......................................................... 231  
18.2.2.Message Object Interface Registers...................................................... 231  
18.2.3.Message Handler Registers................................................................... 232  
18.2.4.CIP-51 MCU Special Function Registers............................................... 232  
18.2.5.Using CAN0ADR, CAN0DATH, and CANDATL to Access CAN Registers .  
232  
18.2.6.CAN0ADR Autoincrement Feature ........................................................ 232  
2
19.System Management BUS/I C BUS (SMBUS0).................................................. 239  
19.1.Supporting Documents................................................................................... 240  
19.2.SMBus Protocol.............................................................................................. 241  
19.2.1.Arbitration............................................................................................... 241  
19.2.2.Clock Low Extension.............................................................................. 242  
19.2.3.SCL Low Timeout................................................................................... 242  
19.2.4.SCL High (SMBus Free) Timeout .......................................................... 242  
19.3.SMBus Transfer Modes.................................................................................. 242  
19.3.1.Master Transmitter Mode....................................................................... 242  
19.3.2.Master Receiver Mode........................................................................... 243  
19.3.3.Slave Transmitter Mode......................................................................... 243  
19.3.4.Slave Receiver Mode............................................................................. 244  
19.4.SMBus Special Function Registers ................................................................ 245  
19.4.1.Control Register ..................................................................................... 245  
19.4.2.Clock Rate Register ............................................................................... 248  
19.4.3.Data Register ......................................................................................... 249  
19.4.4.Address Register.................................................................................... 249  
19.4.5.Status Register....................................................................................... 250  
20.Enhanced Serial Peripheral Interface (SPI0)...................................................... 255  
20.1.Signal Descriptions......................................................................................... 256  
20.1.1.Master Out, Slave In (MOSI).................................................................. 256  
20.1.2.Master In, Slave Out (MISO).................................................................. 256  
20.1.3.Serial Clock (SCK) ................................................................................. 256  
20.1.4.Slave Select (NSS) ................................................................................ 256  
20.2.SPI0 Master Mode Operation......................................................................... 257  
20.3.SPI0 Slave Mode Operation........................................................................... 259  
20.4.SPI0 Interrupt Sources ................................................................................... 259  
20.5.Serial Clock Timing......................................................................................... 260  
20.6.SPI Special Function Registers...................................................................... 261  
21.UART0.................................................................................................................... 265  
21.1.UART0 Operational Modes ............................................................................ 266  
21.1.1.Mode 0: Synchronous Mode .................................................................. 266  
21.1.2.Mode 1: 8-Bit UART, Variable Baud Rate.............................................. 267  
21.1.3.Mode 2: 9-Bit UART, Fixed Baud Rate .................................................. 269  
21.1.4.Mode 3: 9-Bit UART, Variable Baud Rate.............................................. 270  
21.2.Multiprocessor Communications .................................................................... 270  
6
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
21.3.Configuration of a Masked Address ............................................................... 271  
21.4.Broadcast Addressing .................................................................................... 271  
21.5.Frame and Transmission Error Detection....................................................... 272  
22.UART1.................................................................................................................... 277  
22.1.Enhanced Baud Rate Generation................................................................... 278  
22.2.Operational Modes ......................................................................................... 279  
22.2.1.8-Bit UART............................................................................................. 279  
22.2.2.9-Bit UART............................................................................................. 280  
22.3.Multiprocessor Communications .................................................................... 281  
23.Timers.................................................................................................................... 287  
23.1.Timer 0 and Timer 1 ....................................................................................... 287  
23.1.1.Mode 0: 13-bit Counter/Timer ................................................................ 287  
23.1.2.Mode 1: 16-bit Counter/Timer ................................................................ 288  
23.1.3.Mode 2: 8-bit Counter/Timer with Auto-Reload...................................... 289  
23.1.4.Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)................................. 290  
23.2.Timer 2, Timer 3, and Timer 4........................................................................ 295  
23.2.1.Configuring Timer 2, 3, and 4 to Count Down........................................ 295  
23.2.2.Capture Mode ........................................................................................ 296  
23.2.3.Auto-Reload Mode ................................................................................. 297  
23.2.4.Toggle Output Mode .............................................................................. 298  
24.Programmable Counter Array ............................................................................. 303  
24.1.PCA Counter/Timer ........................................................................................ 304  
24.2.Capture/Compare Modules ............................................................................ 305  
24.2.1.Edge-triggered Capture Mode................................................................ 306  
24.2.2.Software Timer (Compare) Mode........................................................... 307  
24.2.3.High-Speed Output Mode ...................................................................... 308  
24.2.4.Frequency Output Mode ........................................................................ 309  
24.2.5.8-Bit Pulse Width Modulator Mode......................................................... 310  
24.2.6.16-Bit Pulse Width Modulator Mode....................................................... 311  
24.3.Register Descriptions for PCA0...................................................................... 312  
25.JTAG (IEEE 1149.1) .............................................................................................. 317  
25.1.Boundary Scan............................................................................................... 318  
25.1.1.EXTEST Instruction................................................................................ 319  
25.1.2.SAMPLE Instruction............................................................................... 319  
25.1.3.BYPASS Instruction ............................................................................... 319  
25.1.4.IDCODE Instruction................................................................................ 319  
25.2.Flash Programming Commands..................................................................... 321  
25.3.Debug Support ............................................................................................... 324  
Document Change List............................................................................................. 325  
Contact Information.................................................................................................. 326  
Rev. 1.5  
7
C8051F040/1/2/3/4/5/6/7  
NOTES:  
8
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
List of Figures  
1. System Overview  
Figure 1.1. C8051F040/2 Block Diagram................................................................. 21  
Figure 1.2. C8051F041/3 Block Diagram................................................................. 22  
Figure 1.3. C8051F044/6 Block Diagram................................................................. 23  
Figure 1.4. C8051F045/7 Block Diagram................................................................. 24  
Figure 1.5. Comparison of Peak MCU Execution Speeds ....................................... 25  
Figure 1.6. On-Board Clock and Reset .................................................................... 26  
Figure 1.7. On-Chip Memory Map............................................................................ 27  
Figure 1.8. Development/In-System Debug Diagram............................................... 28  
Figure 1.9. Digital Crossbar Diagram....................................................................... 29  
Figure 1.10. PCA Block Diagram.............................................................................. 30  
Figure 1.11. CAN Controller Diagram....................................................................... 31  
Figure 1.12. 10/12-Bit ADC Block Diagram.............................................................. 32  
Figure 1.13. 8-Bit ADC Diagram............................................................................... 33  
Figure 1.14. Comparator and DAC Diagram ............................................................ 34  
2. Absolute Maximum Ratings  
3. Global DC Electrical Characteristic  
4. Pinout and Package Definitions  
Figure 4.1. TQFP-100 Pinout Diagram..................................................................... 43  
Figure 4.2. TQFP-100 Package Drawing ................................................................. 44  
Figure 4.3. TQFP-64 Pinout Diagram....................................................................... 45  
Figure 4.4. TQFP-64 Package Drawing ................................................................... 46  
5. 12-Bit ADC (ADC0, C8051F040/1 Only)  
Figure 5.1. 12-Bit ADC0 Functional Block Diagram ................................................. 47  
Figure 5.2. Analog Input Diagram ............................................................................ 48  
Figure 5.3. High Voltage Difference Amplifier Functional Diagram.......................... 52  
Figure 5.4. 12-Bit ADC Track and Conversion Example Timing .............................. 55  
Figure 5.5. ADC0 Equivalent Input Circuits.............................................................. 56  
Figure 5.6. Temperature Sensor Transfer Function................................................. 57  
Figure 5.7. ADC0 Data Word Example .................................................................... 61  
Figure 5.8. 12-Bit ADC0 Window Interrupt Example:  
Right Justified Single-Ended Data ........................................................ 63  
Figure 5.9. 12-Bit ADC0 Window Interrupt Example:   
Right Justified Differential Data............................................................. 64  
Figure 5.10. 12-Bit ADC0 Window Interrupt Example:   
Left Justified Single-Ended Data........................................................... 65  
Figure 5.11. 12-Bit ADC0 Window Interrupt Example: Left Justified Differential Data .  
66  
6. 10-Bit ADC (ADC0, C8051F042/3/4/5/6/7 Only)  
Figure 6.1. 10-Bit ADC0 Functional Block Diagram ................................................. 69  
Figure 6.2. Analog Input Diagram ............................................................................ 70  
Figure 6.3. High Voltage Difference Amplifier Functional Diagram.......................... 74  
Figure 6.4. 10-Bit ADC Track and Conversion Example Timing .............................. 77  
Rev. 1.5  
9
C8051F040/1/2/3/4/5/6/7  
Figure 6.5. ADC0 Equivalent Input Circuits.............................................................. 78  
Figure 6.6. Temperature Sensor Transfer Function................................................. 79  
Figure 6.7. ADC0 Data Word Example .................................................................... 83  
Figure 6.8. 10-Bit ADC0 Window Interrupt Example:   
Right Justified Single-Ended Data ........................................................ 85  
Figure 6.9. 10-Bit ADC0 Window Interrupt Example:   
Right Justified Differential Data............................................................. 86  
Figure 6.10. 10-Bit ADC0 Window Interrupt Example:   
Left Justified Single-Ended Data........................................................... 87  
Figure 6.11. 10-Bit ADC0 Window Interrupt Example: Left Justified Differential Data .  
88  
7. 8-Bit ADC (ADC2, C8051F040/1/2/3 Only)  
Figure 7.1. ADC2 Functional Block Diagram............................................................ 91  
Figure 7.2. ADC2 Track and Conversion Example Timing....................................... 93  
Figure 7.3. ADC2 Equivalent Input Circuit................................................................ 94  
Figure 7.4. ADC2 Data Word Example .................................................................... 99  
Figure 7.5. ADC Window Compare Examples, Single-Ended Mode...................... 101  
Figure 7.6. ADC Window Compare Examples, Differential Mode.......................... 102  
8. DACs, 12-Bit Voltage Mode (C8051F040/1/2/3 Only)  
Figure 8.1. DAC Functional Block Diagram............................................................ 105  
9. Voltage Reference (C8051F040/2/4/6)  
Figure 9.1. Voltage Reference Functional Block Diagram ..................................... 113  
10.Voltage Reference (C8051F041/3/5/7)  
Figure 10.1. Voltage Reference Functional Block Diagram.................................... 117  
11.Comparators  
Figure 11.1. Comparator Functional Block Diagram .............................................. 121  
Figure 11.2. Comparator Hysteresis Plot ............................................................... 122  
12.CIP-51 Microcontroller  
Figure 12.1. CIP-51 Block Diagram........................................................................ 127  
Figure 12.2. Memory Map ...................................................................................... 133  
Figure 12.3. SFR Page Stack................................................................................. 136  
Figure 12.4. SFR Page Stack While Using SFR Page 0x0F To Access Port 5...... 137  
Figure 12.5. SFR Page Stack After ADC2 Window Comparator Interrupt Occurs. 138  
Figure 12.6. SFR Page Stack Upon PCA Interrupt Occurring During an ADC2 ISR....  
139  
Figure 12.7. SFR Page Stack Upon Return From PCA Interrupt ........................... 140  
Figure 12.8. SFR Page Stack Upon Return From ADC2 Window Interrupt ........... 141  
13.Reset Sources  
Figure 13.1. Reset Sources.................................................................................... 165  
Figure 13.2. Reset Timing ...................................................................................... 166  
14.Oscillators  
Figure 14.1. Oscillator Diagram.............................................................................. 173  
Figure 14.2. 32.768 kHz External Crystal Example................................................ 177  
15.Flash Memory  
Figure 15.1. Flash Program Memory Map and Security Bytes............................... 181  
10  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
16.External Data Memory Interface and On-Chip XRAM  
Figure 16.1. Multiplexed Configuration Example.................................................... 191  
Figure 16.2. Non-multiplexed Configuration Example............................................ 192  
Figure 16.3. EMIF Operating Modes ...................................................................... 193  
Figure 16.4. Non-multiplexed 16-bit MOVX Timing................................................ 196  
Figure 16.5. Non-multiplexed 8-bit MOVX without Bank Select Timing ................. 197  
Figure 16.6. Non-multiplexed 8-bit MOVX with Bank Select Timing ...................... 198  
Figure 16.7. Multiplexed 16-bit MOVX Timing........................................................ 199  
Figure 16.8. Multiplexed 8-bit MOVX without Bank Select Timing ......................... 200  
Figure 16.9. Multiplexed 8-bit MOVX with Bank Select Timing .............................. 201  
17.Port Input/Output  
Figure 17.1. Port I/O Cell Block Diagram ............................................................... 203  
Figure 17.2. Port I/O Functional Block Diagram..................................................... 204  
Figure 17.3. Priority Crossbar Decode Table ......................................................... 205  
Figure 17.4. Priority Crossbar Decode Table ......................................................... 208  
Figure 17.5. Priority Crossbar Decode Table ......................................................... 209  
Figure 17.6. Crossbar Example:............................................................................. 211  
18.Controller Area Network (CAN0)  
Figure 18.1. Typical CAN Bus Configuration.......................................................... 227  
Figure 18.2. CAN Controller Diagram..................................................................... 228  
Figure 18.3. Four Segments of a CAN Bit Time..................................................... 229  
Figure 18.4. CAN0DATH: CAN Data Access Register High Byte .......................... 234  
2
19.System Management BUS/I C BUS (SMBUS0)  
Figure 19.1. SMBus0 Block Diagram ..................................................................... 239  
Figure 19.2. Typical SMBus Configuration............................................................. 240  
Figure 19.3. SMBus Transaction............................................................................ 241  
Figure 19.4. Typical Master Transmitter Sequence................................................ 242  
Figure 19.5. Typical Master Receiver Sequence.................................................... 243  
Figure 19.6. Typical Slave Transmitter Sequence.................................................. 243  
Figure 19.7. Typical Slave Receiver Sequence...................................................... 244  
20.Enhanced Serial Peripheral Interface (SPI0)  
Figure 20.1. SPI Block Diagram ............................................................................. 255  
Figure 20.2. Multiple-Master Mode Connection Diagram....................................... 258  
Figure 20.3. 3-Wire Single Master and Slave Mode Connection Diagram............. 258  
Figure 20.4. 4-Wire Single Master and Slave Mode Connection Diagram............. 258  
Figure 20.5. Data/Clock Timing Diagram ............................................................... 260  
21.UART0  
Figure 21.1. UART0 Block Diagram ....................................................................... 265  
Figure 21.2. UART0 Mode 0 Timing Diagram ........................................................ 266  
Figure 21.3. UART0 Mode 0 Interconnect.............................................................. 267  
Figure 21.4. UART0 Mode 1 Timing Diagram ........................................................ 267  
Figure 21.5. UART0 Modes 2 and 3 Timing Diagram ............................................ 269  
Figure 21.6. UART0 Modes 1, 2, and 3 Interconnect Diagram .............................. 269  
Figure 21.7. UART Multi-Processor Mode Interconnect Diagram .......................... 272  
Rev. 1.5  
11  
C8051F040/1/2/3/4/5/6/7  
22.UART1  
Figure 22.1. UART1 Block Diagram ....................................................................... 277  
Figure 22.2. UART1 Baud Rate Logic.................................................................... 278  
Figure 22.3. UART Interconnect Diagram .............................................................. 279  
Figure 22.4. 8-Bit UART Timing Diagram............................................................... 279  
Figure 22.5. 9-Bit UART Timing Diagram............................................................... 280  
Figure 22.6. UART Multi-Processor Mode Interconnect Diagram .......................... 281  
23.Timers  
Figure 23.1. T0 Mode 0 Block Diagram.................................................................. 288  
Figure 23.2. T0 Mode 2 Block Diagram.................................................................. 289  
Figure 23.3. T0 Mode 3 Block Diagram.................................................................. 290  
Figure 23.4. Tn Capture Mode Block Diagram....................................................... 296  
Figure 23.5. Tn Auto-reload Mode and Toggle Mode Block Diagram .................... 297  
24.Programmable Counter Array  
Figure 24.1. PCA Block Diagram............................................................................ 303  
Figure 24.2. PCA Counter/Timer Block Diagram.................................................... 304  
Figure 24.3. PCA Interrupt Block Diagram ............................................................. 305  
Figure 24.4. PCA Capture Mode Diagram.............................................................. 306  
Figure 24.5. PCA Software Timer Mode Diagram.................................................. 307  
Figure 24.6. PCA High-Speed Output Mode Diagram............................................ 308  
Figure 24.7. PCA Frequency Output Mode ............................................................ 309  
Figure 24.8. PCA 8-Bit PWM Mode Diagram ......................................................... 310  
Figure 24.9. PCA 16-Bit PWM Mode...................................................................... 311  
25.JTAG (IEEE 1149.1)  
12  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
List of Tables  
1. System Overview  
Table 1.1. Product Selection Guide ......................................................................... 20  
2. Absolute Maximum Ratings  
Table 2.1. Absolute Maximum Ratings* .................................................................. 35  
3. Global DC Electrical Characteristic  
Table 3.1. Global DC Electrical Characteristics ....................................................... 36  
4. Pinout and Package Definitions  
Table 4.1. Pin Definitions ......................................................................................... 37  
5. 12-Bit ADC (ADC0, C8051F040/1 Only)  
Table 5.1. AMUX Selection Chart (AMX0AD3–0 and AMX0CF3–0 bits) ................ 50  
Table 5.2. 12-Bit ADC0 Electrical Characteristics ................................................... 67  
Table 5.3. High-Voltage Difference Amplifier Electrical Characteristics .................. 68  
6. 10-Bit ADC (ADC0, C8051F042/3/4/5/6/7 Only)  
Table 6.1. AMUX Selection Chart (AMX0AD3-0 and AMX0CF3-0 bits) .................. 72  
Table 6.2. 10-Bit ADC0 Electrical Characteristics ................................................... 89  
Table 6.3. High-Voltage Difference Amplifier Electrical Characteristics .................. 90  
7. 8-Bit ADC (ADC2, C8051F040/1/2/3 Only)  
Table 7.1. AMUX Selection Chart (AMX2AD2-0 and AMX2CF3-0 bits) .................. 96  
Table 7.2. ADC2 Electrical Characteristics ............................................................ 103  
8. DACs, 12-Bit Voltage Mode (C8051F040/1/2/3 Only)  
Table 8.1. DAC Electrical Characteristics .............................................................. 111  
9. Voltage Reference (C8051F040/2/4/6)  
Table 9.1. Voltage Reference Electrical Characteristics ....................................... 115  
10.Voltage Reference (C8051F041/3/5/7)  
Table 10.1. Voltage Reference Electrical Characteristics ..................................... 119  
11.Comparators  
Table 11.1. Comparator Electrical Characteristics ................................................ 126  
12.CIP-51 Microcontroller  
Table 12.1. CIP-51 Instruction Set Summary ........................................................ 129  
Table 12.2. Special Function Register (SFR) Memory Map .................................. 144  
Table 12.3. Special Function Registers ................................................................. 146  
Table 12.4. Interrupt Summary .............................................................................. 154  
13.Reset Sources  
Table 13.1. Reset Electrical Characteristics .......................................................... 171  
14.Oscillators  
Table 14.1. Internal Oscillator Electrical Characteristics ....................................... 175  
15.Flash Memory  
Table 15.1. Flash Electrical Characteristics .......................................................... 180  
16.External Data Memory Interface and On-Chip XRAM  
Table 16.1. AC Parameters for External Memory Interface ................................... 202  
17.Port Input/Output  
Table 17.1. Port I/O DC Electrical Characteristics ................................................. 203  
Rev. 1.5  
13  
C8051F040/1/2/3/4/5/6/7  
18.Controller Area Network (CAN0)  
Table 18.1. Background System Information ........................................................ 229  
Table 18.2. CAN Register Index and Reset Values .............................................. 233  
2
19.System Management BUS/I C BUS (SMBUS0)  
Table 19.1. SMB0STA Status Codes and States .................................................. 252  
20.Enhanced Serial Peripheral Interface (SPI0)  
21.UART0  
Table 21.1. UART0 Modes .................................................................................... 266  
Table 21.2. Oscillator Frequencies for Standard Baud Rates ............................... 273  
22.UART1  
Table 22.1. Timer Settings for Standard Baud Rates Using the Internal 24.5 MHz Os-  
cillator ................................................................................................. 284  
Table 22.2. Timer Settings for Standard Baud Rates Using an External 25.0 MHz Os-  
cillator ................................................................................................. 284  
Table 22.3. Timer Settings for Standard Baud Rates Using an External 22.1184 MHz  
Oscillator ............................................................................................. 285  
Table 22.4. Timer Settings for Standard Baud Rates Using an External 18.432 MHz  
Oscillator ............................................................................................. 285  
Table 22.5. Timer Settings for Standard Baud Rates Using an External 11.0592 MHz  
Oscillator ............................................................................................. 286  
Table 22.6. Timer Settings for Standard Baud Rates Using an External 3.6864 MHz  
Oscillator ............................................................................................. 286  
23.Timers  
24.Programmable Counter Array  
Table 24.1. PCA Timebase Input Options ............................................................. 304  
Table 24.2. PCA0CPM Register Settings for PCA Capture/Compare Modules .... 305  
25.JTAG (IEEE 1149.1)  
Table 25.1. Boundary Data Register Bit Definitions .............................................. 318  
14  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
List of Registers  
SFR Definition 5.1. AMX0CF: AMUX0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
SFR Definition 5.2. AMX0SL: AMUX0 Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . 49  
SFR Definition 5.3. AMX0PRT: Port 3 Pin Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
SFR Definition 5.4. HVA0CN: High Voltage Difference Amplifier Control . . . . . . . . . . . 53  
SFR Definition 5.5. ADC0CF: ADC0 Configuration Register . . . . . . . . . . . . . . . . . . . . 58  
SFR Definition 5.6. ADC0CN: ADC0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
SFR Definition 5.7. ADC0H: ADC0 Data Word MSB . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
SFR Definition 5.8. ADC0L: ADC0 Data Word LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
SFR Definition 5.9. ADC0GTH: ADC0 Greater-Than Data High Byte . . . . . . . . . . . . . 62  
SFR Definition 5.10. ADC0GTL: ADC0 Greater-Than Data Low Byte . . . . . . . . . . . . . 62  
SFR Definition 5.11. ADC0LTH: ADC0 Less-Than Data High Byte . . . . . . . . . . . . . . . 62  
SFR Definition 5.12. ADC0LTL: ADC0 Less-Than Data Low Byte . . . . . . . . . . . . . . . . 63  
SFR Definition 6.1. AMX0CF: AMUX0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
SFR Definition 6.2. AMX0SL: AMUX0 Channel Select . . . . . . . . . . . . . . . . . . . . . . . . 71  
SFR Definition 6.3. AMX0PRT: Port 3 Pin Selection . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
SFR Definition 6.4. HVA0CN: High Voltage Difference Amplifier Control . . . . . . . . . . . 75  
SFR Definition 6.5. ADC0CF: ADC0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
SFR Definition 6.6. ADC0CN: ADC0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
SFR Definition 6.7. ADC0H: ADC0 Data Word MSB . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
SFR Definition 6.8. ADC0L: ADC0 Data Word LSB . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
SFR Definition 6.9. ADC0GTH: ADC0 Greater-Than Data High Byte . . . . . . . . . . . . . 84  
SFR Definition 6.10. ADC0GTL: ADC0 Greater-Than Data Low Byte . . . . . . . . . . . . . 84  
SFR Definition 6.11. ADC0LTH: ADC0 Less-Than Data High Byte . . . . . . . . . . . . . . . 84  
SFR Definition 6.12. ADC0LTL: ADC0 Less-Than Data Low Byte . . . . . . . . . . . . . . . . 85  
SFR Definition 7.1. AMX2CF: AMUX2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
SFR Definition 7.2. AMX2SL: AMUX2 Channel Select . . . . . . . . . . . . . . . . . . . . . . . . . 95  
SFR Definition 7.3. ADC2CF: ADC2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
SFR Definition 7.4. ADC2CN: ADC2 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
SFR Definition 7.5. ADC2: ADC2 Data Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
SFR Definition 7.6. ADC2GT: ADC2 Greater-Than Data . . . . . . . . . . . . . . . . . . . . . . 100  
SFR Definition 7.7. ADC2LT: ADC2 Less-Than Data . . . . . . . . . . . . . . . . . . . . . . . . . 100  
SFR Definition 8.1. DAC0H: DAC0 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
SFR Definition 8.2. DAC0L: DAC0 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
SFR Definition 8.3. DAC0CN: DAC0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
SFR Definition 8.4. DAC1H: DAC1 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
SFR Definition 8.5. DAC1L: DAC1 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
SFR Definition 8.6. DAC1CN: DAC1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
SFR Definition 9.1. REF0CN: Reference Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
SFR Definition 10.1. REF0CN: Reference Control . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
SFR Definition 11.1. CPTnCN: Comparator 0, 1, and 2 Control . . . . . . . . . . . . . . . . . 124  
SFR Definition 11.2. CPTnMD: Comparator Mode Selection . . . . . . . . . . . . . . . . . . . 125  
SFR Definition 12.1. SFR Page Control Register: SFRPGCN . . . . . . . . . . . . . . . . . . 142  
SFR Definition 12.2. SFR Page Register: SFRPAGE . . . . . . . . . . . . . . . . . . . . . . . . . 142  
Rev. 1.5  
15  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.3. SFR Next Register: SFRNEXT . . . . . . . . . . . . . . . . . . . . . . . . . 143  
SFR Definition 12.4. SFR Last Register: SFRLAST . . . . . . . . . . . . . . . . . . . . . . . . . . 143  
SFR Definition 12.5. SP: Stack Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
SFR Definition 12.6. DPL: Data Pointer Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
SFR Definition 12.7. DPH: Data Pointer High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . 150  
SFR Definition 12.8. PSW: Program Status Word . . . . . . . . . . . . . . . . . . . . . . . . . . . 151  
SFR Definition 12.9. ACC: Accumulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
SFR Definition 12.10. B: B Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152  
SFR Definition 12.11. IE: Interrupt Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157  
SFR Definition 12.12. IP: Interrupt Priority . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158  
SFR Definition 12.13. EIE1: Extended Interrupt Enable 1 . . . . . . . . . . . . . . . . . . . . . 159  
SFR Definition 12.14. EIE2: Extended Interrupt Enable 2 . . . . . . . . . . . . . . . . . . . . . 160  
SFR Definition 12.15. EIP1: Extended Interrupt Priority 1 . . . . . . . . . . . . . . . . . . . . . 161  
SFR Definition 12.16. EIP2: Extended Interrupt Priority 2 . . . . . . . . . . . . . . . . . . . . . 162  
SFR Definition 12.18. PCON: Power Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164  
SFR Definition 13.1. WDTCN: Watchdog Timer Control . . . . . . . . . . . . . . . . . . . . . . 169  
SFR Definition 13.2. RSTSRC: Reset Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170  
SFR Definition 14.1. OSCICL: Internal Oscillator Calibration . . . . . . . . . . . . . . . . . . . 174  
SFR Definition 14.2. OSCICN: Internal Oscillator Control . . . . . . . . . . . . . . . . . . . . . 174  
SFR Definition 14.3. CLKSEL: Oscillator Clock Selection . . . . . . . . . . . . . . . . . . . . . 175  
SFR Definition 14.4. OSCXCN: External Oscillator Control . . . . . . . . . . . . . . . . . . . . 176  
SFR Definition 15.1. FLACL: Flash Access Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184  
SFR Definition 15.2. FLSCL: Flash Memory Control . . . . . . . . . . . . . . . . . . . . . . . . . 184  
SFR Definition 15.3. PSCTL: Program Store Read/Write Control . . . . . . . . . . . . . . . 185  
SFR Definition 16.1. EMI0CN: External Memory Interface Control . . . . . . . . . . . . . . 189  
SFR Definition 16.2. EMI0CF: External Memory Configuration . . . . . . . . . . . . . . . . . 190  
SFR Definition 16.3. EMI0TC: External Memory Timing Control . . . . . . . . . . . . . . . . 195  
SFR Definition 17.1. XBR0: Port I/O Crossbar Register 0 . . . . . . . . . . . . . . . . . . . . . 212  
SFR Definition 17.2. XBR1: Port I/O Crossbar Register 1 . . . . . . . . . . . . . . . . . . . . . 213  
SFR Definition 17.3. XBR2: Port I/O Crossbar Register 2 . . . . . . . . . . . . . . . . . . . . . 214  
SFR Definition 17.4. XBR3: Port I/O Crossbar Register 3 . . . . . . . . . . . . . . . . . . . . . 215  
SFR Definition 17.5. P0: Port0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215  
SFR Definition 17.6. P0MDOUT: Port0 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . 216  
SFR Definition 17.7. P1: Port1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216  
SFR Definition 17.8. P1MDIN: Port1 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217  
SFR Definition 17.9. P1MDOUT: Port1 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . . 217  
SFR Definition 17.10. P2: Port2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
SFR Definition 17.11. P2MDIN: Port2 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 218  
SFR Definition 17.12. P2MDOUT: Port2 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 219  
SFR Definition 17.13. P3: Port3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219  
SFR Definition 17.14. P3MDIN: Port3 Input Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 220  
SFR Definition 17.15. P3MDOUT: Port3 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 220  
SFR Definition 17.16. P4: Port4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222  
SFR Definition 17.17. P4MDOUT: Port4 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 222  
SFR Definition 17.18. P5: Port5 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223  
16  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.19. P5MDOUT: Port5 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 223  
SFR Definition 17.20. P6: Port6 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224  
SFR Definition 17.21. P6MDOUT: Port6 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 224  
SFR Definition 17.22. P7: Port7 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225  
SFR Definition 17.23. P7MDOUT: Port7 Output Mode . . . . . . . . . . . . . . . . . . . . . . . . 225  
SFR Definition 18.1. CAN0DATL: CAN Data Access Register Low Byte . . . . . . . . . . 235  
SFR Definition 18.2. CAN0ADR: CAN Address Index . . . . . . . . . . . . . . . . . . . . . . . . 235  
SFR Definition 18.3. CAN0CN: CAN Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
SFR Definition 18.4. CAN0TST: CAN Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236  
SFR Definition 18.5. CAN0STA: CAN Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237  
SFR Definition 19.1. SMB0CN: SMBus0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247  
SFR Definition 19.2. SMB0CR: SMBus0 Clock Rate . . . . . . . . . . . . . . . . . . . . . . . . . 248  
SFR Definition 19.3. SMB0DAT: SMBus0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249  
SFR Definition 19.4. SMB0ADR: SMBus0 Address . . . . . . . . . . . . . . . . . . . . . . . . . . 250  
SFR Definition 19.5. SMB0STA: SMBus0 Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251  
SFR Definition 20.1. SPI0CFG: SPI0 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 261  
SFR Definition 20.2. SPI0CN: SPI0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262  
SFR Definition 20.3. SPI0CKR: SPI0 Clock Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263  
SFR Definition 20.4. SPI0DAT: SPI0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264  
SFR Definition 21.1. SCON0: UART0 Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274  
SFR Definition 21.2. SSTA0: UART0 Status and Clock Selection . . . . . . . . . . . . . . . 275  
SFR Definition 21.3. SBUF0: UART0 Data Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . 276  
SFR Definition 21.4. SADDR0: UART0 Slave Address . . . . . . . . . . . . . . . . . . . . . . . 276  
SFR Definition 21.5. SADEN0: UART0 Slave Address Enable . . . . . . . . . . . . . . . . . 276  
SFR Definition 22.1. SCON1: Serial Port 1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . 282  
SFR Definition 22.2. SBUF1: Serial (UART1) Port Data Buffer . . . . . . . . . . . . . . . . . 283  
SFR Definition 23.1. TCON: Timer Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291  
SFR Definition 23.2. TMOD: Timer Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292  
SFR Definition 23.3. CKCON: Clock Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
SFR Definition 23.4. TL0: Timer 0 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293  
SFR Definition 23.5. TL1: Timer 1 Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294  
SFR Definition 23.6. TH0: Timer 0 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294  
SFR Definition 23.7. TH1: Timer 1 High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294  
SFR Definition 23.8. TMRnCN: Timer n Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299  
SFR Definition 23.9. TMRnCF: Timer n Configuration . . . . . . . . . . . . . . . . . . . . . . . . 300  
SFR Definition 23.10. RCAPnL: Timer n Capture Register Low Byte . . . . . . . . . . . . . 301  
SFR Definition 23.11. RCAPnH: Timer n Capture Register High Byte . . . . . . . . . . . . 301  
SFR Definition 23.12. TMRnL: Timer n Low Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301  
SFR Definition 23.13. TMRnH Timer n High Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302  
SFR Definition 24.1. PCA0CN: PCA Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312  
SFR Definition 24.2. PCA0MD: PCA0 Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313  
SFR Definition 24.3. PCA0CPMn: PCA0 Capture/Compare Mode . . . . . . . . . . . . . . 314  
SFR Definition 24.4. PCA0L: PCA0 Counter/Timer Low Byte . . . . . . . . . . . . . . . . . . 315  
SFR Definition 24.5. PCA0H: PCA0 Counter/Timer High Byte . . . . . . . . . . . . . . . . . . 315  
SFR Definition 24.6. PCA0CPLn: PCA0 Capture Module Low Byte . . . . . . . . . . . . . . 316  
Rev. 1.5  
17  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 24.7. PCA0CPHn: PCA0 Capture Module High Byte . . . . . . . . . . . . . 316  
JTAG Register Definition 25.1. IR: JTAG Instruction Register . . . . . . . . . . . . . . . . . . 317  
JTAG Register Definition 25.2. DEVICEID: JTAG Device ID Register . . . . . . . . . . . . 320  
JTAG Register Definition 25.3. FLASHCON: JTAG Flash Control Register . . . . . . . . 322  
JTAG Register Definition 25.4. FLASHDAT: JTAG Flash Data . . . . . . . . . . . . . . . . . 323  
JTAG Register Definition 25.5. FLASHADR: JTAG Flash Address . . . . . . . . . . . . . . 323  
18  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
1. System Overview  
The C8051F04x family of devices are fully integrated mixed-signal System-on-a-Chip MCUs with 64 digital  
I/O pins (C8051F040/2/4/6) or 32 digital I/O pins (C8051F041/3/5/7), and an integrated CAN 2.0B control-  
ler. Highlighted features are listed below; refer to Table 1.1 for specific product feature selection.  
High-Speed pipelined 8051-compatible CIP-51 microcontroller core (up to 25 MIPS)  
Controller Area Network (CAN 2.0B) Controller with 32 message objects, each with its own indentifier  
mask.  
In-system, full-speed, non-intrusive debug interface (on-chip)  
True 12-bit (C8051F040/1) or 10-bit (C8051F042/3/4/5/6/7) 100 ksps 8-channel ADC with PGA and  
analog multiplexer  
High Voltage Difference Amplifier input to the 12/10-bit ADC (60 V Peak-to-Peak) with programmable  
gain.  
True 8-bit 500 ksps 8-channel ADC with PGA and analog multiplexer (C8051F040/1/2/3)  
Two 12-bit DACs with programmable update scheduling (C8051F040/1/2/3)  
64 kB (C8051F040/1/2/3/4/5) or 32 kB (C8051F046/7) of in-system programmable Flash memory  
4352 (4096 + 256) bytes of on-chip RAM  
External Data Memory Interface with 64 kB address space  
2
SPI, SMBus/I C, and (2) UART serial interfaces implemented in hardware  
Five general purpose 16-bit Timers  
Programmable Counter/Timer Array with six capture/compare modules  
On-chip Watchdog Timer, V Monitor, and Temperature Sensor  
DD  
With on-chip V monitor, Watchdog Timer, and clock oscillator, the C8051F04x family of devices are truly  
DD  
stand-alone System-on-a-Chip solutions. All analog and digital peripherals are enabled/disabled and con-  
figured by user firmware. The Flash memory can be reprogrammed even in-circuit, providing non-volatile  
data storage, and also allowing field upgrades of the 8051 firmware.  
On-board JTAG debug circuitry allows non-intrusive (uses no on-chip resources), full speed, in-circuit pro-  
gramming and debugging using the production MCU installed in the final application. This debug system  
supports inspection and modification of memory and registers, setting breakpoints, watchpoints, single  
stepping, Run, and Halt commands. All analog and digital peripherals are fully functional while debugging  
using JTAG.  
Each MCU is specified for 2.7 V to 3.6 V operation over the industrial temperature range (–45 to +85 °C).  
The Port I/Os, /RST, and JTAG pins are tolerant for input signals up to 5 V. The C8051F040/2/4/6 are avail-  
able in a 100-pin TQFP and the C8051F041/3/5/7 are available in a 64-pin TQFP.  
Rev. 1.5  
19  
C8051F040/1/2/3/4/5/6/7  
Table 1.1. Product Selection Guide  
C8051F040  
C8051F040-GQ 25 64 kB 4352   
C8051F041 25 64 kB 4352   
C8051F041-GQ 25 64 kB 4352   
C8051F042 25 64 kB 4352   
C8051F042-GQ 25 64 kB 4352   
C8051F043 25 64 kB 4352   
C8051F043-GQ 25 64 kB 4352   
C8051F044 25 64 kB 4352   
C8051F044-GQ 25 64 kB 4352   
C8051F045 25 64 kB 4352   
C8051F045-GQ 25 64 kB 4352   
C8051F046 25 32 kB 4352   
C8051F046-GQ 25 32 kB 4352   
C8051F047 25 32 kB 4352   
25 64 kB 4352   
2 5 64   
2 5 64   
2 5 32   
2 5 32   
-
8
8
8
8
8
8
8
8
12 2 3 - 100TQFP  
12 2 3 100TQFP  
-
-
12 2 3  
12 2 3  
-
64TQFP  
64TQFP  
-
2 5 64  
2 5 64  
2 5 32  
2 5 32  
2 5 64  
2 5 64  
2 5 32  
2 5 32  
2 5 64  
2 5 64  
2 5 32  
2 5 32  
-
-
-
-
-
-
-
-
-
-
-
-
12 2 3 - 100TQFP  
12 2 3 100TQFP  
12 2 3  
12 2 3  
-
64TQFP  
64TQFP  
3
3
3
3
3
3
3
3
- 100TQFP  
100TQFP  
-
64TQFP  
64TQFP  
- 100TQFP  
100TQFP  
-
64TQFP  
64TQFP  
C8051F047-GQ 25 32 kB 4352   
20  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
VDD  
VDD  
VDD  
DGND  
DGND  
DGND  
AV+  
AV+  
AV+  
AGND  
AGND  
AGND  
Digital Power  
Analog Power  
UART0  
UART1  
SMBus  
SPI Bus  
PCA  
P0.0  
P0.7  
P0  
Drv  
8
0
5
1
C
R
O
S
S
B
A
R
SFR Bus  
P1.0  
P1.7  
P1  
Drv  
Timers  
0,1,2,3,4  
P2.0  
P2.7  
TCK  
TMS  
TDI  
P2  
Drv  
Boundary Scan  
Debug HW  
Memories  
JTAG  
Logic  
Port  
0,1,2,3  
&4  
TDO  
64 kB  
Flash  
Reset  
/RST  
P3.0  
P3.7  
P3  
Drv  
Latches  
VDD  
Monitor  
WDT  
MONEN  
C
o
r
32x136  
CANRAM  
CANTX  
CANRX  
CAN  
2.0B  
External  
Oscillator  
Circuit  
XTAL1  
XTAL2  
System  
Clock  
256 byte  
RAM  
A
ADC  
M
U
X
Prog  
Gain  
8:1  
500 ksps  
(8-Bit)  
VREF  
VREF  
VREFD  
4 kB  
RAM  
VREF2  
e
DAC1  
(12-Bit)  
Internal  
Oscillator  
DAC1  
P2.6  
+
-
CP0  
CP1  
P2.7  
P2.2  
P2.3  
DAC0  
(12-Bit)  
+
-
DAC0  
P2.4  
P2.5  
+
-
VREF0  
AIN0.0  
AIN0.1  
AIN0.2  
CP2  
P4.0  
ADC  
AIN0.3  
A
Port 4 <from crossbar>  
Ctrl Latch  
P4  
DRV  
P4.4  
100 ksps  
(12 or 10-  
M
U
X
Prog  
Gain  
P4.5/ALE  
P4.6/RD  
P4.7/WR  
Bus Control  
External Memory Data  
Bus  
Bit)  
P5.0/A8  
P5 Latch  
Addr [15:8]  
P6 Latch  
Addr [7:0]  
P5  
DRV  
Address [15:0]  
P5.7/A51  
P6.0/A0  
TEMP  
SENSOR  
P6  
DRV  
A
8:2  
M
U
X
P6.7/A7  
P7.0/D0  
P7 Latch  
P7  
DRV  
HVAIN+  
Data [7:0]  
P7.7/D7  
Data Latch  
HVAMP  
HVAIN-  
HVREF  
HVCAP  
Figure 1.1. C8051F040/2 Block Diagram  
Rev. 1.5  
21  
C8051F040/1/2/3/4/5/6/7  
VDD  
VDD  
VDD  
Digital Power  
UART0  
UART1  
SMBus  
SPI Bus  
PCA  
P0.0  
P0.7  
P0  
Drv  
DGND  
DGND  
DGND  
AV+  
AV+  
8
0
5
1
C
R
O
S
S
B
A
R
SFR Bus  
P1.0  
P1.7  
Analog Power  
P1  
Drv  
AGND  
AGND  
Timers  
0,1,2,3,4  
P2.0  
P2.7  
TCK  
TMS  
TDI  
P2  
Drv  
Boundary Scan  
Debug HW  
Memories  
JTAG  
Logic  
Port  
0,1,2,3  
&4  
TDO  
64 kB  
Flash  
Reset  
/RST  
P3.0  
P3.7  
P3  
Drv  
Latches  
VDD  
Monitor  
WDT  
MONEN  
C
o
r
32x136  
CANRAM  
CANTX  
CANRX  
CAN  
2.0B  
External  
Oscillator  
Circuit  
XTAL1  
XTAL2  
System  
Clock  
256 byte  
RAM  
A
ADC  
M
U
X
Prog  
Gain  
8:1  
500 ksps  
(8-Bit)  
VREF  
DAC1  
DAC0  
VREF  
4 kB  
RAM  
e
DAC1  
(12-Bit)  
VREFA  
Internal  
Oscillator  
P2.6  
+
-
CP0  
P2.7  
P2.2  
P2.3  
DAC0  
(12-Bit)  
+
-
CP1  
P2.4  
P2.5  
+
-
VREFA  
AIN0.0  
AIN0.1  
CP2  
AIN0.2  
AIN0.3  
ADC  
A
M
U
X
Port 4 <from crossbar>  
Ctrl Latch  
P4  
DRV  
100 ksps  
(12 or 10-  
Prog  
Gain  
Bus Control  
External Memory Data  
Bus  
Bit)  
P5 Latch  
Addr [15:8]  
P6 Latch  
P5  
DRV  
Address [15:0]  
TEMP  
SENSOR  
P6  
DRV  
A
8:2  
M
U
X
Addr [7:0]  
P7 Latch  
P7  
DRV  
HVAIN+  
Data [7:0]  
Data Latch  
HVAMP  
HVAIN-  
HVREF  
HVCAP  
Figure 1.2. C8051F041/3 Block Diagram  
22  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
VDD  
VDD  
VDD  
DGND  
DGND  
DGND  
AV+  
AV+  
AV+  
AGND  
AGND  
AGND  
Digital Power  
Analog Power  
UART0  
UART1  
SMBus  
SPI Bus  
PCA  
P0.0  
P0.7  
P0  
Drv  
8
0
5
1
C
R
O
S
S
B
A
R
SFR Bus  
P1.0  
P1.7  
P1  
Drv  
Timers  
0,1,2,3,4  
P2.0  
P2.7  
TCK  
TMS  
TDI  
P2  
Drv  
Boundary Scan  
Debug HW  
Memories  
JTAG  
Logic  
Port  
0,1,2,3  
&4  
TDO  
64/32 kB  
Flash  
Reset  
/RST  
P3.0  
P3.7  
P3  
Drv  
Latches  
VDD  
Monitor  
WDT  
MONEN  
C
o
r
32x136  
CANRAM  
CANTX  
CANRX  
CAN  
2.0B  
External  
Oscillator  
Circuit  
XTAL1  
XTAL2  
System  
Clock  
256 byte  
RAM  
VREF  
VREF  
P2.6  
P2.7  
+
-
4 kB  
RAM  
CP0  
e
Internal  
Oscillator  
P2.2  
P2.3  
+
-
CP1  
P2.4  
P2.5  
+
-
CP2  
VREF0  
AIN0.0  
AIN0.1  
AIN0.2  
P4.0  
AIN0.3  
A
ADC  
100 ksps  
(10-Bit)  
Port 4 <from crossbar>  
Ctrl Latch  
P4  
DRV  
P4.4  
M
U
X
Prog  
Gain  
P4.5/ALE  
P4.6/RD  
P4.7/WR  
Bus Control  
External Memory Data  
Bus  
P5.0/A8  
P5 Latch  
Addr [15:8]  
P6 Latch  
P5  
DRV  
Address [15:0]  
P5.7/A51  
P6.0/A0  
TEMP  
SENSOR  
P6  
DRV  
A
8:2  
M
U
X
Addr [7:0]  
P7 Latch  
P6.7/A7  
P7.0/D0  
P7  
DRV  
HVAIN+  
Data [7:0]  
P7.7/D7  
Data Latch  
HVAMP  
HVAIN-  
HVREF  
HVCAP  
Figure 1.3. C8051F044/6 Block Diagram  
Rev. 1.5  
23  
C8051F040/1/2/3/4/5/6/7  
VDD  
VDD  
VDD  
Digital Power  
UART0  
UART1  
SMBus  
SPI Bus  
PCA  
P0.0  
P0.7  
P0  
Drv  
DGND  
DGND  
DGND  
AV+  
AV+  
8
0
5
1
C
R
O
S
S
B
A
R
SFR Bus  
P1.0  
P1.7  
Analog Power  
P1  
Drv  
AGND  
AGND  
Timers  
0,1,2,3,4  
P2.0  
P2.7  
TCK  
TMS  
TDI  
P2  
Drv  
Boundary Scan  
Debug HW  
Memories  
JTAG  
Logic  
Port  
0,1,2,3  
&4  
TDO  
64/32 kB  
Flash  
Reset  
/RST  
P3.0  
P3.7  
P3  
Drv  
Latches  
VDD  
Monitor  
WDT  
MONEN  
C
o
r
32x136  
CANRAM  
CANTX  
CANRX  
CAN  
2.0B  
External  
Oscillator  
Circuit  
XTAL1  
XTAL2  
System  
Clock  
256 byte  
RAM  
VREF  
VREF  
P2.6  
P2.7  
+
-
CP0  
4 kB  
RAM  
e
Internal  
Oscillator  
P2.2  
P2.3  
+
-
CP1  
P2.4  
P2.5  
+
-
CP2  
VREFA  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
A
M
U
X
ADC  
100 ksps  
(10-Bit)  
Port 4 <from crossbar>  
Ctrl Latch  
P4  
DRV  
Prog  
Gain  
Bus Control  
External Memory Data  
Bus  
P5 Latch  
Addr [15:8]  
P6 Latch  
Addr [7:0]  
P5  
DRV  
Address [15:0]  
TEMP  
SENSOR  
P6  
DRV  
A
8:2  
M
U
X
P7 Latch  
P7  
DRV  
HVAIN+  
Data [7:0]  
Data Latch  
HVAMP  
HVAIN-  
HVREF  
HVCAP  
Figure 1.4. C8051F045/7 Block Diagram  
24  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
1.1. CIP-51™ Microcontroller Core  
1.1.1. Fully 8051 Compatible  
The C8051F04x family of devices utilizes Silicon Labs' proprietary CIP-51 microcontroller core. The CIP-  
51 is fully compatible with the MCS-51™ instruction set; standard 803x/805x assemblers and compilers  
can be used to develop software. The core has all the peripherals included with a standard 8052, including  
five 16-bit counter/timers, two full-duplex UARTs, 256 bytes of internal RAM, 128 byte Special Function  
Register (SFR) address space, and up to 8 byte-wide I/O Ports.  
1.1.2. Improved Throughput  
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan-  
dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system  
clock cycles to execute with a maximum system clock of 12-to-24 MHz. By contrast, the CIP-51 core exe-  
cutes 70% of its instructions in one or two system clock cycles, with only four instructions taking more than  
four system clock cycles.  
The CIP-51 has a total of 109 instructions. The table below shows the total number of instructions that  
require each execution time.  
Clocks to Execute  
1
2
2/3  
5
3
3/4  
7
4
3
4/5  
1
5
2
8
1
Number of Instructions  
26  
50  
14  
With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. Figure 1.5  
shows a comparison of peak throughputs of various 8-bit microcontroller cores with their maximum system  
clocks.  
25  
20  
15  
10  
5
Silicon Labs Microchip  
CIP-51 PIC17C75x  
Philips  
80C51  
ADuC812  
8051  
(25 MHz clk) (33 MHz clk) (33 MHz clk) (16 MHz clk)  
Figure 1.5. Comparison of Peak MCU Execution Speeds  
Rev. 1.5  
25  
C8051F040/1/2/3/4/5/6/7  
1.1.3. Additional Features  
The C8051F04x MCU family includes several key enhancements to the CIP-51 core and peripherals to  
improve overall performance and ease of use in end applications.  
The extended interrupt handler provides 20 interrupt sources into the CIP-51 (as opposed to 7 for the stan-  
dard 8051), allowing the numerous analog and digital peripherals to interrupt the controller. An interrupt  
driven system requires less intervention by the MCU, giving it more effective throughput. The extra inter-  
rupt sources are very useful when building multi-tasking, real-time systems.  
There are up to seven reset sources for the MCU: an on-board V monitor, a Watchdog Timer, a missing  
DD  
clock detector, a voltage level detection from Comparator0, a forced software reset, the CNVSTR0 input  
pin, and the /RST pin. The /RST pin is bi-directional, accommodating an external reset, or allowing the  
internally generated POR to be output on the /RST pin. Each reset source except for the V monitor and  
DD  
Reset Input pin may be disabled by the user in software; the V  
monitor is enabled/disabled via the  
DD  
MONEN pin. The Watchdog Timer may be permanently enabled in software after a power-on reset during  
MCU initialization.  
The MCU has an internal, stand alone clock generator which is used by default as the system clock after  
any reset. If desired, the clock source may be switched on the fly to the external oscillator, which can use a  
crystal, ceramic resonator, capacitor, RC, or external clock source to generate the system clock. This can  
be extremely useful in low power applications, allowing the MCU to run from a slow (power saving) exter-  
nal crystal source, while periodically switching to the fast (up to 25 MHz) internal oscillator as needed.  
VDD  
CNVSTR  
Crossbar  
(Port I/O)  
Supply  
Monitor  
(CNVSTR  
reset  
enable)  
Supply  
Reset  
Timeout  
+
-
RST  
(wired-OR)  
Comparator0  
CP0+  
CP0-  
+
-
(CP0  
reset  
enable)  
Reset  
Funnel  
Missing  
Clock  
Detector  
(one-  
shot)  
WDT  
EN  
PRE  
EN  
Internal  
Clock  
Generator  
System  
Clock  
Software Reset  
System Reset  
CIP-51  
Microcontroller  
Core  
XTAL1  
XTAL2  
OSC  
Clock Select  
Extended Interrupt  
Handler  
Figure 1.6. On-Board Clock and Reset  
26  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
1.2. On-Chip Memory  
The CIP-51 has a standard 8051 program and data address configuration. It includes 256 bytes of data  
RAM, with the upper 128 bytes dual-mapped. Indirect addressing accesses the upper 128 bytes of general  
purpose RAM, and direct addressing accesses the 128 byte SFR address space. The CIP-51 SFR  
address space contains up to 256 SFR Pages. In this way, the CIP-51 MCU can accommodate the many  
SFRs required to control and configure the various peripherals featured on the device. The lower  
128 bytes of RAM are accessible via direct and indirect addressing. The first 32 bytes are addressable as  
four banks of general purpose registers, and the next 16 bytes can be byte addressable or bit addressable.  
The CIP-51 in the C8051F04x MCUs additionally has an on-chip 4 kB RAM block and an external memory  
interface (EMIF) for accessing off-chip data memory or memory-mapped peripherals. The on-chip 4 byte  
block can be addressed over the entire 64 kB external data memory address range (overlapping 4 kB  
boundaries). External data memory address space can be mapped to on-chip memory only, off-chip mem-  
ory only, or a combination of the two (addresses up to 4 kB directed to on-chip, above 4 kB directed to  
EMIF). The EMIF is also configurable for multiplexed or non-multiplexed address/data lines.  
The MCU's program memory consists of 64 kB (C8051F040/1/2/3/4/5) or 32 kB (C8051F046/7) of Flash.  
This memory may be reprogrammed in-system in 512 byte sectors, and requires no special off-chip pro-  
gramming voltage. The 512 bytes from addresses 0xFE00 to 0xFFFF are reserved for the 64 kB devices.  
There is also a single 128 byte sector at address 0x10000 to 0x1007F, which may be useful as a small  
table for software constants. See Figure 1.7 for the MCU system memory map.  
PROGRAM/DATA MEMORY  
(FLASH)  
DATA MEMORY (RAM)  
INTERNAL DATA ADDRESS SPACE  
C8051F040/1/2/3/4/5  
0xFF  
0x1007F  
Scrachpad Memory  
(DATA only)  
Upper 128 RAM  
(Indirect Addressing  
Only)  
Special Function  
Registers  
(Direct Addressing Only)0  
0x10000  
0x80  
0x7F  
RESERVED  
1
2
0xFE00  
0xFDFF  
3
F
(Direct and Indirect  
Addressing)  
Up To  
256 SFR Pages  
0x30  
0x2F  
64 kB  
Flash  
Lower 128 RAM  
(Direct and Indirect  
Addressing)  
Bit Addressable  
0x20  
0x1F  
(In-System  
Programmable in 512  
Byte Sectors)  
General Purpose  
Registers  
0x00  
0x0000  
EXTERNAL DATA ADDRESS SPACE  
C8051F046/7  
0xFFFF  
0x1007F  
0x10000  
Scrachpad Memory  
(DATA only)  
RESERVED  
0x8000  
0x7FFF  
Off-chip XRAM space  
32 kB  
Flash  
0x1000  
0x0FFF  
(In-System  
Programmable in 512  
Byte Sectors)  
XRAM - 4096 Bytes  
(accessable using MOVX  
instruction)  
0x0000  
0x0000  
Figure 1.7. On-Chip Memory Map  
Rev. 1.5  
27  
C8051F040/1/2/3/4/5/6/7  
1.3. JTAG Debug and Boundary Scan  
The C8051F04x family has on-chip JTAG boundary scan and debug circuitry that provides non-intrusive,  
full speed, in-circuit debugging using the production part installed in the end application, via the four-pin  
JTAG interface. The JTAG port is fully compliant to IEEE 1149.1, providing full boundary scan for test and  
manufacturing purposes.  
Silicon Labs' debugging system supports inspection and modification of memory and registers, break-  
points, watchpoints, a stack monitor, and single stepping. No additional target RAM, program memory, tim-  
ers, or communications channels are required. All the digital and analog peripherals are functional and  
work correctly while debugging. All the peripherals (except for the ADC and SMBus) are stalled when the  
MCU is halted, during single stepping, or at a breakpoint in order to keep them synchronized with instruc-  
tion execution.  
The C8051F040DK development kit provides all the hardware and software necessary to develop applica-  
tion code and perform in-circuit debugging with the C8051F04x MCUs. The development kit includes two  
target boards and a cable to facilitate evaluating a simple CAN communication network. The kit also  
includes software with a developer's studio and debugger, a target application board with the associated  
MCU installed, and the required cables and wall-mount power supply. The Serial Adapter takes its power  
from the application board; it requires roughly 20 mA at 2.7-3.6 V. For applications where there is not suffi-  
cient power available from the target system, the provided power supply can be connected directly to the  
Serial Adapter.  
Silicon Labs’ debug environment is a vastly superior configuration for developing and debugging embed-  
ded applications compared to standard MCU emulators, which use on-board "ICE Chips" and target cables  
and require the MCU in the application board to be socketed. Silicon Labs' debug environment both  
increases ease of use and preserves the performance of the precision, on-chip analog peripherals.  
Integrated Development  
Environment  
WINDOWS 95 or later  
Serial  
Adapter  
JTAG (x4), VDD, GND  
TARGET PCB  
VDD GND  
C8051  
F040  
Figure 1.8. Development/In-System Debug Diagram  
28  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
1.4. Programmable Digital I/O and Crossbar  
The standard 8051 Ports (0, 1, 2, and 3) are available on the MCUs. The C8051F040/2/4/6 have 4 addi-  
tional 8-bit ports (4, 5, 6, and 7) for a total of 64 general-purpose I/O Ports. The Ports behave like the stan-  
dard 8051 with a few enhancements.  
Each port pin can be configured as either a push-pull or open-drain output. Also, the "weak pullups" which  
are normally fixed on an 8051 can be globally disabled, providing additional power saving capabilities for  
low-power applications.  
Perhaps the most unique enhancement is the Digital Crossbar. This is essentially a large digital switching  
network that allows mapping of internal digital system resources to Port I/O pins on P0, P1, P2, and P3  
(See Figure 1.9). Unlike microcontrollers with standard multiplexed digital I/O ports, all combinations of  
functions are supported with all package options offered.  
The on-chip counter/timers, serial buses, HW interrupts, ADC Start of Conversion input, comparator out-  
puts, and other digital signals in the controller can be configured to appear on the Port I/O pins specified in  
the Crossbar Control registers. This allows the user to select the exact mix of general purpose Port I/O and  
digital resources needed for the particular application.  
XBR0, XBR1, XBR2,  
XBR3 P1MDIN,  
P2MDIN, P3MDIN  
Registers  
P0MDOUT, P1MDOUT,  
P2MDOUT, P3MDOUT  
Registers  
2
4
Highest  
Priority  
UART0  
SPI  
External  
Pins  
2
2
6
SMBus  
UART1  
PCA  
Priority  
Decoder  
P0.0  
Highest  
Priority  
P0  
I/O  
Cells  
8
8
8
8
P0.7  
2
Comptr.  
Outputs  
Digital  
Crossbar  
P1.0  
P1.7  
P1  
I/O  
Cells  
T0, T1,  
T2, T2EX,  
T3, T3EX,  
T4,T4EX,  
/INT0,  
8
P2.0  
P2.7  
P2  
I/O  
Cells  
/INT1  
/SYSCLK  
CNVSTR0  
CNVSTR2  
Lowest  
Priority  
P3.0  
P3.7  
P3  
I/O  
Cells  
8
Lowest  
Priority  
P0  
(P0.0-P0.7)  
8
To  
ADC2  
Input  
P1  
P2  
P3  
(P1.0-P1.7)  
8
To External  
Memory  
Interface  
(EMIF)  
To  
Port  
Latches  
Comparators  
To  
ADC0  
Input  
(P2.0-P2.7)  
8
(P3.0-P3.7)  
Figure 1.9. Digital Crossbar Diagram  
Rev. 1.5  
29  
C8051F040/1/2/3/4/5/6/7  
1.5. Programmable Counter Array  
The C8051F04x MCU family includes an on-board Programmable Counter/Timer Array (PCA) in addition  
to the five 16-bit general purpose counter/timers. The PCA consists of a dedicated 16-bit counter/timer  
time base with six programmable capture/compare modules. The timebase is clocked from one of six  
sources: the system clock divided by 12, the system clock divided by 4, Timer 0 overflow, an External  
Clock Input (ECI pin), the system clock, or the external oscillator source divided by 8.  
Each capture/compare module can be configured to operate in one of six modes: Edge-Triggered Capture,  
Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit Pulse Width  
Modulator. The PCA Capture/Compare Module I/O and External Clock Input are routed to the MCU Port I/  
O via the Digital Crossbar.  
SYSCLK/12  
SYSCLK/4  
Timer 0 Overflow  
PCA  
16-Bit Counter/Timer  
CLOCK  
MUX  
ECI  
SYSCLK  
External Clock/8  
Capture/Compare  
Module 0  
Capture/Compare  
Module 1  
Capture/Compare  
Module 2  
Capture/Compare  
Module 3  
Capture/Compare  
Module 4  
Capture/Compare  
Module 5  
Crossbar  
Port I/O  
Figure 1.10. PCA Block Diagram  
30  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
1.6. Controller Area Network  
The C8051F04x family of devices feature a Controller Area Network (CAN) controller that implements  
serial communication using the CAN protocol. The CAN controller facilitates communication on a CAN net-  
work in accordance with the Bosch specification 2.0A (basic CAN) and 2.0B (full CAN). The CAN controller  
consists of a CAN Core, Message RAM (separate from the C8051 RAM), a message handler state  
machine, and control registers.  
The CAN controller can operate at bit rates up to 1 Mbit/second. Silicon Labs CAN has 32 message  
objects each having its own identifier mask used for acceptance filtering of received messages. Incoming  
data, message objects and identifier masks are stored in the CAN message RAM. All protocol functions for  
transmission of data and acceptance filtering is performed by the CAN controller and not by the C8051  
MCU. In this way, minimal CPU bandwidth is used for CAN communication. The C8051 configures the  
CAN controller, accesses received data, and passes data for transmission via Special Function Registers  
(SFR) in the C8051.  
CANTX  
C8051F04x  
CANRX  
CAN Controller  
S
Y
S
C
L
CAN_CLK  
(fsys  
TX  
RX  
BRP  
Prescaler  
)
CAN  
Core  
K
CIP-51  
MCU  
Message RAM  
S
F
REGISTERS  
(32 Message Objects)  
R
's  
Message Handler  
Interrupt  
Figure 1.11. CAN Controller Diagram  
1.7. Serial Ports  
The C8051F04x MCU Family includes two Enhanced Full-Duplex UARTs, an enhanced SPI Bus, and  
2
SMBus/I C. Each of the serial buses is fully implemented in hardware and makes extensive use of the  
CIP-51's interrupts, thus requiring very little intervention by the CPU. The serial buses do not "share"  
resources such as timers, interrupts, or Port I/O, so any or all of the serial buses may be used together with  
any other.  
Rev. 1.5  
31  
C8051F040/1/2/3/4/5/6/7  
1.8. 12/10-Bit Analog to Digital Converter  
The C8051F040/1 devices have an on-chip 12-bit SAR ADC (ADC0) with a 9-channel input multiplexer  
and programmable gain amplifier. With a maximum throughput of 100 ksps, the ADC offers true 12-bit per-  
formance with an INL of ±1LSB. C8051F042/3/4/5/6/7 devices include a 10-bit SAR ADC with similar spec-  
ifications and configuration options. The ADC0 voltage reference is selected between the DAC0 output  
and an external VREF pin. On C8051F040/2/4/6 devices, ADC0 has its own dedicated VREF0 input pin;  
on C8051F041/3/5/7 devices, the ADC0 uses the VREFA input pin and, on the C8051F041/3, shares it  
with the 8-bit ADC2. The on-chip 15 ppm/°C voltage reference may generate the voltage reference for the  
on-chip ADCs or other system components via the VREF output pin.  
The ADC is under full control of the CIP-51 microcontroller via its associated Special Function Registers.  
One input channel is tied to an internal temperature sensor, while the other eight channels are available  
externally. Each pair of the eight external input channels can be configured as either two single-ended  
inputs or a single differential input. The system controller can also put the ADC into shutdown mode to  
save power.  
A programmable gain amplifier follows the analog multiplexer. The gain can be set to 0.5, 1, 2, 4, 8, or 16  
and is software programmable. The gain stage can be especially useful when different ADC input channels  
have widely varied input voltage signals, or when it is necessary to "zoom in" on a signal with a large dc  
offset (in differential mode, a DAC could be used to provide the dc offset).  
Conversions can be started in four ways; a software command, an overflow of Timer 2, an overflow of  
Timer 3, or an external signal input. This flexibility allows the start of conversion to be triggered by software  
events, external HW signals, or a periodic timer overflow signal. Conversion completions are indicated by a  
status bit and an interrupt (if enabled). The resulting 10- or 12-bit data word is latched into two SFRs upon  
completion of a conversion. The data can be right or left justified in these registers under software control.  
Window Compare registers for the ADC data can be configured to interrupt the controller when ADC data  
is within or outside of a specified range. The ADC can monitor a key voltage continuously in background  
mode, but not interrupt the controller unless the converted data is within the specified window.  
Analog Multiplexer  
Window  
Compare  
Interrupt  
Configuration, Control, and Data  
Registers  
Window Compare  
Logic  
+
AIN0.0  
AIN0.1  
-
Programmable Gain  
Amplifier  
+
AIN0.2  
AIN0.3  
-
9-to-1  
AMUX  
(SE or  
DIFF)  
AV+  
12/10-Bit  
SAR  
HVAIN +  
HVAIN -  
12  
ADC Data  
Registers  
+
-
HVDA  
X
+
-
ADC  
Port 3  
Pins  
Conversion  
Complete  
Interrupt  
TEMP  
SENSOR  
Write to AD0BUSY  
External VREF  
Pin  
Start  
Conversion  
VREF  
Timer 3 Overflow  
CNVSTR0  
AGND  
DAC0 Output  
(C8051F040/1/2/3 Only)  
Timer 2 Overflow  
Figure 1.12. 10/12-Bit ADC Block Diagram  
32  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
1.9. 8-Bit Analog to Digital Converter (C8051F040/1/2/3 Only)  
The C8051F040/1/2/3 devices have an on-board 8-bit SAR ADC (ADC2) with an 8-channel input multi-  
plexer and programmable gain amplifier. This ADC features a 500 ksps maximum throughput and true 8-  
bit performance with an INL of ±1LSB. Eight input pins are available for measurement and can be pro-  
grammed as single-ended or differential inputs. The ADC is under full control of the CIP-51 microcontroller  
via the Special Function Registers. The ADC2 voltage reference is selected between the analog power  
supply (AV+) and an external VREF pin. On C8051F040/2 devices, ADC2 has its own dedicated VREF2  
input pin; on C8051F041/3 devices, ADC2 shares the VREFA input pin with the 12/10-bit ADC0. User soft-  
ware may put ADC2 into shutdown mode to save power.  
A programmable gain amplifier follows the analog multiplexer. The gain stage can be especially useful  
when different ADC input channels have widely varied input voltage signals, or when it is necessary to  
"zoom in" on a signal with a large dc offset (in differential mode, a DAC could be used to provide the dc off-  
set). The PGA gain can be set in software to 0.5, 1, 2, or 4.  
A flexible conversion scheduling system allows ADC2 conversions to be initiated by software commands,  
timer overflows, or an external input signal. ADC2 conversions may also be synchronized with ADC0 soft-  
ware-commanded conversions. Conversion completions are indicated by a status bit and an interrupt (if  
enabled), and the resulting 8-bit data word is latched into an SFR upon completion.  
Analog Multiplexer  
Window  
Window  
Compare Logic  
Configuration, Control, and Data Registers  
Compare  
Interrupt  
+
AIN2.0  
AIN2.1  
AIN2.2  
AIN2.3  
AIN2.4  
AIN2.5  
AIN2.6  
AIN2.7  
-
Programmable Gain  
Amplifier  
+
-
AV+  
8-Bit  
SAR  
8-to-1  
AMUX  
+
8
+
-
ADC Data  
X
Register  
-
+
Conversion  
Complete  
Interrupt  
ADC  
-
Write to AD2BUSY  
Timer 3 Overflow  
CNVSTR2 Input  
Timer 2 Overflow  
External VREF  
Pin  
Single-ended or  
Differential Measurement  
VREF  
Start Conversion  
AV+  
Write to AD0BUSY  
(synchronized with  
ADC0)  
Figure 1.13. 8-Bit ADC Diagram  
Rev. 1.5  
33  
C8051F040/1/2/3/4/5/6/7  
1.10. Comparators and DACs  
Each C8051F040/1/2/3 MCU has two 12-bit DACs, and all C8051F04x devices have three comparators on  
chip. The MCU data and control interface to each comparator and DAC is via the Special Function Regis-  
ters. The MCU can place any DAC or comparator in low power shutdown mode.  
The comparators have software programmable hysteresis and response time. Each comparator can gen-  
erate an interrupt on its rising edge, falling edge, or both; these interrupts are capable of waking up the  
MCU from sleep mode. The comparators' output state can also be polled in software. The comparator out-  
puts can be programmed to appear on the Port I/O pins via the Crossbar.  
The DACs are voltage output mode and include a flexible output scheduling mechanism. This scheduling  
mechanism allows DAC output updates to be forced by a software write or a Timer 2, 3, or 4 overflow. The  
DAC voltage reference is supplied via the dedicated VREFD input pin on C8051F040/2 devices or via the  
internal voltage reference on C8051F041/3 devices. The DACs are especially useful as references for the  
comparators or offsets for the differential inputs of the ADC.  
CPn Output  
CROSSBAR  
(Port I/O)  
Comparator inputs  
Port 2.[7:2]  
3 Comparators  
CPn+  
+
CPn  
SFR's  
-
CPn-  
CIP-51  
and  
Interrupt  
Handler  
(Data  
and  
Cntrl)  
VREF  
DAC0  
DAC0  
(C8051F040/1/2/3 only)  
VREF  
DAC1  
DAC1  
(C8051F040/1/2/3 only)  
Figure 1.14. Comparator and DAC Diagram  
34  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
2. Absolute Maximum Ratings  
Table 2.1. Absolute Maximum Ratings*  
Parameter  
Ambient temperature under bias  
Storage Temperature  
Conditions  
Min  
–55  
–65  
–0.3  
Typ  
Max  
125  
150  
Units  
°C  
°C  
Voltage on any Pin (except V , Port I/O, and JTAG  
V
+
V
DD  
DD  
pins) with respect to DGND  
0.3  
Voltage on any Port I/O Pin, /RST, and JTAG pins with  
respect to DGND  
–0.3  
5.8  
V
Voltage on V with respect to DGND  
–0.3  
4.2  
V
DD  
Maximum Total current through V , AV+, DGND,  
800  
mA  
DD  
and AGND  
Maximum output current sunk by any Port pin  
Maximum output current sunk by any other I/O pin  
Maximum output current sourced by any Port pin  
Maximum output current sourced by any other I/O pin  
100  
50  
mA  
mA  
mA  
mA  
100  
50  
*Note: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device.  
This is a stress rating only and functional operation of the devices at those or any other conditions above those  
indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Due to special I/O design requirements of the High Voltage Difference Amplifier, undue electrical over-voltage  
stress (i.e., ESD) experienced by these pads may result in impedance degradation of these inputs (HVAIN+  
and HVAIN–). For this reason, care should be taken to ensure proper handling and use as typically required to  
prevent ESD damage to electrostatically sensitive CMOS devices (e.g., static-free workstations, use of  
grounding straps, over-voltage protection in end-applications, etc.)  
Rev. 1.5  
35  
C8051F040/1/2/3/4/5/6/7  
3. Global DC Electrical Characteristic  
Table 3.1. Global DC Electrical Characteristics  
–40 to +85 °C, 25 MHz System Clock unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
1
2.7  
3.0  
3.6  
V
Analog Supply Voltage  
Analog Supply Current  
Internal REF, ADC, DAC, Com-  
parators all active  
1.7  
0.2  
mA  
µA  
Analog Supply Current with Internal REF, ADC, DAC, Com-  
analog sub-systems inactive parators all disabled, oscillator  
disabled  
Analog-to-Digital Supply  
0.5  
3.6  
V
V
Delta (|V - AV+|)  
DD  
Digital Supply Voltage  
2.7  
3.0  
Digital Supply Current with  
CPU active  
(Normal Mode)  
V
V
V
= 2.7 V, Clock = 25 MHz  
= 2.7 V, Clock = 1 MHz  
= 2.7 V, Clock = 32 kHz  
10  
0.5  
20  
mA  
mA  
µA  
DD  
DD  
DD  
Digital Supply Current with  
CPU inactive (not accessing  
Flash) (Idle Mode)  
V
V
V
= 2.7 V, Clock = 25 MHz  
= 2.7 V, Clock = 1 MHz  
= 2.7 V, Clock = 32 kHz  
5
0.2  
10  
mA  
mA  
µA  
DD  
DD  
DD  
Digital Supply Current  
(shutdown) (Stop Mode)  
Oscillator not running  
0.2  
1.5  
µA  
V
Digital Supply RAM Data  
Retention Voltage  
Specified Operating  
Temperature Range  
–40  
0
+85  
25  
°C  
SYSCLK (system clock  
MHz  
2
frequency)  
Tsysl (SYSCLK low time)  
Tsysh (SYSCLK high time)  
Notes:  
18  
18  
ns  
ns  
1. Analog Supply AV+ must be greater than 1 V for V  
monitor to operate.  
DD  
2. SYSCLK must be at least 32 kHz to enable debugging.  
36  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
4. Pinout and Package Definitions  
Table 4.1. Pin Definitions  
Pin Numbers  
Name  
Type Description  
F040/2/4/6 F041/3/5/7  
37, 64, 90 24, 41, 57  
V
Digital Supply Voltage. Must be tied to +2.7 to +3.6 V.  
DD  
DGND  
AV+  
38, 63, 89 25, 40, 56  
Digital Ground. Must be tied to Ground.  
Analog Supply Voltage. Must be tied to +2.7 to +3.6 V.  
Analog Ground. Must be tied to Ground.  
8, 11, 14  
3, 6  
4, 5  
58  
AGND  
TMS  
TCK  
9, 10, 13  
1
2
3
D In JTAG Test Mode Select with internal pullup.  
D In JTAG Test Clock with internal pullup.  
59  
TDI  
60  
D In JTAG Test Data Input with internal pullup. TDI is latched  
on the rising edge of TCK.  
TDO  
/RST  
4
5
61  
62  
D Out JTAG Test Data Output with internal pullup. Data is  
shifted out on TDO on the falling edge of TCK. TDO out-  
put is a tri-state driver.  
D I/O Device Reset. Open-drain output of internal V monitor.  
DD  
Is driven low when V is < 2.7 V and MONEN is high. An  
DD  
external source can initiate a system reset by driving this  
pin low.  
XTAL1  
26  
17  
A In Crystal Input. This pin is the return for the internal oscilla-  
tor circuit for a crystal or ceramic resonator. For a preci-  
sion internal clock, connect a crystal or ceramic resonator  
from XTAL1 to XTAL2. If overdriven by an external CMOS  
clock, this becomes the system clock.  
XTAL2  
27  
28  
18  
19  
A Out Crystal Output. This pin is the excitation driver for a crystal  
or ceramic resonator.  
MONEN  
D In  
V
Monitor Enable. When tied high, this pin enables the  
DD  
internal V monitor, which forces a system reset when  
DD  
V
is < 2.7 V. When tied low, the internal V monitor is  
DD  
DD  
disabled.  
In most applications, MONEN should be connected  
directly to V  
.
DD  
VREF  
12  
7
8
A I/O Bandgap Voltage Reference Output (all devices).  
DAC Voltage Reference Input (C8051F041/3 only).  
VREFA  
A In ADC0 (C8051F041/3/5/7) and ADC2 (C8051F041/3 only)   
Voltage Reference Input.  
VREF0  
VREF2  
VREF  
16  
17  
15  
18  
A In ADC0 Voltage Reference Input.  
A In ADC2 Voltage Reference Input (C8051F040/2 only).  
A In DAC Voltage Reference Input (C8051F040/2 only).  
AIN0.0  
9
A In ADC0 Input Channel 0 (See ADC0 Specification for com-  
plete description).  
Rev. 1.5  
37  
C8051F040/1/2/3/4/5/6/7  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
Name  
Type Description  
F040/2/4/6 F041/3/5/7  
AIN0.1  
19  
20  
21  
10  
11  
12  
A In ADC0 Input Channel 1 (See ADC0 Specification for com-  
plete description).  
AIN0.2  
AIN0.3  
A In ADC0 Input Channel 2 (See ADC0 Specification for com-  
plete description).  
A In ADC0 Input Channel 3 (See ADC0 Specification for com-  
plete description).  
HVCAP  
HVREF  
HVAIN+  
HVAIN-  
CANTX  
CANRX  
DAC0  
22  
23  
24  
25  
7
13  
14  
15  
16  
2
A I/O High Voltage Difference Amplifier Capacitor.  
A In High Voltage Difference Amplifier Bias Reference.  
A In High Voltage Difference Amplifier Positive Signal Input.  
A In High Voltage Difference Amplifier Negative Signal Input.  
D Out Controller Area Network Transmit Output.  
6
1
D In Controller Area Network Receive Input.  
100  
64  
A Out Digital to Analog Converter 0 Voltage Output. (See DAC  
Specification for complete description). (C8051F040/1/2/3  
only)  
DAC1  
99  
63  
A Out Digital to Analog Converter 1 Voltage Output. (See DAC  
Specification for complete description). (C8051F040/1/2/3  
only)  
P0.0  
P0.1  
62  
61  
60  
59  
58  
57  
55  
54  
53  
52  
51  
50  
D I/O Port 0.0. See Port Input/Output section for complete  
description.  
D I/O Port 0.1. See Port Input/Output section for complete  
description.  
P0.2  
D I/O Port 0.2. See Port Input/Output section for complete  
description.  
P0.3  
D I/O Port 0.3. See Port Input/Output section for complete  
description.  
P0.4  
D I/O Port 0.4. See Port Input/Output section for complete  
description.  
P0.5/ALE  
D I/O ALE Strobe for External Memory Address bus (multi-  
plexed mode) Port 0.5  
See Port Input/Output section for complete description.  
P0.6/RD  
P0.7/WR  
56  
55  
49  
48  
D I/O /RD Strobe for External Memory Address bus  
Port 0.6  
See Port Input/Output section for complete description.  
D I/O /WR Strobe for External Memory Address bus  
Port 0.7  
See Port Input/Output section for complete description.  
38  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
F040/2/4/6 F041/3/5/7  
Name  
Type Description  
P1.0/AIN2.0/A8  
36  
29  
A In ADC1 Input Channel 0 (See ADC1 Specification for com-  
D I/O plete description).  
Bit 8 External Memory Address bus (Non-multiplexed  
mode)  
Port 1.0  
See Port Input/Output section for complete description.  
P1.1/AIN2.1/A9  
35  
34  
33  
32  
31  
30  
29  
46  
28  
27  
26  
23  
22  
21  
20  
37  
A In Port 1.1. See Port Input/Output section for complete  
D I/O description.  
P1.2/AIN2.2/  
A10  
A In Port 1.2. See Port Input/Output section for complete  
D I/O description.  
P1.3/AIN2.3/  
A11  
A In Port 1.3. See Port Input/Output section for complete  
D I/O description.  
P1.4/AIN2.4/  
A12  
A In Port 1.4. See Port Input/Output section for complete  
D I/O description.  
P1.5/AIN2.5/  
A13  
A In Port 1.5. See Port Input/Output section for complete  
D I/O description.  
P1.6/AIN2.6/  
A14  
A In Port 1.6. See Port Input/Output section for complete  
D I/O description.  
P1.7/AIN2.7/  
A15  
A In Port 1.7. See Port Input/Output section for complete  
D I/O description.  
P2.0/A8m/A0  
D I/O Bit 8 External Memory Address bus (Multiplexed mode)  
Bit 0 External Memory Address bus (Non-multiplexed  
mode) Port 2.0  
See Port Input/Output section for complete description.  
P2.1/A9m/A1  
P2.2/A10m/A2  
P2.3/A11m/A3  
P2.4/A12m/A4  
P2.5/A13m/A5  
P2.6/A14m/A6  
P2.7/A15m/A7  
45  
44  
43  
42  
41  
40  
39  
36  
35  
34  
33  
32  
31  
30  
D I/O Port 2.1. See Port Input/Output section for complete  
description.  
D I/O Port 2.2. See Port Input/Output section for complete  
description.  
D I/O Port 2.3. See Port Input/Output section for complete  
description.  
D I/O Port 2.4. See Port Input/Output section for complete  
description.  
D I/O Port 2.5. See Port Input/Output section for complete  
description.  
D I/O Port 2.6. See Port Input/Output section for complete  
description.  
D I/O Port 2.7. See Port Input/Output section for complete  
description.  
Rev. 1.5  
39  
C8051F040/1/2/3/4/5/6/7  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
Name  
Type Description  
F040/2/4/6 F041/3/5/7  
P3.0/AD0/D0  
54  
47  
A In Bit 0 External Memory Address/Data bus (Multiplexed  
D I/O mode)  
Bit 0 External Memory Data bus (Non-multiplexed mode)  
Port 3.0  
See Port Input/Output section for complete description.  
ADC0 Input. (See ADC0 Specification for complete  
description.)  
P3.1/AD1/D1  
P3.2/AD2/D2  
P3.3/AD3/D3  
P3.4/AD4/D4  
P3.5/AD5/D5  
P3.6/AD6/D6  
P3.7/AD7/D7  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
39  
38  
A In Port 3.1. See Port Input/Output section for complete  
D I/O description.  
ADC0 Input. (See ADC0 Specification for complete  
description.)  
A In Port 3.2. See Port Input/Output section for complete  
D I/O description.  
ADC0 Input. (See ADC0 Specification for complete  
description.)  
A In Port 3.3. See Port Input/Output section for complete  
D I/O description.  
ADC0 Input. (See ADC0 Specification for complete  
description.)  
A In Port 3.4. See Port Input/Output section for complete  
D I/O description.  
ADC0 Input. (See ADC0 Specification for complete  
description.)  
A In Port 3.5. See Port Input/Output section for complete  
D I/O description.  
ADC0 Input. (See ADC0 Specification for complete  
description.)  
A In Port 3.6. See Port Input/Output section for complete  
D I/O description.  
ADC0 Input. (See ADC0 Specification for complete  
description.)  
A In Port 3.7. See Port Input/Output section for complete  
D I/O description.  
ADC0 Input. (See ADC0 Specification for complete  
description.)  
P4.0  
P4.1  
P4.2  
P4.3  
98  
97  
96  
95  
D I/O Port 4.0. See Port Input/Output section for complete  
description.  
D I/O Port 4.1. See Port Input/Output section for complete  
description.  
D I/O Port 4.2. See Port Input/Output section for complete  
description.  
D I/O Port 4.3. See Port Input/Output section for complete  
description.  
40  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
Name  
Type Description  
F040/2/4/6 F041/3/5/7  
P4.4  
94  
D I/O Port 4.4. See Port Input/Output section for complete  
description.  
P4.5/ALE  
93  
D I/O ALE Strobe for External Memory Address bus (multi-  
plexed mode)  
Port 4.5  
See Port Input/Output section for complete description.  
P4.6/RD  
P4.7/WR  
P5.0/A8  
92  
91  
88  
D I/O /RD Strobe for External Memory Address bus  
Port 4.6  
See Port Input/Output section for complete description.  
D I/O /WR Strobe for External Memory Address bus  
Port 4.7  
See Port Input/Output section for complete description.  
D I/O Bit 8 External Memory Address bus (Non-multiplexed  
mode)  
Port 5.0  
See Port Input/Output section for complete description.  
P5.1/A9  
P5.2/A10  
P5.3/A11  
P5.4/A12  
P5.5/A13  
P5.6/A14  
P5.7/A15  
P6.0/A8m/A0  
87  
86  
85  
84  
83  
82  
81  
80  
D I/O Port 5.1. See Port Input/Output section for complete  
description.  
D I/O Port 5.2. See Port Input/Output section for complete  
description.  
D I/O Port 5.3. See Port Input/Output section for complete  
description.  
D I/O Port 5.4. See Port Input/Output section for complete  
description.  
D I/O Port 5.5. See Port Input/Output section for complete  
description.  
D I/O Port 5.6. See Port Input/Output section for complete  
description.  
D I/O Port 5.7. See Port Input/Output section for complete  
description.  
D I/O Bit 8 External Memory Address bus (Multiplexed mode)  
Bit 0 External Memory Address bus (Non-multiplexed  
mode)  
Port 6.0  
See Port Input/Output section for complete description.  
P6.1/A9m/A1  
P6.2/A10m/A2  
P6.3/A11m/A3  
79  
78  
77  
D I/O Port 6.1. See Port Input/Output section for complete  
description.  
D I/O Port 6.2. See Port Input/Output section for complete  
description.  
D I/O Port 6.3. See Port Input/Output section for complete  
description.  
Rev. 1.5  
41  
C8051F040/1/2/3/4/5/6/7  
Table 4.1. Pin Definitions (Continued)  
Pin Numbers  
F040/2/4/6 F041/3/5/7  
76  
Name  
Type Description  
P6.4/A12m/A4  
D I/O Port 6.4. See Port Input/Output section for complete  
description.  
P6.5/A13m/A5  
P6.6/A14m/A6  
P6.7/A15m/A7  
P7.0/AD0/D0  
75  
74  
73  
72  
D I/O Port 6.5. See Port Input/Output section for complete  
description.  
D I/O Port 6.6. See Port Input/Output section for complete  
description.  
D I/O Port 6.7. See Port Input/Output section for complete  
description.  
D I/O Bit 0 External Memory Address/Data bus (Multiplexed  
mode)  
Bit 0 External Memory Data bus (Non-multiplexed mode)  
Port 7.0  
See Port Input/Output section for complete description.  
P7.1/AD1/D1  
P7.2/AD2/D2  
P7.3/AD3/D3  
P7.4/AD4/D4  
P7.5/AD5/D5  
P7.6/AD6/D6  
P7.7/AD7/D7  
71  
70  
69  
68  
67  
66  
65  
D I/O Port 7.1. See Port Input/Output section for complete  
description.  
D I/O Port 7.2. See Port Input/Output section for complete  
description.  
D I/O Port 7.3. See Port Input/Output section for complete  
description.  
D I/O Port 7.4. See Port Input/Output section for complete  
description.  
D I/O Port 7.5. See Port Input/Output section for complete  
description.  
D I/O Port 7.6. See Port Input/Output section for complete  
description.  
D I/O Port 7.7. See Port Input/Output section for complete  
description.  
42  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
TMS  
TCK  
1
2
3
4
5
6
7
8
9
75 P6.5/A13m/A5  
74 P6.6/A14m/A6  
73 P6.7/A15m/A7  
72 P7.0/AD0/D0  
71 P7.1/AD1/D1  
70 P7.2/AD2/D2  
69 P7.3/AD3/D3  
68 P7.4/AD4/D4  
67 P7.5/AD5/D5  
66 P7.6/AD6/D6  
65 P7.7/AD7/D7  
64 VDD  
TDI  
TDO  
/RST  
CANRX  
CANTX  
AV+  
AGND  
AGND 10  
AV+ 11  
VREF 12  
AGND 13  
AV+ 14  
63 DGND  
C8051F040/2/4/6  
62 P0.0  
VREFD 15  
VREF0 16  
VREF2 17  
AIN0.0 18  
AIN0.1 19  
AIN0.2 20  
AIN0.3 21  
HVCAP 22  
HVREF 23  
HVAIN+ 24  
HVAIN- 25  
61 P0.1  
60 P0.2  
59 P0.3  
58 P0.4  
57 P0.5/ALE  
56 P0.6/RD  
55 P0.7/WR  
54 P3.0/AD0/D0  
53 P3.1/AD1/D1  
52 P3.2/AD2/D2  
51 P3.3/AD3/D3  
Figure 4.1. TQFP-100 Pinout Diagram  
Rev. 1.5  
43  
C8051F040/1/2/3/4/5/6/7  
D
MIN NOM MAX  
(mm) (mm) (mm)  
D1  
A
-
-
-
1.20  
0.15  
A1 0.05  
A2 0.95 1.00 1.05  
b
D
0.17 0.22 0.27  
-
-
-
-
-
16.00  
14.00  
0.50  
-
-
-
-
-
E1  
E
D1  
e
E
16.00  
14.00  
E1  
L
100  
0.45 0.60 0.75  
PIN 1  
DESIGNATOR  
1
e
A2  
A
b
L
A1  
Figure 4.2. TQFP-100 Package Drawing  
44  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
CANRX  
CANTX  
AV+  
1
2
3
4
5
6
7
8
9
48 P0.7/WR  
47 P3.0/AD0/D0  
46 P3.1/AD1/D1  
45 P3.2/AD2/D2  
44 P3.3/AD3/D3  
43 P3.4/AD4/D4  
42 P3.5/AD5/D5  
41 VDD  
AGND  
AGND  
AV+  
VREF  
VREFA  
AIN0.0  
C8051F041/3/5/7  
40 DGND  
AIN0.1 10  
AIN0.2 11  
AIN0.3 12  
HVCAP 13  
HVREF 14  
HVAIN+ 15  
HVAIN- 16  
39 P3.6/AD6/D6  
38 P3.7/AD7/D7  
37 P2.0/A8m/A0  
36 P2.1/A9m/A1  
35 P2.2/A10m/A2  
34 P2.3/A11m/A3  
33 P2.4/A12m/A4  
Figure 4.3. TQFP-64 Pinout Diagram  
Rev. 1.5  
45  
C8051F040/1/2/3/4/5/6/7  
D
D1  
MIN NOM MAX  
(mm) (mm) (mm)  
A
-
-
-
-
1.20  
0.15  
1.05  
A1 0.05  
A2 0.95  
E1  
E
b 0.17 0.22 0.27  
D
D1  
e
-
-
-
-
-
12.00  
10.00  
0.50  
-
-
-
-
-
64  
PIN 1  
DESIGNATOR  
1
E
12.00  
10.00  
e
A2  
E1  
A
L
b
A1  
L 0.45 0.6 0.75  
Figure 4.4. TQFP-64 Package Drawing  
46  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
5. 12-Bit ADC (ADC0, C8051F040/1 Only)  
The ADC0 subsystem for the C8051F040/1 consists of a 9-channel, configurable analog multiplexer  
(AMUX0), a programmable gain amplifier (PGA0), and a 100 ksps, 12-bit successive-approximation-regis-  
ter ADC with integrated track-and-hold and Programmable Window Detector (see block diagram in  
Figure 5.1). The AMUX0, PGA0, Data Conversion Modes, and Window Detector are all configurable under  
software control via the Special Function Registers shown in Figure 5.1. The voltage reference used by  
ADC0 is selected as described in Section “9. Voltage Reference (C8051F040/2/4/6)” on page 113 for  
C8051F040 devices, or Section “10. Voltage Reference (C8051F041/3/5/7)” on page 117 for  
C8051F041 devices. The ADC0 subsystem (ADC0, track-and-hold and PGA0) is enabled only when the  
AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1. The ADC0 subsystem is in low power  
shutdown when this bit is logic 0.  
ADC0GTH  
ADC0GTL  
ADC0LTH  
ADC0LTL  
24  
Comb.  
Logic  
AD0WINT  
AV+  
12  
HV  
Input  
AD0EN  
AV+  
9-to-1  
12-Bit  
SAR  
Port 3  
I/O Pins  
AMUX  
(SE or  
DIFF)  
+
-
12  
X
ADC  
Analog  
Input  
Pins  
AGND  
00  
01  
10  
11  
AD0BUSY (W)  
Timer 3 Overflow  
CNVSTR0  
TEMP  
SENSOR  
Start Conversion  
AGND  
Timer 2 Overflow  
AMX0SL  
AMX0CF  
ADC0CF  
ADC0CN  
Figure 5.1. 12-Bit ADC0 Functional Block Diagram  
5.1. Analog Multiplexer and PGA  
The analog multiplexer can input analog signals to the ADC from four external analog input pins (AIN0.0 -  
AIN0.3), Port 3 port pins (optionally configured as analog input pins), High Voltage Difference Amplifier, or  
an internally connected on-chip temperature sensor (temperature transfer function is shown in Figure 5.6).  
AMUX input pairs can be programmed to operate in either differential or single-ended mode. This allows  
the user to select the best measurement technique for each input channel, and even accommodates mode  
changes "on-the-fly". The AMUX defaults to all single-ended inputs upon reset. There are three registers  
associated with the AMUX: the Channel Selection register AMX0SL (SFR Definition 5.2), the Configuration  
register AMX0CF (SFR Definition 5.1), and the Port Pin Selection register AMX0PRT (SFR Definition 5.3).  
Table 5.1 shows AMUX functionality by channel for each possible configuration. The PGA amplifies the  
AMUX output signal by an amount determined by the states of the AMP0GN2-0 bits in the ADC0 Configu-  
ration register, ADC0CF (SFR Definition 5.5). The PGA can be software-programmed for gains of 0.5, 2, 4,  
8 or 16. Gain defaults to unity on reset.  
Rev. 1.5  
47  
C8051F040/1/2/3/4/5/6/7  
5.1.1. Analog Input Configuration  
The analog multiplexer routes signals from external analog input pins, Port 3 I/O pins (See Section  
“17.1.5. Configuring Port 1, 2, and 3 Pins as Analog Inputs” on page 207), a High Voltage Difference  
Amplifier, and an on-chip temperature sensor as shown in Figure 5.2.  
+
AIN0.0  
AIN0.1  
0
AMX0CF  
-
1
2
+
AIN0.2  
AIN0.3  
-
3
HVAIN +  
HVAIN -  
HVCAP  
HVREF  
HV  
AMP  
+
-
4
5
12-Bit  
SAR  
9-to-1  
AMUX  
(SE or  
DIFF)  
X
PAIN0EN  
PAIN2EN  
PAIN4EN  
PAIN6EN  
PAIN1EN  
PAIN3EN  
PAIN5EN  
PAIN7EN  
P3.6  
P3.4  
P3.2  
P3.0  
P3.7  
P3.5  
P3.3  
P3.1  
ADC  
(WIRED-OR)  
P3EVEN  
+
-
6
7
P3ODD  
(WIRED-OR)  
8
TEMP SENSOR  
AGND  
AMX0SL  
Figure 5.2. Analog Input Diagram  
Analog signals may be input from four external analog input pins (AIN0.0 through AIN0.3) as differential or  
single-ended measurements. Additionally, Port 3 I/O Port Pins may be configured to input analog signals.  
Port 3 pins configured as analog inputs are selected using the Port Pin Selection register (AMX0PRT). Any  
number of Port 3 pins may be selected simultaneously as inputs to the AMUX. Even numbered Port 3 pins  
and odd numbered Port 3 pins are routed to separate AMUX inputs. (Note: Even port pins and odd port  
pins that are simultaneously selected will be shorted together as “wired-OR”.) In this way, differential mea-  
surements may be made when using the Port 3 pins (voltage difference between selected even and odd  
Port 3 pins) as shown in Figure 5.2.  
The High Voltage Difference Amplifier (HVDA) will accept analog input signals and reject up to 60 volts  
common-mode for differential measurement of up to the reference voltage to the ADC (0 to VREF volts).  
The output of the HVDA can be selected as an input to the ADC using the AMUX as any other channel is  
selected for input. (See Section “5.2. High-Voltage Difference Amplifier” on page 52).  
48  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 5.1. AMX0CF: AMUX0 Configuration  
R
R
R
R
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
-
-
-
PORT3IC HVDA2C AIN23IC AIN01IC 00000000  
SFR  
Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xBA  
SFR Page: 0  
Bits7-4: UNUSED. Read = 0000b; Write = don’t care  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PORT3IC: Port 3 even/odd Pin Input Pair Configuration Bit  
0: Port 3 even and odd input channels are independent single-ended inputs  
1: Port 3 even and odd input channels are (respectively) +, - difference input pair  
HVDA2C: HVDA 2’s Compliment Bit  
0: HVDA output measured as an independent single-ended input  
1: HVDA result for 2’s compliment value  
AIN23IC: AIN0.2, AIN0.3 Input Pair Configuration Bit  
0: AIN0.2 and AIN0.3 are independent single-ended inputs  
1: AIN0.2, AIN0.3 are (respectively) +, - difference input pair  
AIN01IC: AIN0.0, AIN0.1 Input Pair Configuration Bit  
0: AIN0.0 and AIN0.1 are independent single-ended inputs  
1: AIN0.0, AIN0.1 are (respectively) +, - difference input pair  
NOTE: The ADC0 Data Word is in 2’s complement format for channels configured as difference.  
SFR Definition 5.2. AMX0SL: AMUX0 Channel Select  
R
-
R
-
R
-
R
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
AMX0AD3 AMX0AD2 AMX0AD1 AMX0AD0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xBB  
SFR Page: 0  
Bits7-4: UNUSED. Read = 0000b; Write = don’t care  
Bits3-0: AMX0AD3-0: AMX0 Address Bits  
0000-1111b: ADC Inputs selected per Table 5.1.  
Rev. 1.5  
49  
C8051F040/1/2/3/4/5/6/7  
Table 5.1. AMUX Selection Chart (AMX0AD3–0 and AMX0CF3–0 bits)  
AMX0AD3-0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1xxx  
TEMP  
SENSOR  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
HVDA  
AGND  
P3EVEN  
P3ODD  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
+(AIN0.0)  
-(AIN0.1)  
TEMP  
SENSOR  
AIN0.2  
AIN0.3  
HVDA  
HVDA  
HVDA  
AGND  
AGND  
AGND  
P3EVEN  
P3EVEN  
P3EVEN  
P3EVEN  
P3EVEN  
P3EVEN  
P3EVEN  
P3ODD  
P3ODD  
P3ODD  
P3ODD  
P3ODD  
P3ODD  
P3ODD  
+(AIN0.2)  
-(AIN0.3)  
TEMP  
SENSOR  
AIN0.0  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
+(AIN0.0)  
-(AIN0.1)  
+(AIN0.2)  
-(AIN0.3)  
TEMP  
SENSOR  
+(HVDA)  
-(HVREF)  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
+(AIN0.0)  
-(AIN0.1)  
+(HVDA)  
-(HVREF)  
TEMP  
SENSOR  
+(AIN0.2)  
-(AIN0.3)  
+(HVDA)  
-(HVREF)  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
-(AIN0.1)  
+(AIN0.2)  
-(AIN0.3)  
+(HVDA)  
-(HVREF)  
TEMP  
SENSOR  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
HVDA  
HVDA  
HVDA  
HVDA  
AGND  
AGND  
AGND  
AGND  
+(AIN0.0)  
-(AIN0.1)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
+(AIN0.2)  
-(AIN0.3)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
-(AIN0.1)  
+(AIN0.2)  
-(AIN0.3)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
+(HVDA)  
-(HVREF)  
+P3EVEN  
-P3ODD)  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
+(AIN0.0)  
-(AIN0.1)  
+(HVDA)  
-(HVREF)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
+(AIN0.2)  
-(AIN0.3)  
+(HVDA)  
-(HVREF)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
-(AIN0.1)  
+(AIN0.2)  
-(AIN0.3)  
+(HVDA)  
-(HVREF)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
Note: “P3EVEN” denotes even numbered and “P3ODD” odd numbered Port 3 pins selected in the AMX0PRT  
register.  
50  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 5.3. AMX0PRT: Port 3 Pin Selection  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
PAIN7EN PAIN6EN PAIN5EN PAIN4EN PAIN3EN PAIN2EN PAIN1EN PAIN0EN 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xBD  
SFR Page: 0  
Bit7:  
PAIN7EN: Pin 7 Analog Input Enable Bit  
0: P3.7 is not selected as an analog input to the AMUX.  
1: P3.7 is selected as an analog input to the AMUX.  
PAIN6EN: Pin 6 Analog Input Enable Bit  
0: P3.6 is not selected as an analog input to the AMUX.  
1: P3.6 is selected as an analog input to the AMUX.  
PAIN5EN: Pin 5 Analog Input Enable Bit  
0: P3.5 is not selected as an analog input to the AMUX.  
1: P3.5 is selected as an analog input to the AMUX.  
PAIN4EN: Pin 4 Analog Input Enable Bit  
0: P3.4 is not selected as an analog input to the AMUX.  
1: P3.4 is selected as an analog input to the AMUX.  
PAIN3EN: Pin 3 Analog Input Enable Bit  
0: P3.3 is not selected as an analog input to the AMUX.  
1: P3.3 is enabled as an analog input to the AMUX.  
PAIN2EN: Pin 2 Analog Input Enable Bit  
0: P3.2 is not selected as an analog input to the AMUX.  
1: P3.2 is enabled as an analog input to the AMUX.  
PAIN1EN: Pin 1 Analog Input Enable Bit  
0: P3.1 is not selected as an analog input to the AMUX.  
1: P3.1 is enabled as an analog input to the AMUX.  
PAIN0EN: Pin 0 Analog Input Enable Bit  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
0: P3.0 is not selected as an analog input to the AMUX.  
1: P3.0 is enabled as an analog input to the AMUX.  
Note:Any number of Port 3 pins may be selected simultaneously inputs to the AMUX. Odd numbered and even  
numbered pins that are selected simultaneously are shorted together as “wired-OR”.  
Rev. 1.5  
51  
C8051F040/1/2/3/4/5/6/7  
5.2. High-Voltage Difference Amplifier  
The High Voltage Difference Amplifier (HVDA) can be used to measure high differential voltages up to 60 V  
peak-to-peak, reject high common-mode voltages up to ±60 V, and condition the signal voltage range to be  
suitable for input to ADC0. The input signal to the HVDA may be below AGND to –60 volts, and as high as  
+60 volts, making the device suitable for both single and dual supply applications. The HVDA provides a  
common-mode signal for the ADC via the High Voltage Reference Input (HVREF), allowing measurement  
of signals outside the specified ADC input range using on-chip circuitry. The HVDA has a gain of 0.05 V/V  
to 14 V/V. The first stage 20:1 difference amplifier has a gain of 0.05 V/V when the output amplifier is used  
as a unity gain buffer. When the output amplifier is set to a gain of 280 (selected using the HVGAIN bits in  
the High Voltage Control Register), an overall gain of 14 can be attained.  
The HVDA uses four available external pins: +HVAIN, –HVAIN, HVCAP, and HVREF. HVAIN+ and HVAIN-  
serve as the differential inputs to the HVDA. HVREF should be used to provide a common mode reference  
for input to ADC0, and to prevent the output of the HVDA circuit from saturating. The output from the  
HVDA circuit as calculated by Equation 5.1 must remain within the “Output Voltage Range” specification  
listed in Table 5.3. The ideal value for HVREF in most applications is equal to 1/2 the supply voltage for the  
device. When the ADC is configured for differential measurement, the HVREF signal is applied to the AIN-  
input of the ADC, thereby removing HVREF from the measurement. HVCAP facilitates the use of a capac-  
itor for noise filtering in conjunction with R7 (see Figure 5.3 for R7 and other approximate resistor values).  
Alternatively, the HVCAP could also be used to access amplification of the first stage of the HVDA at an  
external pin. (See Table 5.3 on page 68 for electrical specifications of the HVDA.)  
VOUT = HVAIN+HVAIN-  Gain + HVREF  
Note: The output voltage of the HVDA is selected as an input to the AIN+ input of ADC0 via its analog multiplexer  
(AMUX0). HVDA output voltages outside the ADC’s input range will result in saturation of the ADC input. Allow  
for adequate settle/tracking time for proper voltage measurements.  
Equation 5.1. Calculating HVDA Output Voltage to AIN+  
HVCAP  
  
k
5k  
HVAIN-  
HVAIN+  
5k  
Vout  
HVA0CN  
(To AMUX0)  
100k  
5k  
Gain Setting  
Resistor values are  
approximate  
HVREF  
Figure 5.3. High Voltage Difference Amplifier Functional Diagram  
52  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 5.4. HVA0CN: High Voltage Difference Amplifier Control  
R/W  
HVDAEN  
Bit7  
R
-
R
-
R
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
HVGAIN3 HVGAIN2 HVGAIN1 HVGAIN0 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xD6  
SFR Page: 0  
Bit7:  
HVDAEN: High Voltage Difference Amplifier (HVDA) Enable Bit.  
0: The HVDA is disabled.  
1: The HVDA is enabled.  
Bits6-3: Reserved.  
Bits2-0: HVGAIN3-HVGAIN0: HVDA Gain Control Bits.  
HVDA Gain Control Bits set the amplification gain if the difference signal input to the HVDA  
as defined in the table below:  
HVGAIN3:HVGAIN0  
0000  
HVDA Gain  
0.05  
0.1  
0001  
0010  
0011  
0.125  
0.2  
0100  
0101  
0.25  
0.4  
0110  
0.5  
0111  
0.8  
1000  
1.0  
1001  
1.6  
1010  
2.0  
1011  
3.2  
1100  
4.0  
1101  
6.2  
1110  
7.6  
1111  
14  
Rev. 1.5  
53  
C8051F040/1/2/3/4/5/6/7  
5.3. ADC Modes of Operation  
ADC0 has a maximum conversion speed of 100 ksps. The ADC0 conversion clock is derived from the sys-  
tem clock divided by the value held in the ADC0SC bits of register ADC0CF.  
5.3.1. Starting a Conversion  
A conversion can be initiated in one of four ways, depending on the programmed states of the ADC0 Start  
of Conversion Mode bits (AD0CM1, AD0CM0) in ADC0CN. Conversions may be initiated by the following:  
• Writing a ‘1’ to the AD0BUSY bit of ADC0CN;  
• A Timer 3 overflow (i.e., timed continuous conversions);  
• A rising edge detected on the external ADC convert start signal, CNVSTR0;  
• A Timer 2 overflow (i.e., timed continuous conversions).  
The AD0BUSY bit is set to logic 1 during conversion and restored to logic 0 when conversion is complete.  
The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the AD0INT interrupt flag  
(ADC0CN.5). Converted data is available in the ADC0 data word MSB and LSB registers, ADC0H, ADC0L.  
Converted data can be either left or right justified in the ADC0H:ADC0L register pair (see example in  
Figure 5.7) depending on the programmed state of the AD0LJST bit in the ADC0CN register.  
When initiating conversions by writing a ‘1’ to AD0BUSY, the AD0INT bit should be polled to determine  
when a conversion has completed (ADC0 interrupts may also be used). The recommended polling proce-  
dure is shown below.  
Step 1. Write a ‘0’ to AD0INT;  
Step 2. Write a ‘1’ to AD0BUSY;  
Step 3. Poll AD0INT for ‘1’;  
Step 4. Process ADC0 data.  
5.3.2. Tracking Modes  
According to Table 5.2, each ADC0 conversion must be preceded by a minimum tracking time for the con-  
verted result to be accurate. The AD0TM bit in register ADC0CN controls the ADC0 track-and-hold mode.  
In its default state, the ADC0 input is continuously tracked when a conversion is not in progress. When the  
AD0TM bit is logic 1, ADC0 operates in low-power tracking mode. In this mode, each conversion is pre-  
ceded by a tracking period of 3 SAR clocks after the start-of-conversion signal. When the CNVSTR0 signal  
is used to initiate conversions in low-power tracking mode, ADC0 tracks only when CNVSTR0 is low; con-  
version begins on the rising edge of CNVSTR0 (see Figure 5.4). Tracking can also be disabled when the  
entire chip is in low power standby or sleep modes. Low-power tracking mode is also useful when AMUX  
or PGA settings are frequently changed, to ensure that settling time requirements are met (see Section  
“5.3.3. Settling Time Requirements” on page 56).  
54  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
A. ADC Timing for External Trigger Source  
CNVSTR  
(AD0CM[1:0]=10)  
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
2
3
4
5
6
7
8
9
SAR  
Clocks  
Low Power  
or Convert  
ADC0TM=1  
ADC0TM=0  
Track  
Convert  
Convert  
Low Power Mode  
Track  
Track Or Convert  
B. ADC Timing for Internal Trigger Sources  
Timer 2, Timer 3 Overflow;  
Write '1' to AD0BUSY  
(AD0CM[1:0]=00, 01, 11)  
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
1
2
3
4
5
6
7
8
9
SAR  
Clocks  
Low Power  
or Convert  
ADC0TM=1  
Track  
Convert  
Low Power Mode  
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
2
3
4
5
6
7
8
9
SAR  
Clocks  
Track or  
Convert  
ADC0TM=0  
Convert  
Track  
Figure 5.4. 12-Bit ADC Track and Conversion Example Timing  
Rev. 1.5  
55  
C8051F040/1/2/3/4/5/6/7  
5.3.3. Settling Time Requirements  
A minimum tracking time is required before an accurate conversion can be performed. This tracking time is  
determined by the ADC0 MUX resistance, the ADC0 sampling capacitance, any external source resis-  
tance, and the accuracy required for the conversion. Figure 5.5 shows the equivalent ADC0 input circuits  
for both differential and Single-ended modes. Notice that the equivalent time constant for both input circuits  
is the same. The required settling time for a given settling accuracy (SA) may be approximated by  
Equation 5.2. When measuring the Temperature Sensor output, R  
reduces to R  
. Note that in  
TOTAL  
MUX  
Low-Power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For  
most applications, these three SAR clocks will meet the tracking requirements. See Table 5.2 for absolute  
minimum settling/tracking time requirements.  
2n  
SA  
------  
t = ln  
RTOTALCSAMPLE  
Equation 5.2. ADC0 Settling Time Requirements  
Where:  
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB)  
t is the required settling time in seconds  
R
is the sum of the ADC0 MUX resistance and any external source resistance.  
TOTAL  
n is the ADC resolution in bits (12).  
Differential Mode  
Single-Ended Mode  
MUX Select  
MUX Select  
AIN0.x  
AIN0.x  
RMUX = 5k  
RMUX = 5k  
CSAMPLE = 10pF  
CSAMPLE = 10pF  
RCInput= RMUX * CSAMPLE  
RCInput= RMUX * CSAMPLE  
CSAMPLE = 10pF  
AIN0.y  
RMUX = 5k  
MUX Select  
Figure 5.5. ADC0 Equivalent Input Circuits  
56  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
(Volts)  
1.000  
0.900  
0.800  
0.700  
0.600  
0.500  
VTEMP = 0.00286(TEMPC) + 0.776  
for PGA Gain = 1  
(Celsius)  
-50  
0
50  
100  
Figure 5.6. Temperature Sensor Transfer Function  
Rev. 1.5  
57  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 5.5. ADC0CF: ADC0 Configuration Register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AD0SC4 AD0SC3 AD0SC2 AD0SC1 AD0SC0 AMP0GN2 AMP0GN1 AMP0GN0 11111000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xBC  
SFR Page: 0  
Bits7-3: AD0SC4-0: ADC0 SAR Conversion Clock Period Bits  
SAR Conversion clock is derived from system clock by the following equation, where  
AD0SC refers to the 5-bit value held in AD0SC4-0, and CLK refers to the desired ADC0  
SAR0  
SAR clock. See Table 5.2 for SAR clock configuration requirements.  
SYSCLK  
CLKSAR0  
SYSCLK  
AD0SC + 1  
----------------------  
----------------------------  
CLKSAR0 =  
AD0SC   
– 1 *  
or  
*Note: AD0SC is the rounded-up result.  
Bits2-0: AMP0GN2-0: ADC0 Internal Amplifier Gain (PGA)  
000: Gain = 1  
001: Gain = 2  
010: Gain = 4  
011: Gain = 8  
10x: Gain = 16  
11x: Gain = 0.5  
58  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 5.6. ADC0CN: ADC0 Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AD0EN AD0TM  
AD0INT AD0BUSY AD0CM1 AD0CM0 AD0WINT AD0LJST 00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xE8  
SFR Page: 0  
Bit7:  
AD0EN: ADC0 Enable Bit.  
0: ADC0 Disabled. ADC0 is in low-power shutdown.  
1: ADC0 Enabled. ADC0 is active and ready for data conversions.  
AD0TM: ADC Track Mode Bit  
0: When the ADC is enabled, tracking is continuous unless a conversion is in process  
1: Tracking Defined by AD0CM1-0 bits  
AD0INT: ADC0 Conversion Complete Interrupt Flag.  
This flag must be cleared by software.  
Bit6:  
Bit5:  
0: ADC0 has not completed a data conversion since the last time this flag was cleared.  
1: ADC0 has completed a data conversion.  
Bit4:  
AD0BUSY: ADC0 Busy Bit.  
Read:  
0: ADC0 Conversion is complete or a conversion is not currently in progress. AD0INT is set  
to logic 1 on the falling edge of AD0BUSY.  
1: ADC0 Conversion is in progress.  
Write:  
0: No Effect.  
1: Initiates ADC0 Conversion if AD0CM1-0 = 00b  
AD0CM1-0: ADC0 Start of Conversion Mode Select.  
If AD0TM = 0:  
Bit3-2:  
00: ADC0 conversion initiated on every write of ‘1’ to AD0BUSY.  
01: ADC0 conversion initiated on overflow of Timer 3.  
10: ADC0 conversion initiated on rising edge of external CNVSTR0.  
11: ADC0 conversion initiated on overflow of Timer 2.  
If AD0TM = 1:  
00: Tracking starts with the write of ‘1’ to AD0BUSY and lasts for 3 SAR clocks, followed by  
conversion.  
01: Tracking started by the overflow of Timer 3 and last for 3 SAR clocks, followed by con-  
version.  
10: ADC0 tracks only when CNVSTR0 input is logic low; conversion starts on rising  
CNVSTR0 edge.  
11: Tracking started by the overflow of Timer 2 and last for 3 SAR clocks, followed by con-  
version.  
Bit1:  
Bit0:  
AD0WINT: ADC0 Window Compare Interrupt Flag.  
This bit must be cleared by software.  
0: ADC0 Window Comparison Data match has not occurred since this flag was last cleared.  
1: ADC0 Window Comparison Data match has occurred.  
AD0LJST: ADC0 Left Justify Select.  
0: Data in ADC0H:ADC0L registers are right-justified.  
1: Data in ADC0H:ADC0L registers are left-justified.  
Rev. 1.5  
59  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 5.7. ADC0H: ADC0 Data Word MSB  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
SFR Address: 0xBF  
SFR Page: 0  
Bits7-0: ADC0 Data Word High-Order Bits.  
For AD0LJST = 0: Bits 7-4 are the sign extension of Bit3. Bits 3-0 are the upper 4 bits of the  
12-bit ADC0 Data Word.  
For AD0LJST = 1: Bits 7-0 are the most-significant bits of the 12-bit ADC0 Data Word.  
SFR Definition 5.8. ADC0L: ADC0 Data Word LSB  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
SFR Address: 0xBE  
SFR Page: 0  
Bits7-0: ADC0 Data Word Low-Order Bits.  
For AD0LJST = 0: Bits 7-0 are the lower 8 bits of the 12-bit ADC0 Data Word.  
For AD0LJST = 1: Bits 7-4 are the lower 4 bits of the 12-bit ADC0 Data Word. Bits3-0 will  
always read ‘0’.  
60  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
12-bit ADC0 Data Word appears in the ADC0 Data Word Registers as follows:  
ADC0H[3:0]:ADC0L[7:0], if AD0LJST = 0  
(ADC0H[7:4] will be sign-extension of ADC0H.3 for a differential reading,  
otherwise = 0000b).  
ADC0H[7:0]:ADC0L[7:4], if AD0LJST = 1  
(ADC0L[3:0] = 0000b).  
Example: ADC0 Data Word Conversion Map, AIN0 Input in Single-Ended Mode  
(AMX0CF = 0x00, AMX0SL = 0x00)  
ADC0H:ADC0L  
(AD0LJST = 0)  
ADC0H:ADC0L  
(AD0LJST = 1)  
AIN0-AGND (Volts)  
VREF * (4095/4096)  
VREF / 2  
0x0FFF  
0x0800  
0x07FF  
0x0000  
0xFFF0  
0x8000  
0x7FF0  
0x0000  
VREF * (2047/4096)  
0
Example: ADC0 Data Word Conversion Map, AIN0-AIN1 Differential Input Pair  
(AMX0CF = 0x01, AMX0SL = 0x00)  
ADC0H:ADC0L  
(AD0LJST = 0)  
ADC0H:ADC0L  
(AD0LJST = 1)  
AIN0-AGND (Volts)  
VREF * (2047/2048)  
VREF / 2  
0x07FF  
0x0400  
0x7FF0  
0x4000  
0x0010  
0x0000  
0xFFF0  
0xC000  
0x8000  
VREF * (1/2048)  
0
0x0001  
0x0000  
-VREF * (1/2048)  
-VREF / 2  
0xFFFF (-1d)  
0xFC00 (-1024d)  
0xF800 (-2048d)  
-VREF  
For AD0LJST = 0:  
Gain  
---------------  
n
Code = Vin   
2 ; ‘n’ = 12 for Single-Ended; ‘n’=11 for Differential.  
VREF  
Figure 5.7. ADC0 Data Word Example  
Rev. 1.5  
61  
C8051F040/1/2/3/4/5/6/7  
5.4. ADC0 Programmable Window Detector  
The ADC0 Programmable Window Detector continuously compares the ADC0 output to user-programmed  
limits, and notifies the system when an out-of-bound condition is detected. This is especially effective in an  
interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response  
times. The window detector interrupt flag (AD0WINT in ADC0CN) can also be used in polled mode. The  
high and low bytes of the reference words are loaded into the ADC0 Greater-Than and ADC0 Less-Than  
registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Reference comparisons are shown starting  
on page 63. Notice that the window detector flag can be asserted when the measured data is inside or out-  
side the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx regis-  
ters.  
SFR Definition 5.9. ADC0GTH: ADC0 Greater-Than Data High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
11111111  
Bit0  
SFR Address: 0xC5  
SFR Page: 0  
Bits7-0: High byte of ADC0 Greater-Than Data Word.  
SFR Definition 5.10. ADC0GTL: ADC0 Greater-Than Data Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
SFR Address: 0xC4  
SFR Page: 0  
Bits7-0: Low byte of ADC0 Greater-Than Data Word.  
SFR Definition 5.11. ADC0LTH: ADC0 Less-Than Data High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xC7  
SFR Page: 0  
Bits7-0: High byte of ADC0 Less-Than Data Word.  
62  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 5.12. ADC0LTL: ADC0 Less-Than Data Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xC6  
SFR Page: 0  
Bits7-0: Low byte of ADC0 Less-Than Data Word.  
Input Voltage  
ADC Data  
Input Voltage  
(AD0 - AGND)  
ADC Data  
Word  
(AD0 - AGND)  
Word  
REF x (4095/4096)  
0x0FFF  
REF x (4095/4096)  
0x0FFF  
AD0WINT  
not affected  
AD0WINT=1  
0x0201  
0x0201  
REF x (512/4096)  
REF x (256/4096)  
0x0200  
0x01FF  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (512/4096)  
REF x (256/4096)  
0x0200  
0x01FF  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x0101  
0x0100  
0x0101  
0x0100  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0x00FF  
0x00FF  
AD0WINT=1  
AD0WINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x00  
AD0LJST = ‘0’,  
AMX0SL = 0x00, AMX0CF = 0x00,  
AD0LJST = ‘0’,  
ADC0LTH:ADC0LTL = 0x0200,  
ADC0GTH:ADC0GTL = 0x0100.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x0200 and > 0x0100.  
ADC0LTH:ADC0LTL = 0x0100,  
ADC0GTH:ADC0GTL = 0x0200.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
> 0x0200 or < 0x0100.  
Figure 5.8. 12-Bit ADC0 Window Interrupt Example:  
Right Justified Single-Ended Data  
Rev. 1.5  
63  
C8051F040/1/2/3/4/5/6/7  
Input Voltage  
ADC Data  
Input Voltage  
(AD0 - AD1)  
ADC Data  
Word  
(AD0 - AD1)  
Word  
REF x (2047/2048)  
0x07FF  
REF x (2047/2048)  
0x07FF  
AD0WINT  
not affected  
AD0WINT=1  
0x0101  
0x0101  
REF x (256/2048)  
REF x (-1/2048)  
0x0100  
0x00FF  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (256/2048)  
REF x (-1/2048)  
0x0100  
0x00FF  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x0000  
0xFFFF  
0x0000  
0xFFFF  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
AD0WINT=1  
0xFFFE  
0xFFFE  
AD0WINT  
not affected  
0xF800  
0xF800  
-REF  
-REF  
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘0’,  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘0’,  
ADC0LTH:ADC0LTL = 0x0100,  
ADC0GTH:ADC0GTL = 0xFFFF.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x0100 and > 0xFFFF. (In two’s-complement  
math, 0xFFFF = -1.)  
ADC0LTH:ADC0LTL = 0xFFFF,  
ADC0GTH:ADC0GTL = 0x0100.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0xFFFF or > 0x0100. (In two’s-complement  
math, 0xFFFF = -1.)  
Figure 5.9. 12-Bit ADC0 Window Interrupt Example:  
Right Justified Differential Data  
64  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Input Voltage  
(AD0 - AGND)  
Input Voltage  
ADC Data  
ADC Data  
Word  
(AD0 - AGND)  
Word  
REF x (4095/4096)  
0xFFF0  
REF x (4095/4096)  
0xFFF0  
AD0WINT  
not affected  
AD0WINT=1  
0x2010  
0x2010  
REF x (512/4096)  
REF x (256/4096)  
0x2000  
0x1FF0  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (512/4096)  
REF x (256/4096)  
0x2000  
0x1FF0  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x1010  
0x1000  
0x1010  
0x1000  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
AD0WINT=1  
0x0FF0  
0x0FF0  
AD0WINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x00,  
AD0LJST = ‘1’,  
AMX0SL = 0x00, AMX0CF = 0x00,  
AD0LJST = ‘1’  
ADC0LTH:ADC0LTL = 0x2000,  
ADC0GTH:ADC0GTL = 0x1000.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x2000 and > 0x1000.  
ADC0LTH:ADC0LTL = 0x1000,  
ADC0GTH:ADC0GTL = 0x2000.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x1000 or > 0x2000.  
Figure 5.10. 12-Bit ADC0 Window Interrupt Example:  
Left Justified Single-Ended Data  
Rev. 1.5  
65  
C8051F040/1/2/3/4/5/6/7  
Input Voltage  
ADC Data  
Input Voltage  
(AD0 - AD1)  
ADC Data  
Word  
(AD0 - AD1)  
Word  
REF x (2047/2048)  
0x7FF0  
REF x (2047/2048)  
0x7FF0  
AD0WINT  
not affected  
AD0WINT=1  
0x1010  
0x1010  
REF x (256/2048)  
REF x (-1/2048)  
0x1000  
0x0FF0  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (256/2048)  
REF x (-1/2048)  
0x1000  
0x0FF0  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x0000  
0xFFF0  
0x0000  
0xFFF0  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0xFFE0  
0xFFE0  
AD0WINT=1  
AD0WINT  
not affected  
0x8000  
0x8000  
-REF  
-REF  
Given:  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘1’,  
AMX0SL = 0x00, AMX0CF = 0x01,  
AD0LJST = ‘1’,  
ADC0LTH:ADC0LTL = 0x1000,  
ADC0GTH:ADC0GTL = 0xFFF0.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0x1000 and > 0xFFF0. (Two’s-complement  
math.)  
ADC0LTH:ADC0LTL = 0xFFF0,  
ADC0GTH:ADC0GTL = 0x1000.  
An ADC0 End of Conversion will cause an  
ADC0 Window Compare Interrupt (AD0WINT  
= ‘1’) if the resulting ADC0 Data Word is  
< 0xFFF0 or > 0x1000. (Two’s-complement  
math.)  
Figure 5.11. 12-Bit ADC0 Window Interrupt Example: Left Justified Differential Data  
66  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 5.2. 12-Bit ADC0 Electrical Characteristics  
V
= 3.0 V, AV+ = 3.0 V, VREF = 2.40 V (REFBE = 0), PGA Gain = 1, –40 to +85 °C unless otherwise specified.  
DD  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Accuracy  
Resolution  
12  
bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
±1  
±1  
Guaranteed Monotonic  
Note 1  
LSB  
0.5±3  
0.4±3  
±0.25  
LSB  
Full Scale Error  
Differential mode; See Note 1  
LSB  
Offset Temperature Coefficient  
ppm/°C  
Dynamic Performance (10 kHz sine-wave input, 0 to 1 dB below Full Scale, 100 ksps)  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Conversion Rate  
66  
–75  
80  
dB  
dB  
dB  
th  
Up to the 5 harmonic  
Maximum SAR Clock Frequency  
Conversion Time in SAR Clocks  
Track/Hold Acquisition Time  
Throughput Rate  
16  
1.5  
2.5  
MHz  
clocks  
µs  
100  
ksps  
Analog Inputs  
Input Voltage Range  
Single-ended operation  
Differential operation  
0
AGND  
10  
VREF  
AV+  
V
V
Common-mode Voltage Range  
Input Capacitance  
pF  
Temperature Sensor  
Nonlinearity  
Notes 1, 2  
Notes 1, 2  
±1  
±3  
°C  
°C  
Absolute Accuracy  
2.86  
±0.034  
Gain  
Notes 1, 2  
mV/°C  
V
0.776  
±0.009  
Offset  
Notes 1, 2 (Temp = 0 °C)  
Power Specifications  
Power Supply Current (AV+ sup-  
plied to ADC)  
Operating Mode, 100 ksps  
450  
900  
µA  
Power Supply Rejection  
±0.3  
mV/V  
Notes:  
1. Represents one standard deviation from the mean.  
2. Includes ADC offset, gain, and linearity variations.  
Rev. 1.5  
67  
C8051F040/1/2/3/4/5/6/7  
Table 5.3. High-Voltage Difference Amplifier Electrical Characteristics  
V
= 3.0 V, AV+ = 3.0 V, V  
= 3.0 V, 40 to +85 °C unless otherwise specified.  
DD  
REF  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Analog Inputs  
Differential range  
Common Mode Range  
Analog Output  
peak-to-peak  
60  
V
V
(HVAIN+) – (HVAIN–) = 0 V  
–60  
+60  
Output Voltage Range  
DC Performance  
0.1  
2.9  
V
Common Mode Rejection Ratio  
Offset Voltage  
Vcm= –10 V to +10 V, Rs=0  
44  
52  
±3  
dB  
mV  
Noise  
HVCAP floating  
G = 1  
500  
72  
nV/rtHz  
dB  
Nonlinearity  
Dynamic Performance  
Small Signal Bandwidth  
Small Signal Bandwidth  
Slew Rate  
G = 0.05  
G = 1  
3
150  
2
MHz  
kHz  
V/µs  
µs  
Settling Time  
0.01%, G = 0.05, 10 V step  
10  
Input/Output Impedance  
Differential (HVAIN+) input  
Differential (HVAIN-) input  
Common Mode input  
HVCAP  
105  
98  
51  
5
k  
k  
k  
k  
Power Specification  
Quiescent Current  
450  
1000  
µA  
68  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
6. 10-Bit ADC (ADC0, C8051F042/3/4/5/6/7 Only)  
The ADC0 subsystem for the C8051F042/3/4/5/6/7 consists of a 9-channel, configurable analog multi-  
plexer (AMUX0), a programmable gain amplifier (PGA0), and a 100 ksps, 10-bit successive-approxima-  
tion-register ADC with integrated track-and-hold and Programmable Window Detector (see block diagram  
in Figure 6.1). The AMUX0, PGA0, Data Conversion Modes, and Window Detector are all configurable  
under software control via the Special Function Registers shown in Figure 6.1. The voltage reference used  
by ADC0 is selected as described in Section “9. Voltage Reference (C8051F040/2/4/6)” on page 113 for  
C8051F042/4/6 devices, or Section “10. Voltage Reference (C8051F041/3/5/7)” on page 117 for  
C8051F043/5/7 devices. The ADC0 subsystem (ADC0, track-and-hold and PGA0) is enabled only when  
the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1. The ADC0 subsystem is in low  
power shutdown when this bit is logic 0.  
ADC0GTH  
ADC0GTL  
ADC0LTH  
ADC0LTL  
20  
Comb.  
Logic  
AD0WINT  
AV+  
10  
HV  
Input  
AD0EN  
AV+  
9-to-1  
10-Bit  
SAR  
Port 3  
I/O Pins  
AMUX  
(SE or  
DIFF)  
+
-
10  
X
ADC  
Analog  
Input  
Pins  
AGND  
00  
01  
10  
11  
AD0BUSY (W)  
Timer 3 Overflow  
CNVSTR0  
TEMP  
SENSOR  
Start Conversion  
AGND  
Timer 2 Overflow  
AMX0SL  
AMX0CF  
ADC0CF  
ADC0CN  
Figure 6.1. 10-Bit ADC0 Functional Block Diagram  
6.1. Analog Multiplexer and PGA  
The analog multiplexer can input analog signals to the ADC from four external analog input pins, Port 3  
port pins (optionally configured as analog input pins), High Voltage Difference Amplifier, and an internally  
connected on-chip temperature sensor (temperature transfer function is shown in Figure 6.6). AMUX input  
pairs can be programmed to operate in either differential or single-ended mode. This allows the user to  
select the best measurement technique for each input channel, and even accommodates mode changes  
"on-the-fly". The AMUX defaults to all single-ended inputs upon reset. There are three registers associated  
with the AMUX: the Channel Selection register AMX0SL (SFR Definition 6.2), the Configuration register  
AMX0CF (SFR Definition 6.1), and the Port Pin Selection register AMX0PRT (SFR Definition 6.3).  
Table 6.1 shows AMUX functionality by channel for each possible configuration. The PGA amplifies the  
AMUX output signal by an amount determined by the states of the AMP0GN2-0 bits in the ADC0 Configu-  
ration register, ADC0CF (SFR Definition 6.5). The PGA can be software-programmed for gains of 0.5, 2, 4,  
8 or 16. Gain defaults to unity on reset.  
Rev. 1.5  
69  
C8051F040/1/2/3/4/5/6/7  
6.1.1. Analog Input Configuration  
The analog multiplexer routes signals from external analog input pins, Port 3 I/O pins (programmed to be  
analog inputs), a High Voltage Difference Amplifier, and an on-chip temperature sensor as shown in  
Figure 6.2.  
+
AIN0.0  
AIN0.1  
0
AMX0CF  
-
1
2
+
AIN0.2  
AIN0.3  
-
3
HVAIN +  
HVAIN -  
HVCAP  
HVREF  
HV  
AMP  
+
-
4
5
10-Bit  
SAR  
9-to-1  
AMUX  
(SE or  
DIFF)  
X
PAIN0EN  
PAIN2EN  
PAIN4EN  
PAIN6EN  
PAIN1EN  
PAIN3EN  
PAIN5EN  
PAIN7EN  
P3.6  
P3.4  
P3.2  
P3.0  
P3.7  
P3.5  
P3.3  
P3.1  
ADC  
(WIRED-OR)  
P3EVEN  
+
-
6
7
P3ODD  
(WIRED-OR)  
8
TEMP SENSOR  
AGND  
AMX0SL  
Figure 6.2. Analog Input Diagram  
Analog signals may be input from four external analog input pins (AIN0.0 through AIN0.3) as differential or  
single-ended measurements. Additionally, Port 3 I/O Port Pins may be configured to input analog signals.  
Port 3 pins configured as analog inputs are selected using the Port Pin Selection register (AMX0PRT). Any  
number of Port 3 pins may be selected simultaneously as inputs to the AMUX. Even numbered Port 3 pins  
and odd numbered Port 3 pins are routed to separate AMUX inputs. (Note: Even port pins and odd port  
pins that are simultaneously selected will be shorted together as “wired-OR”.) In this way, differential mea-  
surements may be made when using the Port 3 pins (voltage difference between selected even and odd  
Port 3 pins) as shown in Figure 6.2.  
The High-Voltage Difference Amplifier (HVDA) will accept analog input signals and reject up to 60 volts  
common-mode for differential measurement of up to the reference voltage to the ADC (0 to VREF volts).  
The output of the HVDA can be selected as an input to the ADC using the AMUX as any other channel is  
selected for measurement.  
70  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 6.1. AMX0CF: AMUX0 Configuration  
R
-
R
-
R
-
R
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
PORT3IC HVDA2C AIN23IC AIN01IC 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address:  
SFR Address: 0xBA  
SFR Page: 0  
Bits7-4: UNUSED. Read = 0000b; Write = don’t care  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PORT3IC: Port 3 even/odd Pin Input Pair Configuration Bit  
0: Port 3 even and odd input channels are independent single-ended inputs  
1: Port 3 even and odd input channels are (respectively) +, - differential input pair  
HVDA2C: HVDA 2’s Compliment Bit  
0: HVDA output measured as an independent single-ended input  
1: 2’s compliment value Result from HVDA  
AIN23IC: AIN2, AIN3 Input Pair Configuration Bit  
0: AIN2 and AIN3 are independent single-ended inputs  
1: AIN2, AIN3 are (respectively) +, - differential input pair  
AIN01IC: AIN0, AIN1 Input Pair Configuration Bit  
0: AIN0 and AIN1 are independent single-ended inputs  
1: AIN0, AIN1 are (respectively) +, - differential input pair  
NOTE: The ADC0 Data Word is in 2’s complement format for channels configured as differential.  
SFR Definition 6.2. AMX0SL: AMUX0 Channel Select  
R
-
R
-
R
-
R
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
AMX0AD3 AMX0AD2 AMX0AD1 AMX0AD0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xBB  
SFR Page: 0  
Bits7-4: UNUSED. Read = 0000b; Write = don’t care  
Bits3-0: AMX0AD3-0: AMX0 Address Bits  
0000-1111b: ADC Inputs selected per Table 6.1.  
Rev. 1.5  
71  
C8051F040/1/2/3/4/5/6/7  
Table 6.1. AMUX Selection Chart (AMX0AD3-0 and AMX0CF3-0 bits)  
AMX0AD3-0  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1xxx  
TEMP  
SENSOR  
AIN0.0  
AIN0.1  
AIN0.2  
AIN0.3  
HVDA  
AGND  
P3EVEN  
P3ODD  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
+(AIN0.0)  
-(AIN0.1)  
TEMP  
SENSOR  
AIN0.2  
AIN0.3  
HVDA  
HVDA  
HVDA  
AGND  
AGND  
AGND  
P3EVEN  
P3EVEN  
P3EVEN  
P3EVEN  
P3EVEN  
P3EVEN  
P3EVEN  
P3ODD  
P3ODD  
P3ODD  
P3ODD  
P3ODD  
P3ODD  
P3ODD  
+(AIN0.2)  
-(AIN0.3)  
TEMP  
SENSOR  
AIN0.0  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
AIN0.1  
+(AIN0.0)  
-(AIN0.1)  
+(AIN0.2)  
-(AIN0.3)  
TEMP  
SENSOR  
+(HVDA)  
-(HVREF)  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
+(AIN0.0)  
-(AIN0.1)  
+(HVDA)  
-(HVREF)  
TEMP  
SENSOR  
+(AIN0.2)  
-(AIN0.3)  
+(HVDA)  
-(HVREF)  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
-(AIN0.1)  
+(AIN0.2)  
-(AIN0.3)  
+(HVDA)  
-(HVREF)  
TEMP  
SENSOR  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
HVDA  
HVDA  
HVDA  
HVDA  
AGND  
AGND  
AGND  
AGND  
+(AIN0.0)  
-(AIN0.1)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
+(AIN0.2)  
-(AIN0.3)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
-(AIN0.1)  
+(AIN0.2)  
-(AIN0.3)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
+(HVDA)  
-(HVREF)  
+P3EVEN  
-P3ODD)  
TEMP  
SENSOR  
AIN0.0  
AIN0.2  
AIN0.2  
AIN0.3  
AIN0.3  
+(AIN0.0)  
-(AIN0.1)  
+(HVDA)  
-(HVREF)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
+(AIN0.2)  
-(AIN0.3)  
+(HVDA)  
-(HVREF)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
AIN0.0  
+(AIN0.0)  
-(AIN0.1)  
+(AIN0.2)  
-(AIN0.3)  
+(HVDA)  
-(HVREF)  
+P3EVEN  
-P3ODD  
TEMP  
SENSOR  
Note: “P3EVEN” denotes even numbered and “P3ODD” odd numbered Port 3 pins selected in the AMX0PRT  
register.  
72  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 6.3. AMX0PRT: Port 3 Pin Selection  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
PAIN7EN PAIN6EN PAIN5EN PAIN4EN PAIN3EN PAIN2EN PAIN1EN PAIN0EN 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xBA  
SFR Page: 0  
Bit7:  
PAIN7EN: Pin 7 Analog Input Enable Bit  
0: P3.7 is not selected as an analog input to the AMUX.  
1: P3.7 is selected as an analog input to the AMUX.  
PAIN6EN: Pin 6 Analog Input Enable Bit  
0: P3.6 is not selected as an analog input to the AMUX.  
1: P3.6 is selected as an analog input to the AMUX.  
PAIN5EN: Pin 5 Analog Input Enable Bit  
0: P3.5 is not selected as an analog input to the AMUX.  
1: P3.5 is selected as an analog input to the AMUX.  
PAIN4EN: Pin 4 Analog Input Enable Bit  
0: P3.4 is not selected as an analog input to the AMUX.  
1: P3.4 is selected as an analog input to the AMUX.  
PAIN3EN: Pin 3 Analog Input Enable Bit  
0: P3.3 is not selected as an analog input to the AMUX.  
1: P3.3 is enabled as an analog input to the AMUX.  
PAIN2EN: Pin 2 Analog Input Enable Bit  
0: P3.2 is not selected as an analog input to the AMUX.  
1: P3.2 is enabled as an analog input to the AMUX.  
PAIN1EN: Pin 1 Analog Input Enable Bit  
0: P3.1 is not selected as an analog input to the AMUX.  
1: P3.1 is enabled as an analog input to the AMUX.  
PAIN0EN: Pin 0 Analog Input Enable Bit  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
0: P3.0 is not selected as an analog input to the AMUX.  
1: P3.0 is enabled as an analog input to the AMUX.  
NOTE: Any number of Port 3 pins may be selected simultaneously inputs to the AMUX. Odd num-  
bered and even numbered pins that are selected simultaneously are shorted together as  
“wired-OR”.  
Rev. 1.5  
73  
C8051F040/1/2/3/4/5/6/7  
6.2. High-Voltage Difference Amplifier  
The High-Voltage Difference Amplifier (HVDA) can be used to measure high differential voltages up to  
60 V peak-to-peak, reject high common-mode voltages up to ±60 V, and condition the signal voltage range  
to be suitable for input to ADC0. The input signal to the HVDA may be below AGND to –60 volts, and as  
high as +60 volts, making the device suitable for both single and dual supply applications. The HVDA pro-  
vides a common-mode signal for the ADC via the High Voltage Reference Input (HVREF), allowing mea-  
surement of signals outside the specified ADC input range using on-chip circuitry. The HVDA has a gain of  
0.05 V/V to 14 V/V. The first stage 20:1 difference amplifier has a gain of 0.05 V/V when the output ampli-  
fier is used as a unity gain buffer. When the output amplifier is set to a gain of 280 (selected using the  
HVGAIN bits in the High Voltage Control Register), an overall gain of 14 can be attained.  
The HVDA uses four available external pins: +HVAIN, –HVAIN, HVCAP, and HVREF. HVAIN+ and HVAIN-  
serve as the differential inputs to the HVDA. HVREF should be used to provide a common mode reference  
for input to ADC0, and to prevent the output of the HVDA circuit from saturating. The output from the  
HVDA circuit as calculated by Equation 6.1 must remain within the “Output Voltage Range” specification  
listed in Table 6.3. The ideal value for HVREF in most applications is equal to 1/2 the supply voltage for the  
device. When the ADC is configured for differential measurement, the HVREF signal is applied to the AIN-  
input of the ADC, thereby removing HVREF from the measurement. HVCAP facilitates the use of a capac-  
itor for noise filtering in conjunction with R7 (see Figure 6.3 for R7 and other approximate resistor values).  
Alternatively, the HVCAP could also be used to access amplification of the first stage of the HVDA at an  
external pin. (See Table 6.3 on page 90 for electrical specifications of the HVDA.)  
VOUT = HVAIN+HVAIN-  Gain + HVREF  
Note: The output voltage of the HVDA is selected as an input to the AIN+ input of ADC0 via its analog multiplexer  
(AMUX0). HVDA output voltages outside the ADC’s input range will result in saturation of the ADC input. Allow  
for adequate settle/tracking time for proper voltage measurements.  
Equation 6.1. Calculating HVDA Output Voltage to AIN+  
HVCAP  
  
k
5k  
HVAIN-  
HVAIN+  
5k  
Vout  
HVA0CN  
(To AMUX0)  
100k  
5k  
Gain Setting  
Resistor values are  
approximate  
HVREF  
Figure 6.3. High Voltage Difference Amplifier Functional Diagram  
74  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 6.4. HVA0CN: High Voltage Difference Amplifier Control  
R/W  
HVDAEN  
Bit7  
R
-
R
-
R
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
HVGAIN3 HVGAIN2 HVGAIN1 HVGAIN0 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xD6  
SFR Page: 0  
Bit7:  
HVDAEN: High Voltage Difference Amplifier (HVDA) Enable Bit.  
0: The HVDA is disabled.  
1: The HVDA is enabled.  
Bits6-3: Reserved.  
Bits2-0: HVGAIN3-HVGAIN0: HVDA Gain Control Bits.  
HVDA Gain Control Bits set the amplification gain if the difference signal input to the HVDA  
as defined in the table below:  
HVGAIN3:HVGAIN0  
0000  
HVDA Gain  
0.05  
0.1  
0001  
0010  
0011  
0.125  
0.2  
0100  
0101  
0.25  
0.4  
0110  
0.5  
0111  
0.8  
1000  
1.0  
1001  
1.6  
1010  
2.0  
1011  
3.2  
1100  
4.0  
1101  
6.2  
1110  
7.6  
1111  
14  
Rev. 1.5  
75  
C8051F040/1/2/3/4/5/6/7  
6.3. ADC Modes of Operation  
ADC0 has a maximum conversion speed of 100 ksps. The ADC0 conversion clock is derived from the sys-  
tem clock divided by the value held in the ADC0SC bits of register ADC0CF.  
6.3.1. Starting a Conversion  
A conversion can be initiated in one of four ways, depending on the programmed states of the ADC0 Start  
of Conversion Mode bits (AD0CM1, AD0CM0) in ADC0CN. Conversions may be initiated by the following:  
• Writing a ‘1’ to the AD0BUSY bit of ADC0CN;  
• A Timer 3 overflow (i.e., timed continuous conversions);  
• A rising edge detected on the external ADC convert start signal, CNVSTR0;  
• A Timer 2 overflow (i.e., timed continuous conversions).  
The AD0BUSY bit is set to logic 1 during conversion and restored to logic 0 when conversion is complete.  
The falling edge of AD0BUSY triggers an interrupt (when enabled) and sets the AD0INT interrupt flag  
(ADC0CN.5). Converted data is available in the ADC0 data word MSB and LSB registers, ADC0H, ADC0L.  
Converted data can be either left or right justified in the ADC0H:ADC0L register pair (see example in  
Figure 6.7) depending on the programmed state of the AD0LJST bit in the ADC0CN register.  
When initiating conversions by writing a ‘1’ to AD0BUSY, the AD0INT bit should be polled to determine  
when a conversion has completed (ADC0 interrupts may also be used). The recommended polling proce-  
dure is shown below.  
Step 1. Write a ‘0’ to AD0INT;  
Step 2. Write a ‘1’ to AD0BUSY;  
Step 3. Poll AD0INT for ‘1’;  
Step 4. Process ADC0 data.  
6.3.2. Tracking Modes  
According to Table 6.2, each ADC0 conversion must be preceded by a minimum tracking time for the con-  
verted result to be accurate. The AD0TM bit in register ADC0CN controls the ADC0 track-and-hold mode.  
In its default state, the ADC0 input is continuously tracked when a conversion is not in progress. When the  
AD0TM bit is logic 1, ADC0 operates in low-power tracking mode. In this mode, each conversion is pre-  
ceded by a tracking period of 3 SAR clocks after the start-of-conversion signal. When the CNVSTR0 signal  
is used to initiate conversions in low-power tracking mode, ADC0 tracks only when CNVSTR0 is low; con-  
version begins on the rising edge of CNVSTR0 (see Figure 6.4). Tracking can also be disabled when the  
entire chip is in low power standby or sleep modes. Low-power tracking mode is also useful when AMUX  
or PGA settings are frequently changed, to ensure that settling time requirements are met (see Section  
“6.3.3. Settling Time Requirements” on page 78).  
76  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
A. ADC Timing for External Trigger Source  
CNVSTR  
(AD0CM[1:0]=10)  
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
2
3
4
5
6
7
8
9
SAR  
Clocks  
Low Power  
or Convert  
ADC0TM=1  
ADC0TM=0  
Track  
Convert  
Convert  
Low Power Mode  
Track  
Track Or Convert  
B. ADC Timing for Internal Trigger Sources  
Timer 2, Timer 3 Overflow;  
Write '1' to AD0BUSY  
(AD0CM[1:0]=00, 01, 11)  
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
1
2
3
4
5
6
7
8
9
SAR  
Clocks  
Low Power  
or Convert  
ADC0TM=1  
Track  
Convert  
Low Power Mode  
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
2
3
4
5
6
7
8
9
SAR  
Clocks  
Track or  
Convert  
ADC0TM=0  
Convert  
Track  
Figure 6.4. 10-Bit ADC Track and Conversion Example Timing  
Rev. 1.5  
77  
C8051F040/1/2/3/4/5/6/7  
6.3.3. Settling Time Requirements  
A minimum tracking time is required before an accurate conversion can be performed. This tracking time is  
determined by the ADC0 MUX resistance, the ADC0 sampling capacitance, any external source resis-  
tance, and the accuracy required for the conversion. Figure 6.5 shows the equivalent ADC0 input circuits  
for both Differential and Single-ended modes. Notice that the equivalent time constant for both input cir-  
cuits is the same. The required settling time for a given settling accuracy (SA) may be approximated by  
Equation 6.2. When measuring the Temperature Sensor output, R  
reduces to R  
. Note that in low-  
TOTAL  
MUX  
power tracking mode, three SAR clocks are used for tracking at the start of every conversion. For most  
applications, these three SAR clocks will meet the tracking requirements. See Table 6.2 for absolute mini-  
mum settling/tracking time requirements.  
2n  
SA  
------  
t = ln  
RTOTALCSAMPLE  
Equation 6.2. ADC0 Settling Time Requirements  
Where:  
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB)  
t is the required settling time in seconds  
R
is the sum of the ADC0 MUX resistance and any external source resistance.  
TOTAL  
n is the ADC resolution in bits (10).  
Differential Mode  
MUX Select  
Single-Ended Mode  
MUX Select  
AIN0.x  
AIN0.x  
RMUX = 5k  
RMUX = 5k  
CSAMPLE = 10pF  
CSAMPLE = 10pF  
RCInput= RMUX * CSAMPLE  
RCInput= RMUX * CSAMPLE  
CSAMPLE = 10pF  
AIN0.y  
RMUX = 5k  
MUX Select  
Figure 6.5. ADC0 Equivalent Input Circuits  
78  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
(Volts)  
1.000  
0.900  
0.800  
0.700  
0.600  
0.500  
VTEMP = 0.00286(TEMPC) + 0.776  
for PGA Gain = 1  
(Celsius)  
-50  
0
50  
100  
Figure 6.6. Temperature Sensor Transfer Function  
Rev. 1.5  
79  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 6.5. ADC0CF: ADC0 Configuration  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AD0SC4 AD0SC3 AD0SC2 AD0SC1 AD0SC0 AMP0GN2 AMP0GN1 AMP0GN0 11111000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xBC  
SFR Page: 0  
Bits7-3: AD0SC4-0: ADC0 SAR Conversion Clock Period Bits  
SAR Conversion clock is derived from system clock by the following equation, where  
AD0SC refers to the 5-bit value held in AD0SC4-0, and CLK refers to the desired ADC0  
SAR0  
SAR clock. See Table 6.2 on page 89 for SAR clock setting requirements.  
SYSCLK  
CLKSAR0  
SYSCLK  
AD0SC + 1  
----------------------  
----------------------------  
CLKSAR0 =  
AD0SC   
– 1 *  
or  
*Note: AD0SC is the rounded-up result.  
Bits2-0: AMP0GN2-0: ADC0 Internal Amplifier Gain (PGA)  
000: Gain = 1  
001: Gain = 2  
010: Gain = 4  
011: Gain = 8  
10x: Gain = 16  
11x: Gain = 0.5  
80  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 6.6. ADC0CN: ADC0 Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AD0EN AD0TM  
AD0INT AD0BUSY AD0CM1 AD0CM0 AD0WINT AD0LJST 00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xE8  
SFR Page: 0  
Bit7:  
AD0EN: ADC0 Enable Bit.  
0: ADC0 Disabled. ADC0 is in low-power shutdown.  
1: ADC0 Enabled. ADC0 is active and ready for data conversions.  
AD0TM: ADC Track Mode Bit  
0: When the ADC is enabled, tracking is continuous unless a conversion is in process  
1: Tracking Defined by AD0CM1-0 bits  
AD0INT: ADC0 Conversion Complete Interrupt Flag.  
This flag must be cleared by software.  
Bit6:  
Bit5:  
0: ADC0 has not completed a data conversion since the last time this flag was cleared.  
1: ADC0 has completed a data conversion.  
Bit4:  
AD0BUSY: ADC0 Busy Bit.  
Read:  
0: ADC0 Conversion is complete or a conversion is not currently in progress. AD0INT is set  
to logic 1 on the falling edge of AD0BUSY.  
1: ADC0 Conversion is in progress.  
Write:  
0: No Effect.  
1: Initiates ADC0 Conversion if AD0CM1-0 = 00b  
AD0CM1-0: ADC0 Start of Conversion Mode Select.  
If AD0TM = 0:  
Bit3-2:  
00: ADC0 conversion initiated on every write of ‘1’ to AD0BUSY.  
01: ADC0 conversion initiated on overflow of Timer 3.  
10: ADC0 conversion initiated on rising edge of external CNVSTR0.  
11: ADC0 conversion initiated on overflow of Timer 2.  
If AD0TM = 1:  
00: Tracking starts with the write of ‘1’ to AD0BUSY and lasts for 3 SAR clocks, followed by  
conversion.  
01: Tracking started by the overflow of Timer 3 and last for 3 SAR clocks, followed by con-  
version.  
10: ADC0 tracks only when CNVSTR0 input is logic low; conversion starts on rising  
CNVSTR0 edge.  
11: Tracking started by the overflow of Timer 2 and last for 3 SAR clocks, followed by con-  
version.  
Bit1:  
Bit0:  
AD0WINT: ADC0 Window Compare Interrupt Flag.  
This bit must be cleared by software.  
0: ADC0 Window Comparison Data match has not occurred since this flag was last cleared.  
1: ADC0 Window Comparison Data match has occurred.  
AD0LJST: ADC0 Left Justify Select.  
0: Data in ADC0H:ADC0L registers are right-justified.  
1: Data in ADC0H:ADC0L registers are left-justified.  
Rev. 1.5  
81  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 6.7. ADC0H: ADC0 Data Word MSB  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR  
Address:  
SFR Address: 0xBF  
SFR Page: 0  
Bits7-0: ADC0 Data Word High-Order Bits.  
For AD0LJST = 0: Bits 7-2 are the sign extension of Bit 1. Bits 0 and 1 are the upper 2 bits of  
the 10-bit ADC0 Data Word.  
For AD0LJST = 1: Bits 7-0 are the most-significant bits of the 10-bit ADC0 Data Word.  
SFR Definition 6.8. ADC0L: ADC0 Data Word LSB  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR  
Address:  
SFR Address: 0xBE  
SFR Page: 0  
Bits7-0: ADC0 Data Word Low-Order Bits.  
For AD0LJST = 0: Bits 7-0 are the lower 8 bits of the 10-bit ADC0 Data Word.  
For AD0LJST = 1: Bits 6 and 7 are the lower 2 bits of the 10-bit ADC0 Data Word. Bits 5-0  
82  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
10-bit ADC Data Word appears in the ADC Data Word Registers as follows:  
ADC0H[1:0]:ADC0L[7:0], if ADLJST = 0  
(ADC0H[7:2] will be sign-extension of ADC0H.1 for a differential reading,  
otherwise = 000000b).  
ADC0H[7:0]:ADC0L[7:6], if ADLJST = 1  
(ADC0L[5:0] = 000000b).  
Example: ADC Data Word Conversion Map, AIN0 Input in Single-Ended Mode  
(AMX0CF = 0x00, AMX0SL = 0x00)  
ADC0H:ADC0L  
(ADLJST = 0)  
ADC0H:ADC0L  
(ADLJST = 1)  
AIN0-AGND (Volts)  
VREF * (1023/1024)  
VREF / 2  
0x03FF  
0x0200  
0x01FF  
0x0000  
0xFFC0  
0x8000  
0x7FC0  
0x0000  
VREF * (511/1024)  
0
Example: ADC Data Word Conversion Map, AIN0-AIN1 Differential Input Pair  
(AMX0CF = 0x01, AMX0SL = 0x00)  
ADC0H:ADC0L  
(ADLJST = 0)  
ADC0H:ADC0L  
(ADLJST = 1)  
AIN0-AGND (Volts)  
VREF * (511/512)  
VREF / 2  
0x01FF  
0x0100  
0x7FC0  
0x4000  
0x0040  
0x0000  
0xFFC0  
0xC000  
0x8000  
VREF * (1/512)  
0
0x0001  
0x0000  
-VREF * (1/512)  
-VREF / 2  
-VREF  
0xFFFF (-1)  
0xFF00 (-256)  
0xFE00 (-512)  
ADLJST = 0:  
Gain  
---------------  
n
Code = Vin   
2 ; ‘n’ = 10 for Single-Ended; ‘n’=9 for Differential.  
VREF  
Figure 6.7. ADC0 Data Word Example  
Rev. 1.5  
83  
C8051F040/1/2/3/4/5/6/7  
6.4. ADC0 Programmable Window Detector  
The ADC0 Programmable Window Detector continuously compares the ADC0 output to user-programmed  
limits, and notifies the system when an out-of-bound condition is detected. This is especially effective in an  
interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response  
times. The window detector interrupt flag (AD0WINT in ADC0CN) can also be used in polled mode. The  
high and low bytes of the reference words are loaded into the ADC0 Greater-Than and ADC0 Less-Than  
registers (ADC0GTH, ADC0GTL, ADC0LTH, and ADC0LTL). Reference comparisons are shown starting  
on page 85. Notice that the window detector flag can be asserted when the measured data is inside or out-  
side the user-programmed limits, depending on the programming of the ADC0GTx and ADC0LTx regis-  
ters.  
SFR Definition 6.9. ADC0GTH: ADC0 Greater-Than Data High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
11111111  
Bit0  
SFR Address: 0xC5  
SFR Page: 0  
Bits7-0: High byte of ADC0 Greater-Than Data Word.  
SFR Definition 6.10. ADC0GTL: ADC0 Greater-Than Data Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
11111111  
Bit0  
SFR Address: 0xC4  
SFR Page: 0  
Bits7-0: Low byte of ADC0 Greater-Than Data Word.  
SFR Definition 6.11. ADC0LTH: ADC0 Less-Than Data High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xC7  
SFR Page: 0  
Bits7-0: High byte of ADC0 Less-Than Data Word.  
84  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 6.12. ADC0LTL: ADC0 Less-Than Data Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xC6  
SFR Page: 0  
Bits7-0: Low byte of ADC0 Less-Than Data Word.  
Input Voltage  
ADC Data  
Input Voltage  
(AD0 - AGND)  
ADC Data  
Word  
(AD0 - AGND)  
Word  
REF x (1023/1024)  
0x03FF  
REF x (1023/1024)  
0x03FF  
AD0WINT  
not affected  
AD0WINT=1  
0x0201  
0x0201  
REF x (512/1024)  
REF x (256/1024)  
0x0200  
0x01FF  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (512/1024)  
REF x (256/1024)  
0x0200  
0x01FF  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x0101  
0x0100  
0x0101  
0x0100  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
AD0WINT=1  
0x00FF  
0x00FF  
AD0WINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 0,  
ADC0LTH:ADC0LTL = 0x0100,  
ADC0GTH:ADC0GTL = 0x0200.  
An ADC End of Conversion will cause an ADC  
Window Compare Interrupt (ADWINT=1) if the  
resulting ADC Data Word is > 0x0200 or  
< 0x0100.  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 0,  
ADC0LTH:ADC0LTL = 0x0200,  
ADC0GTH:ADC0GTL = 0x0100.  
An ADC End of Conversion will cause an ADC  
Window Compare Interrupt (ADWINT=1) if the  
resulting ADC Data Word is < 0x0200 and  
> 0x0100.  
Given:  
Figure 6.8. 10-Bit ADC0 Window Interrupt Example:  
Right Justified Single-Ended Data  
Rev. 1.5  
85  
C8051F040/1/2/3/4/5/6/7  
Input Voltage  
ADC Data  
Input Voltage  
(AD0 - AD1)  
ADC Data  
Word  
(AD0 - AD1)  
Word  
REF x (511/512)  
0x01FF  
REF x (511/512)  
0x01FF  
AD0WINT  
not affected  
AD0WINT=1  
0x0101  
0x0101  
REF x (256/512)  
REF x (-1/512)  
0x0100  
0x00FF  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (256/512)  
REF x (-1/512)  
0x0100  
0x00FF  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x0000  
0xFFFF  
0x0000  
0xFFFF  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
AD0WINT=1  
0xFFFE  
0xFFFE  
AD0WINT  
not affected  
0xFE00  
0xFE00  
-REF  
-REF  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 0,  
ADC0LTH:ADC0LTL = 0xFFFF,  
ADC0GTH:ADC0GTL = 0x0100.  
An ADC End of Conversion will cause an ADC  
Window Compare Interrupt (ADWINT=1) if the  
resulting ADC Data Word is < 0xFFFF or  
> 0x0100. (In two’s-complement math,  
0xFFFF = -1.)  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 0,  
ADC0LTH:ADC0LTL = 0x0100,  
ADC0GTH:ADC0GTL = 0xFFFF.  
An ADC End of Conversion will cause an ADC  
Window Compare Interrupt (ADWINT=1) if the  
resulting ADC Data Word is < 0x0100 and  
> 0xFFFF. (In two’s-complement math,  
0xFFFF = -1.)  
Given:  
Figure 6.9. 10-Bit ADC0 Window Interrupt Example:  
Right Justified Differential Data  
86  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Input Voltage  
(AD0 - AGND)  
Input Voltage  
ADC Data  
ADC Data  
Word  
(AD0 - AGND)  
Word  
REF x (1023/1024)  
0xFFC0  
REF x (1023/1024)  
0xFFC0  
AD0WINT  
not affected  
AD0WINT=1  
0x8040  
0x8040  
REF x (512/1024)  
REF x (256/1024)  
0x8000  
0x7FC0  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (512/1024)  
REF x (256/1024)  
0x8000  
0x7FC0  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x4040  
0x4000  
0x4040  
0x4000  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0x3FC0  
0x3FC0  
AD0WINT=1  
AD0WINT  
not affected  
0x0000  
0x0000  
0
0
Given:  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1,  
ADC0LTH:ADC0LTL = 0x4000,  
ADC0GTH:ADC0GTL = 0x8000.  
An ADC End of Conversion will cause an ADC  
Window Compare Interrupt (ADWINT=1) if the  
resulting ADC Data Word is < 0x4000 or  
> 0x8000.  
AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1,  
ADC0LTH:ADC0LTL = 0x8000,  
ADC0GTH:ADC0GTL = 0x4000.  
An ADC End of Conversion will cause an ADC  
Window Compare Interrupt (ADWINT=1) if the  
resulting ADC Data Word is < 0x8000 and  
> 0x4000.  
Given:  
Figure 6.10. 10-Bit ADC0 Window Interrupt Example:  
Left Justified Single-Ended Data  
Rev. 1.5  
87  
C8051F040/1/2/3/4/5/6/7  
Input Voltage  
ADC Data  
Input Voltage  
(AD0 - AD1)  
ADC Data  
Word  
(AD0 - AD1)  
Word  
REF x (511/512)  
0x7FC0  
REF x (511/512)  
0x7FC0  
AD0WINT  
not affected  
AD0WINT=1  
0x4040  
0x4040  
REF x (256/512)  
REF x (-1/512)  
0x4000  
0x3FC0  
ADC0LTH:ADC0LTL  
AD0WINT=1  
REF x (256/512)  
REF x (-1/512)  
0x4000  
0x3FC0  
ADC0GTH:ADC0GTL  
AD0WINT  
not affected  
0x0000  
0xFFC0  
0x0000  
0xFFC0  
ADC0GTH:ADC0GTL  
ADC0LTH:ADC0LTL  
0xFF80  
0xFF80  
AD0WINT=1  
AD0WINT  
not affected  
0x8000  
0x8000  
-REF  
-REF  
Given:  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 1,  
ADC0LTH:ADC0LTL = 0xFFC0,  
ADC0GTH:ADC0GTL = 0x4000.  
AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 1,  
ADC0LTH:ADC0LTL = 0x4000,  
ADC0GTH:ADC0GTL = 0xFFC0.  
An ADC End of Conversion will cause an ADC  
Window Compare Interrupt (ADWINT=1) if the  
resulting ADC Data Word is < 0x4000 and  
> 0xFFC0. (Two’s-complement math.)  
Given:  
An ADC End of Conversion will cause an ADC  
Window Compare Interrupt (ADWINT=1) if the  
resulting ADC Data Word is < 0xFFC0 or  
> 0x4000. (Two’s-complement math.)  
Figure 6.11. 10-Bit ADC0 Window Interrupt Example: Left Justified Differential Data  
88  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 6.2. 10-Bit ADC0 Electrical Characteristics  
V
= 3.0 V, AV+ = 3.0 V, V  
= 2.40 V (REFBE = 0), PGA Gain = 1, –40 to +85 °C unless otherwise specified.  
DD  
REF  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Accuracy  
Resolution  
10  
bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
±1  
±1  
Guaranteed Monotonic  
Differential mode  
LSB  
0.2±1  
0.1±1  
±0.25  
LSB  
Full Scale Error  
LSB  
Offset Temperature Coefficient  
ppm/°C  
Dynamic Performance (10 kHz sine-wave input, 0 to 1 dB below Full Scale, 100 ksps)  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Conversion Rate  
59  
dB  
dB  
th  
–70  
Up to the 5 harmonic  
80  
dB  
SAR Clock Frequency  
Conversion Time in SAR Clocks  
Track/Hold Acquisition Time  
Throughput Rate  
16  
1.5  
2.5  
MHz  
clocks  
µs  
100  
ksps  
Analog Inputs  
Input Voltage Range  
Single-ended operation  
Differential operation  
0
AGND  
10  
VREF  
AV+  
V
V
Common-mode Voltage Range  
Input Capacitance  
pF  
Temperature Sensor  
1,2  
±1  
±3  
°C  
°C  
Nonlinearity  
1,2  
Absolute Accuracy  
2.86  
±0.034  
mV/°C  
1,2  
Gain  
0.776  
±0.009  
V
1,2  
Temp = 0 °C  
Offset  
Power Specifications  
Power Supply Current  
(AV+ supplied to ADC)  
450  
900  
µA  
Operating Mode, 100 ksps  
Power Supply Rejection  
±0.3  
mV/V  
Notes:  
1. Represents one standard deviation from the mean.  
2. Includes ADC offset, gain, and linearity variations.  
Rev. 1.5  
89  
C8051F040/1/2/3/4/5/6/7  
Table 6.3. High-Voltage Difference Amplifier Electrical Characteristics  
V
= 3.0 V, AV+ = 3.0 V, V  
= 3.0 V, 40 to +85 °C unless otherwise specified.  
DD  
REF  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Analog Inputs  
Differential range  
Common Mode Range  
Analog Output  
peak-to-peak  
60  
V
V
(HVAIN+) – (HVAIN–) = 0 V  
–60  
+60  
Output Voltage Range  
DC Performance  
0.1  
2.9  
V
Common Mode Rejection Ratio Vcm= –10 V to +10 V, Rs=0  
Offset Voltage  
44  
52  
±3  
dB  
mV  
Noise  
HVCAP floating  
G = 1  
500  
72  
nV/rtHz  
dB  
Nonlinearity  
Dynamic Performance  
Small Signal Bandwidth  
Small Signal Bandwidth  
Slew Rate  
G = 0.05  
G = 1  
3
150  
2
MHz  
kHz  
V/µs  
µs  
Settling Time  
0.01%, G = 0.05, 10 V step  
10  
Input/Output Impedance  
Differential (HVAIN+) input  
Differential (HVAIN–) input  
Common Mode input  
HVCAP  
105  
98  
51  
5
k  
k  
k  
k  
Power Specification  
Quiescent Current  
450  
1000  
µA  
90  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
7. 8-Bit ADC (ADC2, C8051F040/1/2/3 Only)  
The ADC2 subsystem for the C8051F040/1/2/3 consists of an 8-channel, configurable analog multiplexer,  
a programmable gain amplifier, and a 500 ksps, 8-bit successive-approximation-register ADC with inte-  
grated track-and-hold (see block diagram in Figure 7.1). The AMUX2, PGA2, and Data Conversion Modes,  
are all configurable under software control via the Special Function Registers shown in Figure 7.1. The  
ADC2 subsystem (8-bit ADC, track-and-hold and PGA) is enabled only when the AD2EN bit in the ADC2  
Control register (ADC2CN) is set to logic 1. The ADC2 subsystem is in low power shutdown when this bit is  
logic 0. The voltage reference used by ADC2 is selected as described in Section “9. Voltage Reference  
(C8051F040/2/4/6)” on page 113 for C8051F040/2 devices, or Section “10. Voltage Reference  
(C8051F041/3/5/7)” on page 117 for C8051F041/3 devices.  
ADC2GTH  
ADC2LTH  
16  
Dig  
Comp  
AV+  
ADC Window  
Interrupt  
AD2EN  
+
AIN2.0 (P1.0)  
AIN2.1 (P1.1)  
AIN2.2 (P1.2)  
AIN2.3 (P1.3)  
AIN2.4 (P1.4)  
AIN2.5 (P1.5)  
AIN2.6 (P1.6)  
AIN2.7 (P1.7)  
AV+  
-
+
8-Bit  
SAR  
-
+
-
8
8-to-1  
AMUX  
X
+
ADC  
-
AGND  
+
000  
001  
010  
011  
1xx  
Write to AD2BUSY  
Timer 3 Overflow  
CNVSTR  
-
Start Conversion  
Timer 2 Overflow  
Write to AD0BUSY  
(synchronized with  
ADC0)  
AMX2CF  
ADC2CF  
AMX2SL  
ADC2CN  
Figure 7.1. ADC2 Functional Block Diagram  
7.1. Analog Multiplexer and PGA  
Eight ADC2 channels are available for measurement, as selected by the AMX2SL register (see SFR Defi-  
nition 7.2). The PGA amplifies the ADC2 output signal by an amount determined by the states of the  
AMP2GN2-0 bits in the ADC2 Configuration register, ADC2CF (SFR Definition 7.1). The PGA can be soft-  
ware-programmed for gains of 0.5, 1, 2, or 4. Gain defaults to 0.5 on reset.  
Important Note: AIN2 pins also function as Port 1 I/O pins, and must be configured as analog inputs when  
used as ADC2 inputs. To configure an AIN2 pin for analog input, set to ‘0’ the corresponding bit in register  
P1MDIN. Port 1 pins selected as analog inputs are skipped by the Digital I/O Crossbar. See Section  
“17.1.5. Configuring Port 1, 2, and 3 Pins as Analog Inputs” on page 207 for more information on con-  
figuring the AIN2 pins.  
Rev. 1.5  
91  
C8051F040/1/2/3/4/5/6/7  
7.2. ADC2 Modes of Operation  
ADC2 has a maximum conversion speed of 500 ksps. The ADC2 conversion clock (SAR2 clock) is a  
divided version of the system clock, determined by the AD2SC bits in the ADC2CF register (system clock  
divided by (AD2SC + 1) for 0 AD2SC 31). The maximum ADC2 conversion clock is 7.5 MHz.  
7.2.1. Starting a Conversion  
A conversion can be initiated in one of five ways, depending on the programmed states of the ADC2 Start  
of Conversion Mode bits (AD2CM2–0) in ADC2CN. Conversions may be initiated by the following:  
•Writing a ‘1’ to the AD2BUSY bit of ADC2CN;  
•A Timer 3 overflow (i.e., timed continuous conversions);  
•A rising edge detected on the external ADC convert start signal, CNVSTR2 or CNVSTR0 (see  
important note below);  
•A Timer 2 overflow (i.e., timed continuous conversions);  
•Writing a ‘1’ to the AD0BUSY of register ADC0CN (initiate conversion of ADC2 and ADC0 with a  
single software command).   
An important note about external convert start (CNVSTR0 and CNVSTR2): If CNVSTR2 is enabled in the  
digital crossbar (Section “17.1. Ports 0 through 3 and the Priority Crossbar Decoder” on page 204),  
CNVSTR2 will be the external convert start signal for ADC2. However, if only CNVSTR0 is enabled in the  
digital crossbar and CNVSTR2 is not enabled, then CNVSTR0 may serve as the start of conversion for  
both ADC0 and ADC2. This permits synchronous sampling of both ADC0 and ADC2.  
During conversion, the AD2BUSY bit is set to logic 1 and restored to 0 when conversion is complete. The  
falling edge of AD2BUSY triggers an interrupt (when enabled) and sets the interrupt flag in ADC2CN. Con-  
verted data is available in the ADC2 data word, ADC2.  
When a conversion is initiated by writing a ‘1’ to AD2BUSY, it is recommended to poll AD2INT to determine  
when the conversion is complete. The recommended procedure is:  
Step 1. Write a ‘0’ to AD2INT;  
Step 2. Write a ‘1’ to AD2BUSY;  
Step 3. Poll AD2INT for ‘1’;  
Step 4. Process ADC2 data.  
7.2.2. Tracking Modes  
According to Table 7.2, each ADC2 conversion must be preceded by a minimum tracking time for the con-  
verted result to be accurate. The AD2TM bit in register ADC2CN controls the ADC2 track-and-hold mode.  
In its default state, the ADC2 input is continuously tracked, except when a conversion is in progress. When  
the AD2TM bit is logic 1, ADC2 operates in low-power tracking mode. In this mode, each conversion is pre-  
ceded by a tracking period of 3 SAR clocks (after the start-of-conversion signal). When the CNVSTR2 (or  
CNVSTR0, See Section 7.2.1 above) signal is used to initiate conversions in low-power tracking mode,  
ADC2 tracks only when CNVSTR2 is low; conversion begins on the rising edge of CNVSTR2 (see  
Figure 7.2). Tracking can also be disabled (shutdown) when the entire chip is in low power standby or  
sleep modes. Low-power Track-and-Hold mode is also useful when AMUX or PGA settings are frequently  
changed, due to the settling time requirements described in Section “7.2.3. Settling Time Require-  
ments” on page 94.  
92  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
A. ADC Timing for External Trigger Source  
CNVSTR2/CNVSTR0  
(AD2CM[2:0]=010)  
1
2
3
4
5
6
7
8
9
SAR2 Clocks  
AD2TM=1  
Low Power  
or Convert  
Track  
Convert  
Convert  
Low Power Mode  
Track  
AD2TM=0  
Track or Convert  
B. ADC Timing for Internal Trigger Source  
Write '1' to AD2BUSY,  
Timer 3 Overflow,  
Timer 2 Overflow,  
Write '1' to AD0BUSY  
(AD2CM[2:0]=000, 001, 011, 0xx)  
1
1
2
3
4
4
5
5
6
6
7
8
9
10 11 12  
SAR2 Clocks  
AD2TM=1  
Low Power  
or Convert  
Track  
Convert  
Low Power Mode  
2
3
7
8
9
SAR2 Clocks  
AD2TM=0  
Track or  
Convert  
Convert  
Track  
Figure 7.2. ADC2 Track and Conversion Example Timing  
Rev. 1.5  
93  
C8051F040/1/2/3/4/5/6/7  
7.2.3. Settling Time Requirements  
A minimum tracking time is required before an accurate conversion can be performed. This tracking time is  
determined by the ADC2 MUX resistance, the ADC2 sampling capacitance, any external source resis-  
tance, and the accuracy required for the conversion. Figure 7.3 shows the equivalent ADC2 input circuit.  
The required ADC2 settling time for a given settling accuracy (SA) may be approximated by Equation 7.1.  
Note: An absolute minimum settling time of 0.8 µs required after any MUX selection. Note that in low-  
power tracking mode, three SAR2 clocks are used for tracking at the start of every conversion. For most  
applications, these three SAR2 clocks will meet the tracking requirements.  
2n  
SA  
------  
t = ln  
RTOTALCSAMPLE  
Equation 7.1. ADC2 Settling Time Requirements  
Where:  
SA is the settling accuracy, given as a fraction of an LSB (for example, 0.25 to settle within 1/4 LSB)  
t is the required settling time in seconds  
R
is the sum of the ADC2 MUX resistance and any external source resistance.  
TOTAL  
n is the ADC resolution in bits (8).  
MUX Select  
AIN2.x  
RMUX = 5k  
CSAMPLE = 10pF  
RCInput= RMUX * CSAMPLE  
Figure 7.3. ADC2 Equivalent Input Circuit  
94  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 7.1. AMX2CF: AMUX2 Configuration  
R
-
R
-
R
-
R
-
R/W  
R/W  
R/W  
R/W  
Reset Value  
PIN67IC PIN45IC PIN23IC PIN01IC 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xBA  
SFR Page: 2  
Bits7-4: UNUSED. Read = 0000b; Write = don’t care  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PIN67IC: P1.6, P1.7 Input Pair Configuration Bit  
0: P1.6 and P1.7 are independent single-ended inputs  
1: P1.6, P1.7 are (respectively) +, - differential input pair  
PIN45IC: P1.4, P1.5 Input Pair Configuration Bit  
0: P1.4 and P1.5 are independent single-ended inputs  
1: P1.4, P1.5 are (respectively) +, - differential input pair  
PIN23IC: P1.2, P1.3 Input Pair Configuration Bit  
0: P1.2 and P1.3 are independent single-ended inputs  
1: P1.2, P1.3 are (respectively) +, - differential input pair  
PIN01IC: P1.0, P1.1 Input Pair Configuration Bit  
0: P1.0 and P1.1 are independent single-ended inputs  
1: P1.0, P1.1 are (respectively) +, - differential input pair  
NOTE: The ADC2 Data Word is in 2’s complement format for channels configured as differential.  
SFR Definition 7.2. AMX2SL: AMUX2 Channel Select  
R
-
R
-
R
-
R
-
R
-
R/W  
R/W  
R/W  
Reset Value  
AMX2AD2 AMX2AD1 AMX2AD0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xBB  
SFR Page: 2  
Bits7-3: UNUSED. Read = 00000b; Write = don’t care  
Bits2-0: AMX2AD2-0: AMX2 Address Bits  
000-111b: ADC Inputs selected per Table 7.1.  
Rev. 1.5  
95  
C8051F040/1/2/3/4/5/6/7  
Table 7.1. AMUX Selection Chart (AMX2AD2-0 and AMX2CF3-0 bits)  
AMX2AD2-0  
000  
001  
010  
011  
100  
101  
110  
111  
P1.0  
P1.1  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
0000  
0001  
+(P1.0)  
-(P1.1)  
-(P1.0)  
+(P1.1)  
P1.2  
P1.3  
P1.4  
P1.4  
P1.4  
P1.5  
P1.5  
P1.5  
P1.6  
P1.6  
P1.6  
P1.6  
P1.6  
P1.6  
P1.6  
P1.7  
P1.7  
P1.7  
P1.7  
P1.7  
P1.7  
P1.7  
+(P1.2)  
-(P1.3)  
-(P1.2)  
+(P1.3)  
P1.0  
P1.1  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
+(P1.0)  
-(P1.1)  
-(P1.0)  
+(P1.1)  
+(P1.2)  
-(P1.3)  
-(P1.2)  
+(P1.3)  
+(P1.4)  
-(P1.5)  
-(P1.4)  
+(P1.5)  
P1.0  
P1.1  
P1.2  
P1.2  
P1.3  
P1.3  
+(P1.0)  
-(P1.1)  
-(P1.0)  
+(P1.1)  
+(P1.4)  
-(P1.5)  
-(P1.4)  
+(P1.5)  
+(P1.2)  
-(P1.3)  
-(P1.2)  
+(P1.3)  
+(P1.4)  
-(P1.5)  
-(P1.4)  
+(P1.5)  
P1.0  
P1.1  
+(P1.0)  
-(P1.1)  
-(P1.0)  
+(P1.1)  
+(P1.2)  
-(P1.3)  
-(P1.2)  
+(P1.3)  
+(P1.4)  
-(P1.5)  
-(P1.4)  
+(P1.5)  
+(P1.6)  
-(P1.7)  
-(P1.6)  
+(P1.7)  
P1.0  
P1.1  
P1.2  
P1.2  
P1.3  
P1.3  
P1.4  
P1.4  
P1.4  
P1.4  
P1.5  
P1.5  
P1.5  
P1.5  
+(P1.0)  
-(P1.1)  
-(P1.0)  
+(P1.1)  
+(P1.6)  
-(P1.7)  
-(P1.6)  
+(P1.7)  
+(P1.2)  
-(P1.3)  
-(P1.2)  
+(P1.3)  
+(P1.6)  
-(P1.7)  
-(P1.6)  
+(P1.7)  
P1.0  
P1.1  
+(P1.0)  
-(P1.1)  
-(P1.0)  
+(P1.1)  
+(P1.2)  
-(P1.3)  
-(P1.2)  
+(P1.3)  
+(P1.6)  
-(P1.7)  
-(P1.6)  
+(P1.7)  
+(P1.4)  
-(P1.5)  
-(P1.4)  
+(P1.5)  
+(P1.6)  
-(P1.7)  
-(P1.6)  
+(P1.7)  
P1.0  
P1.1  
P1.2  
P1.2  
P1.3  
P1.3  
+(P1.0)  
-(P1.1)  
-(P1.0)  
+(P1.1)  
+(P1.4)  
-(P1.5)  
-(P1.4)  
+(P1.5)  
+(P1.6)  
-(P1.7)  
-(P1.6)  
+(P1.7)  
+(P1.2)  
-(P1.3)  
-(P1.2)  
+(P1.3)  
+(P1.4)  
-(P1.5)  
-(P1.4)  
+(P1.5)  
+(P1.6)  
-(P1.7)  
-(P1.6)  
+(P1.7)  
P1.0  
P1.1  
+(P1.0)  
-(P1.1)  
-(P1.0)  
+(P1.1)  
+(P1.2)  
-(P1.3)  
-(P1.2)  
+(P1.3)  
+(P1.4)  
-(P1.5)  
-(P1.4)  
+(P1.5)  
+(P1.6)  
-(P1.7)  
-(P1.6)  
+(P1.7)  
96  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 7.3. ADC2CF: ADC2 Configuration  
R/W  
R/W  
R/W  
R/W  
R/W  
R
-
R/W  
R/W  
Reset Value  
AD2SC4 AD2SC3 AD2SC2 AD2SC1 AD2SC0  
AMP2GN1 AMP2GN0 11111000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xBC  
SFR Page: 2  
Bits7-3: AD2SC4-0: ADC2 SAR Conversion Clock Period Bits  
SAR Conversion clock is derived from system clock by the following equation, where  
AD2SC refers to the 5-bit value held in AD2SC4-0. SAR conversion clock requirements are  
given in Table 7.2.  
SYSCLK  
CLKSAR2  
SYSCLK  
AD2SC + 1  
----------------------  
----------------------------  
AD2SC   
– 1 *  
or  
CLKSAR2  
=
*Note: AD2SC is the rounded-up result.  
Bit2:  
UNUSED. Read = 0b. Write = don’t care.  
Bits1-0: AMP2GN1-0: ADC2 Internal Amplifier Gain (PGA)  
00: Gain = 0.5  
01: Gain = 1  
10: Gain = 2  
11: Gain = 4  
Rev. 1.5  
97  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 7.4. ADC2CN: ADC2 Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
AD2EN AD2TM  
AD2INT AD2BUSY AD2CM2 AD2CM1 AD2CM0 AD2WINT 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xE8  
SFR Page: 2  
Bit7:  
AD2EN: ADC2 Enable Bit.  
0: ADC2 Disabled. ADC2 is in low-power shutdown.  
1: ADC2 Enabled. ADC2 is active and ready for data conversions.  
AD2TM: ADC2 Track Mode Bit.  
0: Normal Track Mode: When ADC2 is enabled, tracking is continuous unless a conversion is in  
Bit6:  
Bit5:  
Bit4:  
process.  
1: Low-power Track Mode: Tracking defined by AD2CM2-0 bits (see below).  
AD2INT: ADC2 Conversion Complete Interrupt Flag.  
This flag must be cleared by software.  
0: ADC2 has not completed a data conversion since the last time this flag was cleared.  
1: ADC2 has completed a data conversion.  
AD2BUSY: ADC2 Busy Bit.  
Read:  
0: ADC2 Conversion is complete or a conversion is not currently in progress. AD2INT is set to  
logic 1 on the falling edge of AD2BUSY.  
1: ADC2 Conversion is in progress.  
Write:  
0: No Effect.  
1: Initiates ADC2 Conversion if AD2CM2-0 = 000b  
Bits3-1: AD2CM2-0: ADC2 Start of Conversion Mode Select.  
AD2TM = 0:  
000: ADC2 conversion initiated on every write of ‘1’ to AD2BUSY.  
001: ADC2 conversion initiated on overflow of Timer 3.  
010: ADC2 conversion initiated on rising edge of external CNVSTR2 or CNVSTR0.  
011: ADC2 conversion initiated on overflow of Timer 2.  
1xx: ADC2 conversion initiated on write of ‘1’ to AD0BUSY (synchronized with ADC0 software-  
commanded conversions).  
AD2TM = 1:  
000: Tracking initiated on write of ‘1’ to AD2BUSY and lasts 3 SAR2 clocks, followed by conver-  
sion.  
001: Tracking initiated on overflow of Timer 3 and lasts 3 SAR2 clocks, followed by conversion.  
010: ADC2 tracks only when CNVSTR2 (or CNVSTR0, See Section 7.2.1) input is logic low; con-  
version starts on rising CNVSTR2 edge.  
011: Tracking initiated on overflow of Timer 2 and lasts 3 SAR2 clocks, followed by conversion.  
1xx: Tracking initiated on write of ‘1’ to AD0BUSY and lasts 3 SAR2 clocks, followed by conver-  
sion.  
Bit0:  
AD2WINT: ADC2 Window Compare Interrupt Flag.  
0: ADC2 window comparison data match has not occurred since this flag was last cleared.  
1: ADC2 window comparison data match has occurred. This flag must be cleared in software.  
An important note about external convert start (CNVSTR0 and CNVSTR2): If CNVSTR2 is enabled in  
the digital crossbar (Section “17.1. Ports 0 through 3 and the Priority Crossbar Decoder”  
on page 204), CNVSTR2 will be the external convert start signal for ADC2. However, if only  
CNVSTR0 is enabled in the digital crossbar and CNVSTR2 is not enabled, then CNVSTR0 may  
serve as the start of conversion for both ADC0 and ADC2.  
98  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 7.5. ADC2: ADC2 Data Word  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xBE  
SFR Page: 2  
Bits7-0: ADC2 Data Word.  
8-bit ADC Data Word appears in the ADC2 Data Word Register as follows:  
Example: ADC2 Data Word Conversion Map, AIN1.0 Input  
(AMX2SL = 0x00)  
AIN1.0-AGND  
ADC2  
(Volts)  
VREF * (255/256)  
VREF / 2  
0xFF  
0x80  
0x7F  
0x00  
VREF * (127/256)  
0
Gain  
VREF  
---------------  
Code = Vin   
256  
Figure 7.4. ADC2 Data Word Example  
Rev. 1.5  
99  
C8051F040/1/2/3/4/5/6/7  
7.3. ADC2 Programmable Window Detector  
The ADC2 Programmable Window Detector continuously compares the ADC2 output to user-programmed  
limits, and notifies the system when an out-of-bound condition is detected. This is especially effective in an  
interrupt-driven system, saving code space and CPU bandwidth while delivering faster system response  
times. The window detector interrupt flag (AD2WINT in ADC2CN) can also be used in polled mode. The  
reference words are loaded into the ADC2 Greater-Than and ADC2 Less-Than registers (ADC2GT and  
ADC2LT). Notice that the window detector flag can be asserted when the measured data is inside or out-  
side the user-programmed limits, depending on the programming of the ADC2GT and ADC2LT registers.  
SFR Definition 7.6. ADC2GT: ADC2 Greater-Than Data  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
11111111  
Bit0  
SFR Address: 0xC4  
SFR Page: 2  
Bits7-0: High byte of ADC2 Greater-Than Data Word.  
SFR Definition 7.7. ADC2LT: ADC2 Less-Than Data  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xC6  
SFR Page: 2  
Bits7-0: Low byte of ADC2 Greater-Than Data Word.  
7.3.1. Window Detector in Single-Ended Mode  
Figure 7.5 shows two example window comparisons for Single-ended mode, with ADC2LT = 0x20 and  
ADC2GT = 0x10. In Single-ended mode, the codes vary from 0 to VREF x (255/256) and are represented  
as 8-bit unsigned integers. In the left example, an AD2WINT interrupt will be generated if the ADC2 con-  
version word (ADC2) is within the range defined by ADC2GT and ADC2LT (if 0x10 ADC2 0x20). In the  
right example, and AD2WINT interrupt will be generated if ADC2 is outside of the range defined by  
ADC2GT and ADC2LT (if ADC2 0x10 or ADC2 0x20).  
100  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
ADC2  
0xFF  
ADC2  
Input Voltage  
(P1.x - GND)  
Input Voltage  
(P1.x - GND)  
REF x (255/256)  
REF x (255/256)  
0xFF  
AD2WINT  
not affected  
AD2WINT=1  
0x21  
0x21  
REF x (32/256)  
REF x (16/256)  
0x20  
0x1F  
ADC2LT  
ADC2GT  
REF x (32/256)  
REF x (16/256)  
0x20  
0x1F  
ADC2GT  
AD2WINT  
not affected  
AD2WINT=1  
0x11  
0x10  
0x11  
0x10  
ADC2LT  
0x0F  
0x0F  
AD2WINT=1  
AD2WINT  
not affected  
0x00  
0x00  
0
0
Figure 7.5. ADC Window Compare Examples, Single-Ended Mode  
Rev. 1.5  
101  
C8051F040/1/2/3/4/5/6/7  
7.3.2. Window Detector in Differential Mode  
Figure 7.6 shows two example window comparisons for differential mode, with ADC2LT = 0x10 (+16d) and  
ADC2GT = 0xFF (–1d). Notice that in Differential mode, the codes vary from –VREF to VREF x (127/128)  
and are represented as 8-bit 2s complement signed integers. In the left example, an AD2WINT interrupt  
will be generated if the ADC2 conversion word (ADC2L) is within the range defined by ADC2GT and  
ADC2LT (if 0xFF (–1d) < ADC2 < 0x0F (16d)). In the right example, an AD2WINT interrupt will be gener-  
ated if ADC2 is outside of the range defined by ADC2GT and ADC2LT (if ADC2 < 0xFF (–1d) or ADC2 >  
0x10 (+16d)).  
ADC2  
ADC2  
Input Voltage  
(P1.x - P1.y)  
Input Voltage  
(P1.x - P1.y)  
REF x (127/128)  
0x7F (127d)  
REF x (127/128)  
0x7F (127d)  
AD2WINT  
not affected  
AD2WINT=1  
0x11 (17d)  
0x11 (17d)  
REF x (16/128)  
REF x (-1/256)  
0x10 (16d)  
0x0F (15d)  
ADC2LT  
ADC2GT  
REF x (16/128)  
REF x (-1/256)  
0x10 (16d)  
0x0F (15d)  
ADC2GT  
AD2WINT  
not affected  
AD2WINT=1  
0x00 (0d)  
0x00 (0d)  
0xFF (-1d)  
0xFF (-1d)  
ADC2LT  
0xFE (-2d)  
0xFE (-2d)  
AD2WINT=1  
AD2WINT  
not affected  
0x80 (-128d)  
0x80 (-128d)  
-REF  
-REF  
Figure 7.6. ADC Window Compare Examples, Differential Mode  
102  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 7.2. ADC2 Electrical Characteristics  
V
= 3.0 V, AV+ = 3.0 V, V  
= 2.40 V (REFBE = 0), PGA2 = 1, –40 to +85 °C unless otherwise specified.  
DD  
REF2  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
DC Accuracy  
Resolution  
8
bits  
LSB  
LSB  
LSB  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
Offset Error  
±1  
±1  
Guaranteed Monotonic  
Differential mode  
0.5±0.3  
–1±0.2  
Full Scale Error  
Dynamic Performance (10 kHz sine-wave input, 0 to 1 dB below Full Scale, 500 ksps)  
Signal-to-Noise Plus Distortion  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Conversion Rate  
45  
47  
dB  
dB  
th  
–51  
Up to the 5 harmonic  
52  
dB  
SAR Conversion Clock   
6
MHz  
Frequency  
Conversion Time in SAR Clocks  
Track/Hold Acquisition Time  
Throughput Rate  
8
clocks  
ns  
300  
500  
ksps  
Analog Inputs  
Input Voltage Range  
Common Mode Range  
Input Capacitance  
Single-ended  
0
0
5
VREF  
AV+  
V
V
pF  
Power Specifications  
Power Supply Current  
(AV+ supplied to ADC2)  
420  
900  
µA  
Operating Mode, 500 ksps  
Power Supply Rejection  
±0.3  
mV/V  
Rev. 1.5  
103  
C8051F040/1/2/3/4/5/6/7  
104  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
8. DACs, 12-Bit Voltage Mode (C8051F040/1/2/3 Only)  
Each C8051F040/1/2/3 devices include two on-chip 12-bit voltage-mode Digital-to-Analog Converters  
(DACs). Each DAC has an output swing of 0 V to (VREF – 1 LSB) for a corresponding input code range of  
0x000 to 0xFFF. The DACs may be enabled/disabled via their corresponding control registers, DAC0CN  
and DAC1CN. While disabled, the DAC output is maintained in a high-impedance state, and the DAC sup-  
ply current falls to 1 µA or less. The voltage reference for each DAC is supplied at the VREFD pin  
(C8051F040/2 devices) or the VREF pin (C8051F041/3 devices). Note that the VREF pin on C8051F041/3  
devices may be driven by the internal voltage reference or an external source. If the internal voltage refer-  
ence is used it must be enabled in order for the DAC outputs to be valid. See Section “9. Voltage Refer-  
ence (C8051F040/2/4/6)” on page 113 or Section “10. Voltage Reference (C8051F041/3/5/7)” on  
page 117 for more information on configuring the voltage reference for the DACs.  
DAC0EN  
DAC0MD1  
DAC0MD0  
DAC0DF2  
DAC0DF1  
DAC0DF0  
REF  
AV+  
8
8
8
8
12  
DAC0  
DAC0  
AGND  
DAC1EN  
DAC1MD1  
DAC1MD0  
DAC1DF2  
DAC1DF1  
DAC1DF0  
REF  
AV+  
8
8
8
8
12  
DAC1  
DAC1  
AGND  
Figure 8.1. DAC Functional Block Diagram  
Rev. 1.5  
105  
C8051F040/1/2/3/4/5/6/7  
8.1. DAC Output Scheduling  
Each DAC features a flexible output update mechanism which allows for seamless full-scale changes and  
supports jitter-free updates for waveform generation. The following examples are written in terms of DAC0,  
but DAC1 operation is identical.  
8.1.1. Update Output On-Demand  
In its default mode (DAC0CN.[4:3] = ‘00’) the DAC0 output is updated “on-demand” on a write to the high-  
byte of the DAC0 data register (DAC0H). It is important to note that writes to DAC0L are held, and have no  
effect on the DAC0 output until a write to DAC0H takes place. If writing a full 12-bit word to the DAC data  
registers, the 12-bit data word is written to the low byte (DAC0L) and high byte (DAC0H) data registers.  
Data is latched into DAC0 after a write to the corresponding DAC0H register, so the write sequence  
should be DAC0L followed by DAC0H if the full 12-bit resolution is required. The DAC can be used in 8-  
bit mode by initializing DAC0L to the desired value (typically 0x00), and writing data to only DAC0H (also  
see Section 8.2 for information on formatting the 12-bit DAC data word within the 16-bit SFR space).  
8.1.2. Update Output Based on Timer Overflow  
Similar to the ADC operation, in which an ADC conversion can be initiated by a timer overflow indepen-  
dently of the processor, the DAC outputs can use a Timer overflow to schedule an output update event.  
This feature is useful in systems where the DAC is used to generate a waveform of a defined sampling rate  
by eliminating the effects of variable interrupt latency and instruction execution on the timing of the DAC  
output. When the DAC0MD bits (DAC0CN.[4:3]) are set to ‘01’, ‘10’, or ‘11’, writes to both DAC data regis-  
ters (DAC0L and DAC0H) are held until an associated Timer overflow event (Timer 3, Timer 4, or Timer 2,  
respectively) occurs, at which time the DAC0H:DAC0L contents are copied to the DAC input latches allow-  
ing the DAC output to change to the new value.  
8.2. DAC Output Scaling/Justification  
In some instances, input data should be shifted prior to a DAC0 write operation to properly justify data  
within the DAC input registers. This action would typically require one or more load and shift operations,  
adding software overhead and slowing DAC throughput. To alleviate this problem, the data-formatting fea-  
ture provides a means for the user to program the orientation of the DAC0 data word within data registers  
DAC0H and DAC0L. The three DAC0DF bits (DAC0CN.[2:0]) allow the user to specify one of five data  
word orientations as shown in the DAC0CN register definition.  
DAC1 is functionally the same as DAC0 described above. The electrical specifications for both DAC0 and  
DAC1 are given in Table 8.1.  
106  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 8.1. DAC0H: DAC0 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xD3  
SFR Page: 0  
Bits7-0: DAC0 Data Word Most Significant Byte.  
SFR Definition 8.2. DAC0L: DAC0 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xD2  
SFR Page: 0  
Bits7-0: DAC0 Data Word Least Significant Byte.  
Rev. 1.5  
107  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 8.3. DAC0CN: DAC0 Control  
R/W  
DAC0EN  
Bit7  
R
-
R
-
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
DAC0MD1 DAC0MD0 DAC0DF2 DAC0DF1 DAC0DF0 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xD4  
SFR Page: 0  
Bit7:  
DAC0EN: DAC0 Enable Bit.  
0: DAC0 Disabled. DAC0 Output pin is disabled; DAC0 is in low-power shutdown mode.  
1: DAC0 Enabled. DAC0 Output pin is active; DAC0 is operational.  
Bits6-5: UNUSED. Read = 00b; Write = don’t care.  
Bits4-3: DAC0MD1-0: DAC0 Mode Bits.  
00: DAC output updates occur on a write to DAC0H.  
01: DAC output updates occur on Timer 3 overflow.  
10: DAC output updates occur on Timer 4 overflow.  
11: DAC output updates occur on Timer 2 overflow.  
Bits2-0: DAC0DF2-0: DAC0 Data Format Bits:  
000:  
001:  
010:  
The most significant nibble of the DAC0 Data Word is in DAC0H[3:0], while the least  
significant byte is in DAC0L.  
DAC0H  
DAC0L  
MSB  
LSB  
The most significant 5-bits of the DAC0 Data Word is in DAC0H[4:0], while the least  
significant 7-bits are in DAC0L[7:1].  
DAC0H  
DAC0L  
MSB  
LSB  
The most significant 6-bits of the DAC0 Data Word is in DAC0H[5:0], while the least  
significant 6-bits are in DAC0L[7:2].  
DAC0H  
DAC0L  
MSB  
LSB  
011:  
The most significant 7-bits of the DAC0 Data Word is in DAC0H[6:0], while the least  
significant 5-bits are in DAC0L[7:3].  
DAC0H  
DAC0L  
MSB  
LSB  
1xx:  
The most significant 8-bits of the DAC0 Data Word is in DAC0H[7:0], while the least  
significant 4-bits are in DAC0L[7:4].  
DAC0H  
DAC0L  
MSB  
LSB  
108  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 8.4. DAC1H: DAC1 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xD3  
SFR Page: 1  
Bits7-0: DAC1 Data Word Most Significant Byte.  
SFR Definition 8.5. DAC1L: DAC1 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xD2  
SFR Page: 1  
Bits7-0: DAC1 Data Word Least Significant Byte.  
Rev. 1.5  
109  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 8.6. DAC1CN: DAC1 Control  
R/W  
DAC1EN  
Bit7  
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
DAC1MD1 DAC1MD0 DAC1DF2 DAC1DF1 DAC1DF0 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR  
Address:  
SFR Page:  
0xD4  
1
Bit7:  
DAC1EN: DAC1 Enable Bit.  
0: DAC1 Disabled. DAC1 Output pin is disabled; DAC1 is in low-power shutdown mode.  
1: DAC1 Enabled. DAC1 Output pin is active; DAC1 is operational.  
Bits6-5: UNUSED. Read = 00b; Write = don’t care.  
Bits4-3: DAC1MD1-0: DAC1 Mode Bits:  
00: DAC output updates occur on a write to DAC1H.  
01: DAC output updates occur on Timer 3 overflow.  
10: DAC output updates occur on Timer 4 overflow.  
11: DAC output updates occur on Timer 2 overflow.  
Bits2-0: DAC1DF2: DAC1 Data Format Bits:  
000:  
001:  
010:  
The most significant nibble of the DAC1 Data Word is in DAC1H[3:0], while the least  
significant byte is in DAC1L.  
DAC1H  
DAC1L  
MSB  
LSB  
The most significant 5-bits of the DAC1 Data Word is in DAC1H[4:0], while the least  
significant 7-bits are in DAC1L[7:1].  
DAC1H  
DAC1L  
MSB  
LSB  
The most significant 6-bits of the DAC1 Data Word is in DAC1H[5:0], while the least  
significant 6-bits are in DAC1L[7:2].  
DAC1H  
DAC1L  
MSB  
LSB  
011:  
The most significant 7-bits of the DAC1 Data Word is in DAC1H[6:0], while the least  
significant 5-bits are in DAC1L[7:3].  
DAC1H  
DAC1L  
MSB  
LSB  
1xx:  
The most significant 8-bits of the DAC1 Data Word is in DAC1H[7:0], while the least  
significant 4-bits are in DAC1L[7:4].  
DAC1H  
DAC1L  
MSB  
LSB  
110  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
.
Table 8.1. DAC Electrical Characteristics  
V
= 3.0 V, AV+ = 3.0 V, V  
= 2.40 V (REFBE = 0), No Output Load unless otherwise specified.  
DD  
REF  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
Static Performance  
Resolution  
12  
±2  
bits  
LSB  
Integral Nonlinearity  
Differential Nonlinearity  
±1  
LSB  
No Output Filter  
100 kHz Output Filter  
10 kHz Output Filter  
250  
128  
41  
µVrms  
Output Noise  
Offset Error  
Data Word = 0x014  
±3  
6
±30  
mV  
ppm/°C  
mV  
Offset Tempco  
Full-Scale Error  
Full-Scale Error Tempco  
±20  
10  
±60  
ppm/°C  
dB  
V
Power Supply Rejection  
–60  
DD  
Ratio  
Output Impedance in Shutdown  
Mode  
100  
k  
DACnEN = 0  
Output Sink Current  
300  
15  
µA  
Output Short-Circuit Current  
Dynamic Performance  
Voltage Output Slew Rate  
Data Word = 0xFFF  
Load = 40 pF  
mA  
0.44  
10  
V/µs  
µs  
Load = 40 pF, Output swing from  
code 0xFFF to 0x014  
Output Settling Time to 1/2 LSB  
Output Voltage Swing  
0
VREF  
– LSB  
V
Startup Time  
10  
µs  
Analog Outputs  
I = 0.01 mA to 0.3 mA at code  
60  
ppm  
µA  
L
Load Regulation  
0xFFF  
Power Consumption (each DAC)  
Power Supply Current (AV+  
supplied to DAC)  
110  
400  
Data Word = 0x7FF  
Rev. 1.5  
111  
C8051F040/1/2/3/4/5/6/7  
112  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
9. Voltage Reference (C8051F040/2/4/6)  
The voltage reference circuit offers full flexibility in operating the ADC and DAC modules. Three voltage ref-  
erence input pins allow each ADC and the two DACs (C8051F040/2 only) to reference an external voltage  
reference or the on-chip voltage reference output. ADC0 may also reference the DAC0 output internally,  
and ADC2 may reference the analog power supply voltage, via the VREF multiplexers shown in Figure 9.1.  
The internal voltage reference circuit consists of a 1.2 V, temperature stable bandgap voltage reference  
generator and a gain-of-two output buffer amplifier. The internal reference may be routed via the VREF pin  
to external system components or to the voltage reference input pins shown in Figure 9.1. Bypass capaci-  
tors of 0.1 µF and 4.7 µF are recommended from the VREF pin to AGND, as shown in Figure 9.1. See  
Table 9.1 for voltage reference specifications.  
The Reference Control Register, REF0CN (defined in SFR Definition 9.1) enables/disables the internal ref-  
erence generator and selects the reference inputs for ADC0 and ADC2. The BIASE bit in REF0CN enables  
the on-board reference generator while the REFBE bit enables the gain-of-two buffer amplifier which drives  
the VREF pin. When disabled, the supply current drawn by the bandgap and buffer amplifier falls to less  
than 1 µA (typical) and the output of the buffer amplifier enters a high impedance state. If the internal band-  
gap is used as the reference voltage generator, BIASE and REFBE must both be set to logic 1. If the inter-  
nal reference is not used, REFBE may be set to logic 0. Note that the BIASE bit must be set to logic 1 if  
either DAC or ADC is used, regardless of the voltage reference used. If neither the ADC nor the DAC are  
being used, both of these bits can be set to logic 0 to conserve power. Bits AD0VRS and AD2VRS select  
the ADC0 and ADC2 voltage reference sources, respectively. The electrical specifications for the Voltage  
Reference are given in Table 9.1.  
The temperature sensor connects to the highest order input of the ADC0 input multiplexer (see Section  
“5.1. Analog Multiplexer and PGA” on page 47 for C8051F040 devices, or Section “6.1. Analog Multi-  
plexer and PGA” on page 69 for C8051F042/4/6 devices). The TEMPE bit within REF0CN enables and  
disables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance  
state and any A/D measurements performed on the sensor while disabled result in meaningless data.  
REF0CN  
(C8051F040/2 only)  
ADC2  
AV+  
Ref  
1
VREF2  
0
VDD  
External  
Voltage  
R1  
Reference  
Circuit  
ADC0  
VREF0  
Ref  
0
1
(C8051F040/2 only)  
DAC0  
VREFD  
Ref  
DAC1  
BIASE  
Bias to  
ADCs,  
DACs  
EN  
VREF  
x2  
1.2V  
Band-Gap  
4.7F  
0.1F  
REFBE  
Recommended Bypass  
Capacitors  
Figure 9.1. Voltage Reference Functional Block Diagram  
Rev. 1.5  
113  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 9.1. REF0CN: Reference Control  
R/W  
-
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
BIASE  
Bit1  
R/W  
Reset Value  
AD0VRS AD2VRS TEMPE  
REFBE 00000000  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
SFR Address: 0xD1  
SFR Page: 0  
Bits7-5: UNUSED. Read = 000b; Write = don’t care.  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
AD0VRS: ADC0 Voltage Reference Select  
0: ADC0 voltage reference from VREF0 pin.  
1: ADC0 voltage reference from DAC0 output (C8051F040/2 only).  
AD2VRS: ADC2 Voltage Reference Select (C8051F040/2 only).  
0: ADC2 voltage reference from VREF2 pin.  
1: ADC2 voltage reference from AV+.  
TEMPE: Temperature Sensor Enable Bit.  
0: Internal Temperature Sensor Off.  
1: Internal Temperature Sensor On.  
BIASE: ADC/DAC Bias Generator Enable Bit. (Must be ‘1’ if using ADC or DAC).  
0: Internal Bias Generator Off.  
1: Internal Bias Generator On.  
REFBE: Internal Reference Buffer Enable Bit.  
0: Internal Reference Buffer Off.  
1: Internal Reference Buffer On. Internal voltage reference is driven on the VREF pin.  
114  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 9.1. Voltage Reference Electrical Characteristics  
V
= 3.0 V, AV+ = 3.0 V, –40 to +85°C unless otherwise specified.  
DD  
Parameter  
Internal Reference (REFBE = 1)  
Conditions  
Min  
Typ  
Max  
Units  
Output Voltage  
25 °C ambient  
2.36  
2.43  
2.48  
30  
V
VREF Short-Circuit Current  
VREF Temperature Coefficient  
Load Regulation  
mA  
15  
0.5  
2
ppm/°C  
ppm/µA  
ms  
Load = 0 to 200 µA to AGND  
4.7 µF tantalum, 0.1 µF  
ceramic bypass  
VREF Turn-on Time 1  
VREF Turn-on Time 2  
VREF Turn-on Time 3  
0.1 µF ceramic bypass  
no bypass cap  
20  
10  
40  
µs  
µs  
µA  
Reference Buffer Power Sup-  
ply Current  
Power Supply Rejection  
140  
ppm/V  
External Reference (REFBE = 0)  
Input Voltage Range  
1.00  
0
(AV+) – 0.3  
1
V
Input Current  
µA  
Rev. 1.5  
115  
C8051F040/1/2/3/4/5/6/7  
116  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
10. Voltage Reference (C8051F041/3/5/7)  
The internal voltage reference circuit consists of a 1.2 V, temperature stable bandgap voltage reference  
generator and a gain-of-two output buffer amplifier. The internal reference may be routed via the VREF pin  
to external system components or to the VREFA input pin shown in Figure 10.1. Bypass capacitors of  
0.1 µF and 4.7 µF are recommended from the VREF pin to AGND, as shown in Figure 10.1. See  
Table 10.1 for voltage reference specifications.  
The VREFA pin provides a voltage reference input for ADC0 and ADC2 (C8051F041/3 only). ADC0 may  
also reference the DAC0 output internally (C8051F041/3 only), and ADC2 may reference the analog power  
supply voltage, via the VREF multiplexers shown in Figure 10.1.  
The Reference Control Register, REF0CN (defined in SFR Definition 10.1) enables/disables the internal  
reference generator and selects the reference inputs for ADC0 and ADC2. The BIASE bit in REF0CN  
enables the on-board reference generator while the REFBE bit enables the gain-of-two buffer amplifier  
which drives the VREF pin. When disabled, the supply current drawn by the bandgap and buffer amplifier  
falls to less than 1 µA (typical) and the output of the buffer amplifier enters a high impedance state. If the  
internal bandgap is used as the reference voltage generator, BIASE and REFBE must both be set to 1 (this  
includes any time a DAC is used). If the internal reference is not used, REFBE may be set to logic 0. Note  
that the BIASE bit must be set to logic 1 if either ADC is used, regardless of the voltage reference used. If  
neither the ADC nor the DAC are being used, both of these bits can be set to logic 0 to conserve power.  
Bits AD0VRS and AD2VRS select the ADC0 and ADC2 voltage reference sources, respectively. The elec-  
trical specifications for the Voltage Reference are given in Table 10.1.  
The temperature sensor connects to the highest order input of the ADC0 input multiplexer (see Section  
“5.1. Analog Multiplexer and PGA” on page 47 for C8051F041 devices that feature a 12-bit ADC, or  
Section “6.1. Analog Multiplexer and PGA” on page 69 for C8051F043/5/7 devices that feature a 10-bit  
ADC). The TEMPE bit within REF0CN enables and disables the temperature sensor. While disabled, the  
temperature sensor defaults to a high impedance state and any A/D measurements performed on the sen-  
sor while disabled result in meaningless data.  
REF0CN  
(C8051F041/3 only)  
ADC2  
AV+  
VDD  
Ref  
1
0
External  
Voltage  
Reference  
Circuit  
R1  
VREFA  
ADC0  
Ref  
0
1
(C8051F041/3 only)  
DAC0  
Ref  
DAC1  
BIASE  
Bias to  
ADCs,  
DACs  
EN  
VREF  
x2  
1.2V  
Band-Gap  
4.7F  
0.1F  
REFBE  
Recommended Bypass  
Capacitors  
Figure 10.1. Voltage Reference Functional Block Diagram  
Rev. 1.5  
117  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 10.1. REF0CN: Reference Control  
R/W  
-
R/W  
-
R/W  
-
R/W  
R/W  
R/W  
R/W  
BIASE  
Bit1  
R/W  
Reset Value  
AD0VRS AD1VRS TEMPE  
REFBE 00000000  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
SFR Address: 0xD1  
SFR Page: 0  
Bits7-5: UNUSED. Read = 000b; Write = don’t care.  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
AD0VRS: ADC0 Voltage Reference Select  
0: ADC0 voltage reference from VREFA pin.  
1: ADC0 voltage reference from DAC0 output (C8051F041/3 only).  
AD2VRS: ADC2 Voltage Reference Select (C8051F041/3 only).  
0: ADC2 voltage reference from VREFA pin.  
1: ADC2 voltage reference from AV+.  
TEMPE: Temperature Sensor Enable Bit.  
0: Internal Temperature Sensor Off.  
1: Internal Temperature Sensor On.  
BIASE: ADC/DAC Bias Generator Enable Bit. (Must be ‘1’ if using ADC or DAC).  
0: Internal Bias Generator Off.  
1: Internal Bias Generator On.  
REFBE: Internal Reference Buffer Enable Bit.  
0: Internal Reference Buffer Off.  
1: Internal Reference Buffer On. Internal voltage reference is driven on the VREF pin.  
118  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 10.1. Voltage Reference Electrical Characteristics  
V
= 3.0 V, AV+ = 3.0 V, –40 to +85 °C unless otherwise specified.  
DD  
Parameter  
Internal Reference (REFBE = 1)  
Conditions  
Min  
Typ  
Max  
Units  
Output Voltage  
25 °C ambient  
2.36  
2.43  
2.48  
30  
V
VREF Short-Circuit Current  
VREF Temperature Coefficient  
Load Regulation  
mA  
15  
0.5  
2
ppm/°C  
ppm/µA  
ms  
Load = 0 to 200 µA to AGND  
4.7 µF tantalum, 0.1 µF  
ceramic bypass  
VREF Turn-on Time 1  
VREF Turn-on Time 2  
VREF Turn-on Time 3  
0.1 µF ceramic bypass  
no bypass cap  
20  
10  
40  
µs  
µs  
µA  
Reference Buffer Power Sup-  
ply Current  
Power Supply Rejection  
140  
ppm/V  
External Reference (REFBE = 0)  
Input Voltage Range  
1.00  
0
(AV+) – 0.3  
1
V
Input Current  
µA  
Rev. 1.5  
119  
C8051F040/1/2/3/4/5/6/7  
120  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
11. Comparators  
C8051F04x family of devices include three on-chip programmable voltage comparators, shown in  
Figure 11.1. Each comparator offers programmable response time and hysteresis. When assigned to a  
Port pin, the Comparator output may be configured as open drain or push-pull, and Comparator inputs  
should be configured as analog inputs (see Section “17.1.5. Configuring Port 1, 2, and 3 Pins as Ana-  
log Inputs” on page 207). The Comparator may also be used as a reset source (see Section  
“13.5. Comparator0 Reset” on page 167).  
The output of a Comparator can be polled by software, used as an interrupt source, used as a reset  
source, and/or routed to a Port pin. Each comparator can be individually enabled and disabled (shutdown).  
When disabled, the Comparator output (if assigned to a Port I/O pin via the Crossbar) defaults to the logic  
low state, and its supply current falls to less than 1 µA. See Section “17.1.1. Crossbar Pin Assignment  
and Allocation” on page 205 for details on configuring the Comparator output via the digital Crossbar.  
The Comparator inputs can be externally driven from -0.25 V to (V ) + 0.25 V without damage or upset.  
DD  
The complete electrical specifications for the Comparator are given in Table 11.1.  
The Comparator response time may be configured in software using the CPnMD1-0 bits in register CPT-  
nMD (see SFR Definition 11.2). Selecting a longer response time reduces the amount of power consumed  
by the comparator. See Table 11.1 for complete timing and current consumption specifications.  
CPnEN  
CPnOUT  
CPnRIF  
CPnFIF  
VDD  
CPn  
Interrupt  
CPnHYP1  
CPnHYP0  
CPnHYN1  
CPnHYN0  
CPn  
CPn  
Rising-edge  
Interrupt Flag  
Falling-edge  
Interrupt Flag  
Comparator Pin Assignments  
CP0 +  
CP0 -  
P2.6  
P2.7  
Interrupt  
Logic  
CP1 +  
CP1 -  
P2.2  
P2.3  
CPn +  
CPn -  
+
-
SET  
CLR  
SET  
CLR  
D
Q
Q
D
Q
Q
CP2 +  
CP2 -  
P2.4  
P2.5  
CPn  
Crossbar  
(SYNCHRONIZER)  
GND  
Reset  
Decision  
Tree  
CPnRIEN  
CPnFIEN  
CPnMD1  
CPnMD0  
Figure 11.1. Comparator Functional Block Diagram  
Rev. 1.5  
121  
C8051F040/1/2/3/4/5/6/7  
CPn+  
VIN+  
VIN-  
+
CPn  
_
OUT  
CPn-  
CIRCUIT CONFIGURATION  
Positive Hysteresis Voltage  
(Programmed with CPnHYP Bits)  
VIN-  
Negative Hysteresis Voltage  
(Programmed by CPnHYN Bits)  
INPUTS  
VIN+  
VOH  
OUTPUT  
VOL  
Negative Hysteresis  
Disabled  
Maximum  
Negative Hysteresis  
Positive Hysteresis  
Disabled  
Maximum  
Positive Hysteresis  
Figure 11.2. Comparator Hysteresis Plot  
The hysteresis of the Comparator is software-programmable via its Comparator Control register (CPT-  
nCN). The user can program both the amount of hysteresis voltage (referred to the input voltage) and the  
positive and negative-going symmetry of this hysteresis around the threshold voltage.  
The Comparator hysteresis is programmed using Bits3-0 in the Comparator Control Register CPTnCN  
(shown in SFR Definition 11.1). The amount of negative hysteresis voltage is determined by the settings of  
the CPnHYN bits. As shown in Table 11.1, settings of approximately 20, 10 or 5 mV of negative hysteresis  
can be programmed, or negative hysteresis can be disabled. In a similar way, the amount of positive hys-  
teresis is determined by the setting the CPnHYP bits.  
Comparator interrupts can be generated on either rising-edge and falling-edge output transitions. (For  
Interrupt enable and priority control, see Section “12.3. Interrupt Handler” on page 153). The rising and/  
or falling -edge interrupts are enabled using the comparator’s Rising/Falling Edge Interrupt Enable Bits  
(CPnRIE and CPnFIE) in their respective Comparator Mode Selection Register (CPTnMD), shown in SFR  
Definition 11.2. These bits allow the user to control which edge (or both) will cause a comparator interrupt.  
However, the comparator interrupt must also be enabled in the Extended Interrupt Enable Register (EIE1).  
The CPnFIF flag is set to logic 1 upon a Comparator falling-edge interrupt, and the CPnRIF flag is set to  
logic 1 upon the Comparator rising-edge interrupt. Once set, these bits remain set until cleared by soft-  
ware. The output state of a Comparator can be obtained at any time by reading the CPnOUT bit. A Com-  
parator is enabled by setting its respective CPnEN bit to logic 1, and is disabled by clearing this bit to logic  
0.Upon enabling a comparator, the output of the comparator is not immediately valid. Before using a com-  
parator as an interrupt or reset source, software should wait for a minimum of the specified “Power-up  
time” as specified in Table 11.1, “Comparator Electrical Characteristics,” on page 126.  
122  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
11.1. Comparator Inputs  
The Port pins selected as comparator inputs should be configured as analog inputs in the Port 2 Input Con-  
figuration Register (for details on Port configuration, see Section “17.1.3. Configuring Port Pins as Digi-  
tal Inputs” on page 206). The inputs for Comparator are on Port 2 as follows:  
Comparator Input  
Port PIN  
CP0+  
P2.6  
CP0–  
CP1+  
CP1–  
CP2+  
CP2–  
P2.7  
P2.2  
P2.3  
P2.4  
P2.5  
Rev. 1.5  
123  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 11.1. CPTnCN: Comparator 0, 1, and 2 Control  
R/W  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
CPnEN CPnOUT CPnRIF  
CPnFIF CPnHYP1 CPnHYP0 CPnHYN1 CPnHYN0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: CPT0CN: 0x88; CPT1CN: 0x88; CPT2CN: 0x88  
SFR Pages: CPT0CN:page 1;CPT1CN:page 2; CPT2CN:page 3  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
CPnEN: Comparator Enable Bit. (Please see note below.)  
0: Comparator Disabled.  
1: Comparator Enabled.  
CPnOUT: Comparator Output State Flag.  
0: Voltage on CPn+ < CPn–.  
1: Voltage on CPn+ > CPn–.  
CPnRIF: Comparator Rising-Edge Interrupt Flag.  
0: No Comparator Rising Edge Interrupt has occurred since this flag was last cleared.  
1: Comparator Rising Edge Interrupt has occurred. Must be cleared by software.  
CPnFIF: Comparator Falling-Edge Interrupt Flag.  
0: No Comparator Falling-Edge Interrupt has occurred since this flag was last cleared.  
1: Comparator Falling-Edge Interrupt has occurred. Must be cleared by software.  
Bits3-2: CPnHYP1-0: Comparator Positive Hysteresis Control Bits.  
00: Positive Hysteresis Disabled.  
01: Positive Hysteresis = 5 mV.  
10: Positive Hysteresis = 10 mV.  
11: Positive Hysteresis = 20 mV.  
Bits1-0: CPnHYN1-0: Comparator Negative Hysteresis Control Bits.  
00: Negative Hysteresis Disabled.  
01: Negative Hysteresis = 5 mV.  
10: Negative Hysteresis = 10 mV.  
11: Negative Hysteresis = 20 mV.  
NOTE: Upon enabling a comparator, the output of the comparator is not immediately valid. Before  
using a comparator as an interrupt or reset source, software should wait for a minimum of  
the specified “Power-up time” as specified in Table 11.1, “Comparator Electrical Characteris-  
tics,” on page 126.  
124  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 11.2. CPTnMD: Comparator Mode Selection  
R/W  
-
R/W  
-
R/W  
R/W  
R
-
R
-
R/W  
R/W  
Reset Value  
CPnRIE CPnFIE  
CPnMD1 CPnMD0 00000010  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: CPT0MD: 0x89; CPT1MD: 0x89;CPT2MD: 0x89  
SFR Page: CPT0MD:page 1;CPT1MD:page 2; CPT2MD:page 3  
Bits7-6: UNUSED. Read = 00b, Write = don’t care.  
Bit 5:  
CPnRIE: Comparator Rising-Edge Interrupt Enable Bit.  
0: Comparator rising-edge interrupt disabled.  
1: Comparator rising-edge interrupt enabled.  
CPnFIE: Comparator Falling-Edge Interrupt Enable Bit.  
0: Comparator falling-edge interrupt disabled.  
1: Comparator falling-edge interrupt enabled.  
Bit 4:  
Bits3-2: UNUSED. Read = 00b, Write = don’t care.  
Bits1-0: CPnMD1-CPnMD0: Comparator Mode Select  
These bits select the response time for the Comparator.  
Mode  
CPnMD1 CPnMD0  
CPn Typical Response Time  
0
1
2
3
0
0
1
1
0
1
0
1
Fastest Response Time  
Lowest Power Consumption  
Rev. 1.5  
125  
C8051F040/1/2/3/4/5/6/7  
Table 11.1. Comparator Electrical Characteristics  
V
= 3.0 V, 40 to +85 °C unless otherwise specified.  
DD  
Parameter  
Response Time,  
Conditions  
Min  
Typ  
100  
250  
175  
500  
320  
1100  
1050  
5200  
1.5  
Max  
4
Units  
ns  
CPn+ – CPn– = 100 mV  
CPn+ – CPn– = 10 mV  
CPn+ – CPn– = 100 mV  
CPn+ – CPn– = 10 mV  
CPn+ – CPn– = 100 mV  
CPn+ – CPn– = 10 mV  
CPn+ – CPn– = 100 mV  
CPn+ – CPn– = 10 mV  
Mode 0  
ns  
ns  
Response Time,  
Mode 1  
ns  
ns  
Response Time,  
Mode 2  
ns  
ns  
Response Time,  
Mode 3  
ns  
Common-Mode Rejection  
Ratio  
mV/V  
Positive Hysteresis 1  
Positive Hysteresis 2  
Positive Hysteresis 3  
Positive Hysteresis 4  
Negative Hysteresis 1  
Negative Hysteresis 2  
Negative Hysteresis 3  
Negative Hysteresis 4  
CPnHYP1-0 = 00  
CPnHYP1-0 = 01  
CPnHYP1-0 = 10  
CPnHYP1-0 = 11  
CPnHYN1-0 = 00  
CPnHYN1-0 = 01  
CPnHYN1-0 = 10  
CPnHYN1-0 = 11  
2
0
4.5  
9
1
7
mV  
mV  
mV  
mV  
mV  
mV  
mV  
mV  
V
4
13  
25  
1
10  
17  
0
2
4
4.5  
9
7
13  
25  
10  
17  
Inverting or Non-Inverting  
Input Voltage Range  
–0.25  
V
+ 0.25  
DD  
Input Capacitance  
Input Bias Current  
Input Offset Voltage  
Power Supply  
–5  
–5  
7
+5  
+5  
pF  
nA  
0.001  
mV  
Power Supply Rejection  
Power-up Time  
0.1  
10  
1
mV/V  
µs  
Mode 0  
Mode 1  
Mode 2  
Mode 3  
7.6  
3.2  
1.3  
0.4  
µA  
µA  
Supply Current at DC  
µA  
µA  
126  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
12. CIP-51 Microcontroller  
The MCU system controller core is the CIP-51 microcontroller. The CIP-51 is fully compatible with the  
MCS-51™ instruction set; standard 803x/805x assemblers and compilers can be used to develop soft-  
ware. The MCU family has a superset of all the peripherals included with a standard 8051. Included are  
five 16-bit counter/timers (see description in Section 23), two full-duplex UARTs (see description in Sec-  
tion 21 and Section 22), 256 bytes of internal RAM, 128 byte Special Function Register (SFR) address  
space (see Section 12.2.6), and 8/4 byte-wide I/O Ports (see description in Section 17). The CIP-51 also  
includes on-chip debug hardware (see description in Section 25), and interfaces directly with the MCUs'  
analog and digital subsystems providing a complete data acquisition or control-system solution in a single  
integrated circuit.  
The CIP-51 Microcontroller core implements the standard 8051 organization and peripherals as well as  
additional custom peripherals and functions to extend its capability (see Figure 12.1 for a block diagram).  
The CIP-51 includes the following features:  
-
-
-
-
-
Fully Compatible with MCS-51 Instruction Set  
25 MIPS Peak Throughput with 25 MHz Clock  
0 to 25 MHz Clock Frequency  
256 Bytes of Internal RAM  
8/4 Byte-Wide I/O Ports  
-
-
-
-
-
Extended Interrupt Handler  
Reset Input  
Power Management Modes  
On-chip Debug Logic  
Program and Data Memory Security  
DATA BUS  
ACCUMULATOR  
B
REGISTER  
STACK POINTER  
TMP1  
TMP2  
SRAM  
ADDRESS  
REGISTER  
SRAM  
(256 X 8)  
PSW  
ALU  
DATA BUS  
SFR_ADDRESS  
SFR_CONTROL  
D8  
BUFFER  
SFR  
BUS  
INTERFACE  
D8  
SFR_WRITE_DATA  
SFR_READ_DATA  
D8  
DATA POINTER  
PC INCREMENTER  
D8  
MEM_ADDRESS  
MEM_CONTROL  
PROGRAM COUNTER (PC)  
PRGM. ADDRESS REG.  
PIPELINE  
MEMORY  
INTERFACE  
A16  
D8  
MEM_WRITE_DATA  
MEM_READ_DATA  
CONTROL  
LOGIC  
RESET  
CLOCK  
SYSTEM_IRQs  
DEBUG_IRQ  
INTERRUPT  
INTERFACE  
D8  
STOP  
IDLE  
POWER CONTROL  
REGISTER  
D8  
Figure 12.1. CIP-51 Block Diagram  
Rev. 1.5  
127  
C8051F040/1/2/3/4/5/6/7  
Performance  
The CIP-51 employs a pipelined architecture that greatly increases its instruction throughput over the stan-  
dard 8051 architecture. In a standard 8051, all instructions except for MUL and DIV take 12 or 24 system  
clock cycles to execute, and usually have a maximum system clock of 12 MHz. By contrast, the CIP-51  
core executes 70% of its instructions in one or two system clock cycles, with no instructions taking more  
than eight system clock cycles.  
With the CIP-51's maximum system clock at 25 MHz, it has a peak throughput of 25 MIPS. The CIP-51 has  
a total of 109 instructions. The table below shows the total number of instructions that require each execu-  
tion time.  
Clocks to Execute  
1
2
2/3  
5
3
3/4  
7
4
3
4/5  
1
5
2
8
1
Number of Instructions  
26  
50  
14  
Programming and Debugging Support  
A JTAG-based serial interface is provided for in-system programming of the Flash program memory and  
communication with on-chip debug support logic. The re-programmable Flash can also be read and  
changed a single byte at a time by the application software using the MOVC and MOVX instructions. This  
feature allows program memory to be used for non-volatile data storage as well as updating program code  
under software control.  
The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware  
breakpoints and watch points, starting, stopping and single stepping through program execution (including  
interrupt service routines), examination of the program's call stack, and reading/writing the contents of reg-  
isters and memory. This method of on-chip debug is completely non-intrusive and non-invasive, requiring  
no RAM, Stack, timers, or other on-chip resources.  
The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs pro-  
vides an integrated development environment (IDE) including editor, macro assembler, debugger and pro-  
grammer. The IDE's debugger and programmer interface to the CIP-51 via its JTAG interface to provide  
fast and efficient in-system device programming and debugging. Third party macro assemblers and C  
compilers are also available.  
128  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
12.1. Instruction Set  
The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51™ instruc-  
tion set; standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51  
instructions are the binary and functional equivalent of their MCS-51™ counterparts, including opcodes,  
addressing modes and effect on PSW flags. However, instruction timing is different than that of the stan-  
dard 8051.  
12.1.1. Instruction and CPU Timing  
In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with  
machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based  
solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.  
Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock  
cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock  
cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 12.1 is the  
CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock  
cycles for each instruction.  
12.1.2. MOVX Instruction and Program Memory  
In the CIP-51, the MOVX instruction serves three purposes: accessing on-chip XRAM, accessing off-chip  
XRAM, and accessing on-chip program Flash memory. The Flash access feature provides a mechanism  
for user software to update program code and use the program memory space for non-volatile data stor-  
age (see Section “15. Flash Memory” on page 179). The External Memory Interface provides a fast  
access to off-chip XRAM (or memory-mapped peripherals) via the MOVX instruction. Refer to Section  
“16. External Data Memory Interface and On-Chip XRAM” on page 187 for details.  
Table 12.1. CIP-51 Instruction Set Summary  
Clock  
Cycles  
Mnemonic  
Description  
Arithmetic Operations  
Bytes  
ADD A, Rn  
ADD A, direct  
ADD A, @Ri  
ADD A, #data  
ADDC A, Rn  
ADDC A, direct  
ADDC A, @Ri  
ADDC A, #data  
SUBB A, Rn  
SUBB A, direct  
SUBB A, @Ri  
SUBB A, #data  
INC A  
Add register to A  
Add direct byte to A  
Add indirect RAM to A  
Add immediate to A  
Add register to A with carry  
Add direct byte to A with carry  
Add indirect RAM to A with carry  
Add immediate to A with carry  
Subtract register from A with borrow  
Subtract direct byte from A with borrow  
Subtract indirect RAM from A with borrow  
Subtract immediate from A with borrow  
Increment A  
1
2
1
2
1
2
1
2
1
2
1
2
1
1
2
1
1
1
2
2
2
1
2
2
2
1
2
2
2
1
1
2
2
1
INC Rn  
INC direct  
INC @Ri  
DEC A  
Increment register  
Increment direct byte  
Increment indirect RAM  
Decrement A  
Rev. 1.5  
129  
C8051F040/1/2/3/4/5/6/7  
Table 12.1. CIP-51 Instruction Set Summary (Continued)  
Clock  
Cycles  
Mnemonic  
Description  
Bytes  
DEC Rn  
DEC direct  
DEC @Ri  
INC DPTR  
MUL AB  
DIV AB  
Decrement register  
Decrement direct byte  
Decrement indirect RAM  
Increment Data Pointer  
Multiply A and B  
1
2
1
1
1
1
1
1
2
2
1
4
8
1
Divide A by B  
Decimal adjust A  
DA A  
Logical Operations  
ANL A, Rn  
ANL A, direct  
ANL A, @Ri  
ANL A, #data  
ANL direct, A  
ANL direct, #data  
ORL A, Rn  
ORL A, direct  
ORL A, @Ri  
ORL A, #data  
ORL direct, A  
ORL direct, #data  
XRL A, Rn  
XRL A, direct  
XRL A, @Ri  
XRL A, #data  
XRL direct, A  
XRL direct, #data  
CLR A  
AND Register to A  
AND direct byte to A  
AND indirect RAM to A  
AND immediate to A  
AND A to direct byte  
AND immediate to direct byte  
OR Register to A  
OR direct byte to A  
OR indirect RAM to A  
OR immediate to A  
OR A to direct byte  
OR immediate to direct byte  
Exclusive-OR Register to A  
Exclusive-OR direct byte to A  
Exclusive-OR indirect RAM to A  
Exclusive-OR immediate to A  
Exclusive-OR A to direct byte  
Exclusive-OR immediate to direct byte  
Clear A  
Complement A  
Rotate A left  
Rotate A left through Carry  
Rotate A right  
Rotate A right through Carry  
Swap nibbles of A  
1
2
1
2
2
3
1
2
1
2
2
3
1
2
1
2
2
3
1
1
1
1
1
1
1
1
2
2
2
2
3
1
2
2
2
2
3
1
2
2
2
2
3
1
1
1
1
1
1
1
CPL A  
RL A  
RLC A  
RR A  
RRC A  
SWAP A  
Data Transfer  
MOV A, Rn  
MOV A, direct  
MOV A, @Ri  
MOV A, #data  
MOV Rn, A  
MOV Rn, direct  
MOV Rn, #data  
MOV direct, A  
MOV direct, Rn  
MOV direct, direct  
MOV direct, @Ri  
Move Register to A  
1
2
1
2
1
2
2
2
2
3
2
1
2
2
2
1
2
2
2
2
3
2
Move direct byte to A  
Move indirect RAM to A  
Move immediate to A  
Move A to Register  
Move direct byte to Register  
Move immediate to Register  
Move A to direct byte  
Move Register to direct byte  
Move direct byte to direct byte  
Move indirect RAM to direct byte  
130  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 12.1. CIP-51 Instruction Set Summary (Continued)  
Clock  
Cycles  
Mnemonic  
Description  
Bytes  
MOV direct, #data  
MOV @Ri, A  
Move immediate to direct byte  
Move A to indirect RAM  
3
1
2
2
3
1
1
1
1
1
1
2
2
1
2
1
1
3
2
2
2
3
3
3
3
3
3
3
2
2
1
2
2
2
MOV @Ri, direct  
MOV @Ri, #data  
MOV DPTR, #data16  
MOVC A, @A+DPTR  
MOVC A, @A+PC  
MOVX A, @Ri  
MOVX @Ri, A  
MOVX A, @DPTR  
MOVX @DPTR, A  
PUSH direct  
Move direct byte to indirect RAM  
Move immediate to indirect RAM  
Load DPTR with 16-bit constant  
Move code byte relative DPTR to A  
Move code byte relative PC to A  
Move external data (8-bit address) to A  
Move A to external data (8-bit address)  
Move external data (16-bit address) to A  
Move A to external data (16-bit address)  
Push direct byte onto stack  
Pop direct byte from stack  
Exchange Register with A  
Exchange direct byte with A  
Exchange indirect RAM with A  
Exchange low nibble of indirect RAM with A  
Boolean Manipulation  
POP direct  
XCH A, Rn  
XCH A, direct  
XCH A, @Ri  
XCHD A, @Ri  
CLR C  
CLR bit  
SETB C  
SETB bit  
CPL C  
Clear Carry  
Clear direct bit  
Set Carry  
Set direct bit  
Complement Carry  
Complement direct bit  
AND direct bit to Carry  
AND complement of direct bit to Carry  
OR direct bit to carry  
OR complement of direct bit to Carry  
Move direct bit to Carry  
Move Carry to direct bit  
Jump if Carry is set  
Jump if Carry is not set  
1
2
1
2
1
2
2
2
2
2
2
2
2
2
3
3
3
1
2
1
2
1
2
2
2
2
2
2
2
2/3  
2/3  
3/4  
3/4  
3/4  
CPL bit  
ANL C, bit  
ANL C, /bit  
ORL C, bit  
ORL C, /bit  
MOV C, bit  
MOV bit, C  
JC rel  
JNC rel  
JB bit, rel  
JNB bit, rel  
JBC bit, rel  
Jump if direct bit is set  
Jump if direct bit is not set  
Jump if direct bit is set and clear bit  
Program Branching  
ACALL addr11  
LCALL addr16  
RET  
Absolute subroutine call  
Long subroutine call  
Return from subroutine  
Return from interrupt  
Absolute jump  
2
3
1
1
2
3
2
1
2
3
4
5
5
3
4
3
3
2/3  
RETI  
AJMP addr11  
LJMP addr16  
SJMP rel  
JMP @A+DPTR  
JZ rel  
Long jump  
Short jump (relative address)  
Jump indirect relative to DPTR  
Jump if A equals zero  
Rev. 1.5  
131  
C8051F040/1/2/3/4/5/6/7  
Table 12.1. CIP-51 Instruction Set Summary (Continued)  
Clock  
Cycles  
2/3  
3/4  
3/4  
Mnemonic  
Description  
Bytes  
JNZ rel  
CJNE A, direct, rel  
CJNE A, #data, rel  
Jump if A does not equal zero  
Compare direct byte to A and jump if not equal  
Compare immediate to A and jump if not equal  
Compare immediate to Register and jump if not  
equal  
2
3
3
CJNE Rn, #data, rel  
CJNE @Ri, #data, rel  
3
3
3/4  
4/5  
Compare immediate to indirect and jump if not  
equal  
DJNZ Rn, rel  
DJNZ direct, rel  
NOP  
Decrement Register and jump if not zero  
Decrement direct byte and jump if not zero  
No operation  
2
3
1
2/3  
3/4  
1
Notes on Registers, Operands and Addressing Modes:  
Rn - Register R0-R7 of the currently selected register bank.  
@Ri - Data RAM location addressed indirectly through R0 or R1.  
rel - 8-bit, signed (two’s complement) offset relative to the first byte of the following instruction. Used by  
SJMP and all conditional jumps.  
direct - 8-bit internal data location’s address. This could be a direct-access Data RAM location (0x00-  
0x7F) or an SFR (0x80-0xFF).  
#data - 8-bit constant  
#data16 - 16-bit constant  
bit - Direct-accessed bit in Data RAM or SFR  
addr11 - 11-bit destination address used by ACALL and AJMP. The destination must be within the  
same 2K-byte page of program memory as the first byte of the following instruction.  
addr16 - 16-bit destination address used by LCALL and LJMP. The destination may be anywhere within  
the 64 kB program memory space.  
There is one unused opcode (0xA5) that performs the same function as NOP.  
All mnemonics copyrighted © Intel Corporation 1980.  
132  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
12.2. Memory Organization  
The memory organization of the CIP-51 System Controller is similar to that of a standard 8051. There are  
two separate memory spaces: program memory and data memory. Program and data memory share the  
same address space but are accessed via different instruction types. There are 256 bytes of internal data  
memory and 64k bytes of internal program memory address space implemented within the CIP-51. The  
CIP-51 memory organization is shown in Figure 12.2.  
PROGRAM/DATA MEMORY  
(FLASH)  
DATA MEMORY (RAM)  
INTERNAL DATA ADDRESS SPACE  
C8051F040/1/2/3/4/5  
0xFF  
0x1007F  
Scrachpad Memory  
(DATA only)  
Upper 128 RAM  
(Indirect Addressing  
Only)  
Special Function  
Registers  
(Direct Addressing Only)0  
0x10000  
0x80  
0x7F  
RESERVED  
1
2
0xFE00  
0xFDFF  
3
F
(Direct and Indirect  
Addressing)  
Up To  
256 SFR Pages  
0x30  
0x2F  
64 kB  
Flash  
Lower 128 RAM  
(Direct and Indirect  
Addressing)  
Bit Addressable  
0x20  
0x1F  
(In-System  
Programmable in 512  
Byte Sectors)  
General Purpose  
Registers  
0x00  
0x0000  
EXTERNAL DATA ADDRESS SPACE  
C8051F046/7  
0xFFFF  
0x1007F  
0x10000  
Scrachpad Memory  
(DATA only)  
RESERVED  
0x8000  
0x7FFF  
Off-chip XRAM space  
32 kB  
Flash  
0x1000  
0x0FFF  
(In-System  
Programmable in 512  
Byte Sectors)  
XRAM - 4096 Bytes  
(accessable using MOVX  
instruction)  
0x0000  
0x0000  
Figure 12.2. Memory Map  
12.2.1. Program Memory  
The CIP-51 has a 64 kB program memory space. The MCU implements 64 kB (C8051F040/1/2/3/4/5) and  
32 kB (C8051F046/7) of this program memory space as in-system re-programmed Flash memory, orga-  
nized in a contiguous block from addresses 0x0000 to 0xFFFF (C8051F040/1/2/3/4/5) and 0x0000 to  
0x7FFF (C8051F046/7). Note: 512 bytes from 0xFE00 to 0xFFFF (C8051F040/1/2/3/4/5 only) of this mem-  
ory are reserved for factory use and are not available for user program storage.  
Program memory is normally assumed to be read-only. However, the CIP-51 can write to program memory  
by setting the Program Store Write Enable bit (PSCTL.0) and using the MOVX instruction. This feature pro-  
vides a mechanism for the CIP-51 to update program code and use the program memory space for non-  
volatile data storage. Refer to Section “15. Flash Memory” on page 179 for further details.  
Rev. 1.5  
133  
C8051F040/1/2/3/4/5/6/7  
12.2.2. Data Memory  
The CIP-51 implements 256 bytes of internal RAM mapped into the data memory space from 0x00 through  
0xFF. The lower 128 bytes of data memory are used for general purpose registers and scratch pad mem-  
ory. Either direct or indirect addressing may be used to access the lower 128 bytes of data memory. Loca-  
tions 0x00 through 0x1F are addressable as four banks of general purpose registers, each bank consisting  
of eight byte-wide registers. The next 16 bytes, locations 0x20 through 0x2F, may either be addressed as  
bytes or as 128 bit locations accessible with the direct addressing mode.  
The upper 128 bytes of data memory are accessible only by indirect addressing. This region occupies the  
same address space as the Special Function Registers (SFR) but is physically separate from the SFR  
space. The addressing mode used by an instruction when accessing locations above 0x7F determines  
whether the CPU accesses the upper 128 bytes of data memory space or the SFR’s. Instructions that use  
direct addressing will access the SFR space. Instructions using indirect addressing above 0x7F access the  
upper 128 bytes of data memory. Figure 12.2 illustrates the data memory organization of the CIP-51.  
12.2.3. General Purpose Registers  
The lower 32 bytes of data memory, locations 0x00 through 0x1F, may be addressed as four banks of gen-  
eral-purpose registers. Each bank consists of eight byte-wide registers designated R0 through R7. Only  
one of these banks may be enabled at a time. Two bits in the program status word, RS0 (PSW.3) and RS1  
(PSW.4), select the active register bank (see description of the PSW in SFR Definition 12.8). This allows  
fast context switching when entering subroutines and interrupt service routines. Indirect addressing modes  
use registers R0 and R1 as index registers.  
12.2.4. Bit Addressable Locations  
In addition to direct access to data memory organized as bytes, the sixteen data memory locations at 0x20  
through 0x2F are also accessible as 128 individually addressable bits. Each bit has a bit address from  
0x00 to 0x7F. Bit 0 of the byte at 0x20 has bit address 0x00 while bit 7 of the byte at 0x20 has bit address  
0x07. Bit 7 of the byte at 0x2F has bit address 0x7F. A bit access is distinguished from a full byte access by  
the type of instruction used (bit source or destination operands as opposed to a byte source or destina-  
tion).  
The MCS-51™ assembly language allows an alternate notation for bit addressing of the form XX.B where  
XX is the byte address and B is the bit position within the byte. For example, the instruction:  
MOV  
C, 22.3h  
moves the Boolean value at 0x13 (bit 3 of the byte at location 0x22) into the Carry flag.  
12.2.5. Stack  
A programmer's stack can be located anywhere in the 256 byte data memory. The stack area is designated  
using the Stack Pointer (SP, address 0x81) SFR. The SP will point to the last location used. The next value  
pushed on the stack is placed at SP+1 and then SP is incremented. A reset initializes the stack pointer to  
location 0x07; the first value pushed on the stack is placed at location 0x08, which is also the first register  
(R0) of register bank 1. Thus, if more than one register bank is to be used, the SP should be initialized to a  
location in the data memory not being used for data storage. The stack depth can extend up to 256 bytes.  
The MCUs also have built-in hardware for a stack record which is accessed by the debug logic. The stack  
record is a 32-bit shift register, where each PUSH or increment SP pushes one record bit onto the register,  
and each CALL pushes two record bits onto the register. (A POP or decrement SP pops one record bit,  
134  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
and a RET pops two record bits, also.) The stack record circuitry can also detect an overflow or underflow  
on the 32-bit shift register, and can notify the debug software even with the MCU running at speed.  
12.2.6. Special Function Registers  
The direct-access data memory locations from 0x80 to 0xFF constitute the special function registers  
(SFR’s). The SFR’s provide control and data exchange with the CIP-51's resources and peripherals. The  
CIP-51 duplicates the SFR’s found in a typical 8051 implementation as well as implementing additional  
SFR’s used to configure and access the sub-systems unique to the MCU. This allows the addition of new  
functionality while retaining compatibility with the MCS-51™ instruction set. Table 12.2 lists the SFR’s  
implemented in the CIP-51 System Controller.  
The SFR registers are accessed whenever the direct addressing mode is used to access memory loca-  
tions from 0x80 to 0xFF. SFR’s with addresses ending in 0x0 or 0x8 (e.g. P0, TCON, P1, SCON, IE, etc.)  
are bit-addressable as well as byte-addressable. All other SFR’s are byte-addressable only. Unoccupied  
addresses in the SFR space are reserved for future use. Accessing these areas will have an indeterminate  
effect and should be avoided. Refer to the corresponding pages of the datasheet, as indicated in  
Table 12.3, for a detailed description of each register.  
12.2.6.1. SFR Paging  
The CIP-51 features SFR paging, allowing the device to map many SFR’s into the 0x80 to 0xFF memory  
address space. The SFR memory space has 256 pages. In this way, each memory location from 0x80 to  
0xFF can access up to 256 SFR’s. The C8051F04x family of devices utilizes five SFR pages: 0, 1, 2, 3,  
and F. SFR pages are selected using the Special Function Register Page Selection register, SFRPAGE  
(see SFR Definition 12.2). The procedure for reading and writing an SFR is as follows:  
1. Select the appropriate SFR page number using the SFRPAGE register.  
2. Use direct accessing mode to read or write the special function register (MOV instruction).  
12.2.6.2. Interrupts and SFR Paging  
When an interrupt occurs, the SFR Page Register will automatically switch to the SFR page containing the  
flag bit that caused the interrupt. The automatic SFR Page switch function conveniently removes the bur-  
den of switching SFR pages from the interrupt service routine. Upon execution of the RETI instruction, the  
SFR page is automatically restored to the SFR Page in use prior to the interrupt. This is accomplished via  
a three-byte SFR Page Stack. The top byte of the stack is SFRPAGE, the current SFR Page. The second  
byte of the SFR Page Stack is SFRNEXT. The third, or bottom byte of the SFR Page Stack is SFRLAST.  
On interrupt, the current SFRPAGE value is pushed to the SFRNEXT byte, and the value of SFRNEXT is  
pushed to SFRLAST. Hardware then loads SFRPAGE with the SFR Page containing the flag bit associated  
with the interrupt. On a return from interrupt, the SFR Page Stack is popped resulting in the value of SFRN-  
EXT returning to the SFRPAGE register, thereby restoring the SFR page context without software interven-  
tion. The value in SFRLAST (0x00 if there is no SFR Page value in the bottom of the stack) of the stack is  
placed in SFRNEXT register. If desired, the values stored in SFRNEXT and SFRLAST may be modified  
during an interrupt, enabling the CPU to return to a different SFR Page upon execution of the RETI instruc-  
tion (on interrupt exit). Modifying registers in the SFR Page Stack does not cause a push or pop of the  
stack. Only interrupt calls and returns will cause push/pop operations on the SFR Page Stack.  
Rev. 1.5  
135  
C8051F040/1/2/3/4/5/6/7  
Interrupt  
Logic  
SFRPAGE  
SFRNEXT  
SFRLAST  
Figure 12.3. SFR Page Stack  
Automatic hardware switching of the SFR Page on interrupts may be enabled or disabled as desired using  
the SFR Automatic Page Control Enable Bit located in the SFR Page Control Register (SFRPGCN). This  
function defaults to ‘enabled’ upon reset. In this way, the autoswitching function will be enabled unless dis-  
abled in software.  
A summary of the SFR locations (address and SFR page) is provided in Table 12.2. in the form of an SFR  
memory map. Each memory location in the map has an SFR page row, denoting the page in which that  
SFR resides. Note that certain SFR’s are accessible from ALL SFR pages, and are denoted by the “(ALL  
PAGES)” designation. For example, the Port I/O registers P0, P1, P2, and P3 all have the “(ALL PAGES)”  
designation, indicating these SFR’s are accessible from all SFR pages regardless of the SFRPAGE regis-  
ter value.  
12.2.6.3. SFR Page Stack Example  
The following is an example of a C8051F040 device that shows the operation of the SFR Page Stack dur-  
ing interrupts.  
In this example, the SFR Page Control is left in the default enabled state (i.e., SFRPGEN = 1), and the  
CIP-51 is executing in-line code that is writing values to Port 5 (SFR “P5”, located at address 0xD8 on SFR  
Page 0x0F). The device is also using the Programmable Counter Array (PCA) and the 8-bit ADC (ADC2)  
window comparator to monitor a voltage. The PCA is timing a critical control function in its interrupt service  
routine (ISR), so its interrupt is enabled and is set to high priority. The ADC2 is monitoring a voltage that is  
less important, but to minimize the software overhead its window comparator is being used with an associ-  
ated ISR that is set to low priority. At this point, the SFR page is set to access the Port 5 SFR (SFRPAGE =  
0x0F). See Figure 12.4 below.  
136  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Page  
Stack SFR's  
0x0F  
SFRPAGE  
SFRNEXT  
SFRLAST  
(Port 5)  
Figure 12.4. SFR Page Stack While Using SFR Page 0x0F To Access Port 5  
While CIP-51 executes in-line code (writing values to Port 5 in this example), an ADC2 Window Compara-  
tor Interrupt occurs. The CIP-51 vectors to the ADC2 Window Comparator ISR and pushes the current  
SFR Page value (SFR Page 0x0F) into SFRNEXT in the SFR Page Stack. The SFR page needed to  
access ADC2’s SFR’s is then automatically placed in the SFRPAGE register (SFR Page 0x02). SFRPAGE  
is considered the “top” of the SFR Page Stack. Software can now access the ADC2 SFR’s. Software may  
switch to any SFR Page by writing a new value to the SFRPAGE register at any time during the ADC2 ISR  
to access SFR’s that are not on SFR Page 0x02. See Figure 12.5.  
Rev. 1.5  
137  
C8051F040/1/2/3/4/5/6/7  
SFR Page 0x02  
Automatically  
pushed on stack in  
SFRPAGE on ADC2  
interrupt  
0x02  
SFRPAGE  
SFRNEXT  
SFRLAST  
(ADC2)  
0x0F  
SFRPAGE  
pushed to  
SFRNEXT  
(Port 5)  
Figure 12.5. SFR Page Stack After ADC2 Window Comparator Interrupt Occurs  
While in the ADC2 ISR, a PCA interrupt occurs. Recall the PCA interrupt is configured as a high priority  
interrupt, while the ADC2 interrupt is configured as a low priority interrupt. Thus, the CIP-51 will now vector  
to the high priority PCA ISR. Upon doing so, the CIP-51 will automatically place the SFR page needed to  
access the PCA’s special function registers into the SFRPAGE register, SFR Page 0x00. The value that  
was in the SFRPAGE register before the PCA interrupt (SFR Page 2 for ADC2) is pushed down the stack  
into SFRNEXT. Likewise, the value that was in the SFRNEXT register before the PCA interrupt (in this  
case SFR Page 0x0F for Port 5) is pushed down to the SFRLAST register, the “bottom” of the stack. Note  
that a value stored in SFRLAST (via a previous software write to the SFRLAST register) will be overwritten.  
See Figure 12.6 below.  
138  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Page 0x00  
Automatically  
pushed on stack in  
SFRPAGE on PCA  
interrupt  
0x00  
SFRPAGE  
SFRNEXT  
SFRLAST  
(PCA)  
0x02  
SFRPAGE  
pushed to  
SFRNEXT  
(ADC2)  
0x0F  
SFRNEXT  
pushed to  
SFRLAST  
(Port 5)  
Figure 12.6. SFR Page Stack Upon PCA Interrupt Occurring During an ADC2 ISR  
On exit from the PCA interrupt service routine, the CIP-51 will return to the ADC2 Window Comparator  
ISR. On execution of the RETI instruction, SFR Page 0x00 used to access the PCA registers will be auto-  
matically popped off of the SFR Page Stack, and the contents of the SFRNEXT register will be moved to  
the SFRPAGE register. Software in the ADC2 ISR can continue to access SFR’s as it did prior to the PCA  
interrupt. Likewise, the contents of SFRLAST are moved to the SFRNEXT register. Recall this was the  
SFR Page value 0x0F being used to access Port 5 before the ADC2 interrupt occurred. See Figure 12.7  
below.  
Rev. 1.5  
139  
C8051F040/1/2/3/4/5/6/7  
SFR Page 0x00  
Automatically  
popped off of the  
stack on return from  
interrupt  
0x02  
SFRPAGE  
SFRNEXT  
SFRLAST  
(ADC2)  
0x0F  
SFRNEXT  
popped to  
SFRPAGE  
(Port 5)  
SFRLAST  
popped to  
SFRNEXT  
Figure 12.7. SFR Page Stack Upon Return From PCA Interrupt  
On the execution of the RETI instruction in the ADC2 Window Comparator ISR, the value in SFRPAGE  
register is overwritten with the contents of SFRNEXT. The CIP-51 may now access the Port 5 SFR bits as  
it did prior to the interrupts occurring. See Figure 12.8 below.  
140  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Page 0x02  
Automatically  
popped off of the  
stack on return from  
interrupt  
0x0F  
SFRPAGE  
SFRNEXT  
SFRLAST  
(Port 5)  
SFRNEXT  
popped to  
SFRPAGE  
Figure 12.8. SFR Page Stack Upon Return From ADC2 Window Interrupt  
Note that in the above example, all three bytes in the SFR Page Stack are accessible via the SFRPAGE,  
SFRNEXT, and SFRLAST special function registers. If the stack is altered while servicing an interrupt, it is  
possible to return to a different SFR Page upon interrupt exit than selected prior to the interrupt call. Direct  
access to the SFR Page stack can be useful to enable real-time operating systems to control and manage  
context switching between multiple tasks.  
Push operations on the SFR Page Stack only occur on interrupt service, and pop operations only occur on  
interrupt exit (execution on the RETI instruction). The automatic switching of the SFRPAGE and operation  
of the SFR Page Stack as described above can be disabled in software by clearing the SFR Automatic  
Page Enable Bit (SFRPGEN) in the SFR Page Control Register (SFRPGCN). See SFR Definition 12.1.  
Rev. 1.5  
141  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.1. SFR Page Control Register: SFRPGCN  
R
-
R
-
R
-
R
-
R
-
R
-
R
-
R/W  
Reset Value  
SFRPGEN 00000001  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x81  
SFR Page: All Pages  
Bits7-1: Reserved.  
Bit0: SFRPGEN: SFR Automatic Page Control Enable.  
Upon interrupt the C8051 Core will vector to the specified interrupt service routine and auto-  
matically switch the SFR page to the corresponding peripheral or function’s SFR page. This  
bit is used to control this autopaging function.  
0: SFR Automatic Paging disabled. C8051 core will not automatically change to the appro-  
priate SFR page (i.e., the SFR page that contains the SFR’s for the peripheral/function that  
was the source of the interrupt).  
1: SFR Automatic Paging enabled. Upon interrupt, the CIP-51 will switch the SFR page to  
the page that contains the SFR’s for the peripheral or function that is the source of the inter-  
rupt.  
SFR Definition 12.2. SFR Page Register: SFRPAGE  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit7  
SFR Address: 0x84  
SFR Page: All Pages  
Bits7-0: SFRPAGE: SFR Page Register.  
Byte represents the SFR page the CIP-51 uses when reading or modifying SFR’s.  
SFR page context is retained upon interrupts/return from interrupts in a 3 byte SFR Page  
Stack: SFRPAGE is the first entry, SFRNEXT is the second, and SFRLAST is third entry.  
The SFRPAGE, SFRSTACK, and SFRLAST bytes may be used alter the context in the SFR  
Page Stack. Only interrupts and returns from interrupt service routines push and pop the  
SFR Page Stack. (See Section 12.2.6.2 and Section 12.2.6.3 for further information.)  
Write:  
Sets the SFR Page  
Read:  
Byte is the SFR page the CIP-51 MCU is using.  
142  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.3. SFR Next Register: SFRNEXT  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x85  
SFR Page: All Pages  
Bits7-0: SFR page context is retained upon interrupts/return from interrupts in a 3 byte SFR Page  
Stack: SFRPAGE is the first entry, SFRNEXT is the second, and SFRLAST is third entry.  
The SFRPAGE, SFRSTACK, and SFRLAST bytes may be used alter the context in the SFR  
Page Stack. Only interrupts and returns from interrupt service routines push and pop the  
SFR Page Stack. (See Section 12.2.6.2 and Section 12.2.6.3 for further information.)  
Write:  
Sets the SFR Page contained in the second byte of the SFR Stack. This will cause the  
SFRPAGE SFR to have this SFR page value upon a return from interrupt.  
Read:  
Returns the value of the SFR page contained in the second byte of the SFR stack. This is  
the value that will go to the SFR Page register upon a return from interrupt.  
SFR Definition 12.4. SFR Last Register: SFRLAST  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x86  
SFR Page: All Pages  
Bits7-0: SFR page context is retained upon interrupts/return from interrupts in a 3 byte SFR Page  
Stack: SFRPAGE is the first entry, SFRNEXT is the second, and SFRLAST is the third  
entry. The SFR stack bytes may be used alter the context in the SFR Page Stack, and will  
not cause the stack to ‘push’ or ‘pop’. Only interrupts and returns from the interrupt service  
routine push and pop the SFR Page Stack.  
Write:  
Sets the SFR Page in the last entry of the SFR Stack. This will cause the SFRNEXT SFR to  
have this SFR page value upon a return from interrupt.  
Read:  
Returns the value of the SFR page contained in the last entry of the SFR stack.  
Rev. 1.5  
143  
C8051F040/1/2/3/4/5/6/7  
Table 12.2. Special Function Register (SFR) Memory Map  
A
D
D
R
E
S
S
SFR  
P
A
G
E
0(8)  
1(9)  
2(A)  
3(B)  
4(C)  
5(D)  
6(E)  
7(F)  
0
1
2
3
F
SPI0CN  
CAN0CN  
PCA0L  
PCA0H  
PCA0CPL0 PCA0CPH0 PCA0CPL1 PCA0CPH1  
WDTCN  
(ALL PAGES)  
F8  
F0  
E8  
E0  
D8  
D0  
C8  
C0  
B8  
P7  
0
1
2
3
F
B
EIP1  
EIP2  
(ALL PAGES)  
(ALL PAGES) (ALL PAGES)  
0
1
2
3
F
ADC0CN PCA0CPL2 PCA0CPH2 PCA0CPL3 PCA0CPH3 PCA0CPL4 PCA0CPH4 RSTSRC  
ADC2CN  
P6  
PCA0CPL5 PCA0CPH5  
0
1
2
3
F
ACC  
(ALL PAGES)  
EIE1  
EIE2  
(ALL PAGES) (ALL PAGES)  
XBR0  
XBR1  
XBR2  
XBR3  
PCA0CN  
PCA0MD PCA0CPM0 PCA0CPM1 PCA0CPM2 PCA0CPM3 PCA0CPM4 PCA0CPM5  
0
1
2
3
F
CAN0DATL CAN0DATH CAN0ADR CAN0TST  
P5  
REF0CN  
DAC0L  
DAC1L  
DAC0H  
DAC1H  
DAC0CN  
DAC1CN  
HVA0CN  
0
1
2
3
F
PSW  
(ALL PAGES)  
TMR2CN  
TMR3CN  
TMR4CN  
TMR2CF  
TMR3CF  
TMR4CF  
RCAP2L  
RCAP3L  
RCAP4L  
RCAP2H  
RCAP3H  
RCAP4H  
TMR2L  
TMR3L  
TMR4L  
TMR2H  
TMR3H  
TMR4H  
SMB0CR  
ADC0LTH  
ADC0H  
7(F)  
0
1
2
3
F
P4  
SMB0CN  
CAN0STA  
SMB0STA SMB0DAT SMB0ADR ADC0GTL ADC0GTH ADC0LTL  
0
1
2
3
F
ADC2GT  
ADC2LT  
SADEN0  
1(9)  
AMX0CF  
AMX2CF  
AMX0SL  
AMX2SL  
ADC0CF  
ADC2CF  
AMX0PRT  
5(D)  
ADC0L  
ADC2  
0
1
2
3
F
IP  
(ALL PAGES)  
0(8)  
2(A)  
3(B)  
4(C)  
6(E)  
144  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 12.2. Special Function Register (SFR) Memory Map (Continued)  
A
D
D
R
E
S
S
SFR  
P
A
G
E
0(8)  
1(9)  
2(A)  
3(B)  
4(C)  
5(D)  
6(E)  
7(F)  
0
1
2
3
F
FLSCL  
P3  
B0  
A8  
A0  
98  
90  
88  
80  
(ALL PAGES)  
FLACL  
0
1
2
3
F
SADDR0  
EMI0TC  
IE  
(ALL PAGES)  
P1MDIN  
P2MDIN  
P3MDIN  
0
1
2
3
F
EMI0CN  
EMI0CF  
P2  
(ALL PAGES)  
P0MDOUT P1MDOUT P2MDOUT P3MDOUT  
SPI0CKR  
SCON0  
SCON1  
SBUF0  
SBUF1  
SPI0CFG  
SPI0DAT  
0
1
2
3
F
P4MDOUT P5MDOUT P6MDOUT P7MDOUT  
SSTA0  
0
1
2
3
F
P1  
(ALL PAGES)  
SFRPGCN  
CKCON  
CLKSEL  
PSCTL  
TMOD  
TL0  
TL1  
TH0  
TH1  
0
1
2
3
F
TCON  
CPT0MD  
CPT1MD  
CPT2MD  
CPT0CN  
CPT1CN  
CPT2CN  
OSCICN  
DPL  
OSCICL  
DPH  
OSCXCN  
0
1
2
3
F
P0  
SP  
SFRPAGE SFRNEXT SFRLAST  
PCON  
(ALL PAGES) (ALL PAGES) (ALL PAGES) (ALL PAGES) (ALL PAGES) (ALL PAGES) (ALL PAGES) (ALL PAGES)  
0(8)  
1(9)  
2(A)  
3(B)  
4(C)  
5(D)  
6(E)  
7(F)  
Rev. 1.5  
145  
C8051F040/1/2/3/4/5/6/7  
Table 12.3. Special Function Registers  
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.  
Register Address SFR Page Description  
ACC 0xE0 All Pages Accumulator  
ADC0 Configuration  
Page No.  
page 152  
1
2
2
2
2
2
2
2
2
ADC0CF  
ADC0CN  
ADC0GTH  
ADC0GTL  
ADC0H  
0xBC  
0xE8  
0xC5  
0xC4  
0xBF  
0xBE  
0xC7  
0xC6  
0xBE  
0xBC  
0xE8  
0xC4  
0xC6  
0xBA  
0xBD  
0xBB  
0xBA  
0
0
0
0
0
0
0
0
2
2
2
2
2
0
0
0
2
2
page 58 , page 80  
1
ADC0 Control  
page 59 , page 81  
1
ADC0 Greater-Than High  
ADC0 Greater-Than Low  
ADC0 Data Word High  
ADC0 Data Word Low  
ADC0 Less-Than High  
ADC0 Less-Than Low  
ADC2 Data Word  
page 62 , page 84  
1
page 62 , page 84  
1
page 60 , page 82  
1
ADC0L  
page 60 , page 82  
1
ADC0LTH  
ADC0LTL  
page 62 , page 84  
1
page 63 , page 85  
3
page 99  
page 95  
page 98  
ADC2  
3
ADC2 Analog Multiplexer Configuration  
ADC2 Control  
ADC2CF  
3
ADC2CN  
3
ADC2 Window Comparator Greater-Than page 100  
ADC2GT  
3
ADC2 Window Comparator Less-Than  
ADC0 Multiplexer Configuration  
ADC0 Port 3 I/O Pin Select  
page 100  
ADC2LT  
1
2
2
AMX0CF  
AMX0PRT  
AMX0SL  
page 49 , page 71  
page 51  
1
ADC0 Multiplexer Channel Select  
ADC2 Multiplexer Configuration  
ADC2 Multiplexer Channel Select  
page 49 , page 71  
3
page 97  
AMX2CF  
3
0xBB  
0xF0  
0xDA  
0xF8  
page 95  
AMX2SL  
B
CAN0ADR  
CAN0CN  
All Pages B Register  
page 152  
page 213  
page 213  
page 212  
page 212  
page 214  
page 214  
page 293  
page 175  
page 125  
page 125  
page 125  
page 124  
page 124  
page 124  
page 108  
1
1
1
1
1
1
0
F
1
2
3
1
2
3
0
CAN0 Address  
CAN0 Control  
CAN0DATH 0xD9  
CAN0DATL 0xD8  
CAN0 Data Register High  
CAN0 Data Register Low  
CAN0 Status  
CAN0 Test Register  
Clock Control  
Oscillator Clock Selection Register  
Comparator 0 Mode Selection  
Comparator 1 Mode Selection  
Comparator 2 Mode Selection  
Comparator 0 Control  
Comparator 1 Control  
Comparator 2 Control  
DAC0 Control  
CAN0STA  
CAN0TST  
CKCON  
0xC0  
0xDB  
0x8E  
0x97  
0x89  
0x89  
0x89  
0x88  
0x88  
0x88  
0xD4  
CLKSEL  
CPT0MD  
CPT1MD  
CPT2MD  
CPT0CN  
CPT1CN  
CPT2CN  
3
DAC0CN  
3
0xD3  
0xD2  
0xD4  
0xD3  
0
0
1
1
DAC0 High  
page 107  
page 107  
page 110  
page 109  
DAC0H  
3
DAC0 Low  
DAC0L  
3
DAC1 Control  
DAC1 High Byte  
DAC1CN  
3
DAC1H  
146  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 12.3. Special Function Registers (Continued)  
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.  
Register  
Address SFR Page  
0xD2  
Description  
DAC1 Low Byte  
Page No.  
page 109  
3
1
DAC1L  
DPH  
DPL  
EIE1  
EIE2  
EIP1  
EIP2  
EMI0CF  
EMI0CN  
EMI0TC  
FLACL  
FLSCL  
HVA0CN  
IE  
0x83  
0x82  
0xE6  
0xE7  
0xF6  
0xF7  
0xA3  
0xA2  
0xA1  
0xB7  
0xB7  
0xD6  
0xA8  
0xB8  
0x8B  
0x8A  
0x8C  
0x80  
All Pages Data Pointer High  
All Pages Data Pointer Low  
All Pages Extended Interrupt Enable 1  
All Pages Extended Interrupt Enable 2  
All Pages Extended Interrupt Priority 1  
All Pages Extended Interrupt Priority 2  
page 150  
page 150  
page 159  
page 160  
page 161  
page 162  
page 190  
page 189  
page 195  
page 184  
page 184  
0
0
0
F
0
0
EMIF Configuration  
External Memory Interface Control  
EMIF Timing Control  
Flash Access Limit  
Flash Scale  
1
2
High Voltage Differential Amp Control  
page 53 , page 75  
All Pages Interrupt Enable  
All Pages Interrupt Priority  
page 157  
page 158  
page 174  
page 174  
page 176  
page 215  
page 216  
page 216  
page 217  
page 217  
page 218  
page 218  
page 219  
page 219  
page 220  
page 220  
page 222  
IP  
OSCICL  
OSCICN  
OSCXCN  
P0  
P0MDOUT 0xA4  
P1  
P1MDIN  
P1MDOUT 0xA5  
P2  
P2MDIN  
F
F
F
Internal Oscillator Calibration  
Internal Oscillator Control  
External Oscillator Control  
All Pages Port 0 Latch  
F
Port 0 Output Mode Configuration  
0x90  
0xAD  
All Pages Port 1 Latch  
F
F
Port 1 Input Mode Configuration  
Port 1 Output Mode Configuration  
0xA0  
0xAE  
All Pages Port 2 Latch  
F
F
Port 2 Input Mode Configuration  
Port 2 Output Mode Configuration  
P2MDOUT 0xA6  
P3  
P3MDIN  
P3MDOUT 0xA7  
0xB0  
0xAF  
All Pages Port 3 Latch  
F
F
F
Port 3 Input Mode Configuration  
Port 3 Output Mode Configuration  
Port 4 Latch  
4
0xC8  
0x9C  
0xD8  
0x9D  
0xE8  
0x9E  
0xF8  
0x9F  
0xD8  
P4  
4
4
4
4
F
F
F
F
F
F
Port 4 Output Mode Configuration  
Port 5 Latch  
page 222  
page 223  
page 223  
page 224  
page 224  
page 225  
P4MDOUT  
4
P5  
Port 5 Output Mode Configuration  
Port 6 Latch  
P5MDOUT  
4
P6  
Port 6 Output Mode Configuration  
Port 7 Latch  
P6MDOUT  
4
P7  
F
0
0
0
0
0
Port 7 Output Mode Configuration  
PCA Control  
PCA Capture 0 High  
PCA Capture 1 High  
PCA Capture 2 High  
PCA Capture 3 High  
page 225  
page 312  
page 316  
page 316  
page 316  
page 316  
P7MDOUT  
PCA0CN  
PCA0CPH0 0xFC  
PCA0CPH1 0xFE  
PCA0CPH2 0xEA  
PCA0CPH3 0xEC  
Rev. 1.5  
147  
C8051F040/1/2/3/4/5/6/7  
Table 12.3. Special Function Registers (Continued)  
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.  
Register Address SFR Page Description  
PCA Capture 4 High  
Page No.  
page 316  
PCA0CPH4 0xEE  
PCA0CPH5 0xE2  
PCA0CPL0 0xFB  
PCA0CPL1 0xFD  
PCA0CPL2 0xE9  
PCA0CPL3 0xEB  
PCA0CPL4 0xED  
PCA0CPL5 0xE1  
PCA0CPM0 0xDA  
PCA0CPM1 0xDB  
PCA0CPM2 0xDC  
PCA0CPM3 0xDD  
PCA0CPM4 0xDE  
PCA0CPM5 0xDF  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PCA Capture 5 High  
PCA Capture 0 Low  
PCA Capture 1 Low  
PCA Capture 2 Low  
PCA Capture 3 Low  
PCA Capture 4 Low  
PCA Capture 5 Low  
page 316  
page 316  
page 316  
page 316  
page 316  
page 316  
page 316  
page 314  
page 314  
page 314  
page 314  
page 314  
page 314  
page 315  
page 315  
page 313  
page 164  
page 185  
page 151  
page 301  
page 301  
page 301  
page 301  
page 301  
page 301  
PCA Module 0 Mode Register  
PCA Module 1 Mode Register  
PCA Module 2 Mode Register  
PCA Module 3 Mode Register  
PCA Module 4 Mode Register  
PCA Module 5 Mode Register  
PCA Counter High  
PCA0H  
PCA0L  
PCA0MD  
PCON  
PSCTL  
PSW  
RCAP2H  
RCAP2L  
RCAP3H  
RCAP3L  
RCAP4H  
RCAP4L  
REF0CN  
RSTSRC  
SADDR0  
SADEN0  
SBUF0  
0xFA  
0xF9  
0xD9  
0x87  
0x8F  
0xD0  
0xCB  
0xCA  
0xCB  
0xCA  
0xCB  
0xCA  
0xD1  
0xEF  
0xA9  
0xB9  
0x99  
0x99  
0x98  
0x98  
0x84  
PCA Counter Low  
PCA Mode  
All Pages Power Control  
Program Store R/W Control  
All Pages Program Status Word  
0
0
0
1
1
2
2
0
0
0
0
0
1
0
1
Timer/Counter 2 Capture/Reload High  
Timer/Counter 2 Capture/Reload Low  
Timer/Counter 3 Capture/Reload High  
Timer/Counter 3 Capture/Reload Low  
Timer/Counter 4 Capture/Reload High  
Timer/Counter 4 Capture/Reload Low  
Programmable Voltage Reference Control  
Reset Source Register  
UART 0 Slave Address  
UART 0 Slave Address Enable  
UART 0 Data Buffer  
4
5
page 114 , page 118  
page 170  
page 276  
page 276  
page 276  
page 283  
page 274  
page 282  
page 142  
page 142  
page 143  
page 143  
page 250  
page 247  
page 248  
page 249  
page 251  
page 150  
SBUF1  
UART 1 Data Buffer  
UART 0 Control  
UART 1 Control  
SCON0  
SCON1  
SFRPAGE  
All Pages SFR Page Register  
SFRPGCN 0x96  
F
SFR Page Control Register  
SFRNEXT  
SFRLAST  
SMB0ADR  
SMB0CN  
SMB0CR  
SMB0DAT  
SMB0STA  
SP  
0x85  
0x86  
0xC3  
0xC0  
0xCF  
0xC2  
0xC1  
0x81  
All Pages SFR Next Page Stack Access Register  
All Pages SFR Last Page Stack Access Register  
0
0
0
0
0
SMBus Slave Address  
SMBus Control  
SMBus Clock Rate  
SMBus Data  
SMBus Status  
All Pages Stack Pointer  
148  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 12.3. Special Function Registers (Continued)  
SFRs are listed in alphabetical order. All undefined SFR locations are reserved.  
Register  
Address SFR Page  
Description  
Page No.  
page 261  
SPI0CFG  
SPI0CKR  
SPI0CN  
SPI0DAT  
SSTA0  
TCON  
TH0  
TH1  
TL0  
TL1  
0x9A  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
2
2
2
2
SPI Configuration  
SPI Clock Rate Control  
SPI Control  
0x9D  
0xF8  
0x9B  
0x91  
0x88  
0x8C  
0x8D  
0x8A  
0x8B  
0x89  
0xC9  
0xC8  
0xCD  
0xCC  
0xC9  
0xC8  
0xCD  
0xCC  
0xC9  
0xC8  
0xCD  
0xCC  
0xFF  
0xE1  
0xE2  
0xE3  
0xE4  
page 263  
page 262  
page 264  
page 275  
page 291  
page 294  
page 294  
page 293  
page 294  
page 292  
page 300  
page 299  
page 302  
page 301  
page 300  
page 299  
page 302  
page 301  
page 300  
page 299  
page 302  
page 301  
page 169  
page 212  
page 213  
page 214  
page 215  
SPI Data  
UART0 Status and Clock Selection  
Timer/Counter Control  
Timer/Counter 0 High  
Timer/Counter 1 High  
Timer/Counter 0 Low  
Timer/Counter 1 Low  
Timer/Counter Mode  
Timer/Counter 2 Configuration  
Timer/Counter 2 Control  
Timer/Counter 2 High  
Timer/Counter 2 Low  
Timer/Counter 3 Configuration  
Timer 3 Control  
Timer/Counter 3 High  
Timer/Counter 3 Low  
Timer/Counter 4 Configuration  
Timer/Counter 4 Control  
Timer/Counter 4 High  
Timer/Counter 4 Low  
TMOD  
TMR2CF  
TMR2CN  
TMR2H  
TMR2L  
TMR3CF  
TMR3CN  
TMR3H  
TMR3L  
TMR4CF  
TMR4CN  
TMR4H  
TMR4L  
WDTCN  
XBR0  
All Pages Watchdog Timer Control  
F
F
F
F
Port I/O Crossbar Control 0  
Port I/O Crossbar Control 1  
Port I/O Crossbar Control 2  
Port I/O Crossbar Control 3  
XBR1  
XBR2  
XBR3  
0x97, 0xA2, 0xB3, 0xB4,  
0xCE, 0xDF  
Reserved  
Notes:  
1. Refers to a register in the C8051F040 only.  
2. Refers to a register in the C8051F041 only.  
3. Refers to a register in C8051F040/1/2/3 only.  
4. Refers to a register in the C8051F040/2/4/6 only.  
5. Refers to a register in the C8051F041/3/5/7 only.  
Rev. 1.5  
149  
C8051F040/1/2/3/4/5/6/7  
12.2.7. Register Descriptions  
Following are descriptions of SFRs related to the operation of the CIP-51 System Controller. Reserved bits  
should not be set to logic 1. Future product versions may use these bits to implement new features, in  
which case the reset value of the bit will be logic 0, selecting the feature's default state. Detailed descrip-  
tions of the remaining SFRs are included in the sections of the data sheet associated with their corre-  
sponding system function.  
SFR Definition 12.5. SP: Stack Pointer  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000111  
SFR Address: 0x81  
SFR Page: All Pages  
Bits7-0: SP: Stack Pointer.  
The Stack Pointer holds the location of the top of the stack. The stack pointer is incremented  
before every PUSH operation. The SP register defaults to 0x07 after reset.  
SFR Definition 12.6. DPL: Data Pointer Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x82  
SFR Page: All Pages  
Bits7-0: DPL: Data Pointer Low.  
The DPL register is the low byte of the 16-bit DPTR. DPTR is used to access indirectly  
addressed XRAM and Flash memory.  
SFR Definition 12.7. DPH: Data Pointer High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x83  
SFR Page: All Pages  
Bits7-0: DPH: Data Pointer High.  
The DPH register is the high byte of the 16-bit DPTR. DPTR is used to access indirectly  
addressed XRAM and Flash memory.  
150  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.8. PSW: Program Status Word  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
PARITY 00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xD0  
SFR Page: All Pages  
Bit7:  
CY: Carry Flag.  
This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow  
(subtraction). It is cleared to 0 by all other arithmetic operations.  
AC: Auxiliary Carry Flag  
This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow  
from (subtraction) the high order nibble. It is cleared to 0 by all other arithmetic operations.  
F0: User Flag 0.  
Bit6:  
Bit5:  
This is a bit-addressable, general purpose flag for use under software control.  
Bits4-3: RS1-RS0: Register Bank Select.  
These bits select which register bank is used during register accesses.  
RS1  
RS0  
Register Bank  
Address  
0x00–0x07  
0x08–0x0F  
0x10–0x17  
0x18–0x1F  
0
0
1
1
0
1
0
1
0
1
2
3
Bit2:  
OV: Overflow Flag.  
This bit is set to 1 under the following circumstances:  
• An ADD, ADDC, or SUBB instruction causes a sign-change overflow.  
• A MUL instruction results in an overflow (result is greater than 255).  
• A DIV instruction causes a divide-by-zero condition.  
The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all   
other cases.  
Bit1:  
Bit0:  
F1: User Flag 1.  
This is a bit-addressable, general purpose flag for use under software control.  
PARITY: Parity Flag.  
This bit is set to 1 if the sum of the eight bits in the accumulator is odd and cleared if the sum  
is even.  
Rev. 1.5  
151  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.9. ACC: Accumulator  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
ACC.7  
ACC.6  
ACC.5  
ACC.4  
ACC.3  
ACC.2  
ACC.1  
ACC.0  
00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xE0  
SFR Page: All Pages  
Bits7-0: ACC: Accumulator.  
This register is the accumulator for arithmetic operations.  
SFR Definition 12.10. B: B Register  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
B.7  
B.6  
B.5  
B.4  
B.3  
B.2  
B.1  
B.0  
00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xF0  
SFR Page: All Pages  
Bits7-0: B: B Register.  
This register serves as a second accumulator for certain arithmetic operations.  
152  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
12.3. Interrupt Handler  
The CIP-51 includes an extended interrupt system supporting a total of 20 interrupt sources with two prior-  
ity levels. The allocation of interrupt sources between on-chip peripherals and external inputs pins varies  
according to the specific version of the device. Each interrupt source has one or more associated interrupt-  
pending flag(s) located in an SFR. When a peripheral or external source meets a valid interrupt condition,  
the associated interrupt-pending flag is set to logic 1.  
If interrupts are enabled for the source, an interrupt request is generated when the interrupt-pending flag is  
set. As soon as execution of the current instruction is complete, the CPU generates an LCALL to a prede-  
termined address to begin execution of an interrupt service routine (ISR). Each ISR must end with an RETI  
instruction, which returns program execution to the next instruction that would have been executed if the  
interrupt request had not occurred. If interrupts are not enabled, the interrupt-pending flag is ignored by the  
hardware and program execution continues as normal. The interrupt-pending flag is set to logic 1 regard-  
less of the interrupt's enable/disable state.  
Each interrupt source can be individually enabled or disabled through the use of an associated interrupt  
enable bit in an SFR (IE-EIE2). However, interrupts must first be globally enabled by setting the EA bit  
(IE.7) to logic 1 before the individual interrupt enables are recognized. Setting the EA bit to logic 0 disables  
all interrupt sources regardless of the individual interrupt-enable settings.  
Note: Any instruction that clears the EA bit should be immediately followed by an instruction that has two  
or more opcode bytes. For example:  
// in 'C':  
EA = 0;  
EA = 0;  
// clear EA bit  
// ... followed by another 2-byte opcode  
; in assembly:  
CLR EA  
CLR EA  
; clear EA bit  
; ... followed by another 2-byte opcode  
If an interrupt is posted during the execution phase of a "CLR EA" opcode (or any instruction which clears  
the EA bit), and the instruction is followed by a single-cycle instruction, the interrupt may be taken. How-  
ever, a read of the EA bit will return a '0' inside the interrupt service routine. When the "CLR EA" opcode is  
followed by a multi-cycle instruction, the interrupt will not be taken.  
Some interrupt-pending flags are automatically cleared by the hardware when the CPU vectors to the ISR.  
However, most are not cleared by the hardware and must be cleared by software before returning from the  
ISR. If an interrupt-pending flag remains set after the CPU completes the return-from-interrupt (RETI)  
instruction, a new interrupt request will be generated immediately and the CPU will re-enter the ISR after  
the completion of the next instruction.  
12.3.1. MCU Interrupt Sources and Vectors  
The MCUs support 20 interrupt sources. Software can simulate an interrupt event by setting any interrupt-  
pending flag to logic 1. If interrupts are enabled for the flag, an interrupt request will be generated and the  
CPU will vector to the ISR address associated with the interrupt-pending flag. MCU interrupt sources,  
associated vector addresses, priority order and control bits are summarized in Table 12.4. Refer to the  
datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt  
conditions for the peripheral and the behavior of its interrupt-pending flag(s).  
Rev. 1.5  
153  
C8051F040/1/2/3/4/5/6/7  
12.3.2. External Interrupts  
The external interrupt sources (/INT0 and /INT1) are configurable as active-low level-sensitive or active-  
low edge-sensitive inputs depending on the setting of bits IT0 (TCON.0) and IT1 (TCON.2). IE0 (TCON.1)  
and IE1 (TCON.3) serve as the interrupt-pending flag for the /INT0 and /INT1 external interrupts, respec-  
tively. If an /INT0 or /INT1 external interrupt is configured as edge-sensitive, the corresponding interrupt-  
pending flag is automatically cleared by the hardware when the CPU vectors to the ISR. When configured  
as level sensitive, the interrupt-pending flag follows the state of the external interrupt's input pin. The exter-  
nal interrupt source must hold the input active until the interrupt request is recognized. It must then deacti-  
vate the interrupt request before execution of the ISR completes or another interrupt request will be  
generated.  
Table 12.4. Interrupt Summary  
Interrupt Priority  
Enable  
Flag  
Priority  
Control  
Interrupt Source  
Pending Flag  
Vector  
Order  
Always  
Enabled  
Always  
Highest  
Reset  
0x0000  
0x0003  
Top  
None  
N/A N/A  
0
External Interrupt 0  
(/INT0)  
0
1
2
3
4
5
IE0 (TCON.1)  
TF0 (TCON.5)  
IE1 (TCON.3)  
TF1 (TCON.7)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
0
0
0
0
0
0
EX0 (IE.0) PX0 (IP.0)  
ET0 (IE.1) PT0 (IP.1)  
EX1 (IE.2) PX1 (IP.2)  
ET1 (IE.3) PT1 (IP.3)  
ES0 (IE.4) PS0 (IP.4)  
ET2 (IE.5) PT2 (IP.5)  
Timer 0 Overflow 0x000B  
External Interrupt 1  
0x0013  
(/INT1)  
Timer 1 Overflow 0x001B  
RI0 (SCON0.0)  
TI0 (SCON0.1)  
UART0  
Timer 2  
0x0023  
0x002B  
TF2 (TMR2CN.7)  
SPIF (SPI0CN.7)  
WCOL (SPI0CN.6)  
MODF (SPI0CN.5)  
RXOVRN  
Serial Peripheral  
Interface  
ESPI0  
(EIE1.0)  
PSPI0  
(EIP1.0)  
0x0033  
6
Y
0
(SPI0CN.4)  
ESMB0  
(EIE1.1)  
PSMB0  
(EIP1.1)  
SMBus Interface  
0x003B  
0x0043  
0x004B  
0x0053  
7
SI (SMB0CN.3)  
Y
Y
Y
0
0
0
1
ADC0 Window  
Comparator  
AD0WINT  
(ADC0CN.2)  
EWADC0 PWADC0  
(EIE1.2)  
8
(EIP1.2)  
Programmable  
Counter Array  
CF (PCA0CN.7)  
CCFn (PCA0CN.n)  
EPCA0  
(EIE1.3)  
PPCA0  
(EIP1.3)  
9
CP0FIF/CP0RIF  
(CPT0CN.4/.5)  
CP0IE  
(EIE1.4)  
PCP0  
(EIP1.4)  
Comparator 0  
10  
154  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 12.4. Interrupt Summary (Continued)  
Interrupt Priority  
Enable  
Flag  
Priority  
Control  
Interrupt Source  
Pending Flag  
Vector  
Order  
CP1FIF/CP1RIF  
(CPT1CN.4/.5)  
CP1IE  
(EIE1.5)  
PCP1  
(EIP1.5)  
Comparator 1  
Comparator 2  
Timer 3  
0x005B  
0x0063  
0x0073  
0x007B  
0x0083  
0x0093  
0x008B  
0x009B  
0x00A3  
11  
2
3
1
0
2
2
2
1
1
CP2FIF/CP2RIF  
(CPT2CN.4/.5)  
CP2IE  
(EIE1.6)  
PCP2  
(EIP1.6)  
12  
14  
15  
16  
17  
18  
19  
20  
ET3  
(EIE2.0)  
PT3  
(EIP2.0)  
TF3 (TMR3CN.7)  
ADC0 End of  
Conversion  
ADC0INT  
(ADC0CN.5)  
EADC0  
(EIE2.1)  
PADC0  
(EIP2.1)  
Y
ET4  
(EIE2.2)  
PT4  
(EIP2.2)  
Timer 4  
TF4 (TMR4CN.7)  
ADC2 Window  
Comparator  
AD2WINT  
(ADC2CN.0)  
EWADC2 PWADC2  
(EIE2.3)  
(EIP2.3)  
ADC2 End of  
Conversion  
ADC2INT  
(ADC1CN.5)  
EADC1  
(EIE2.4)  
PADC1  
(EIP2.4)  
ECAN0  
(EIE2.5)  
PCAN0  
(EIP2.5)  
CAN Interrupt  
UART1  
CAN0CN.7  
Y
RI1 (SCON1.0)  
TI1 (SCON1.1)  
ES1  
(EIE2.6)  
PS1  
(EIP2.6)  
Rev. 1.5  
155  
C8051F040/1/2/3/4/5/6/7  
12.3.3. Interrupt Priorities  
Each interrupt source can be individually programmed to one of two priority levels: low or high. A low prior-  
ity interrupt service routine can be preempted by a high priority interrupt. A high priority interrupt cannot be  
preempted. Each interrupt has an associated interrupt priority bit in an SFR (IP-EIP2) used to configure its  
priority level. Low priority is the default. If two interrupts are recognized simultaneously, the interrupt with  
the higher priority is serviced first. If both interrupts have the same priority level, a fixed priority order is  
used to arbitrate, given in Table 12.4.  
12.3.4. Interrupt Latency  
Interrupt response time depends on the state of the CPU when the interrupt occurs. Pending interrupts are  
sampled and priority decoded each system clock cycle. The fastest possible response time is 5 system  
clock cycles: 1 clock cycle to detect the interrupt and 4 clock cycles to complete the LCALL to the ISR. If  
an interrupt is pending when a RETI is executed, a single instruction is executed before an LCALL is made  
to service the pending interrupt. Therefore, the slowest response time for an interrupt (when no other inter-  
rupt is currently being serviced or the new interrupt is of greater priority) occurs when the CPU is perform-  
ing an RETI instruction followed by a DIV as the next instruction. In this case, the response time is  
18 system clock cycles: 1 clock cycle to detect the interrupt, 5 clock cycles to execute the RETI, 8 clock  
cycles to complete the DIV instruction and 4 clock cycles to execute the LCALL to the ISR. If the CPU is  
executing an ISR for an interrupt with equal or higher priority, the new interrupt will not be serviced until the  
current ISR completes, including the RETI and following instruction.  
12.3.5. Interrupt Register Descriptions  
The SFRs used to enable the interrupt sources and set their priority level are described below. Refer to the  
datasheet section associated with a particular on-chip peripheral for information regarding valid interrupt  
conditions for the peripheral and the behavior of its interrupt-pending flag(s).  
156  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.11. IE: Interrupt Enable  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
EA  
IEGF0  
ET2  
ES0  
ET1  
EX1  
ET0  
EX0  
00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xA8  
SFR Page: All Pages  
Bit7:  
EA: Enable All Interrupts.  
This bit globally enables/disables all interrupts. It overrides the individual interrupt mask set-  
tings.  
0: Disable all interrupt sources.  
1: Enable each interrupt according to its individual mask setting.  
IEGF0: General Purpose Flag 0.  
This is a general purpose flag for use under software control.  
ET2: Enabler Timer 2 Interrupt.  
Bit6:  
Bit5:  
This bit sets the masking of the Timer 2 interrupt.  
0: Disable Timer 2 interrupt.  
1: Enable interrupt requests generated by the TF2 flag.  
ES0: Enable UART0 Interrupt.  
This bit sets the masking of the UART0 interrupt.  
0: Disable UART0 interrupt.  
1: Enable UART0 interrupt.  
ET1: Enable Timer 1 Interrupt.  
This bit sets the masking of the Timer 1 interrupt.  
0: Disable all Timer 1 interrupt.  
1: Enable interrupt requests generated by the TF1 flag.  
EX1: Enable External Interrupt 1.  
This bit sets the masking of external interrupt 1.  
0: Disable external interrupt 1.  
1: Enable interrupt requests generated by the /INT1 pin.  
ET0: Enable Timer 0 Interrupt.  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
This bit sets the masking of the Timer 0 interrupt.  
0: Disable all Timer 0 interrupt.  
1: Enable interrupt requests generated by the TF0 flag.  
EX0: Enable External Interrupt 0.  
This bit sets the masking of external interrupt 0.  
0: Disable external interrupt 0.  
1: Enable interrupt requests generated by the /INT0 pin.  
Rev. 1.5  
157  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.12. IP: Interrupt Priority  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
-
PT2  
PS0  
PT1  
PX1  
PT0  
PX0  
11000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xB8  
SFR Page: All Pages  
Bits7-6: UNUSED. Read = 11b, Write = don't care.  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PT2: Timer 2 Interrupt Priority Control.  
This bit sets the priority of the Timer 2 interrupt.  
0: Timer 2 interrupt priority set to low priority level.  
1: Timer 2 interrupts set to high priority level.  
PS0: UART0 Interrupt Priority Control.  
This bit sets the priority of the UART0 interrupt.  
0: UART0 interrupt priority set to low priority level.  
1: UART0 interrupts set to high priority level.  
PT1: Timer 1 Interrupt Priority Control.  
This bit sets the priority of the Timer 1 interrupt.  
0: Timer 1 interrupt priority set to low priority level.  
1: Timer 1 interrupts set to high priority level.  
PX1: External Interrupt 1 Priority Control.  
This bit sets the priority of the External Interrupt 1 interrupt.  
0: External Interrupt 1 priority set to low priority level.  
1: External Interrupt 1 set to high priority level.  
PT0: Timer 0 Interrupt Priority Control.  
This bit sets the priority of the Timer 0 interrupt.  
0: Timer 0 interrupt priority set to low priority level.  
1: Timer 0 interrupt set to high priority level.  
PX0: External Interrupt 0 Priority Control.  
This bit sets the priority of the External Interrupt 0 interrupt.  
0: External Interrupt 0 priority set to low priority level.  
1: External Interrupt 0 set to high priority level.  
158  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.13. EIE1: Extended Interrupt Enable 1  
R/W  
Bit7  
R/W  
CP2IE  
Bit6  
R/W  
CP1IE  
Bit5  
R/W  
CP0IE  
Bit4  
R/W  
R/W  
R/W  
R/W  
ESPI0  
Bit0  
Reset Value  
EPCA0 EWADC0 ESMB0  
Bit3  
00000000  
Bit2  
Bit1  
SFR Address: 0xE6  
SFR Page: All Pages  
Bit7:  
Reserved. Read = 0b, Write = don’t care.  
CP2IE: Enable Comparator (CP2) Interrupt.  
This bit sets the masking of the CP2 interrupt.  
0: Disable CP2 interrupts.  
1: Enable interrupt requests generated by the CP2IF flag.  
CP1IE: Enable Comparator (CP1) Interrupt.  
This bit sets the masking of the CP1 interrupt.  
0: Disable CP1 interrupts.  
1: Enable interrupt requests generated by the CP1IF flag.  
CP0IE: Enable Comparator (CP0) Interrupt.  
This bit sets the masking of the CP0 interrupt.  
0: Disable CP0 interrupts.  
Bit6:  
Bit6:  
Bit6:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
1: Enable interrupt requests generated by the CP0IF flag.  
EPCA0: Enable Programmable Counter Array (PCA0) Interrupt.  
This bit sets the masking of the PCA0 interrupts.  
0: Disable all PCA0 interrupts.  
1: Enable interrupt requests generated by PCA0.  
EWADC0: Enable Window Comparison ADC0 Interrupt.  
This bit sets the masking of ADC0 Window Comparison interrupt.  
0: Disable ADC0 Window Comparison Interrupt.  
1: Enable Interrupt requests generated by ADC0 Window Comparisons.  
ESMB0: Enable System Management Bus (SMBus0) Interrupt.  
This bit sets the masking of the SMBus interrupt.  
0: Disable all SMBus interrupts.  
1: Enable interrupt requests generated by the SI flag.  
ESPI0: Enable Serial Peripheral Interface (SPI0) Interrupt.  
This bit sets the masking of SPI0 interrupt.  
0: Disable all SPI0 interrupts.  
1: Enable Interrupt requests generated by the SPI0 flag.  
Rev. 1.5  
159  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.14. EIE2: Extended Interrupt Enable 2  
R/W  
-
R/W  
ES1  
Bit6  
R/W  
ECAN0  
Bit5  
R/W  
R/W  
R/W  
ET4  
Bit2  
R/W  
EADC0  
Bit1  
R/W  
ET3  
Bit0  
Reset Value  
EADC2 EWADC2  
Bit4  
00000000  
Bit7  
Bit3  
SFR Address: 0xE7  
SFR Page: All Pages  
Bit7:  
Reserved  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
ES1: Enable UART1 Interrupt.  
This bit sets the masking of the UART1 interrupt.  
0: Disable UART1 interrupt.  
1: Enable UART1 interrupt.  
ECAN0: Enable CAN Controller Interrupt.  
This bit sets the masking of the CAN Controller Interrupt.  
0: Disable CAN Controller Interrupt.  
1: Enable interrupt requests generated by the CAN Controller.  
EADC2: Enable ADC2 End Of Conversion Interrupt (C8051F040/1/2/3 only).  
This bit sets the masking of the ADC2 End of Conversion interrupt.  
0: Disable ADC2 End of Conversion interrupt.  
1: Enable interrupt requests generated by the ADC2 End of Conversion Interrupt.  
EWADC2: Enable Window Comparison ADC2 Interrupt (C8051F040/1/2/3 only).  
This bit sets the masking of ADC2 Window Comparison interrupt.  
0: Disable ADC2 Window Comparison Interrupt.  
1: Enable Interrupt requests generated by ADC2 Window Comparisons.  
ET4: Enable Timer 4 Interrupt  
This bit sets the masking of the Timer 4 interrupt.  
0: Disable Timer 4 interrupt.  
1: Enable interrupt requests generated by the TF4 flag.  
EADC0: Enable ADC0 End of Conversion Interrupt.  
This bit sets the masking of the ADC0 End of Conversion Interrupt.  
0: Disable ADC0 Conversion Interrupt.  
1: Enable interrupt requests generated by the ADC0 Conversion Interrupt.  
ET3: Enable Timer 3 Interrupt.  
This bit sets the masking of the Timer 3 interrupt.  
0: Disable all Timer 3 interrupts.  
1: Enable interrupt requests generated by the TF3 flag.  
160  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.15. EIP1: Extended Interrupt Priority 1  
R/W  
-
R/W  
PCP2  
Bit6  
R/W  
PCP1  
Bit5  
R/W  
PCP0  
Bit4  
R/W  
R/W  
R/W  
R/W  
PSPI0  
Bit0  
Reset Value  
PPCA0 PWADC0 PSMB0  
Bit3  
00000000  
Bit7  
Bit2  
Bit1  
SFR Address: 0xF6  
SFR Page: All Pages  
Bit7:  
Reserved.  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
PCP2: Comparator2 (CP2) Interrupt Priority Control.  
This bit sets the priority of the CP2 interrupt.  
0: CP2 interrupt set to low priority level.  
1: CP2 interrupt set to high priority level.  
PCP1: Comparator1 (CP1) Interrupt Priority Control.  
This bit sets the priority of the CP1 interrupt.  
0: CP1 interrupt set to low priority level.  
1: CP1 interrupt set to high priority level.  
PCP0: Comparator0 (CP0) Interrupt Priority Control.  
This bit sets the priority of the CP0 interrupt.  
0: CP0 interrupt set to low priority level.  
1: CP0 interrupt set to high priority level.  
PPCA0: Programmable Counter Array (PCA0) Interrupt Priority Control.  
This bit sets the priority of the PCA0 interrupt.  
0: PCA0 interrupt set to low priority level.  
1: PCA0 interrupt set to high priority level.  
PWADC0: ADC0 Window Comparator Interrupt Priority Control.  
This bit sets the priority of the ADC0 Window interrupt.  
0: ADC0 Window interrupt set to low priority level.  
1: ADC0 Window interrupt set to high priority level.  
PSMB0: System Management Bus (SMBus0) Interrupt Priority Control.  
This bit sets the priority of the SMBus0 interrupt.  
0: SMBus interrupt set to low priority level.  
1: SMBus interrupt set to high priority level.  
PSPI0: Serial Peripheral Interface (SPI0) Interrupt Priority Control.  
This bit sets the priority of the SPI0 interrupt.  
0: SPI0 interrupt set to low priority level.  
1: SPI0 interrupt set to high priority level.  
Rev. 1.5  
161  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 12.16. EIP2: Extended Interrupt Priority 2  
R/W  
-
R/W  
EP1  
Bit6  
R/W  
PX7  
Bit5  
R/W  
R/W  
R/W  
PT4  
Bit2  
R/W  
PADC0  
Bit1  
R/W  
PT3  
Bit0  
Reset Value  
PADC2 PWADC2  
Bit4  
00000000  
Bit7  
Bit3  
SFR Address: 0xF7  
SFR Page: All Pages  
Bit7:  
Reserved.  
Bit6:  
Bit5:  
Bit4:  
EP1: UART1 Interrupt Priority Control.  
This bit sets the priority of the UART1 interrupt.  
0: UART1 interrupt set to low level.  
1: UART1 interrupt set to high level.  
PCAN0: CAN Interrupt Priority Control.  
This bit sets the priority of the CAN Interrupt.  
0: CAN Interrupt set to low priority level.  
1: CAN Interrupt set to high priority level.  
PADC2: ADC2 End Of Conversion Interrupt Priority Control (C8051F040/1/2/3 only).  
This bit sets the priority of the ADC2 End of Conversion interrupt.  
0: ADC2 End of Conversion interrupt set to low level.  
1: ADC2 End of Conversion interrupt set to low level.  
PWADC2: ADC2 Window Comparator Interrupt Priority Control (C8051F040/1/2/3 only).  
0: ADC2 Window interrupt set to low level.  
Bit3:  
Bit2:  
1: ADC2 Window interrupt set to high level.  
PT4: Timer 4 Interrupt Priority Control.  
This bit sets the priority of the Timer 4 interrupt.  
0: Timer 4 interrupt set to low level.  
1: Timer 4 interrupt set to low level.  
Bit1:  
Bit0:  
PADC0: ADC End of Conversion Interrupt Priority Control.  
This bit sets the priority of the ADC0 End of Conversion Interrupt.  
0: ADC0 End of Conversion interrupt set to low priority level.  
1: ADC0 End of Conversion interrupt set to high priority level.  
PT3: Timer 3 Interrupt Priority Control.  
This bit sets the priority of the Timer 3 interrupts.  
0: Timer 3 interrupt set to low priority level.  
1: Timer 3 interrupt set to high priority level.  
162  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
12.17. Power Management Modes  
The CIP-51 core has two software programmable power management modes: Idle and Stop. Idle mode  
halts the CPU while leaving the external peripherals and internal clocks active. In Stop mode, the CPU is  
halted, all interrupts and timers (except the Missing Clock Detector) are inactive, and the internal oscillator  
is stopped. Since clocks are running in Idle mode, power consumption is dependent upon the system clock  
frequency and the number of peripherals left in active mode before entering Idle. Stop mode consumes the  
least power. SFR Definition 12.18 describes the Power Control Register (PCON) used to control the CIP-  
51's power management modes.  
Although the CIP-51 has Idle and Stop modes built in (as with any standard 8051 architecture), power  
management of the entire MCU is better accomplished by enabling/disabling individual peripherals as  
needed. Each analog peripheral can be disabled when not in use and put into low power mode. Digital  
peripherals, such as timers or serial buses, draw little power whenever they are not in use. Turning off the  
oscillator saves even more power, but requires a reset to restart the MCU.  
12.17.1.Idle Mode  
Setting the Idle Mode Select bit (PCON.0) causes the CIP-51 to halt the CPU and enter Idle mode as soon  
as the instruction that sets the bit completes. All internal registers and memory maintain their original  
data. All analog and digital peripherals can remain active during Idle mode.  
Idle mode is terminated when an enabled interrupt or /RST is asserted. The assertion of an enabled inter-  
rupt will cause the Idle Mode Selection bit (PCON.0) to be cleared and the CPU to resume operation. The  
pending interrupt will be serviced and the next instruction to be executed after the return from interrupt  
(RETI) will be the instruction immediately following the one that set the Idle Mode Select bit. If Idle mode is  
terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins pro-  
gram execution at address 0x0000.  
If enabled, the WDT will eventually cause an internal watchdog reset and thereby terminate the Idle mode.  
This feature protects the system from an unintended permanent shutdown in the event of an inadvertent  
write to the PCON register. If this behavior is not desired, the WDT may be disabled by software prior to  
entering the Idle mode if the WDT was initially configured to allow this operation. This provides the oppor-  
tunity for additional power savings, allowing the system to remain in the Idle mode indefinitely, waiting for  
an external stimulus to wake up the system. Refer to Section 13.7 for more information on the use and  
configuration of the WDT.  
Note: Any instruction that sets the IDLE bit should be immediately followed by an instruction that has 2 or  
more opcode bytes. For example:  
// in 'C':  
PCON |= 0x01;  
PCON = PCON;  
// set IDLE bit  
// ... followed by a 3-cycle dummy instruction  
; in assembly:  
ORL PCON, #01h  
MOV PCON, PCON  
; set IDLE bit  
; ... followed by a 3-cycle dummy instruction  
If the instruction following the write of the IDLE bit is a single-byte instruction and an interrupt occurs during  
the execution phase of the instruction that sets the IDLE bit, the CPU may not wake from IDLE mode when  
a future interrupt occurs.  
Rev. 1.5  
163  
C8051F040/1/2/3/4/5/6/7  
12.17.2.Stop Mode  
Setting the Stop Mode Select bit (PCON.1) causes the CIP-51 to enter Stop mode as soon as the instruc-  
tion that sets the bit completes. In Stop mode, the CPU and internal oscillators are stopped, effectively  
shutting down all digital peripherals. Each analog peripheral must be shut down individually prior to enter-  
ing Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the CIP-51  
performs the normal reset sequence and begins program execution at address 0x0000.  
If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode.  
The Missing Clock Detector should be disabled if the CPU is to be put to sleep for longer than the MCD  
timeout of 100 µs.  
SFR Definition 12.18. PCON: Power Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
STOP  
Bit1  
R/W  
IDLE  
Bit0  
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
SFR Address: 0x87  
SFR Page: All Pages  
Bits7-3: Reserved.  
Bit1:  
STOP: STOP Mode Select.  
Writing a ‘1’ to this bit will place the CIP-51 into STOP mode. This bit will always read ‘0’.  
0: No effect.  
1: CIP-51 forced into power-down mode. (Turns off internal oscillator).  
IDLE: IDLE Mode Select.  
Bit0:  
Writing a ‘1’ to this bit will place the CIP-51 into IDLE mode. This bit will always read ‘0’.  
0: No effect.  
1: CIP-51 forced into idle mode. (Shuts off clock to CPU, but clock to Timers, Interrupts, and  
all peripherals remain active.)  
164  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
13. Reset Sources  
Reset circuitry allows the controller to be easily placed in a predefined default condition. On entry to this  
reset state, the following occur:  
CIP-51 halts program execution  
Special Function Registers (SFRs) are initialized to their defined reset values  
External port pins are forced to a known state  
Interrupts and timers are disabled.  
All SFRs are reset to the predefined values noted in the SFR detailed descriptions. The contents of internal  
data memory are unaffected during a reset; any previously stored data is preserved. However, since the  
stack pointer SFR is reset, the stack is effectively lost even though the data on the stack are not altered.  
The I/O port latches are reset to 0xFF (all logic 1s), activating internal weak pullups which take the external  
I/O pins to a high state. For V Monitor resets, the /RST pin is driven low until the end of the V reset  
DD  
DD  
timeout.  
On exit from the reset state, the program counter (PC) is reset, and the system clock defaults to the inter-  
nal oscillator running at its lowest frequency. Refer to Section “14. Oscillators” on page 173 for informa-  
tion on selecting and configuring the system clock source. The Watchdog Timer is enabled using its  
longest timeout interval (see Section “13.7. Watchdog Timer Reset” on page 167). Once the system clock  
source is stable, program execution begins at location 0x0000.  
There are seven sources for putting the MCU into the reset state: power-on, power-fail, external /RST pin,  
external CNVSTR0 signal, software command, Comparator0, Missing Clock Detector, and Watchdog  
Timer. Each reset source is described in the following sections.  
VDD  
CNVSTR  
Crossbar  
(Port I/O)  
Supply  
Monitor  
(CNVSTR  
reset  
enable)  
Supply  
Reset  
Timeout  
+
-
RST  
(wired-OR)  
(wired-OR)  
Comparator0  
VDD Monitor  
reset enable  
CP0+  
CP0-  
+
-
(CP0  
reset  
enable)  
Reset  
Funnel  
Missing  
Clock  
Detector  
(one-  
shot)  
WDT  
EN  
PRE  
EN  
Internal  
Clock  
Generator  
System  
Clock  
Software Reset  
System Reset  
CIP-51  
Microcontroller  
Core  
XTAL1  
XTAL2  
OSC  
Clock Select  
Extended Interrupt  
Handler  
Figure 13.1. Reset Sources  
Rev. 1.5  
165  
C8051F040/1/2/3/4/5/6/7  
13.1. Power-On Reset  
The C8051F04x family incorporates a power supply monitor that holds the MCU in the reset state until V  
DD  
rises above the V  
level during power-up. See Figure 13.2 for timing diagram, and refer to Table 13.1 for  
RST  
the Electrical Characteristics of the power supply monitor circuit. The /RST pin is asserted low until the end  
of the 100 ms V Monitor timeout in order to allow the V supply to stabilize. The V Monitor reset is  
DD  
DD  
DD  
enabled and disabled using the external V monitor enable pin (MONEN).  
DD  
On exit from a power-on reset, the PORSF flag (RSTSRC.1) is set by hardware to logic 1. All of the other  
reset flags in the RSTSRC register are indeterminate. PORSF is cleared by all other resets. Since all  
resets cause program execution to begin at the same location (0x0000), software can read the PORSF  
flag to determine if a power-up was the cause of reset. The contents of internal data memory should be  
assumed to be undefined after a power-on reset.  
2.70  
VRST  
2.55  
2.0  
1.0  
t
/RST  
Logic HIGH  
Reset Time  
Delay  
Reset Time  
Delay  
Logic LOW  
Power-On Reset  
VDD Monitor Reset  
Figure 13.2. Reset Timing  
13.2. Power-Fail Reset  
When a power-down transition or power irregularity causes V  
to drop below V , the power supply  
RST  
DD  
monitor will drive the /RST pin low and return the CIP-51 to the reset state. When V  
returns to a level  
DD  
above V , the CIP-51 will leave the reset state in the same manner as that for the power-on reset (see  
RST  
Figure 13.2). Note that even though internal data memory contents are not altered by the power-fail reset,  
it is impossible to determine if V dropped below the level required for data retention. If the PORSF flag is  
DD  
set to logic 1, the data may no longer be valid.  
13.3. External Reset  
The external /RST pin provides a means for external circuitry to force the MCU into a reset state. Asserting  
the /RST pin low will cause the MCU to enter the reset state. It may be desirable to provide an external pul-  
166  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
lup and/or decoupling of the /RST pin to avoid erroneous noise-induced resets. The MCU will remain in  
reset until at least 12 clock cycles after the active-low /RST signal is removed. The PINRSF flag (RST-  
SRC.0) is set on exit from an external reset.  
13.4. Missing Clock Detector Reset  
The Missing Clock Detector is essentially a one-shot circuit that is triggered by the MCU system clock. If  
the system clock goes away for more than 100 µs, the one-shot will time out and generate a reset. After a  
Missing Clock Detector reset, the MCDRSF flag (RSTSRC.2) will be set, signifying the MCD as the reset  
source; otherwise, this bit reads ‘0’. The state of the /RST pin is unaffected by this reset. Setting the  
MCDRSF bit, RSTSRC.2 (see Section “14. Oscillators” on page 173) enables the Missing Clock Detector.  
13.5. Comparator0 Reset  
Comparator0 can be configured as a reset input by writing a ‘1’ to the C0RSEF flag (RSTSRC.5).  
Comparator0 should be enabled using CPT0CN.7 (see Section “11. Comparators” on page 121) prior to  
writing to C0RSEF to prevent any turn-on chatter on the output from generating an unwanted reset. The  
Comparator0 reset is active-low: if the non-inverting input voltage (CP0+ pin) is less than the inverting  
input voltage (CP0- pin), the MCU is put into the reset state. After a Comparator0 Reset, the C0RSEF flag  
(RSTSRC.5) will read ‘1’ signifying Comparator0 as the reset source; otherwise, this bit reads ‘0’. The state  
of the /RST pin is unaffected by this reset.  
13.6. External CNVSTR0 Pin Reset  
The external CNVSTR0 signal can be configured as a reset input by writing a ‘1’ to the CNVRSEF flag  
(RSTSRC.6). The CNVSTR0 signal can appear on any of the P0, P1, P2 or P3 I/O pins as described in  
Section “17.1. Ports 0 through 3 and the Priority Crossbar Decoder” on page 204. Note that the Cross-  
bar must be configured for the CNVSTR0 signal to be routed to the appropriate Port I/O. The Crossbar  
should be configured and enabled before the CNVRSEF is set. When configured as a reset, CNVSTR0 is  
active-low and level sensitive. After a CNVSTR0 reset, the CNVRSEF flag (RSTSRC.6) will read ‘1’ signi-  
fying CNVSTR0 as the reset source; otherwise, this bit reads ‘0’. The state of the /RST pin is unaffected by  
this reset.  
13.7. Watchdog Timer Reset  
The MCU includes a programmable Watchdog Timer (WDT) running off the system clock. A WDT overflow  
will force the MCU into the reset state. To prevent the reset, the WDT must be restarted by application soft-  
ware before overflow. If the system experiences a software or hardware malfunction preventing the soft-  
ware from restarting the WDT, the WDT will overflow and cause a reset. This should prevent the system  
from running out of control.  
Following a reset the WDT is automatically enabled and running with the default maximum time interval. If  
desired the WDT can be disabled by system software or locked on to prevent accidental disabling. Once  
locked, the WDT cannot be disabled until the next system reset. The state of the /RST pin is unaffected by  
this reset.  
The WDT consists of a 21-bit timer running from the programmed system clock. The timer measures the  
period between specific writes to its control register. If this period exceeds the programmed limit, a WDT  
reset is generated. The WDT can be enabled and disabled as needed in software, or can be permanently  
enabled if desired. Watchdog features are controlled via the Watchdog Timer Control Register (WDTCN)  
shown in SFR Definition 13.1.  
Rev. 1.5  
167  
C8051F040/1/2/3/4/5/6/7  
13.7.1. Enable/Reset WDT  
The watchdog timer is both enabled and reset by writing 0xA5 to the WDTCN register. The user's applica-  
tion software should include periodic writes of 0xA5 to WDTCN as needed to prevent a watchdog timer  
overflow. The WDT is enabled and reset as a result of any system reset.  
13.7.2. Disable WDT  
Writing 0xDE followed by 0xAD to the WDTCN register disables the WDT. The following code segment  
illustrates disabling the WDT:  
CLR  
MOV  
MOV  
SETB  
EA  
; disable all interrupts  
WDTCN,#0DEh ; disable software watchdog timer  
WDTCN,#0ADh  
EA  
; re-enable interrupts  
The writes of 0xDE and 0xAD must occur within 4 clock cycles of each other, or the disable operation is  
ignored. Interrupts should be disabled during this procedure to avoid delay between the two writes.  
13.7.3. Disable WDT Lockout  
Writing 0xFF to WDTCN locks out the disable feature. Once locked out, the disable operation is ignored  
until the next system reset. Writing 0xFF does not enable or reset the watchdog timer. Applications always  
intending to use the watchdog should write 0xFF to WDTCN in the initialization code.  
13.7.4. Setting WDT Interval  
WDTCN.[2:0] control the watchdog timeout interval. The interval is given by the following equation:  
4
3 + WDTCN2 – 0Tsysclk ; where T  
is the system clock period.  
sysclk  
For a 3 MHz system clock, this provides an interval range of 0.021 ms to 349.5 ms. WDTCN.7 must be  
logic 0 when setting this interval. Reading WDTCN returns the programmed interval. WDTCN.[2:0] reads  
111b after a system reset.  
168  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 13.1. WDTCN: Watchdog Timer Control  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
xxxxx111  
Bit0  
SFR Address: 0xFF  
SFR Page: All Pages  
Bits7-0: WDT Control  
Writing 0xA5 both enables and reloads the WDT.  
Writing 0xDE followed within 4 system clocks by 0xAD disables the WDT.  
Writing 0xFF locks out the disable feature.  
Watchdog Status Bit (when Read)  
Bit4:  
Reading the WDTCN.[4] bit indicates the Watchdog Timer Status.  
0: WDT is inactive  
1: WDT is active  
Bits2-0: Watchdog Timeout Interval Bits  
The WDTCN.[2:0] bits set the Watchdog Timeout Interval. When writing these bits,  
WDTCN.7 must be set to 0.  
Rev. 1.5  
169  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 13.2. RSTSRC: Reset Source  
R
-
R/W  
R/W  
R/W  
R
R/W  
R
R/W  
Reset Value  
CNVRSEF C0RSEF SWRSEF WDTRSF MCDRSF PORSF  
PINRSF 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xEF  
SFR Page: 0  
Bit7:  
Reserved.  
Bit6:  
Bit5:  
Bit4:  
CNVRSEF: Convert Start Reset Source Enable and Flag  
Write: 0: CNVSTR0 is not a reset source.  
1: CNVSTR0 is a reset source (active low).  
Read: 0: Source of prior reset was not CNVSTR0.  
1: Source of prior reset was CNVSTR0.  
C0RSEF: Comparator0 Reset Enable and Flag.  
Write: 0: Comparator0 is not a reset source.  
1: Comparator0 is a reset source (active low).  
Read: 0: Source of last reset was not Comparator0.  
1: Source of last reset was Comparator0.  
SWRSF: Software Reset Force and Flag.  
Write: 0: No effect.  
1: Forces an internal reset. /RST pin is not effected.  
Read: 0: Source of last reset was not a write to the SWRSF bit.  
1: Source of last reset was a write to the SWRSF bit.  
WDTRSF: Watchdog Timer Reset Flag.  
0: Source of last reset was not WDT timeout.  
1: Source of last reset was WDT timeout.  
MCDRSF: Missing Clock Detector Flag.  
Bit3:  
Bit2:  
Write: 0: Missing Clock Detector disabled.  
1: Missing Clock Detector enabled; triggers a reset if a missing clock condition is  
detected.  
Read: 0: Source of last reset was not a Missing Clock Detector timeout.  
1: Source of last reset was a Missing Clock Detector timeout.  
PORSF: Power-On Reset Flag.  
Bit1:  
Write: If the V monitor circuitry is enabled (by tying the MONEN pin to a logic high state), this  
DD  
bit can be written to select or de-select the V monitor as a reset source.  
DD  
0: De-select the V monitor as a reset source.  
DD  
1: Select the V monitor as a reset source.  
DD  
Important: At power-on, the VDD monitor is enabled/disabled using the external VDD moni-  
tor enable pin (MONEN). The PORSF bit does not disable or enable the VDD monitor cir-  
cuit. It simply selects the VDD monitor as a reset source.  
Read: This bit is set whenever a power-on reset occurs. This may be due to a true power-on  
reset or a VDD monitor reset. In either case, data memory should be considered indeterminate  
following the reset.  
0: Source of last reset was not a power-on or VDD monitor reset.  
1: Source of last reset was a power-on or VDD monitor reset.  
Note: When this flag is read as '1', all other reset flags are indeterminate.  
PINRSF: HW Pin Reset Flag.  
Bit0:  
Write: 0: No effect.  
1: Forces a Power-On Reset. /RST is driven low.  
Read: 0: Source of prior reset was not /RST pin.  
1: Source of prior reset was /RST pin.  
170  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 13.1. Reset Electrical Characteristics  
–40 to +85 °C unless otherwise specified.  
Parameter  
RST Output Low Voltage  
RST Input High Voltage  
Conditions  
= 8.5 mA, V = 2.7 V to 3.6 V  
Min  
Typ  
Max  
Units  
0.6  
V
I
OL  
DD  
0.7 x  
V
V
DD  
0.3 x  
RST Input Low Voltage  
V
DD  
1.0  
50  
µA  
V
RST Input Leakage Current  
RST = 0.0 V  
V
for /RST Output Valid  
DD  
1.0  
V
AV+ for /RST Output Valid  
POR Threshold (V  
2.40  
2.55  
2.70  
V
V
)
RST  
DD  
Minimum /RST Low Time to  
Generate a System Reset  
10  
80  
ns  
ms  
µs  
Reset Time Delay  
RST rising edge after V crosses  
DD  
100  
220  
120  
500  
V
threshold  
RST  
Missing Clock Detector   
Timeout  
Time from last system clock to  
reset initiation  
100  
Rev. 1.5  
171  
C8051F040/1/2/3/4/5/6/7  
172  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
14. Oscillators  
OSCICL  
OSCICN  
CLKSEL  
Option 3  
XTAL1  
XTAL2  
EN  
Option 4  
XTAL1  
n
0
Programmable  
Internal Clock  
Generator  
SYSCLK  
Option 2  
VDD  
Option 1  
XTAL1  
XTAL2  
Input  
Circuit  
1
OSC  
XTAL1  
OSCXCN  
Figure 14.1. Oscillator Diagram  
14.1. Programmable Internal Oscillator  
All C8051F04x devices include a programmable internal oscillator that defaults as the system clock after a  
system reset. The internal oscillator period can be programmed via the OSCICL register as defined by  
SFR Definition 14.1. OSCICL is factory calibrated to obtain a 24.5 MHz frequency.  
Electrical specifications for the precision internal oscillator are given in Table 14.1 on page 175. The pro-  
grammed internal oscillator frequency must not exceed 25 MHz. The system clock may be derived from  
the programmed internal oscillator divided by 1, 2, 4, or 8, as defined by the IFCN bits in register OSCICN.  
Rev. 1.5  
173  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 14.1. OSCICL: Internal Oscillator Calibration  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
Variable  
Bit0  
SFR Address: 0x8B  
SFR Page: F  
Bits 7-0: OSCICL: Internal Oscillator Calibration Register  
This register calibrates the internal oscillator period. The reset value for OSCICL defines the  
internal oscillator base frequency. The reset value is factory calibrated to generate an inter-  
nal oscillator frequency of 24.5 MHz.  
SFR Definition 14.2. OSCICN: Internal Oscillator Control  
R/W  
IOSCEN  
Bit7  
R/W  
IFRDY  
Bit6  
R/W  
-
R
-
R/W  
-
R/W  
-
R/W  
IFCN1  
Bit1  
R/W  
IFCN0  
Bit0  
Reset Value  
11000000  
Bit5  
Bit4  
Bit3  
Bit2  
SFR Address: 0x8A  
SFR Page: F  
Bit7:  
IOSCEN: Internal Oscillator Enable Bit.  
0: Internal Oscillator Disabled  
1: Internal Oscillator Enabled  
Bit6:  
IFRDY: Internal Oscillator Frequency Ready Flag.  
0: Internal Oscillator is not running at programmed frequency.  
1: Internal Oscillator is running at programmed frequency.  
Bits5-2: Reserved.  
Bits1-0: IFCN1-0: Internal Oscillator Frequency Control Bits.  
00: SYSCLK derived from Internal Oscillator divided by 8.  
01: SYSCLK derived from Internal Oscillator divided by 4.  
10: SYSCLK derived from Internal Oscillator divided by 2.  
11: SYSCLK derived from Internal Oscillator divided by 1.  
174  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 14.1. Internal Oscillator Electrical Characteristics  
–40 to +85 °C unless otherwise specified.  
Parameter  
Conditions Min  
Typ  
Max  
Units  
Calibrated Internal Oscillator   
Frequency  
24  
24.5  
25  
MHz  
Internal Oscillator Supply Current OSCICN.7 = 1  
(from VDD  
450  
µA  
)
0
30  
MHz  
ns  
External Clock Frequency  
15  
15  
T
(External Clock High Time)  
(External Clock Low Time)  
XCH  
XCL  
ns  
T
14.2. External Oscillator Drive Circuit  
The external oscillator circuit may drive an external crystal, ceramic resonator, capacitor, or RC network. A  
CMOS clock may also provide a clock input. For a crystal or ceramic resonator configuration, the crystal/  
resonator must be wired across the XTAL1 and XTAL2 pins as shown in Option 1 of Figure 14.1. In RC,  
capacitor, or CMOS clock configuration, the clock source should be wired to the XTAL2 and/or XTAL1  
pin(s) as shown in Option 2, 3, or 4 of Figure 14.1. The type of external oscillator must be selected in the  
OSCXCN register, and the frequency control bits (XFCN) must be selected appropriately (see SFR Defini-  
tion 14.4).  
14.3. System Clock Selection  
The CLKSL bit in register CLKSEL selects which oscillator is used as the system clock. CLKSL must be  
set to ‘1’ for the system clock to run from the external oscillator; however the external oscillator may still  
clock peripherals (timers, PCA) when the internal oscillator is selected as the system clock. The system  
clock may be switched on-the-fly between the internal and external oscillator, so long as the selected oscil-  
lator is enabled and has settled. The internal oscillator requires little start-up time and may be enabled and  
selected as the system clock in the same write to OSCICN. External crystals and ceramic resonators typi-  
cally require a start-up time before they are settled and ready for use as the system clock. The Crystal  
Valid Flag (XTLVLD in register OSCXCN) is set to ‘1’ by hardware when the external oscillator is settled. To  
avoid reading a false XTLVLD in crystal mode, software should delay at least 1 ms between enabling the  
external oscillator and checking XTLVLD. RC and C modes typically require no startup time.  
SFR Definition 14.3. CLKSEL: Oscillator Clock Selection  
R
-
R
-
R
-
R
-
R
-
R
-
R
-
R/W  
Reset Value  
CLKSL 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x97  
SFR Page: F  
Bits7-1: Reserved.  
Bit0: CLKSL: System Clock Source Select Bit.  
0: SYSCLK derived from the Internal Oscillator, and scaled as per the IFCN bits in OSCICN.  
1: SYSCLK derived from the External Oscillator circuit.  
Rev. 1.5  
175  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 14.4. OSCXCN: External Oscillator Control  
R
R/W  
R/W  
R/W  
R
-
R/W  
XFCN2  
Bit2  
R/W  
XFCN1  
Bit1  
R/W  
Reset Value  
XTLVLD XOSCMD2 XOSCMD1 XOSCMD0  
XFCN0 00000000  
Bit0  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
SFR Address: 0x8C  
SFR Page: F  
Bit7:  
XTLVLD: Crystal Oscillator Valid Flag.  
(Read only when XOSCMD = 11x.)  
0: Crystal Oscillator is unused or not yet stable.  
1: Crystal Oscillator is running and stable.  
Bits6-4: XOSCMD2-0: External Oscillator Mode Bits.  
00x: External Oscillator circuit off.  
010: External CMOS Clock Mode (External CMOS Clock input on XTAL1 pin).  
011: External CMOS Clock Mode with divide by 2 stage (External CMOS Clock input on  
XTAL1 pin).  
10x: RC/C Oscillator Mode with divide by 2 stage.  
110: Crystal Oscillator Mode.  
111: Crystal Oscillator Mode with divide by 2 stage.  
RESERVED. Read = 0, Write = don't care.  
Bit3:  
Bits2-0: XFCN2-0: External Oscillator Frequency Control Bits.  
000-111: see table below:  
XFCN  
000  
001  
010  
011  
100  
101  
110  
111  
Crystal (XOSCMD = 11x)  
f 32 kHz  
RC (XOSCMD = 10x)  
f 25 kHz  
C (XOSCMD = 10x)  
K Factor = 0.87  
K Factor = 2.6  
K Factor = 7.7  
K Factor = 22  
32 kHz f 84 kHz  
84 kHz f 225 kHz  
225 kHz f 590 kHz  
590 kHz f 1.5 MHz  
1.5 MHz f 4 MHz  
4 MHz f 10 MHz  
10 MHz f 30 MHz  
25 kHz f 50 kHz  
50 kHz f 100 kHz  
100 kHz f 200 kHz  
200 kHz f 400 kHz  
400 kHz f 800 kHz  
800 kHz f 1.6 MHz  
1.6 MHz f 3.2 MHz  
K Factor = 65  
K Factor = 180  
K Factor = 664  
K Factor = 1590  
CRYSTAL MODE (Circuit from Figure 14.1, Option 1; XOSCMD = 11x)  
Choose XFCN value to match crystal frequency.  
RC MODE (Circuit from Figure 14.1, Option 2; XOSCMD = 10x)  
Choose XFCN value to match frequency range:  
3
f = 1.23(10 ) / (R x C), where  
f = frequency of oscillation in MHz  
C = capacitor value in pF  
R = Pullup resistor value in k  
C MODE (Circuit from Figure 14.1, Option 3; XOSCMD = 10x)  
Choose K Factor (KF) for the oscillation frequency desired:  
f = KF / (C x V ), where  
DD  
f = frequency of oscillation in MHz  
C = capacitor value on XTAL1, XTAL2 pins in pF  
VDD = Power Supply on MCU in volts  
176  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
14.4. External Crystal Example  
If a crystal or ceramic resonator is used as an external oscillator source for the MCU, the circuit should be  
configured as shown in Figure 14.1, Option 1. The External Oscillator Frequency Control value (XFCN)  
should be chosen from the Crystal column of the table in SFR Definition 14.4 (OSCXCN register). For  
example, an 11.0592 MHz crystal requires an XFCN setting of 111b.  
When the crystal oscillator is enabled, the oscillator amplitude detection circuit requires a settle time to  
achieve proper bias. Introducing a delay of at least 1 ms between enabling the oscillator and checking the  
XTLVLD bit will prevent a premature switch to the external oscillator as the system clock. Switching to the  
external oscillator before the crystal oscillator has stabilized can result in unpredictable behavior. The rec-  
ommended procedure is:  
Step 1. Enable the external oscillator in crystal oscillator mode.  
Step 2. Wait at least 1 ms.  
Step 3. Poll for XTLVLD => '1'.  
Step 4. Switch the system clock to the external oscillator.  
Note: Tuning-fork crystals may require additional settling time before XTLVLD returns a valid result.  
The capacitors shown in the external crystal configuration provide the load capacitance required by the  
crystal for correct oscillation. These capacitors are "in series" as seen by the crystal and "in parallel" with  
the stray capacitance of the XTAL1 and XTAL2 pins.  
Note: The load capacitance depends upon the crystal and the manufacturer. Please refer to the crystal  
data sheet when completing these calculations.  
For example, a tuning-fork crystal of 32.768 kHz with a recommended load capacitance of 12.5 pF should  
use the configuration shown in Figure 14.1, Option 1. The total value of the capacitors and the stray capac-  
itance of the XTAL pins should equal 25 pF. With a stray capacitance of 3 pF per pin, the 22 pF capacitors  
yield an equivalent capacitance of 12.5 pF across the crystal, as shown in Figure 14.2.  
22 pF  
XTAL1  
10 M  
32.768 kHz  
22 pF  
XTAL2  
Figure 14.2. 32.768 kHz External Crystal Example  
Important Note on External Crystals: Crystal oscillator circuits are quite sensitive to PCB layout. The  
crystal should be placed as close as possible to the XTAL pins on the device. The traces should be as  
short as possible and shielded with ground plane from any other traces which could introduce noise or  
interference.  
Rev. 1.5  
177  
C8051F040/1/2/3/4/5/6/7  
14.5. External RC Example  
If an RC network is used as an external oscillator source for the MCU, the circuit should be configured as  
shown in Figure 14.1, Option 2. The capacitor should be no greater than 100 pF; however, for very small  
capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To deter-  
mine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, first  
select the RC network value to produce the desired frequency of oscillation. If the frequency desired is  
100 kHz, let R = 246 kand C = 50 pF:  
3
3
f = 1.23( 10 ) / RC = 1.23 ( 10 ) / [ 246 x 50 ] = 0.1 MHz = 100 kHz  
Referring to the table in SFR Definition 14.4, the required XFCN setting is 010b.  
14.6. External Capacitor Example  
If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in  
Figure 14.1, Option 3. The capacitor should be no greater than 100 pF; however, for very small capacitors,  
the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the  
required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the desired  
frequency of oscillation and find the capacitor to be used from the equations below. Assume VDD = 3.0 V  
and f = 50 kHz:  
f = KF / ( C x VDD ) = KF / ( C x 3 ) = 0.050 MHz  
If a frequency of roughly 50 kHz is desired, select the K Factor from the table in SFR Definition 14.4 as  
KF = 7.7:  
0.050 MHz = 7.7 / (C x 3)  
C x 3 = 7.7 / 0.050 = 154, so C = 154 / 3 pF = 51.3 pF  
Therefore, the XFCN value to use in this example is 010b.  
178  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
15. Flash Memory  
The C8051F04x family includes 64 kB + 128 (C8051F040/1/2/3/4/5) or 32 kB + 128 (C8051F046/7) of on-  
chip, reprogrammable Flash memory for program code and non-volatile data storage. The Flash memory  
can be programmed in-system, a single byte at a time, through the JTAG interface or by software using the  
MOVX write instructions. Once cleared to logic 0, a Flash bit must be erased to set it back to logic 1. The  
bytes would typically be erased (set to 0xFF) before being reprogrammed. Flash write and erase opera-  
tions are automatically timed by hardware for proper execution; data polling to determine the end of the  
write/erase operation is not required. The CPU is stalled during write/erase operations while the device  
peripherals remain active. Interrupts that occur during Flash write/erase operations are held, and are then  
serviced in their priority order once the Flash operation has completed. Refer to Table 15.1 for the electri-  
cal characteristics of the Flash memory.  
15.1. Programming The Flash Memory  
The simplest means of programming the Flash memory is through the JTAG interface using programming  
tools provided by Silicon Labs or a third party vendor. This is the only means for programming a non-initial-  
ized device. For details on the JTAG commands to program Flash memory, see Section “25.2. Flash Pro-  
gramming Commands” on page 321.  
The Flash memory can be programmed by software using the MOVX write instruction with the address and  
data byte to be programmed provided as normal operands. Before writing to Flash memory using MOVX,  
Flash write operations must be enabled by setting the PSWE Program Store Write Enable bit (PSCTL.0) to  
logic 1. This directs the MOVX writes to Flash memory instead of to XRAM, which is the default target. The  
PSWE bit remains set until cleared by software. To avoid errant Flash writes, it is recommended that inter-  
rupts be disabled while the PSWE bit is logic 1.  
Flash memory is read using the MOVC instruction. MOVX reads are always directed to XRAM, regardless  
of the state of PSWE.  
Note: To ensure the integrity of Flash memory contents, it is strongly recommended that the on-chip V  
DD  
monitor be enabled by connecting the V  
monitor enable pin (MONEN) to V  
in any system that exe-  
DD  
DD  
cutes code that writes and/or erases Flash memory from software. See “Reset Sources” on page 165 for  
more information.  
A write to Flash memory can clear bits but cannot set them; only an erase operation can set bits in Flash.  
A byte location to be programmed must be erased before a new value can be written. The Flash  
memory is organized in 512-byte pages. The erase operation applies to an entire page (setting all bytes in  
the page to 0xFF). The following steps illustrate the algorithm for programming Flash by user software.  
Step 1. Disable interrupts.  
Step 2. Set FLWE (FLSCL.0) to enable Flash writes/erases via user software.  
Step 3. Set PSEE (PSCTL.1) to enable Flash erases.  
Step 4. Set PSWE (PSCTL.0) to redirect MOVX commands to write to Flash.  
Step 5. Use the MOVX command to write a data byte to any location within the 512-byte page to  
be erased.  
Step 6. Clear PSEE to disable Flash erases  
Step 7. Use the MOVX command to write a data byte to the desired byte location within the  
erased 512-byte page. Repeat this step until all desired bytes are written (within the target  
page).  
Step 8. Clear the PSWE bit to redirect MOVX commands to the XRAM data space.  
Step 9. Re-enable interrupts.  
Write/Erase timing is automatically controlled by hardware. Note that code execution in the 8051 is stalled  
while the Flash is being programmed or erased. Note that 512 bytes at locations 0xFE00 (C8051F040/1/2/  
Rev. 1.5  
179  
C8051F040/1/2/3/4/5/6/7  
3/4/5) and all locations above 0x8000 (C8051F046/7) are reserved. Flash writes and erases targeting the  
reserved area should be avoided.  
Table 15.1. Flash Electrical Characteristics  
V
= 2.7 to 3.6 V; T = –40 to +85 °C  
DD  
a
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
1
2
Flash Size  
C8051F040/1/2/3/4/5  
65664  
Bytes  
C8051F046/7  
32896  
100 k  
12  
20 k  
10  
14  
60  
Erase/Write  
Endurance  
ms  
µs  
Erase Cycle Time  
Write Cycle Time  
Notes:  
40  
50  
1. Includes 128-byte scratchpad.  
2. 512 bytes at locations 0xFE00 to 0xFFFF are reserved.  
15.2. Non-volatile Data Storage  
The Flash memory can be used for non-volatile data storage as well as program code. This allows data  
such as calibration coefficients to be calculated and stored at run time. Data is written using the MOVX  
write instruction (as described in the previous section) and read using the MOVC instruction.  
An additional 128-byte sector of Flash memory is included for non-volatile data storage. Its smaller sector  
size makes it particularly well suited as general purpose, non-volatile scratchpad memory. Even though  
Flash memory can be written a single byte at a time, an entire sector must be erased first. In order to  
change a single byte of a multi-byte data set, the data must be moved to temporary storage. The 128-byte  
sector-size facilitates updating data without wasting program memory or RAM space. The 128-byte sector  
is double-mapped over the 64k byte Flash memory; its address ranges from 0x00 to 0x7F (see  
Figure 15.1). To access this 128-byte sector, the SFLE bit in PSCTL must be set to logic 1. Code execution  
from this 128-byte scratchpad sector is not permitted.  
15.3. Security Options  
The CIP-51 provides security options to protect the Flash memory from inadvertent modification by soft-  
ware as well as prevent the viewing of proprietary program code and constants. The Program Store Write  
Enable (PSCTL.0) and the Program Store Erase Enable (PSCTL.1) bits protect the Flash memory from  
accidental modification by software. These bits must be explicitly set to logic 1 before software can write or  
erase the Flash memory. Additional security features prevent proprietary program code and data constants  
from being read or altered across the JTAG interface or by software running on the system controller.  
A set of security lock bytes stored at 0xFDFE and 0xFDFF (C8051F040/1/2/3/4/5) and at 0x7FFE and  
0x7FFF (C8051F046/7) protect the Flash program memory from being read or altered across the JTAG  
interface. Each bit in a security lock-byte protects one 8k-byte block of memory. Clearing a bit to logic 0 in  
a Read Lock Byte prevents the corresponding block of Flash memory from being read across the JTAG  
interface. Clearing a bit in the Write/Erase Lock Byte protects the block from JTAG erasures and/or writes.  
The Read Lock Byte is at locations 0xFDFF (C8051F040/1/2/3/4/5) and 0x7FFF (C8051F046/7). The  
Write/Erase Lock Byte is located at 0xFDFE (C8051F040/1/2/3/4/5) and 0x7FFE (C8051F046/7).  
Figure 15.1 shows the location and bit definitions of the security bytes. The 512-byte sector containing  
the lock bytes can be written to, but not erased by software. An attempted read of a read-locked byte  
returns undefined data. Debugging code in a read-locked sector is not possible through the JTAG inter-  
face.  
180  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Read and Write/Erase Security Bits.  
(Bit 7 is MSB.)  
SFLE = 0  
SFLE = 1  
C8051F040/1/2/3/4/5  
0x007F  
0x0000  
Scratchpad Memory  
(Data only)  
Memory Block  
Bit  
Reserved  
C8051F040/1/2/3/4/5  
0xE000 - 0xFDFD  
0xC000 - 0xDFFF  
0xA000 - 0xBFFF  
0x8000 - 0x9FFF  
0x6000 - 0x7FFF  
0x4000 - 0x5FFF  
0x2000 - 0x3FFF  
0x0000 - 0x1FFF  
C8051F046/7  
0xFE00  
0xFDFF  
7
6
5
4
3
2
1
0
No effect  
No effect  
No effect  
Read Lock Byte  
0xFDFE  
0xFDFD  
Write/Erase Lock Byte  
No effect  
0x6000 - 0x7FFD  
0x4000 - 0x5FFF  
0x2000 - 0x3FFF  
0x0000 - 0x1FFF  
Program/Data  
Memory Space  
Software Read Limit  
0x0000  
C8051F046/7  
Reserved  
0x8000  
0x7FFF  
Read Lock Byte  
0x7FFE  
0x7FFD  
Write/Erase Lock Byte  
Program/Data  
Memory Space  
Software Read Limit  
0x0000  
Flash Read Lock Byte  
Bits7-0: Each bit locks a corresponding block of memory. (Bit7 is MSB).  
0: Read operations are locked (disabled) for corresponding block across the JTAG interface.  
1: Read operations are unlocked (enabled) for corresponding block across the JTAG inter-  
face.  
Flash Write/Erase Lock Byte  
Bits7-0: Each bit locks a corresponding block of memory.  
0: Write/Erase operations are locked (disabled) for corresponding block across the JTAG  
interface.  
1: Write/Erase operations are unlocked (enabled) for corresponding block across the JTAG  
interface.  
NOTE: When the highest block is locked, the security bytes may be written but not erased.  
Flash access Limit Register (FLACL)  
The content of this register is used as the high byte of the 16-bit Software Read Limit  
address. This 16-bit read limit address value is calculated as 0xNN00 where NN is replaced  
by content of this register on reset. Software running at or above this address is prohibited  
from using the MOVX and MOVC instructions to read, write, or erase Flash locations below  
this address. Any attempts to read locations below this limit will return the value 0x00.  
Figure 15.1. Flash Program Memory Map and Security Bytes  
Rev. 1.5  
181  
C8051F040/1/2/3/4/5/6/7  
The lock bits can always be read and cleared to logic 0 regardless of the security setting applied to the  
block containing the security bytes. This allows additional blocks to be protected after the block containing  
the security bytes has been locked. Important Note: The only means of removing a lock once set is to  
erase the entire program memory space by performing a JTAG erase operation (i.e., cannot be  
done in user firmware). Addressing either security byte while performing a JTAG erase operation  
will automatically initiate erasure of the entire program memory space (except for the reserved  
area). This erasure can only be performed via JTAG. If a non-security byte in the 0xFBFF-0xFDFF  
(C8051F040/1/2/3/4/5) or 0x7DFF-0x7FFF (C8051F046/7) page is addressed during the JTAG era-  
sure, only that page (including the security bytes) will be erased.  
The Flash Access Limit security feature (see Figure 15.1) protects proprietary program code and data from  
being read by software running on the C8051F04x. This feature provides support for OEMs that wish to  
program the MCU with proprietary value-added firmware before distribution. The value-added firmware  
can be protected while allowing additional code to be programmed in remaining program memory space  
later.  
The Software Read Limit (SRL) is a 16-bit address that establishes two logical partitions in the program  
memory space. The first is an upper partition consisting of all the program memory locations at or above  
the SRL address, and the second is a lower partition consisting of all the program memory locations start-  
ing at 0x0000 up to (but excluding) the SRL address. Software in the upper partition can execute code in  
the lower partition, but is prohibited from reading locations in the lower partition using the MOVC instruc-  
tion. (Executing a MOVC instruction from the upper partition with a source address in the lower partition  
will always return a data value of 0x00.) Software running in the lower partition can access locations in both  
the upper and lower partition without restriction.  
The Value-added firmware should be placed in the lower partition. On reset, control is passed to the value-  
added firmware via the reset vector. Once the value-added firmware completes its initial execution, it  
branches to a predetermined location in the upper partition. If entry points are published, software running  
in the upper partition may execute program code in the lower partition, but it cannot read the contents of  
the lower partition. Parameters may be passed to the program code running in the lower partition either  
through the typical method of placing them on the stack or in registers before the call or by placing them in  
prescribed memory locations in the upper partition.  
The SRL address is specified using the contents of the Flash Access Register. The 16-bit SRL address is  
calculated as 0xNN00, where NN is the contents of the SRL Security Register. Thus, the SRL can be  
located on 256-byte boundaries anywhere in program memory space. However, the 512-byte erase sector  
size essentially requires that a 512 boundary be used. The contents of a non-initialized SRL security byte  
is 0x00, thereby setting the SRL address to 0x0000 and allowing read access to all locations in program  
memory space by default.  
182  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
15.3.1. Summary of Flash Security Options  
There are three Flash access methods supported on the C8051F04x devices; 1) Accessing Flash through  
the JTAG debug interface, 2) Accessing Flash from firmware residing below the Flash Access Limit, and 3)  
Accessing Flash from firmware residing at or above the Flash Access Limit.  
Accessing Flash through the JTAG debug interface:  
1. The Read and Write/Erase Lock bytes (security bytes) provide security for Flash access  
through the JTAG interface.  
2. Any unlocked page may be read from, written to, or erased.  
3. Locked pages cannot be read from, written to, or erased.  
4. Reading the security bytes is always permitted.  
5. Locking additional pages by writing to the security bytes is always permitted.  
6. If the page containing the security bytes is unlocked, it can be directly erased. Doing so will  
reset the security bytes and unlock all pages of Flash.  
7. If the page containing the security bytes is locked, it cannot be directly erased. To unlock the  
page containing the security bytes, a full JTAG device erase is required. A full JTAG  
device erase will erase all Flash pages, including the page containing the security bytes and  
the security bytes themselves.  
8. The Reserved Area cannot be read from, written to, or erased at any time.  
Accessing Flash from firmware residing below the Flash Access Limit:  
1. The Read and Write/Erase Lock bytes (security bytes) do not restrict Flash access from user  
firmware.  
2. Any page of Flash except the page containing the security bytes may be read from, written to,  
or erased.  
3. The page containing the security bytes cannot be erased. Unlocking pages of Flash can  
only be performed via the JTAG interface.  
4. The page containing the security bytes may be read from or written to. Pages of Flash can be  
locked from JTAG access by writing to the security bytes.  
5. The Reserved Area cannot be read from, written to, or erased at any time.  
Accessing Flash from firmware residing at or above the Flash Access Limit:  
1. The Read and Write/Erase Lock bytes (security bytes) do not restrict Flash access from user  
firmware.  
2. Any page of Flash at or above the Flash Access Limit except the page containing the security  
bytes may be read from, written to, or erased.  
3. Any page of Flash below the Flash Access Limit cannot be read from, written to, or erased.  
4. Code branches to locations below the Flash Access Limit are permitted.  
5. The page containing the security bytes cannot be erased. Unlocking pages of Flash can  
only be performed via the JTAG interface.  
6. The page containing the security bytes may be read from or written to. Pages of Flash can be  
locked from JTAG access by writing to the security bytes.  
7. The Reserved Area cannot be read from, written to, or erased at any time.  
Rev. 1.5  
183  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 15.1. FLACL: Flash Access Limit  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address:  
SFR Address: 0xB7  
SFR Page: F  
Bits 7-0: FLACL: Flash Access Limit.  
This register holds the high byte of the 16-bit program memory read/write/erase limit  
address. The entire 16-bit access limit address value is calculated as 0xNN00 where NN is  
replaced by contents of FLACL. A write to this register sets the Flash Access Limit. This reg-  
ister can only be written once after any reset. Any subsequent writes are ignored until the  
next reset.  
SFR Definition 15.2. FLSCL: Flash Memory Control  
R/W  
FOSE  
Bit7  
R/W  
FRAE  
Bit6  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
FLWE  
Bit0  
Reset Value  
10000000  
SFR Address:  
Reserved Reserved Reserved Reserved Reserved  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
SFR Address: 0xB7  
SFR Page: 0  
Bit7:  
FOSE: Flash One-Shot Timer Enable  
This is the timer that turns off the sense amps after a Flash read.  
0: Flash One-Shot Timer disabled.  
1: Flash One-Shot Timer enabled (recommended setting).  
FRAE: Flash Read Always Enable  
Bit6:  
0: Flash reads occur as necessary (recommended setting).  
1: Flash reads occur every system clock cycle.  
Bits5-1: RESERVED. Read = 00000b. Must Write 00000b.  
Bit0:  
FLWE: Flash Write/Erase Enable  
This bit must be set to allow Flash writes/erases from user software.  
0: Flash writes/erases disabled.  
1: Flash writes/erases enabled.  
184  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 15.3. PSCTL: Program Store Read/Write Control  
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
-
R/W  
SFLE  
Bit2  
R/W  
PSEE  
Bit1  
R/W  
PSWE  
Bit0  
Reset Value  
00000000  
SFR Address:  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
SFR Address: 0x8F  
SFR Page: 0  
Bits7-3: UNUSED. Read = 00000b, Write = don't care.  
Bit2:  
Bit1:  
SFLE: Scratchpad Flash Memory Access Enable  
When this bit is set, Flash reads and writes from user software are directed to the 128-byte  
Scratchpad Flash sector. When SFLE is set to logic 1, Flash accesses out of the address  
range 0x00-0x7F should not be attempted. Reads/Writes out of this range will yield unde-  
fined results.  
0: Flash access from user software directed to the Program/Data Flash sector.  
1: Flash access from user software directed to the 128 byte Scratchpad sector.  
PSEE: Program Store Erase Enable.  
Setting this bit allows an entire page of the Flash program memory to be erased provided  
the PSWE bit is also set. After setting this bit, a write to Flash memory using the MOVX  
instruction will erase the entire page that contains the location addressed by the MOVX  
instruction. The value of the data byte written does not matter. Note: The Flash page con-  
taining the Read Lock Byte and Write/Erase Lock Bytes cannot be erased by soft-  
ware.  
0: Flash program memory erasure disabled.  
1: Flash program memory erasure enabled.  
Bit0:  
PSWE: Program Store Write Enable.  
Setting this bit allows writing a byte of data to the Flash program memory using the MOVX  
write instruction. The location must be erased prior to writing data.  
0: Write to Flash program memory disabled. MOVX write operations target External RAM.  
1: Write to Flash program memory enabled. MOVX write operations target Flash memory.  
Rev. 1.5  
185  
C8051F040/1/2/3/4/5/6/7  
186  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
16. External Data Memory Interface and On-Chip XRAM  
The C8051F04x MCUs include 4 kB of on-chip RAM mapped into the external data memory space  
(XRAM), as well as an External Data Memory Interface which can be used to access off-chip memories  
and memory-mapped devices connected to the GPIO ports. The external memory space may be accessed  
using the external move instruction (MOVX) and the data pointer (DPTR), or using the MOVX indirect  
addressing mode using R0 or R1. If the MOVX instruction is used with an 8-bit address operand (such as  
@R1), then the high byte of the 16-bit address is provided by the External Memory Interface Control Reg-  
ister (EMI0CN, shown in SFR Definition 16.1). Note: the MOVX instruction can also be used for writing to  
the Flash memory. See Section “15. Flash Memory” on page 179 for details. The MOVX instruction  
accesses XRAM by default. The EMIF can be configured to appear on the lower GPIO Ports (P0-P3) or the  
upper GPIO Ports (P4-P7).  
16.1. Accessing XRAM  
The XRAM memory space is accessed using the MOVX instruction. The MOVX instruction has two forms,  
both of which use an indirect addressing method. The first method uses the Data Pointer, DPTR, a 16-bit  
register which contains the effective address of the XRAM location to be read from or written to. The sec-  
ond method uses R0 or R1 in combination with the EMI0CN register to generate the effective XRAM  
address. Examples of both of these methods are given below.  
16.1.1. 16-Bit MOVX Example  
The 16-bit form of the MOVX instruction accesses the memory location pointed to by the contents of the  
DPTR register. The following series of instructions reads the value of the byte at address 0x1234 into the  
accumulator A:  
MOV  
MOVX  
DPTR, #1234h  
A, @DPTR  
; load DPTR with 16-bit address to read (0x1234)  
; load contents of 0x1234 into accumulator A  
The above example uses the 16-bit immediate MOV instruction to set the contents of DPTR. Alternately,  
the DPTR can be accessed through the SFR registers DPH, which contains the upper 8-bits of DPTR, and  
DPL, which contains the lower 8-bits of DPTR.  
16.1.2. 8-Bit MOVX Example  
The 8-bit form of the MOVX instruction uses the contents of the EMI0CN SFR to determine the upper 8-bits  
of the effective address to be accessed and the contents of R0 or R1 to determine the lower 8-bits of the  
effective address to be accessed. The following series of instructions read the contents of the byte at  
address 0x1234 into the accumulator A.  
MOV  
MOV  
MOVX  
EMI0CN, #12h  
R0, #34h  
a, @R0  
; load high byte of address into EMI0CN  
; load low byte of address into R0 (or R1)  
; load contents of 0x1234 into accumulator A  
Rev. 1.5  
187  
C8051F040/1/2/3/4/5/6/7  
16.2. Configuring the External Memory Interface  
Configuring the External Memory Interface consists of five steps:  
1. Select EMIF on Low Ports (P3, P2, P1, and P0) or High Ports (P7, P6, P5, and P4).  
2. Configure the Output Modes of the port pins as either push-pull or open-drain.  
3. Select Multiplexed mode or Non-multiplexed mode.  
4. Select the memory mode (on-chip only, split mode without bank select, split mode with bank  
select, or off-chip only).  
5. Set up timing to interface with off-chip memory or peripherals.  
Each of these five steps is explained in detail in the following sections. The Port selection, Multiplexed  
mode selection, and Mode bits are located in the EMI0CF register shown in SFR Definition 16.2.  
16.3. Port Selection and Configuration  
The External Memory Interface can appear on Ports 3, 2, 1, and 0 (C8051F04x devices) or on Ports 7, 6,  
5, and 4 (C8051F040/2/4/6 devices only), depending on the state of the PRTSEL bit (EMI0CF.5). If the  
lower Ports are selected, the EMIFLE bit (XBR2.1) must be set to a ‘1’ so that the Crossbar will skip over  
P0.7 (/WR), P0.6 (/RD), and, if multiplexed mode is selected, P0.5 (ALE). For more information about the  
configuring the Crossbar, see Section “17.1. Ports 0 through 3 and the Priority Crossbar Decoder” on  
page 204.  
The External Memory Interface claims the associated Port pins for memory operations ONLY during the  
execution of an off-chip MOVX instruction. Once the MOVX instruction has completed, control of the Port  
pins reverts to the Port latches or to the Crossbar (on Ports 3, 2, 1, and 0). See Section “17. Port Input/  
Output” on page 203 for more information about the Crossbar and Port operation and configuration. The  
Port latches should be explicitly configured as push-pull to ‘park’ the External Memory Interface  
pins in a dormant state, most commonly by setting them to a logic 1.  
During the execution of the MOVX instruction, the External Memory Interface will explicitly disable the driv-  
ers on all Port pins that are acting as Inputs (Data[7:0] during a READ operation, for example). The Output  
mode of the Port pins (whether the pin is configured as Open-Drain or Push-Pull) is unaffected by the  
External Memory Interface operation, and remains controlled by the PnMDOUT registers. In most cases,  
the output modes of all EMIF pins should be configured for push-pull mode. See Section  
“17.1.2. Configuring the Output Modes of the Port Pins” on page 206.  
188  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 16.1. EMI0CN: External Memory Interface Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
PGSEL7 PGSEL6 PGSEL5 PGSEL4 PGSEL3 PGSEL2 PGSEL1 PGSEL0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xA2  
SFR Page: 0  
Bits7-0: PGSEL[7:0]: XRAM Page Select Bits.  
The XRAM Page Select Bits provide the high byte of the 16-bit external data memory  
address when using an 8-bit MOVX command, effectively selecting a 256-byte page of  
RAM.  
0x00: 0x0000 to 0x00FF  
0x01: 0x0100 to 0x01FF  
...  
0xFE: 0xFE00 to 0xFEFF  
0xFF: 0xFF00 to 0xFFFF  
Rev. 1.5  
189  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 16.2. EMI0CF: External Memory Configuration  
R/W  
-
R/W  
-
R/W  
PRTSEL  
Bit5  
R/W  
EMD2  
Bit4  
R/W  
EMD1  
Bit3  
R/W  
EMD0  
Bit2  
R/W  
EALE1  
Bit1  
R/W  
Reset Value  
EALE0 00000011  
Bit0  
Bit7  
Bit6  
SFR Address: 0xA3  
SFR Page:  
0
Bits7-6: Unused. Read = 00b. Write = don’t care.  
Bit5:  
PRTSEL: EMIF Port Select.  
0: EMIF active on P0-P3.  
1: EMIF active on P4-P7.  
Bit4:  
EMD2: EMIF Multiplex Mode Select.  
0: EMIF operates in multiplexed address/data mode.  
1: EMIF operates in non-multiplexed mode (separate address and data pins).  
Bits3-2: EMD1-0: EMIF Operating Mode Select.  
These bits control the operating mode of the External Memory Interface.  
00: Internal Only: MOVX accesses on-chip XRAM only. All effective addresses alias to on-  
chip memory space.  
01: Split Mode without Bank Select: Accesses below the 4k boundary are directed on-chip.  
Accesses above the 4k boundary are directed off-chip. 8-bit off-chip MOVX operations  
use the current contents of the Address High port latches to resolve upper address byte.  
Note that in order to access off-chip space, EMI0CN must be set to a page that is not  
contained in the on-chip address space.  
10: Split Mode with Bank Select: Accesses below the 4k boundary are directed on-chip.  
Accesses above the 4k boundary are directed off-chip. 8-bit off-chip MOVX operations  
use the contents of EMI0CN to determine the high-byte of the address.  
11: External Only: MOVX accesses off-chip XRAM only. On-chip XRAM is not visible to the  
CPU.  
Bits1-0: EALE1-0: ALE Pulse-Width Select Bits (only has effect when EMD2 = 1).  
00: ALE high and ALE low pulse width = 1 SYSCLK cycle.  
01: ALE high and ALE low pulse width = 2 SYSCLK cycles.  
10: ALE high and ALE low pulse width = 3 SYSCLK cycles.  
11: ALE high and ALE low pulse width = 4 SYSCLK cycles.  
190  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
16.4. Multiplexed and Non-multiplexed Selection  
The External Memory Interface is capable of acting in a Multiplexed mode or a Non-multiplexed mode,  
depending on the state of the EMD2 (EMI0CF.4) bit.  
16.4.1. Multiplexed Configuration  
In Multiplexed mode, the Data Bus and the lower 8-bits of the Address Bus share the same Port pins:  
AD[7:0]. In this mode, an external latch (74HC373 or equivalent logic gate) is used to hold the lower 8-bits  
of the RAM address. The external latch is controlled by the ALE (Address Latch Enable) signal, which is  
driven by the External Memory Interface logic. An example of a Multiplexed Configuration is shown in  
Figure 16.1.  
In Multiplexed mode, the external MOVX operation can be broken into two phases delineated by the state  
of the ALE signal. During the first phase, ALE is high and the lower 8-bits of the Address Bus are pre-  
sented to AD[7:0]. During this phase, the address latch is configured such that the ‘Q’ outputs reflect the  
states of the ‘D’ inputs. When ALE falls, signaling the beginning of the second phase, the address latch  
outputs remain fixed and are no longer dependent on the latch inputs. Later in the second phase, the Data  
Bus controls the state of the AD[7:0] port at the time /RD or /WR is asserted.  
See Section “16.6.2. Multiplexed Mode” on page 199 for more information.  
A[15:8]  
ADDRESS BUS  
74HC373  
A[15:8]  
A[7:0]  
ALE  
G
E
M
I
AD[7:0]  
ADDRESS/DATA BUS  
VDD  
D
Q
64K X 8  
SRAM  
(Optional)  
8
I/O[7:0]  
F
CE  
WE  
OE  
/WR  
/RD  
Figure 16.1. Multiplexed Configuration Example  
Rev. 1.5  
191  
C8051F040/1/2/3/4/5/6/7  
16.4.2. Non-multiplexed Configuration  
In Non-multiplexed mode, the Data Bus and the Address Bus pins are not shared. An example of a Non-  
multiplexed Configuration is shown in Figure 16.2. See Section “16.6.1. Non-multiplexed Mode” on  
page 196 for more information about Non-multiplexed operation.  
A[15:0]  
ADDRESS BUS  
A[15:0]  
E
M
I
VDD  
(Optional)  
64K X 8  
SRAM  
I/O[7:0]  
8
D[7:0]  
DATA BUS  
CE  
WE  
OE  
F
/WR  
/RD  
Figure 16.2. Non-multiplexed Configuration Example  
192  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
16.5. Memory Mode Selection  
The external data memory space can be configured in one of four modes, shown in Figure 16.3, based on  
the EMIF Mode bits in the EMI0CF register (SFR Definition 16.2). These modes are summarized below.  
More information about the different modes can be found in Section “16.6. Timing” on page 194.  
16.5.1. Internal XRAM Only  
When EMI0CF.[3:2] are set to ‘00’, all MOVX instructions will target the internal XRAM space on the  
device. Memory accesses to addresses beyond the populated space will wrap on 4k boundaries. As an  
example, the addresses 0x1000 and 0x2000 both evaluate to address 0x0000 in on-chip XRAM space.  
8-bit MOVX operations use the contents of EMI0CN to determine the high-byte of the effective address  
and R0 or R1 to determine the low-byte of the effective address.  
16-bit MOVX operations use the contents of the 16-bit DPTR to determine the effective address.  
16.5.2. Split Mode without Bank Select  
When EMI0CF.[3:2] are set to ‘01’, the XRAM memory map is split into two areas, on-chip space and off-  
chip space.  
Effective addresses below the 4k boundary will access on-chip XRAM space.  
Effective addresses above the 4k boundary will access off-chip space.  
8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-  
chip or off-chip. However, in the “No Bank Select” mode, an 8-bit MOVX operation will not drive the  
upper 8-bits A[15:8] of the Address Bus during an off-chip access. This allows the user to manipulate  
the upper address bits at will by setting the Port state directly via the port latches. This behavior is in  
contrast with “Split Mode with Bank Select” described below. The lower 8-bits of the Address Bus  
A[7:0] are driven, determined by R0 or R1.  
16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-  
chip or off-chip, and unlike 8-bit MOVX operations, the full 16-bits of the Address Bus A[15:0] are  
driven during the off-chip transaction.  
EMI0CF[3:2] = 00  
EMI0CF[3:2] = 01  
EMI0CF[3:2] = 10  
EMI0CF[3:2] = 11  
0xFFFF  
0xFFFF  
0xFFFF  
0xFFFF  
On-Chip XRAM  
On-Chip XRAM  
On-Chip XRAM  
On-Chip XRAM  
On-Chip XRAM  
On-Chip XRAM  
Off-Chip  
Memory  
(No Bank Select)  
Off-Chip  
Memory  
(Bank Select)  
Off-Chip  
Memory  
On-Chip XRAM  
On-Chip XRAM  
0x0000  
0x0000  
0x0000  
0x0000  
Figure 16.3. EMIF Operating Modes  
Rev. 1.5  
193  
C8051F040/1/2/3/4/5/6/7  
16.5.3. Split Mode with Bank Select  
When EMI0CF.[3:2] are set to ‘10’, the XRAM memory map is split into two areas, on-chip space and off-  
chip space.  
Effective addresses below the 4k boundary will access on-chip XRAM space.  
Effective addresses above the 4k boundary will access off-chip space.  
8-bit MOVX operations use the contents of EMI0CN to determine whether the memory access is on-  
chip or off-chip. The upper 8-bits of the Address Bus A[15:8] are determined by EMI0CN, and the lower  
8-bits of the Address Bus A[7:0] are determined by R0 or R1. All 16-bits of the Address Bus A[15:0] are  
driven in “Bank Select” mode.  
16-bit MOVX operations use the contents of DPTR to determine whether the memory access is on-  
chip or off-chip, and the full 16-bits of the Address Bus A[15:0] are driven during the off-chip transac-  
tion.  
16.5.4. External Only  
When EMI0CF[3:2] are set to ‘11’, all MOVX operations are directed to off-chip space. On-chip XRAM is  
not visible to the CPU. This mode is useful for accessing off-chip memory located between 0x0000 and the  
4k boundary.  
8-bit MOVX operations ignore the contents of EMI0CN. The upper Address bits A[15:8] are not driven  
(identical behavior to an off-chip access in “Split Mode without Bank Select” described above). This  
allows the user to manipulate the upper address bits at will by setting the Port state directly. The lower  
8-bits of the effective address A[7:0] are determined by the contents of R0 or R1.  
16-bit MOVX operations use the contents of DPTR to determine the effective address A[15:0]. The full  
16-bits of the Address Bus A[15:0] are driven during the off-chip transaction.  
16.6. Timing  
The timing parameters of the External Memory Interface can be configured to enable connection to  
devices having different setup and hold time requirements. The Address Setup time, Address Hold time, /  
RD and  
/WR strobe widths, and in multiplexed mode, the width of the ALE pulse are all programmable in units of  
SYSCLK periods through EMI0TC, shown in SFR Definition 16.3, and EMI0CF[1:0].  
The timing for an off-chip MOVX instruction can be calculated by adding 4 SYSCLK cycles to the timing  
parameters defined by the EMI0TC register. Assuming non-multiplexed operation, the minimum execution  
time for an off-chip XRAM operation is 5 SYSCLK cycles (1 SYSCLK for /RD or /WR pulse + 4 SYSCLKs).  
For multiplexed operations, the Address Latch Enable signal will require a minimum of 2 additional SYS-  
CLK cycles. Therefore, the minimum execution time of an off-chip XRAM operation in multiplexed mode is  
7 SYSCLK cycles (2 SYSCLKs for /ALE, 1 for /RD or /WR + 4 SYSCLKs). The programmable setup and  
hold times default to the maximum delay settings after a reset.  
Table 16.1 lists the AC parameters for the External Memory Interface, and Figure 16.4 through Figure 16.9  
show the timing diagrams for the different External Memory Interface modes and MOVX operations.  
194  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 16.3. EMI0TC: External Memory Timing Control  
R/W  
EAS1  
Bit7  
R/W  
EAS0  
Bit6  
R/W  
ERW3  
Bit5  
R/W  
EWR2  
Bit4  
R/W  
EWR1  
Bit3  
R/W  
EWR0  
Bit2  
R/W  
EAH1  
Bit1  
R/W  
EAH0  
Bit0  
Reset Value  
11111111  
SFR Address: 0xA1  
SFR Page: 0  
Bits7-6: EAS1-0: EMIF Address Setup Time Bits.  
00: Address setup time = 0 SYSCLK cycles.  
01: Address setup time = 1 SYSCLK cycle.  
10: Address setup time = 2 SYSCLK cycles.  
11: Address setup time = 3 SYSCLK cycles.  
Bits5-2: EWR3-0: EMIF /WR and /RD Pulse-Width Control Bits.  
0000: /WR and /RD pulse width = 1 SYSCLK cycle.  
0001: /WR and /RD pulse width = 2 SYSCLK cycles.  
0010: /WR and /RD pulse width = 3 SYSCLK cycles.  
0011: /WR and /RD pulse width = 4 SYSCLK cycles.  
0100: /WR and /RD pulse width = 5 SYSCLK cycles.  
0101: /WR and /RD pulse width = 6 SYSCLK cycles.  
0110: /WR and /RD pulse width = 7 SYSCLK cycles.  
0111: /WR and /RD pulse width = 8 SYSCLK cycles.  
1000: /WR and /RD pulse width = 9 SYSCLK cycles.  
1001: /WR and /RD pulse width = 10 SYSCLK cycles.  
1010: /WR and /RD pulse width = 11 SYSCLK cycles.  
1011: /WR and /RD pulse width = 12 SYSCLK cycles.  
1100: /WR and /RD pulse width = 13 SYSCLK cycles.  
1101: /WR and /RD pulse width = 14 SYSCLK cycles.  
1110: /WR and /RD pulse width = 15 SYSCLK cycles.  
1111: /WR and /RD pulse width = 16 SYSCLK cycles.  
Bits1-0: EAH1-0: EMIF Address Hold Time Bits.  
00: Address hold time = 0 SYSCLK cycles.  
01: Address hold time = 1 SYSCLK cycle.  
10: Address hold time = 2 SYSCLK cycles.  
11: Address hold time = 3 SYSCLK cycles.  
Rev. 1.5  
195  
C8051F040/1/2/3/4/5/6/7  
16.6.1. Non-multiplexed Mode  
16.6.1.1.16-bit MOVX: EMI0CF[4:2] = ‘101’, ‘110’, or ‘111’.  
Nonmuxed 16-bit WRITE  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P1/P5  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from DPH  
EMIF ADDRESS (8 LSBs) from DPL  
EMIF WRITE DATA  
P1/P5  
P2/P6  
P3/P7  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Nonmuxed 16-bit READ  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P1/P5  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from DPH  
EMIF ADDRESS (8 LSBs) from DPL  
EMIF READ DATA  
P1/P5  
P2/P6  
P3/P7  
T
T
RDS  
RDH  
T
T
T
ACS  
ACW  
ACH  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 16.4. Non-multiplexed 16-bit MOVX Timing  
196  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
16.6.1.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = ‘101’ or ‘111’.  
Nonmuxed 8-bit WRITE without Bank Select  
P1/P5  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from R0 or R1  
EMIF WRITE DATA  
P2/P6  
P3/P7  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Nonmuxed 8-bit READ without Bank Select  
P1/P5  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from R0 or R1  
EMIF READ DATA  
P2/P6  
P3/P7  
T
T
RDS  
RDH  
T
T
T
ACS  
ACW  
ACH  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 16.5. Non-multiplexed 8-bit MOVX without Bank Select Timing  
Rev. 1.5  
197  
C8051F040/1/2/3/4/5/6/7  
16.6.1.3.8-bit MOVX with Bank Select: EMI0CF[4:2] = ‘110’.  
Nonmuxed 8-bit WRITE with Bank Select  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P1/P5  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from EMI0CN  
EMIF ADDRESS (8 LSBs) from R0 or R1  
EMIF WRITE DATA  
P1/P5  
P2/P6  
P3/P7  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Nonmuxed 8-bit READ with Bank Select  
EMIF ADDRESS (8 MSBs) from EMI0CN  
ADDR[15:8]  
ADDR[7:0]  
DATA[7:0]  
P1/P5  
P2/P6  
P3/P7  
P1/P5  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from R0 or R1  
EMIF READ DATA  
T
T
RDS  
RDH  
T
T
T
ACS  
ACW  
ACH  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 16.6. Non-multiplexed 8-bit MOVX with Bank Select Timing  
198  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
16.6.2. Multiplexed Mode  
16.6.2.1.16-bit MOVX: EMI0CF[4:2] = ‘001’, ‘010’, or ‘011’.  
Muxed 16-bit WRITE  
ADDR[15:8]  
AD[7:0]  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from DPH  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from  
DPL  
EMIF WRITE DATA  
T
T
ALEL  
ALEH  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Muxed 16-bit READ  
ADDR[15:8]  
AD[7:0]  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from DPH  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from  
DPL  
EMIF READ DATA  
T
T
ALEH  
ALEL  
T
T
RDH  
RDS  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
T
ACH  
ACS  
ACW  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 16.7. Multiplexed 16-bit MOVX Timing  
Rev. 1.5  
199  
C8051F040/1/2/3/4/5/6/7  
16.6.2.2.8-bit MOVX without Bank Select: EMI0CF[4:2] = ‘001’ or ‘011’.  
Muxed 8-bit WRITE Without Bank Select  
ADDR[15:8]  
AD[7:0]  
P2/P6  
EMIF ADDRESS (8 LSBs) from  
R0 or R1  
P3/P7  
EMIF WRITE DATA  
P3/P7  
T
T
ALEH  
ALEL  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Muxed 8-bit READ Without Bank Select  
P2/P6  
ADDR[15:8]  
AD[7:0]  
EMIF ADDRESS (8 LSBs) from  
R0 or R1  
P3/P7  
EMIF READ DATA  
P3/P7  
T
T
ALEL  
ALEH  
T
T
RDH  
RDS  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
T
ACS  
ACW  
ACH  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 16.8. Multiplexed 8-bit MOVX without Bank Select Timing  
200  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
16.6.2.3.8-bit MOVX with Bank Select: EMI0CF[4:2] = ‘010’.  
Muxed 8-bit WRITE with Bank Select  
ADDR[15:8]  
AD[7:0]  
P2/P6  
P3/P7  
EMIF ADDRESS (8 MSBs) from EMI0CN  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from  
R0 or R1  
EMIF WRITE DATA  
T
T
ALEH  
ALEL  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
WDS  
WDH  
T
T
T
ACS  
ACW  
ACH  
/WR  
/RD  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
Muxed 8-bit READ with Bank Select  
EMIF ADDRESS (8 MSBs) from EMI0CN  
ADDR[15:8]  
AD[7:0]  
P2/P6  
P3/P7  
P2/P6  
P3/P7  
EMIF ADDRESS (8 LSBs) from  
R0 or R1  
EMIF READ DATA  
T
T
ALEL  
ALEH  
T
T
RDS  
RDH  
ALE  
P0.5/P4.5  
P0.5/P4.5  
T
T
T
ACH  
ACS  
ACW  
/RD  
P0.6/P4.6  
P0.7/P4.7  
P0.6/P4.6  
P0.7/P4.7  
/WR  
Figure 16.9. Multiplexed 8-bit MOVX with Bank Select Timing  
Rev. 1.5  
201  
C8051F040/1/2/3/4/5/6/7  
Table 16.1. AC Parameters for External Memory Interface  
Parameter  
Description  
System Clock Period  
Min  
Max  
Units  
T
T
40  
ns  
SYSCLK  
0
3 x T  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address/Control Setup Time  
Address/Control Pulse Width  
Address/Control Hold Time  
Address Latch Enable High Time  
Address Latch Enable Low Time  
Write Data Setup Time  
ACS  
SYSCLK  
T
1 x T  
16 x T  
3 x T  
ACW  
SYSCLK  
SYSCLK  
T
0
ACH  
SYSCLK  
SYSCLK  
SYSCLK  
T
1 x T  
1 x T  
1 x T  
4 x T  
4 x T  
ALEH  
SYSCLK  
SYSCLK  
T
ALEL  
T
19 x T  
3 x T  
WDS  
WDH  
RDS  
RDH  
SYSCLK  
SYSCLK  
T
T
T
0
Write Data Hold Time  
SYSCLK  
20  
0
Read Data Setup Time  
Read Data Hold Time  
202  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
17. Port Input/Output  
The C8051F04x family of devices are fully integrated mixed-signal System on a Chip MCUs with 64 digital  
I/O pins (C8051F040/2/4/6) or 32 digital I/O pins (C8051F041/3/5/7), organized as 8-bit Ports. All ports are  
both bit- and byte-addressable through their corresponding Port Data registers. All Port pins are 5 V-toler-  
ant, and all support configurable Open-Drain or Push-Pull output modes and weak pullups. A block dia-  
gram of the Port I/O cell is shown in Figure 17.1. Complete Electrical Specifications for the Port I/O pins  
are given in Table 17.1.  
/WEAK-PULLUP  
VDD  
VDD  
PUSH-PULL  
/PORT-OUTENABLE  
(WEAK)  
PORT  
PAD  
PORT-OUTPUT  
DGND  
Analog Select  
(Ports 1, 2, and 3)  
ANALOG INPUT  
PORT-INPUT  
Figure 17.1. Port I/O Cell Block Diagram  
Table 17.1. Port I/O DC Electrical Characteristics  
VDD = 2.7 to 3.6 V, 40 to +85 °C unless otherwise specified.  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
I
I
I
= –3 mA, Port I/O Push-Pull  
= –10 µA, Port I/O Push-Pull  
= –10 mA, Port I/O Push-Pull  
VDD – 0.7  
VDD – 0.1  
OH  
OH  
OH  
Output High Voltage  
V
V
(V  
)
OH  
VDD – 0.8  
I
I
I
= 8.5 mA  
= 10 µA  
= 25 mA  
1.0  
0.6  
0.1  
OL  
OL  
OL  
Output Low Voltage  
(V  
)
OL  
0.7 x VDD  
Input High Voltage (VIH)  
Input Low Voltage (VIL)  
0.3 x VDD  
DGND < Port Pin < VDD, Pin Tri-state  
Weak Pullup Off  
Weak Pullup On  
10  
± 1  
Input Leakage Current  
Input Capacitance  
µA  
pF  
5
Rev. 1.5  
203  
C8051F040/1/2/3/4/5/6/7  
The C8051F04x family of devices have a wide array of digital resources which are available through the  
four lower I/O Ports: P0, P1, P2, and P3. Each of the pins on P0, P1, P2, and P3, can be defined as a Gen-  
eral-Purpose I/O (GPIO) pin or can be controlled by a digital peripheral or function (like UART0 or /INT1 for  
example), as shown in Figure 17.2. The system designer controls which digital functions are assigned  
pins, limited only by the number of pins available. This resource assignment flexibility is achieved through  
the use of a Priority Crossbar Decoder. The state of a Port I/O pin can always be read from its associated  
Data register regardless of whether that pin has been assigned to a digital peripheral or behaves as GPIO.  
The Port pins on Ports 1, 2, and 3 can be used as Analog Inputs to ADC2 (C8051F040/1/2/3 only), Analog  
Voltage Comparators, and ADC0, respectively.  
XBR0, XBR1, XBR2,  
XBR3 P1MDIN,  
P2MDIN, P3MDIN  
Registers  
P0MDOUT, P1MDOUT,  
P2MDOUT, P3MDOUT  
Registers  
2
4
Highest  
Priority  
UART0  
SPI  
External  
Pins  
2
2
6
SMBus  
UART1  
PCA  
Priority  
Decoder  
P0.0  
Highest  
Priority  
P0  
I/O  
Cells  
8
8
8
8
P0.7  
2
Comptr.  
Outputs  
Digital  
Crossbar  
P1.0  
P1.7  
P1  
I/O  
Cells  
T0, T1,  
T2, T2EX,  
T3, T3EX,  
T4,T4EX,  
/INT0,  
8
P2.0  
P2.7  
P2  
I/O  
Cells  
/INT1  
/SYSCLK  
CNVSTR0  
CNVSTR2  
Lowest  
Priority  
P3.0  
P3.7  
P3  
I/O  
Cells  
8
Lowest  
Priority  
P0  
(P0.0-P0.7)  
8
To  
ADC2  
Input  
P1  
P2  
P3  
(P1.0-P1.7)  
8
To External  
Memory  
Interface  
(EMIF)  
To  
Port  
Latches  
Comparators  
To  
ADC0  
Input  
(P2.0-P2.7)  
8
(P3.0-P3.7)  
Figure 17.2. Port I/O Functional Block Diagram  
An External Memory Interface, which is active during the execution of an off-chip MOVX instruction, can be  
active on either the lower Ports or the upper Ports. See Section “16. External Data Memory Interface  
and On-Chip XRAM” on page 187 for more information about the External Memory Interface.  
17.1. Ports 0 through 3 and the Priority Crossbar Decoder  
The Priority Crossbar Decoder, or “Crossbar”, allocates and assigns Port pins on Port 0 through Port 3 to  
the digital peripherals (UARTs, SMBus, PCA, Timers, etc.) on the device using a priority order. The Port  
pins are allocated in order starting with P0.0 and continue through P3.7, if necessary. The digital peripher-  
als are assigned Port pins in a priority order which is listed in Figure 17.3, with UART0 having the highest  
priority and CNVSTR2 having the lowest priority.  
204  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
P0  
P1  
P2  
P3  
Crossbar Register Bits  
UART0EN: XBR0.2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
PIN I/O  
TX0  
RX0  
SCK  
MISO  
MOSI  
NSS  
SPI0EN: XBR0.1  
NSS is not assigned to a port pin when the SPI is placed in 3-wire mode  
SDA  
SCL  
SMB0EN: XBR0.0  
UART1EN: XBR2.2  
TX1  
RX1  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
CEX5  
ECI  
PCA0ME: XBR0.[5:3]  
ECI0E: XBR0.6  
CP0E: XBR0.7  
CP1E: XBR1.0  
CP2E: XBR3.3  
T0E: XBR1.1  
CP0  
CP1  
CP2  
T0  
/INT0  
T1  
INT0E: XBR1.2  
T1E: XBR1.3  
/INT1  
T2  
INT1E: XBR1.4  
T2E: XBR1.5  
T2EX  
T3  
T2EXE: XBR1.6  
T3E: XBR3.0  
T3EX  
T4  
T3EXE: XBR3.1  
T4E: XBR2.3  
T4EX  
/SYSCLK  
CNVSTR0  
CNVSTR2  
T4EXE: XBR2.4  
SYSCKE: XBR1.7  
CNVSTE0: XBR2.0  
CNVSTE2: XBR3.2  
AIN1 Inputs/Non-muxed Addr H Muxed Addr H/Non-muxed Addr L  
Muxed Data/Non-muxed Data  
Figure 17.3. Priority Crossbar Decode Table  
(EMIFLE = 0; P1MDIN = 0xFF)  
17.1.1. Crossbar Pin Assignment and Allocation  
The Crossbar assigns Port pins to a peripheral if the corresponding enable bits of the peripheral are set to  
a logic 1 in the Crossbar configuration registers XBR0, XBR1, XBR2, and XBR3, shown in SFR Definition  
17.1, SFR Definition 17.2, SFR Definition 17.3, and SFR Definition 17.4. For example, if the UART0EN bit  
(XBR0.2) is set to a logic 1, the TX0 and RX0 pins will be mapped to P0.0 and P0.1 respectively. Because  
UART0 has the highest priority, its pins will always be mapped to P0.0 and P0.1 when UART0EN is set to  
a logic 1. If a digital peripheral’s enable bits are not set to a logic 1, then its ports are not accessible at the  
Port pins of the device. Also note that the Crossbar assigns pins to all associated functions when a serial  
communication peripheral is selected (i.e. SMBus, SPI, UART). It would be impossible, for example, to  
assign TX0 to a Port pin without assigning RX0 as well. Each combination of enabled peripherals results in  
a unique device pinout.  
All Port pins on Ports 0 through 3 that are not allocated by the Crossbar can be accessed as General-Pur-  
pose I/O (GPIO) pins by reading and writing the associated Port Data registers (See SFR Definition 17.5,  
Rev. 1.5  
205  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.7, SFR Definition 17.10, and SFR Definition 17.13), a set of SFRs which are both byte-  
and bit-addressable. The output states of Port pins that are allocated by the Crossbar are controlled by the  
digital peripheral that is mapped to those pins. Writes to the Port Data registers (or associated Port bits)  
will have no effect on the states of these pins.  
A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regard-  
less of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs  
during the execution of a read-modify-write instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC,  
CLR, SET, and the bitwise MOV operation). During the read cycle of the read-modify-write instruction, it is  
the contents of the Port Data register, not the state of the Port pins themselves, which is read.  
Because the Crossbar registers affect the pinout of the peripherals of the device, they are typically config-  
ured in the initialization code of the system before the peripherals themselves are configured. Once config-  
ured, the Crossbar registers are typically left alone.  
Once the Crossbar registers have been properly configured, the Crossbar is enabled by setting XBARE  
(XBR2.4) to a logic 1. Until XBARE is set to a logic 1, the output drivers on Ports 0 through 3 are  
explicitly disabled in order to prevent possible contention on the Port pins while the Crossbar reg-  
isters and other registers which can affect the device pinout are being written.  
The output drivers on Crossbar-assigned input signals (like RX0, for example) are explicitly disabled; thus  
the values of the Port Data registers and the PnMDOUT registers have no effect on the states of these  
pins.  
17.1.2. Configuring the Output Modes of the Port Pins  
The output drivers on Ports 0 through 3 remain disabled until the Crossbar is enabled by setting XBARE  
(XBR2.4) to a logic 1.  
The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull  
configuration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be  
driven to GND, and writing a logic 1 will cause the Port pin to be driven to VDD. In the Open-Drain configu-  
ration, writing a logic 0 to the associated bit in the Port Data register will cause the Port pin to be driven to  
GND, and a logic 1 will cause the Port pin to assume a high-impedance state. The Open-Drain configura-  
tion is useful to prevent contention between devices in systems where the Port pin participates in a shared  
interconnection in which multiple outputs are connected to the same physical wire (like the SDA signal on  
an SMBus connection).  
The output modes of the Port pins on Ports 0 through 3 are determined by the bits in the associated  
PnMDOUT registers (See SFR Definition 17.6, SFR Definition 17.9, SFR Definition 17.12, and SFR Defini-  
tion 17.15). For example, a logic 1 in P3MDOUT.7 will configure the output mode of P3.7 to Push-Pull; a  
logic 0 in P3MDOUT.7 will configure the output mode of P3.7 to Open-Drain. All Port pins default to Open-  
Drain output.  
The PnMDOUT registers control the output modes of the port pins regardless of whether the Crossbar has  
allocated the Port pin for a digital peripheral or not. The exceptions to this rule are: the Port pins connected  
to SDA, SCL, RX0 (if UART0 is in Mode 0), and RX1 (if UART1 is in Mode 0) are always configured as  
Open-Drain outputs, regardless of the settings of the associated bits in the PnMDOUT registers.  
17.1.3. Configuring Port Pins as Digital Inputs  
A Port pin is configured as a digital input by setting its output mode to “Open-Drain” in the PnMDOUT reg-  
ister and writing a logic 1 to the associated bit in the Port Data register. For example, P3.7 is configured as  
206  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
a digital input by setting P3MDOUT.7 to a logic 0, which selects open-drain output mode, and P3.7 to a  
logic 1, which disables the low-side output driver.  
If the Port pin has been assigned to a digital peripheral by the Crossbar and that pin functions as an input  
(for example RX0, the UART0 receive pin), then the output drivers on that pin are automatically disabled.  
17.1.4. Weak Pullups  
By default, each Port pin has an internal weak pullup device enabled which provides a resistive connection  
(about 100 k) between the pin and VDD. The weak pullup devices can be globally disabled by writing a  
logic 1 to the Weak Pullup Disable bit, (WEAKPUD, XBR2.7). The weak pullup is automatically deactivated  
on any pin that is driving a logic 0; that is, an output pin will not contend with its own pullup device. The  
weak pullup device can also be explicitly disabled on Ports 1, 2, and 3 pin by configuring the pin as an  
Analog Input, as described below.  
17.1.5. Configuring Port 1, 2, and 3 Pins as Analog Inputs  
The pins on Port 1 can serve as analog inputs to the ADC2 analog MUX (C8051F040/1/2/3 only), the pins  
on Port 2 can serve as analog inputs to the Comparators, and the pins on Port 3 can serve as inputs to  
ADC0. A Port pin is configured as an Analog Input by writing a logic 0 to the associated bit in the PnMDIN  
registers. All Port pins default to a Digital Input mode. Configuring a Port pin as an analog input:  
1. Disables the digital input path from the pin. This prevents additional power supply current from  
being drawn when the voltage at the pin is near VDD / 2. A read of the Port Data bit will return  
a logic 0 regardless of the voltage at the Port pin.  
2. Disables the weak pullup device on the pin.  
3. Causes the Crossbar to “skip over” the pin when allocating Port pins for digital peripherals.  
Note that the output drivers on a pin configured as an Analog Input are not explicitly disabled. Therefore,  
the associated PnMDOUT bits of pins configured as Analog Inputs should explicitly be set to logic 0  
(Open-Drain output mode), and the associated Port Data bits should be set to logic 1 (high-impedance).  
Also note that it is not required to configure a Port pin as an Analog Input in order to use it as an input to  
the ADC’s or Comparators; however, it is strongly recommended. See the analog peripheral’s correspond-  
ing section in this datasheet for further information.  
Rev. 1.5  
207  
C8051F040/1/2/3/4/5/6/7  
17.1.6. External Memory Interface Pin Assignments  
If the External Memory Interface (EMIF) is enabled on the Low ports (Ports 0 through 3), EMIFLE (XBR2.5)  
should be set to a logic 1 so that the Crossbar will not assign peripherals to P0.7 (/WR), P0.6 (/RD), and, if  
the External Memory Interface is in Multiplexed mode, P0.5 (ALE). Figure 17.4 shows an example Cross-  
bar Decode Table with EMIFLE=1 and the EMIF in Multiplexed mode. Figure 17.5 shows an example  
Crossbar Decode Table with EMIFLE=1 and the EMIF in Non-multiplexed mode.  
If the External Memory Interface is enabled on the Low ports and an off-chip MOVX operation occurs, the  
External Memory Interface will control the output states (logic 1 or logic 0) of the affected Port pins during  
the execution phase of the MOVX instruction, regardless of the settings of the Crossbar registers or the  
Port Data registers. The output configuration (push-pull or open-drain) of the Port pins is not affected by  
the EMIF operation, except that Read operations will explicitly disable the output drivers on the Data Bus.  
In most cases, GPIO pins used in EMIF operations (especially the /WR and /RD lines) should be  
configured as push-pull and ‘parked’ at a logic 1 state. See Section “16. External Data Memory  
Interface and On-Chip XRAM” on page 187 for more information about the External Memory Interface.  
P0  
P1  
P2  
P3  
Crossbar Register Bits  
UART0EN: XBR0.2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
PIN I/O  
TX0  
RX0  
SCK  
MISO  
MOSI  
NSS  
SPI0EN: XBR0.1  
NSS is not assigned to a port pin when the SPI is placed in 3-wire mode  
SDA  
SCL  
SMB0EN: XBR0.0  
UART1EN: XBR2.2  
TX1  
RX1  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
CEX5  
ECI  
PCA0ME: XBR0.[5:3]  
ECI0E: XBR0.6  
CP0E: XBR0.7  
CP1E: XBR1.0  
CP2E: XBR3.3  
T0E: XBR1.1  
CP0  
CP1  
CP2  
T0  
/INT0  
T1  
INT0E: XBR1.2  
T1E: XBR1.3  
/INT1  
T2  
INT1E: XBR1.4  
T2E: XBR1.5  
T2EX  
T3  
T2EXE: XBR1.6  
T3E: XBR3.0  
T3EX  
T4  
T3EXE: XBR3.1  
T4E: XBR2.3  
T4EX  
/SYSCLK  
CNVSTR0  
CNVSTR2  
T4EXE: XBR2.4  
SYSCKE: XBR1.7  
CNVSTE0: XBR2.0  
CNVSTE2: XBR3.2  
AIN1 Inputs/Non-muxed Addr H Muxed Addr H/Non-muxed Addr L  
Muxed Data/Non-muxed Data  
Figure 17.4. Priority Crossbar Decode Table  
(EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xFF)  
208  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
P0  
P1  
P2  
P3  
Crossbar Register Bits  
UART0EN: XBR0.2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
PIN I/O  
TX0  
RX0  
SCK  
MISO  
MOSI  
NSS  
SPI0EN: XBR0.1  
NSS is not assigned to a port pin when the SPI is placed in 3-wire mode  
SDA  
SCL  
SMB0EN: XBR0.0  
UART1EN: XBR2.2  
TX1  
RX1  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
CEX5  
ECI  
PCA0ME: XBR0.[5:3]  
ECI0E: XBR0.6  
CP0E: XBR0.7  
CP1E: XBR1.0  
CP2E: XBR3.3  
T0E: XBR1.1  
CP0  
CP1  
CP2  
T0  
/INT0  
T1  
INT0E: XBR1.2  
T1E: XBR1.3  
/INT1  
T2  
INT1E: XBR1.4  
T2E: XBR1.5  
T2EX  
T3  
T2EXE: XBR1.6  
T3E: XBR3.0  
T3EX  
T4  
T3EXE: XBR3.1  
T4E: XBR2.3  
T4EX  
/SYSCLK  
CNVSTR0  
CNVSTR2  
T4EXE: XBR2.4  
SYSCKE: XBR1.7  
CNVSTE0: XBR2.0  
CNVSTE2: XBR3.2  
AIN1 Inputs/Non-muxed Addr H Muxed Addr H/Non-muxed Addr L  
Muxed Data/Non-muxed Data  
Figure 17.5. Priority Crossbar Decode Table  
(EMIFLE = 1; EMIF in Non-multiplexed Mode; P1MDIN = 0xFF)  
Rev. 1.5  
209  
C8051F040/1/2/3/4/5/6/7  
17.1.7. Crossbar Pin Assignment Example  
In this example (Figure 17.6), we configure the Crossbar to allocate Port pins for UART0, the SMBus,  
UART1, /INT0, and /INT1 (8 pins total). Additionally, we configure the External Memory Interface to oper-  
ate in Multiplexed mode and to appear on the Low ports. Further, we configure P1.2, P1.3, and P1.4 for  
Analog Input mode so that the voltages at these pins can be measured by ADC2. The configuration steps  
are as follows:  
1. XBR0, XBR1, and XBR2 are set such that UART0EN = 1, SMB0EN = 1, INT0E = 1, INT1E =  
1, and EMIFLE = 1. Thus: XBR0 = 0x05, XBR1 = 0x14, and XBR2 = 0x02.  
2. We configure the External Memory Interface to use Multiplexed mode and to appear on the  
Low ports. PRTSEL = 0, EMD2 = 0.  
3. We configure the desired Port 1 pins to Analog Input mode by setting P1MDIN to 0xE3 (P1.4,  
P1.3, and P1.2 are Analog Inputs, so their associated P1MDIN bits are set to logic 0).  
4. We enable the Crossbar by setting XBARE = 1: XBR2 = 0x42.  
-
-
UART0 has the highest priority, so P0.0 is assigned to TX0, and P0.1 is assigned to RX0.  
The SMBus is next in priority order, so P0.2 is assigned to SDA, and P0.3 is assigned to  
SCL.  
-
UART1 is next in priority order, so P0.4 is assigned to TX1. Because the External Memory  
Interface is selected on the lower Ports, EMIFLE = 1, which causes the Crossbar to skip  
P0.6 (/RD) and P0.7 (/WR). Because the External Memory Interface is configured in Multi-  
plexed mode, the Crossbar will also skip P0.5 (ALE). RX1 is assigned to the next non-  
skipped pin, which in this case is P1.0.  
-
-
/INT0 is next in priority order, so it is assigned to P1.1.  
P1MDIN is set to 0xE3, which configures P1.2, P1.3, and P1.4 as Analog Inputs, causing  
the Crossbar to skip these pins.  
-
-
/INT1 is next in priority order, so it is assigned to the next non-skipped pin, which is P1.5.  
The External Memory Interface will drive Ports 2 and 3 (denoted by red dots in  
Figure 17.6) during the execution of an off-chip MOVX instruction.  
5. We set the UART0 TX pin (TX0, P0.0) and UART1 TX pin (TX1, P0.4) outputs to Push-Pull by  
setting P0MDOUT = 0x11.  
6. We configure all EMIF-controlled pins to push-pull output mode by setting P0MDOUT |= 0xE0;  
P2MDOUT = 0xFF; P3MDOUT = 0xFF.  
7. We explicitly disable the output drivers on the 3 Analog Input pins by setting P1MDOUT =  
0x00 (configure outputs to Open-Drain) and P1 = 0xFF (a logic 1 selects the high-impedance  
state).  
210  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
P0  
P1  
P2  
P3  
Crossbar Register Bits  
UART0EN: XBR0.2  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
PIN I/O  
TX0  
RX0  
SCK  
MISO  
MOSI  
NSS  
SPI0EN: XBR0.1  
SDA  
SCL  
SMB0EN: XBR0.0  
UART1EN: XBR2.2  
TX1  
RX1  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
CEX5  
ECI  
PCA0ME: XBR0.[5:3]  
ECI0E: XBR0.6  
CP0E: XBR0.7  
CP1E: XBR1.0  
CP2E: XBR3.2  
T0E: XBR1.1  
CP0  
CP1  
CP2  
T0  
/INT0  
T1  
INT0E: XBR1.2  
T1E: XBR1.3  
/INT1  
T2  
INT1E: XBR1.4  
T2E: XBR1.5  
T2EX  
T3  
T2EXE: XBR1.6  
T3E: XBR3.0  
T3EX  
T4  
T3EXE: XBR3.1  
T4E: XBR2.3  
T4EX  
/SYSCLK  
CNVSTR0  
CNVSTR2  
T4EXE: XBR2.4  
SYSCKE: XBR1.7  
CNVSTE0: XBR2.0  
CNVSTE2: XBR3.2  
AIN1 Inputs/Non-muxed Addr H Muxed Addr H/Non-muxed Addr L  
Muxed Data/Non-muxed Data  
Figure 17.6. Crossbar Example:  
(EMIFLE = 1; EMIF in Multiplexed Mode; P1MDIN = 0xE3;  
XBR0 = 0x05; XBR1 = 0x14; XBR2 = 0x42)  
Rev. 1.5  
211  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.1. XBR0: Port I/O Crossbar Register 0  
R/W  
CP0E  
Bit7  
R/W  
ECI0E  
Bit6  
R/W  
Bit5  
R/W  
PCA0ME  
Bit4  
R/W  
Bit3  
R/W  
R/W  
R/W  
Reset Value  
UART0EN SPI0EN SMB0EN 00000000  
Bit2  
Bit1  
Bit0  
SFR Address: 0xE1  
SFR Page: F  
Bit7:  
CP0E: Comparator 0 Output Enable Bit.  
0: CP0 unavailable at Port pin.  
1: CP0 routed to Port pin.  
Bit6:  
ECI0E: PCA0 External Counter Input Enable Bit.  
0: PCA0 External Counter Input unavailable at Port pin.  
1: PCA0 External Counter Input (ECI0) routed to Port pin.  
Bits5-3: PCA0ME: PCA0 Module I/O Enable Bits.  
000: All PCA0 I/O unavailable at port pins.  
001: CEX0 routed to port pin.  
010: CEX0, CEX1 routed to 2 port pins.  
011: CEX0, CEX1, and CEX2 routed to 3 port pins.  
100: CEX0, CEX1, CEX2, and CEX3 routed to 4 port pins.  
101: CEX0, CEX1, CEX2, CEX3, and CEX4 routed to 5 port pins.  
110: CEX0, CEX1, CEX2, CEX3, CEX4, and CEX5 routed to 6 port pins.  
UART0EN: UART0 I/O Enable Bit.  
0: UART0 I/O unavailable at Port pins.  
1: UART0 TX routed to P0.0, and RX routed to P0.1.  
SPI0EN: SPI0 Bus I/O Enable Bit.  
Bit2:  
Bit1:  
0: SPI0 I/O unavailable at Port pins.  
1: SPI0 SCK, MISO, MOSI, and NSS routed to 4 Port pins. Note that the NSS signal is not  
assigned to a port pin if the SPI is in 3-wire mode. See Section “20. Enhanced Serial  
Peripheral Interface (SPI0)” on page 255 for more information.  
SMB0EN: SMBus0 Bus I/O Enable Bit.  
Bit0:  
0: SMBus0 I/O unavailable at Port pins.  
1: SMBus0 SDA and SCL routed to 2 Port pins.  
212  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.2. XBR1: Port I/O Crossbar Register 1  
R/W  
R/W  
R/W  
T2E  
Bit5  
R/W  
INT1E  
Bit4  
R/W  
T1E  
Bit3  
R/W  
INT0E  
Bit2  
R/W  
T0E  
Bit1  
R/W  
CP1E  
Bit0  
Reset Value  
SYSCKE T2EXE  
00000000  
Bit7  
Bit6  
SFR Address: 0xE2  
SFR Page: F  
Bit7:  
SYSCKE: /SYSCLK Output Enable Bit.  
0: /SYSCLK unavailable at Port pin.  
1: /SYSCLK routed to Port pin.  
T2EXE: T2EX Input Enable Bit.  
0: T2EX unavailable at Port pin.  
1: T2EX routed to Port pin.  
T2E: T2 Input Enable Bit.  
0: T2 unavailable at Port pin.  
1: T2 routed to Port pin.  
INT1E: /INT1 Input Enable Bit.  
0: /INT1 unavailable at Port pin.  
1: /INT1 routed to Port pin.  
T1E: T1 Input Enable Bit.  
0: T1 unavailable at Port pin.  
1: T1 routed to Port pin.  
INT0E: /INT0 Input Enable Bit.  
0: /INT0 unavailable at Port pin.  
1: /INT0 routed to Port pin.  
T0E: T0 Input Enable Bit.  
0: T0 unavailable at Port pin.  
1: T0 routed to Port pin.  
CP1E: CP1 Output Enable Bit.  
0: CP1 unavailable at Port pin.  
1: CP1 routed to Port pin.  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
Rev. 1.5  
213  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.3. XBR2: Port I/O Crossbar Register 2  
R/W  
R/W  
R/W  
R/W  
T4EXE  
Bit4  
R/W  
T4E  
Bit3  
R/W  
R/W  
R/W  
Reset Value  
WEAKPUD XBARE  
UART1E EMIFLE CNVST0E 00000000  
Bit7  
Bit6  
Bit5  
Bit2  
Bit1  
Bit0  
SFR Address: 0xE3  
SFR Page: F  
Bit7:  
Bit6:  
WEAKPUD: Weak PullUp Disable Bit.  
0: Weak pullups globally enabled.  
1: Weak pullups globally disabled.  
XBARE: Crossbar Enable Bit.  
0: Crossbar disabled. All pins on Ports 0, 1, 2, and 3, are forced to Input mode.  
1: Crossbar enabled.  
Bit5:  
Bit4:  
UNUSED. Read = 0, Write = don't care.  
T4EXE: T4EX Input Enable Bit.  
0: T4EX unavailable at Port pin.  
1: T4EX routed to Port pin.  
Bit3:  
Bit2:  
Bit1:  
T4E: T4 Input Enable Bit.  
0: T4 unavailable at Port pin.  
1: T4 routed to Port pin.  
UART1E: UART1 I/O Enable Bit.  
0: UART1 I/O unavailable at Port pins.  
1: UART1 TX and RX routed to 2 Port pins.  
EMIFLE: External Memory Interface Low-Port Enable Bit.  
0: P0.7, P0.6, and P0.5 functions are determined by the Crossbar or the Port latches.  
1: If EMI0CF.4 = ‘0’ (External Memory Interface is in Multiplexed mode)  
P0.7 (/WR), P0.6 (/RD), and P0.5 (ALE) are ‘skipped’ by the Crossbar and their out-  
put states are determined by the Port latches and the External Memory Interface.  
1: If EMI0CF.4 = ‘1’ (External Memory Interface is in Non-multiplexed mode)  
P0.7 (/WR) and P0.6 (/RD) are ‘skipped’ by the Crossbar and their output states are  
determined by the Port latches and the External Memory Interface.  
CNVST0E: ADC0 External Convert Start Input Enable Bit.  
0: CNVST0 for ADC0 unavailable at Port pin.  
Bit0:  
1: CNVST0 for ADC0 routed to Port pin.  
214  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.4. XBR3: Port I/O Crossbar Register 3  
R/W  
CTXOUT  
Bit7  
R
R
R
R/W  
R/W  
R/W  
R/W  
T3E  
Bit0  
Reset Value  
Bit6  
Bit5  
Bit4  
CP2E CNVST2E T3EXE  
Bit3  
00000000  
Bit2  
Bit1  
SFR Address: 0xE4  
SFR Page: F  
Bit7:  
CTXOUT: CAN Transmit Pin (CTX) Output Mode.  
0: CTX pin output mode is configured as open-drain.  
1: CTX pin output mode is configured as push-pull.  
Reserved  
CP2E: CP2 Output Enable Bit.  
0: CP2 unavailable at Port pin.  
1: CP2 routed to Port pin.  
Bit6-4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
CNVST2E: ADC2 External Convert Start Input Enable Bit (C8051F040/1/2/3 only).  
0: CNVST2 for ADC2 unavailable at Port pin.  
1: CNVST2 for ADC2 routed to Port pin.  
T3EXE: T3EX Input Enable Bit.  
0: T3EX unavailable at Port pin.  
1: T3EX routed to Port pin.  
T3E: T3 Input Enable Bit.  
0: T3 unavailable at Port pin.  
1: T3 routed to Port pin.  
SFR Definition 17.5. P0: Port0 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P0.7  
P0.6  
P0.5  
P0.4  
P0.3  
P0.2  
P0.1  
P0.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0x80  
SFR Page: All Pages  
Bits7-0: P0.[7:0]: Port0 Output Latch Bits.  
(Write - Output appears on I/O pins per XBR0, XBR1, XBR2, and XBR3 Registers)  
0: Logic Low Output.  
1: Logic High Output (open if corresponding P0MDOUT.n bit = 0).  
(Read - Regardless of XBR0, XBR1, XBR2, and XBR3 Register settings).  
0: P0.n pin is logic low.  
1: P0.n pin is logic high.  
Note: P0.7 (/WR), P0.6 (/RD), and P0.5 (ALE) can be driven by the External Data Memory  
Interface. See Section “16. External Data Memory Interface and On-Chip XRAM” on  
page 187 for more information. See also SFR Definition 17.3 for information about configur-  
ing the Crossbar for External Memory accesses.  
Rev. 1.5  
215  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.6. P0MDOUT: Port0 Output Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xA4  
SFR Page: F  
Bits7-0: P0MDOUT.[7:0]: Port0 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
Note:  
SDA, SCL, and RX0 (when UART0 is in Mode 0) and RX1 (when UART1 is in Mode 0) are  
always configured as Open-Drain when they appear on Port pins.  
SFR Definition 17.7. P1: Port1 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P1.7  
P1.6  
P1.5  
P1.4  
P1.3  
P1.2  
P1.1  
P1.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0x90  
SFR Page: All Pages  
Bits7-0: P1.[7:0]: Port1 Output Latch Bits.  
(Write - Output appears on I/O pins per XBR0, XBR1, XBR2, and XBR3 Registers)  
0: Logic Low Output.  
1: Logic High Output (open if corresponding P1MDOUT.n bit = 0).  
(Read - Regardless of XBR0, XBR1, XBR2, and XBR3 Register settings).  
0: P1.n pin is logic low.  
1: P1.n pin is logic high.  
Notes:  
1.  
P1.[7:0] can be configured as inputs to ADC1 as AIN1.[7:0], in which case they are ‘skipped’  
by the Crossbar assignment process and their digital input paths are disabled, depending on  
P1MDIN (See SFR Definition 17.8). Note that in analog mode, the output mode of the pin is  
determined by the Port 1 latch and P1MDOUT (SFR Definition 17.9). See Section “7. 8-Bit  
ADC (ADC2, C8051F040/1/2/3 Only)” on page 91 for more information about ADC2.  
P1.[7:0] can be driven by the External Data Memory Interface (as Address[15:8] in Non-mul-  
tiplexed mode). See Section “16. External Data Memory Interface and On-Chip XRAM”  
on page 187 for more information about the External Memory Interface.  
2.  
216  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.8. P1MDIN: Port1 Input Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
SFR Address: 0xAD  
SFR Page: F  
Bits7-0: P1MDIN.[7:0]: Port 1 Input Mode Bits.  
0: Port Pin is configured in Analog Input mode. The digital input path is disabled (a read from  
the Port bit will always return ‘0’). The weak pullup on the pin is disabled.  
1: Port Pin is configured in Digital Input mode. A read from the Port bit will return the logic  
level at the Pin. The state of the weak pullup is determined by the WEAKPUD bit (XBR2.7,  
see SFR Definition 17.3).  
SFR Definition 17.9. P1MDOUT: Port1 Output Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xA5  
SFR Page: F  
Bits7-0: P1MDOUT.[7:0]: Port1 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
Note:  
SDA, SCL, and RX0 (when UART0 is in Mode 0) and RX1 (when UART1 is in Mode 0) are  
always configured as Open-Drain when they appear on Port pins.  
Rev. 1.5  
217  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.10. P2: Port2 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P2.7  
P2.6  
P2.5  
P2.4  
P2.3  
P2.2  
P2.1  
P2.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addessable  
SFR Address: 0xA0  
SFR Page: All Pages  
Bits7-0: P2.[7:0]: Port2 Output Latch Bits.  
(Write - Output appears on I/O pins per XBR0, XBR1, XBR2, and XBR3 Registers)  
0: Logic Low Output.  
1: Logic High Output (open if corresponding P2MDOUT.n bit = 0).  
(Read - Regardless of XBR0, XBR1, XBR2, and XBR3 Register settings).  
0: P2.n pin is logic low.  
1: P2.n pin is logic high.  
Note:  
P2.[7:0] can be driven by the External Data Memory Interface (as Address[15:8] in Multi-  
plexed mode, or as Address[7:0] in Non-multiplexed mode). See Section “16. External  
Data Memory Interface and On-Chip XRAM” on page 187 for more information about the  
External Memory Interface.  
SFR Definition 17.11. P2MDIN: Port2 Input Mode  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
Bit7  
SFR Address: 0xAE  
SFR Page: F  
Bits7-0: P1MDIN.[7:0]: Port 2 Input Mode Bits.  
0: Port Pin is configured in Analog Input mode. The digital input path is disabled (a read from  
the Port bit will always return ‘0’). The weak pullup on the pin is disabled.  
1: Port Pin is configured in Digital Input mode. A read from the Port bit will return the logic  
level at the Pin. The state of the weak pullup is determined by the WEAKPUD bit (XBR2.7,  
see SFR Definition 17.3).  
218  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.12. P2MDOUT: Port2 Output Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xA6  
SFR Page: F  
Bits7-0: P2MDOUT.[7:0]: Port2 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
Note:  
SDA, SCL, and RX0 (when UART0 is in Mode 0) and RX1 (when UART1 is in Mode 0) are  
always configured as Open-Drain when they appear on Port pins.  
SFR Definition 17.13. P3: Port3 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P3.7  
P3.6  
P3.5  
P3.4  
P3.3  
P3.2  
P3.1  
P3.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xB0  
SFR Page: All Pages  
Bits7-0: P3.[7:0]: Port3 Output Latch Bits.  
(Write - Output appears on I/O pins per XBR0, XBR1, XBR2, and XBR3 Registers)  
0: Logic Low Output.  
1: Logic High Output (open if corresponding P3MDOUT.n bit = 0).  
(Read - Regardless of XBR0, XBR1, XBR2, and XBR3 Register settings).  
0: P3.n pin is logic low.  
1: P3.n pin is logic high.  
Note:  
P3.[7:0] can be driven by the External Data Memory Interface (as AD[7:0] in Multiplexed  
mode, or as D[7:0] in Non-multiplexed mode). See Section “16. External Data Memory  
Interface and On-Chip XRAM” on page 187 for more information about the External Mem-  
ory Interface.  
Rev. 1.5  
219  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.14. P3MDIN: Port3 Input Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
11111111  
SFR Address: 0xAF  
SFR Page: F  
Bits7-0: P1MDIN.[7:0]: Port 3 Input Mode Bits.  
0: Port Pin is configured in Analog Input mode. The digital input path is disabled (a read from  
the Port bit will always return ‘0’). The weak pullup on the pin is disabled.  
1: Port Pin is configured in Digital Input mode. A read from the Port bit will return the logic  
level at the Pin. The state of the weak pullup is determined by the WEAKPUD bit (XBR2.7,  
see SFR Definition 17.3).  
SFR Definition 17.15. P3MDOUT: Port3 Output Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xA7  
SFR Page: F  
Bits7-0: P2MDOUT.[7:0]: Port3 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
17.2. Ports 4 through 7  
On C8051F040/2/4/6 devices, all Port pins on Ports 4 through 7 can be accessed as General-Purpose I/O  
(GPIO) pins by reading and writing the associated Port Data registers (See SFR Definition 17.16, SFR  
Definition 17.18, SFR Definition 17.20, and SFR Definition 17.22 located on SFR Page F), a set of SFRs  
which are both bit and byte-addressable.  
A Read of a Port Data register (or Port bit) will always return the logic state present at the pin itself, regard-  
less of whether the Crossbar has allocated the pin for peripheral use or not. An exception to this occurs  
during the execution of a read-modify-write instruction (ANL, ORL, XRL, CPL, INC, DEC, DJNZ, JBC,  
CLR, SET, and the bitwise MOV operation). During the read cycle of the read-modify-write instruction, it is  
the contents of the Port Data register, not the state of the Port pins themselves, which is read.  
220  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
17.2.1. Configuring Ports Which are Not Pinned Out  
Although P4, P5, P6, and P7 are not brought out to pins on the C8051F041/3/5/7 devices, the Port Data  
registers are still present and can be used by software. Because the digital input paths also remain active,  
it is recommended that these pins not be left in a ‘floating’ state in order to avoid unnecessary power dissi-  
pation arising from the inputs floating to non-valid logic levels. This condition can be prevented by any of  
the following:  
1. Leave the weak pullup devices enabled by setting WEAKPUD (XBR2.7) to a logic 0.  
2. Configure the output modes of P4, P5, P6, and P7 to “Push-Pull” by writing PnOUT = 0xFF.  
3. Force the output states of P4, P5, P6, and P7 to logic 0 by writing zeros to the Port Data regis-  
ters: P4 = 0x00, P5 = 0x00, P6= 0x00, and P7 = 0x00.  
17.2.2. Configuring the Output Modes of the Port Pins  
The output mode of each port pin can be configured to be either Open-Drain or Push-Pull. In the Push-Pull  
configuration, a logic 0 in the associated bit in the Port Data register will cause the Port pin to be driven to  
GND, and a logic 1 will cause the Port pin to be driven to VDD. In the Open-Drain configuration, a logic 0 in  
the associated bit in the Port Data register will cause the Port pin to be driven to GND, and a logic 1 will  
cause the Port pin to assume a high-impedance state. The Open-Drain configuration is useful to prevent  
contention between devices in systems where the Port pin participates in a shared interconnection in  
which multiple outputs are connected to the same physical wire.  
The output modes of the Port pins on Ports 4 through 7 are determined by the bits in their respective   
PnMDOUT Output Mode Registers. Each bit in PnMDOUT controls the output mode of its corresponding  
port pin (see SFR Definition 17.17, SFR Definition 17.19, SFR Definition 17.21, and SFR Definition 17.23).  
For example, to place Port pin 4.3 in push-pull mode (digital output), set P4MDOUT.3 to logic 1. All port  
pins default to open-drain mode upon device reset.  
17.2.3. Configuring Port Pins as Digital Inputs  
A Port pin is configured as a digital input by setting its output mode to "Open-Drain" in the PnMDOUT reg-  
ister and writing a logic 1 to the associated bit in the Port Data register. For example, P7.7 is configured as  
a digital input by setting P7MDOUT.7 to a logic 0, which selects open-drain output mode, and P3.7 to a  
logic 1, which disables the low-side output driver.  
17.2.4. Weak Pullups  
By default, each Port pin has an internal weak pullup device enabled which provides a resistive connection  
(about 100 k) between the pin and VDD. The weak pullup devices can be globally disabled by writing a  
logic 1 to the Weak Pullup Disable bit, (WEAKPUD, XBR2.7). The weak pullup is automatically deactivated  
on any pin that is driving a logic 0; that is, an output pin will not contend with its own pullup device.  
17.2.5. External Memory Interface  
If the External Memory Interface (EMIF) is enabled on the High ports (Ports 4 through 7), EMIFLE  
(XBR2.5) should be set to a logic 0.  
If the External Memory Interface is enabled on the High ports and an off-chip MOVX operation occurs, the  
External Memory Interface will control the output states of the affected Port pins during the execution  
phase of the MOVX instruction, regardless of the settings of the Port Data registers. The output configura-  
tion of the Port pins is not affected by the EMIF operation, except that Read operations will explicitly dis-  
able the output drivers on the Data Bus during the MOVX execution. See Section “16. External Data  
Memory Interface and On-Chip XRAM” on page 187 for more information about the External Memory  
Interface.  
Rev. 1.5  
221  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.16. P4: Port4 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P4.7  
P4.6  
P4.5  
P4.4  
P4.3  
P4.2  
P4.1  
P4.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xC8  
SFR Page: F  
Bits7-0: P4.[7:0]: Port4 Output Latch Bits.  
Write - Output appears on I/O pins.  
0: Logic Low Output.  
1: Logic High Output (Open-Drain if corresponding P4MDOUT.n bit = 0). See SFR Definition  
17.17.  
Read - Returns states of I/O pins.  
0: P4.n pin is logic low.  
1: P4.n pin is logic high.  
Note: P4.7 (/WR), P4.6 (/RD), and P4.5 (ALE) can be driven by the External Data Memory  
Interface. See Section “16. External Data Memory Interface and On-Chip XRAM” on  
page 187 for more information.  
SFR Definition 17.17. P4MDOUT: Port4 Output Mode  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x9C  
SFR Page: F  
Bits7-0: P4MDOUT.[7:0]: Port4 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
222  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.18. P5: Port5 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P5.7  
P5.6  
P5.5  
P5.4  
P5.3  
P5.2  
P5.1  
P5.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xD8  
SFR Page: F  
Bits7-0: P5.[7:0]: Port5 Output Latch Bits.  
Write - Output appears on I/O pins.  
0: Logic Low Output.  
1: Logic High Output (Open-Drain if corresponding P5MDOUT bit = 0). See SFR Definition  
17.19.  
Read - Returns states of I/O pins.  
0: P5.n pin is logic low.  
1: P5.n pin is logic high.  
Note:  
P5.[7:0] can be driven by the External Data Memory Interface (as Address[15:8] in Non-mul-  
tiplexed mode). See Section “16. External Data Memory Interface and On-Chip XRAM”  
on page 187 for more information about the External Memory Interface.  
SFR Definition 17.19. P5MDOUT: Port5 Output Mode  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit7  
Bit0  
SFR Address: 0x9D  
SFR Page: F  
Bits7-0: P5MDOUT.[7:0]: Port5 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
Rev. 1.5  
223  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.20. P6: Port6 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P6.7  
P6.6  
P6.5  
P6.4  
P6.3  
P6.2  
P6.1  
P6.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xE8  
SFR Page: F  
Bits7-0: P6.[7:0]: Port6 Output Latch Bits.  
Write - Output appears on I/O pins.  
0: Logic Low Output.  
1: Logic High Output (Open-Drain if corresponding P6MDOUT bit = 0). See SFR Definition  
17.21.  
Read - Returns states of I/O pins.  
0: P6.n pin is logic low.  
1: P6.n pin is logic high.  
Note:  
P6.[7:0] can be driven by the External Data Memory Interface (as Address[15:8] in Multi-  
plexed mode, or as Address[7:0] in Non-multiplexed mode). See Section “16. External  
Data Memory Interface and On-Chip XRAM” on page 187 for more information about the  
External Memory Interface.  
SFR Definition 17.21. P6MDOUT: Port6 Output Mode  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit7  
Bit0  
SFR Address: 0x9E  
SFR Page: F  
Bits7-0: P6MDOUT.[7:0]: Port6 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
224  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 17.22. P7: Port7 Data  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
P7.7  
P7.6  
P7.5  
P7.4  
P7.3  
P7.2  
P7.1  
P7.0  
11111111  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xF8  
SFR Page: F  
Bits7-0: P7.[7:0]: Port7 Output Latch Bits.  
Write - Output appears on I/O pins.  
0: Logic Low Output.  
1: Logic High Output (Open-Drain if corresponding P7MDOUT bit = 0). See SFR Definition  
17.23.  
Read - Returns states of I/O pins.  
0: P7.n pin is logic low.  
1: P7.n pin is logic high.  
Note:  
P7.[7:0] can be driven by the External Data Memory Interface (as AD[7:0] in Multiplexed  
mode, or as D[7:0] in Non-multiplexed mode). See Section “16. External Data Memory  
Interface and On-Chip XRAM” on page 187 for more information about the External Mem-  
ory Interface.  
SFR Definition 17.23. P7MDOUT: Port7 Output Mode  
R/W  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit7  
Bit0  
SFR Address: 0x9F  
SFR Page: F  
Bits7-0: P7MDOUT.[7:0]: Port7 Output Mode Bits.  
0: Port Pin output mode is configured as Open-Drain.  
1: Port Pin output mode is configured as Push-Pull.  
Note:  
SDA, SCL, and RX0 (when UART0 is in Mode 0) and RX1 (when UART1 is in Mode 0) are  
always configured as Open-Drain when they appear on Port pins.  
Rev. 1.5  
225  
C8051F040/1/2/3/4/5/6/7  
226  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
18. Controller Area Network (CAN0)  
IMPORTANT DOCUMENTATION NOTE: The Bosch CAN Controller is integrated in the C8051F04x Fam-  
ily of devices. This section of the data sheet gives a description of the CAN controller as an overview and  
offers a description of how the Silicon Labs CIP-51 MCU interfaces with the on-chip Bosch CAN controller.  
In order to use the CAN controller, please refer to Bosch’s C_CAN User’s Manual (revision 1.2) as an  
accompanying manual to Silicon Labs’ C8051F04x Data sheet.  
The C8051F04x family of devices feature a Control Area Network (CAN) controller that enables serial com-  
munication using the CAN protocol. Silicon Labs CAN facilitates communication on a CAN network in  
accordance with the Bosch specification 2.0A (basic CAN) and 2.0B (full CAN). The CAN controller con-  
sists of a CAN Core, Message RAM (separate from the CIP-51 RAM), a message handler state machine,  
and control registers. Silicon Labs CAN is a protocol controller and does not provide physical layer drivers  
(i.e., transceivers). Figure 18.1 shows an example typical configuration on a CAN bus.  
Silicon Labs CAN operates at bit rates of up to 1 Mbit/second, though this can be limited by the physical  
layer chosen to transmit data on the CAN bus. The CAN processor has 32 Message Objects that can be  
configured to transmit or receive data. Incoming data, message objects and their identifier masks are  
stored in the CAN message RAM. All protocol functions for transmission of data and acceptance filtering is  
performed by the CAN controller and not by the CIP-51 MCU. In this way, minimal CPU bandwidth is  
needed to use CAN communication. The CIP-51 configures the CAN controller, accesses received data,  
and passes data for transmission via Special Function Registers (SFRs) in the CIP-51.  
C8051F04x  
CAN Protocol Device  
CAN Protocol Device  
CANTX  
CANRX  
CAN  
CAN  
CAN  
Transceiver  
Transceiver  
Transceiver  
Isolation/Buffer (Optional)  
Isolation/Buffer (Optional)  
Isolation/Buffer (Optional)  
CAN_H  
R
R
CAN_L  
Figure 18.1. Typical CAN Bus Configuration  
Rev. 1.5  
227  
C8051F040/1/2/3/4/5/6/7  
18.1. Bosch CAN Controller Operation  
The CAN Controller featured in the C8051F04x family of devices is a full implementation of Bosch’s full  
CAN module and fully complies with CAN specification 2.0B. A block diagram of the CAN controller is  
shown in Figure 18.2. The CAN Core provides shifting (CANTX and CANRX), serial/parallel conversion of  
messages, and other protocol related tasks such as transmission of data and acceptance filtering. The  
message RAM stores 32 message objects which can be received or transmitted on a CAN network. The  
CAN registers and message handler provide an interface for data transfer and notification between the  
CAN controller and the CIP-51.  
The function and use of the CAN Controller is detailed in the Bosch CAN User’s Guide. The User’s Guide  
should be used as a reference to configure and use the CAN controller. This Silicon Labs data sheet  
describes how to access the CAN controller.  
The CAN Controller is typically initialized using the following steps:  
Step 1. Set the SFRPAGE register to CAN0_PAGE.  
Step 2. Set the INIT the CCE bits to ‘1’ in the CAN0CN Register. See the CAN User’s Guide for bit  
definitions.  
Step 3. Set timing parameters in the Bit Timing Register and the BRP Extension Register.  
Step 4. Initialize each message object or set it’s MsgVal bit to NOT VALID.  
Step 5. Reset the INIT bit to ‘0’.  
The CAN Control Register (CAN0CN), CAN Test Register (CAN0TST), and CAN Status Register  
(CAN0STA) in the CAN controller can be accessed directly or indirectly via CIP-51 SFR’s. All other CAN  
registers must be accessed via an indirect indexing method described in Section “18.2.5. Using  
CAN0ADR, CAN0DATH, and CANDATL to Access CAN Registers” on page 232.  
CANTX  
CANRX  
C8051F04x  
CAN Controller  
S
Y
S
C
L
CAN_CLK  
(fsys  
TX  
RX  
BRP  
Prescaler  
)
CAN  
Core  
K
CIP-51  
MCU  
Message RAM  
S
F
REGISTERS  
(32 Message Objects)  
R
's  
Message Handler  
Interrupt  
Figure 18.2. CAN Controller Diagram  
228  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
18.1.1. CAN Controller Timing  
The CAN controller’s system clock (f ) is derived from the CIP-51 system clock (SYSCLK). Note that an  
sys  
external oscillator (such as a quartz crystal) is typically required due to the high accuracy requirements for  
CAN communication. Refer to Section “4.10.4 Oscillator Tolerance Range” in the Bosch CAN User’s Guide  
for further information regarding this topic.  
18.1.2. Example Timing Calculation for 1 Mbit/Sec Communication  
This example shows how to configure the CAN contoller timing parameters for a 1 Mbit/Sec bit rate.  
Table 18.1 shows timing-related system parameters needed for the calculation.  
Table 18.1. Background System Information  
Parameter  
Value  
Description  
External oscillator in ‘Crystal Oscillator Mode’. A  
22.1184 MHz quartz crystal is connected between  
XTAL1 and XTAL2.  
CIP-51 system clock (SYSCLK)  
CAN Controller system clock  
22.1184 MHz  
22.1184 MHz  
45.211 ns  
Derived from SYSCLK.  
(f  
)
sys  
CAN clock period (t  
)
Derived from 1/f  
.
sys  
sys  
1,2  
CAN time quantum (t )  
45.211 ns  
10 m  
Derived from t x BRP  
q
sys  
CAN bus length  
5 ns/m signal delay between CAN nodes.  
2 x (transceiver loop delay + bus line delay)  
3
400 ns  
Propagation delay time  
Notes:  
1. The CAN time quantum (t ) is the smallest unit of time recognized by the CAN contoller. Bit timing parameters  
q
are often specified in integer multiples of the time quantum.  
2. The Baud Rate Prescaler (BRP) is defined as the value of the BRP Extension Register plus 1. The BRP  
Extension Register has a reset value of 0x0000; the Baud Rate Prescaler has a reset value of 1.  
3. Based on an ISO-11898 compliant transceiver. CAN does not specify a physical layer.  
Each bit transmitted on a CAN network has 4 segments (Sync_Seg, Prop_Seg, Phase_Seg1, and  
Phase_Seg2), as shown in Figure 18.3. The sum of these segments determines the CAN bit time (1/bit  
rate). In this example, the desired bit rate is 1 Mbit/sec; therefore, the desired bit time is 1000 ns.  
CAN Bit Time (4 to 25 tq)  
Sync_Seg  
Prop_Seg  
1 to 8 tq  
Phase_Seg1  
1 to 8 tq  
Phase_Seg2  
1 to 8 tq  
1tq  
1tq  
Sample Point  
Figure 18.3. Four Segments of a CAN Bit Time  
Rev. 1.5  
229  
C8051F040/1/2/3/4/5/6/7  
We will adjust the length of the 4 bit segments so that their sum is as close as possible to the desired bit  
time. Since each segment must be an integer multiple of the time quantum (t ), the closest achievable bit  
q
time is 22 t (994.642 ns), yielding a bit rate of 1.00539 Mbit/sec. The Sync_Seg is a constant 1 t . The  
q
q
Prop_Seg must be greater than or equal to the propagation delay of 400 ns; we choose 9 t (406.899 ns).  
q
The remaining time quanta (t ) in the bit time are divided between Phase_Seg1 and Phase_Seg2 as  
q
shown in Figure 18.1. We select Phase_Seg1 = 6 t and Phase_Seg2 = 6 t .  
q
q
Phase_Seg1 + Phase_Seg2 = Bit Time – Sync_Seg + Prop_Seg  
Note 1: If Phase_Seg1 + Phase_Seg2 is even, then Phase_Seg2 = Phase_Seg1.  
Note 2: Phase_Seg2 should be at least 2 t .  
q
Equation 18.1. Assigning the Phase Segments  
The Synchronization Jump Width (SJW) timing parameter is defined by Figure 18.2. It is used for determin-  
ing the value written to the Bit Timing Register and for determining the required oscillator tolerance. Since  
we are using a quartz crystal as the system clock source, an oscillator tolerance calculation is not needed.  
SJW = min ( 4, Phase_Seg1 )  
Equation 18.2. Synchronization Jump Width (SJW)  
The value written to the Bit Timing Register can be calculated using Equation 18.3. The BRP Extension  
register is left at its reset value of 0x0000.  
BRPE = BRP - 1 = BRP Extension Register = 0x0000  
SJWp = SJW - 1 = min ( 4, 6 ) – 1 = 3  
TSEG1 = (Prop_Seg + Phase_Seg1 - 1) = 9 + 6 - 1 = 14  
TSEG2 = (Phase_Seg2 - 1) = 5  
Bit Timing Register = (TSEG2 * 0x1000) + (TSEG1 * 0x0100) + (SJWp * 0x0040) + BRPE = 0x5EC0  
Equation 18.3. Calculating the Bit Timing Register Value  
The following steps are performed to initialize the CAN timing registers:  
Step 1. Set the SFRPAGE register to CAN0_PAGE.  
Step 2. Set the INIT the CCE bits to ‘1’ in the CAN Control Register accessible through the  
CAN0CN SFR.  
Step 3. Set the CAN0ADR to 0x03 to point to the Bit Timing Register.  
230  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Step 4. Write the value 0x5EC0 to the [CAN0DATH:CAN0DATL] CIP-51 SFRs to set the Bit  
Timing Register using the indirect indexing method described on Section 18.2.5 on page  
232.  
Step 5. Perform other CAN initializations.  
18.2. CAN Registers  
CAN registers are classified as follows:  
1. CAN Controller Protocol Registers: CAN control, interrupt, error control, bus status, test  
modes.  
2. Message Object Interface Registers: Used to configure 32 Message Objects, send and  
receive data to and from Message Objects. The CIP-51 MCU accesses the CAN mes-  
sage RAM via the Message Object Interface Registers. Upon writing a message object  
number to an IF1 or IF2 Command Request Register, the contents of the associated  
Interface Registers (IF1 or IF2) will be transferred to or from the message object in CAN  
RAM.  
3. Message Handler Registers: These read only registers are used to provide information to  
the CIP-51 MCU about the message objects (MSGVLD flags, Transmission Request  
Pending, New Data Flags) and Interrupts Pending (which Message Objects have caused  
an interrupt or status interrupt condition).  
4. CIP-51 MCU Special Function Registers (SFR): Six registers located in the CIP-51 MCU  
memory map that allow direct access to certain CAN Controller Protocol Registers, and  
Indexed indirect access to all CAN registers.  
18.2.1. CAN Controller Protocol Registers  
The CAN Control Protocol Registers are used to configure the CAN controller, process interrupts, monitor  
bus status, and place the controller in test modes. The CAN controller protocol registers are accessible  
using CIP-51 MCU SFR’s by an indexed method, and some can be accessed directly by addressing the  
SFR’s in the CIP-51 SFR map for convenience.  
The registers are: CAN Control Register (CAN0CN), CAN Status Register (CAN0STA), CAN Test Register  
(CAN0TST), Error Counter Register, Bit Timing Register, and the Baud Rate Prescaler (BRP) Extension  
Register. CAN0STA, CAN0CN, and CAN0TST can be accessed via CIP-51 MCU SFR’s. All others are  
accessed indirectly using the CAN address indexed method via CAN0ADR, CAN0DATH, and CAN0DATL.  
Please refer to the Bosch CAN User’s Guide for information on the function and use of the CAN Control  
Protocol Registers.  
18.2.2. Message Object Interface Registers  
There are two sets of Message Object Interface Registers used to configure the 32 Message Objects that  
transmit and receive data to and from the CAN bus. Message objects can be configured for transmit or  
receive, and are assigned arbitration message identifiers for acceptance filtering by all CAN nodes.  
Message Objects are stored in Message RAM, and are accessed and configured using the Message  
Object Interface Registers. These registers are accessed via the CIP-51’s CAN0ADR and CAN0DAT reg-  
isters using the indirect indexed address method.  
Please refer to the Bosch CAN User’s Guide for information on the function and use of the Message Object  
Interface Registers.  
Rev. 1.5  
231  
C8051F040/1/2/3/4/5/6/7  
18.2.3. Message Handler Registers  
The Message Handler Registers are read only registers. Their flags can be read via the indexed access  
method with CAN0ADR, CAN0DATH, and CAN0DATL. The message handler registers provide interrupt,  
error, transmit/receive requests, and new data information.  
Please refer to the Bosch CAN User’s Guide for information on the function and use of the Message Han-  
dler Registers.  
18.2.4. CIP-51 MCU Special Function Registers  
C8051F04x family peripherals are modified, monitored, and controlled using Special Function Registers  
(SFR’s). Only three of the CAN Controller’s registers may be accessed directly with SFR’s. However, all  
CAN Controller registers can be accessed indirectly using three CIP-51 MCU SFR’s: the CAN Data Regis-  
ters (CAN0DATH and CAN0DATL) and CAN Address Register (CAN0ADR).  
18.2.5. Using CAN0ADR, CAN0DATH, and CANDATL to Access CAN Registers  
Each CAN Controller Register has an index number (see Table 18.2). The CAN register address space is  
128 words (256 bytes). A CAN register is accessed via the CAN Data Registers (CAN0DATH and  
CAN0DATL) when a CAN register’s index number is placed into the CAN Address Register (CAN0ADR).  
For example, if the Bit Timing Register is to be configured with a new value, CAN0ADR is loaded with  
0x03. The low byte of the desired value is accessed using CAN0DATL and the high byte of the bit timing  
register is accessed using CAN0DATH. CAN0DATL is bit addressable for convenience. To load the value  
0x2304 into the Bit Timing Register:  
CAN0ADR = 0x03;  
CAN0DATH = 0x23;  
CAN0DATL = 0x04;  
// Load Bit Timing Register’s index (Table 18.1)  
// Move the upper byte into data reg high byte  
// Move the lower byte into data reg low byte  
Note: CAN0CN, CAN0STA, and CAN0TST may be accessed either by using the index method, or by direct  
access with the CIP-51 MCU SFR’s. CAN0CN is located at SFR location 0xF8/SFR page 1 (SFR Definition  
18.3), CAN0TST at 0xDB/SFR page 1 (SFR Definition 18.4), and CAN0STA at 0xC0/SFR page 1 (SFR  
Definition 18.5).  
18.2.6. CAN0ADR Autoincrement Feature  
For ease of programming message objects, CAN0ADR features autoincrementing for the index ranges  
0x08 to 0x12 (Interface Registers 1) and 0x20 to 0x2A (Interface Registers 2). When the CAN0ADR regis-  
ter has an index in these ranges, the CAN0ADR will autoincrement by 1 to point to the next CAN reg-  
ister 16-bit word upon a read/write of CAN0DATL. This speeds programming of the frequently-  
accessed interface registers when configuring message objects.  
NOTE: Table 18.2 below supersedes Figure 5 in Section 3, “Programmer’s Model” of the Bosch CAN  
User’s Guide.  
232  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 18.2. CAN Register Index and Reset Values  
CAN Register  
Index  
Reset  
Value  
Register Name  
Notes  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
CAN Control Register  
Status Register  
0x0001 Accessible in CIP-51 SFR Map  
0x0000 Accessible in CIP-51 SFR Map  
0x0000 Read Only  
Error Register  
Bit Timing Register  
Interrupt Register  
Test Register  
0x2301 Write Enabled by CCE Bit in CAN0CN  
0x0000 Read Only  
0x0000 Bit 7 (RX) is determined by CAN bus  
0x0000 Write Enabled by TEST bit in CAN0CN  
BRP Extension Register  
CAN0ADR autoincrements in IF1 index space  
0x0001  
0x08  
0x09  
0x0A  
0x0B  
0x0C  
0x0D  
0x0E  
0x0F  
0x10  
0x11  
0x12  
0x20  
0x21  
0x22  
0x23  
0x24  
0x25  
IF1 Command Request  
IF1 Command Mask  
IF1 Mask 1  
(0x08 - 0x12) upon write to CAN0DATL  
CAN0ADR autoincrement upon write to  
CAN0DATL  
0x0000  
CAN0ADR autoincrement upon write to  
CAN0DATL  
0xFFFF  
CAN0ADR autoincrement upon write to  
CAN0DATL  
IF1 Mask 2  
0xFFFF  
CAN0ADR autoincrement upon write to  
CAN0DATL  
IF1 Arbitration 1  
IF1 Arbitration 2  
IF1 Message Control  
IF1 Data A1  
0x0000  
CAN0ADR autoincrement upon write to  
CAN0DATL  
0x0000  
CAN0ADR autoincrement upon write to  
CAN0DATL  
0x0000  
CAN0ADR autoincrement upon write to  
CAN0DATL  
0x0000  
CAN0ADR autoincrement upon write to  
CAN0DATL  
IF1 Data A2  
0x0000  
CAN0ADR autoincrement upon write to  
CAN0DATL  
IF1 Data B1  
0x0000  
CAN0ADR autoincrement upon write to  
CAN0DATL  
IF1 Data B2  
0x0000  
CAN0ADR autoincrements in IF2 index space  
0x0001  
IF2 Command Request  
IF2 Command Mask  
IF2 Mask 1  
(0x20 - 0x2A) upon write to CAN0DATL  
CAN0ADR autoincrement upon write to  
CAN0DATL  
0x0000  
CAN0ADR autoincrement upon write to  
CAN0DATL  
0xFFFF  
CAN0ADR autoincrement upon write to  
CAN0DATL  
IF2 Mask 2  
0xFFFF  
CAN0ADR autoincrement upon write to  
CAN0DATL  
IF2 Arbitration 1  
IF2 Arbitration 2  
0x0000  
CAN0ADR autoincrement upon write to  
CAN0DATL  
0x0000  
Rev. 1.5  
233  
C8051F040/1/2/3/4/5/6/7  
Table 18.2. CAN Register Index and Reset Values (Continued)  
CAN Register  
Index  
Reset  
Value  
Register Name  
IF2 Message Control  
IF2 Data A1  
Notes  
CAN0ADR autoincrement upon write to  
CAN0DATL  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x40  
0x41  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
0x0000  
CAN0ADR autoincrement upon write to  
CAN0DATL  
CAN0ADR autoincrement upon write to  
CAN0DATL  
IF2 Data A2  
CAN0ADR autoincrement upon write to  
CAN0DATL  
IF2 Data B1  
CAN0ADR autoincrement upon write to  
CAN0DATL  
IF2 Data B2  
Transmission request flags for message objects  
(read only)  
Transmission Request 1  
Transmission Request 2  
Transmission request flags for message objects  
(read only)  
0x48  
0x49  
New Data 1  
New Data 2  
0x0000 New Data flags for message objects (read only)  
0x0000 New Data flags for message objects (read only)  
Interrupt pending flags for message objects  
(read only)  
0x50  
0x51  
0x58  
0x59  
Interrupt Pending 1  
Interrupt Pending 2  
Message Valid 1  
Message Valid 2  
0x0000  
Interrupt pending flags for message objects  
(read only)  
0x0000  
Message valid flags for message objects (read  
0x0000  
only)  
Message valid flags for message objects (read  
0x0000  
only)  
Figure 18.4. CAN0DATH: CAN Data Access Register High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xD9  
SFR Page: 1  
Bit7-0:  
CAN0DATH: CAN Data Access Register High Byte.  
The CAN0DAT Registers are used to read/write register values and data to and from the  
CAN Registers pointed to with the index number in the CAN0ADR Register.  
The CAN0ADR Register is used to point the [CAN0DATH:CAN0DATL] to a desired CAN  
Register. The desired CAN Register’s index number is moved into CAN0ADR. The  
CAN0DAT Register can then read/write to and from the CAN Register.  
234  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 18.1. CAN0DATL: CAN Data Access Register Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000001  
Bit0  
SFR Address: 0xD8  
SFR Page: 1  
Bit7-0:  
CAN0DATL: CAN Data Access Register Low Byte.  
The CAN0DAT Registers are used to read/write register values and data to and from the  
CAN Registers pointed to with the index number in the CAN0ADR Register.  
The CAN0ADR Register is used to point the [CAN0DATH:CAN0DATL] to a desired CAN  
Register. The desired CAN Register’s index number is moved into CAN0ADR. The  
CAN0DAT Register can then read/write to and from the CAN Register.  
SFR Definition 18.2. CAN0ADR: CAN Address Index  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xDA  
SFR Page: 1  
Bit7-0:  
CAN0ADR: CAN Address Index Register.  
The CAN0ADR Register is used to point the [CAN0DATH:CAN0DATL] to a desired CAN  
Register. The desired CAN Register’s index number is moved into CAN0ADR. The  
CAN0DAT Register can then read/write to and from the CAN Register.  
Note: When the value of CAN0ADR is 0x08-0x12 and 0x20-0x2A (IF1 and IF2 registers),  
this register will autoincrement by 1 upon a write to CAN0DATL. See Section  
“18.2.6. CAN0ADR Autoincrement Feature” on page 232.  
All CAN registers’ functions/definitions are listed and described in the Bosch CAN  
User’s Guide.  
Rev. 1.5  
235  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 18.3. CAN0CN: CAN Control  
R/W  
*
R/W  
*
R/W  
*
R
R/W  
*
R/W  
*
R/W  
*
R/W  
*
Reset Value  
CANIF  
Bit4  
Bit7  
Bit6  
Bit5  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xF8  
SFR Page: 1  
Bit 4:  
CANIF: CAN Interrupt Flag. Write = don’t care.  
0: CAN interrupt has not occurred.  
1: CAN interrupt has occurred and is active.  
CANIF is controlled by the CAN controller and is cleared by hardware once all interrupt con-  
ditions have been cleared in the CAN controller. See Section 3.4.1 in the Bosch CAN User’s  
Guide (page 24) for more information concerning CAN controller interrupts.  
*All CAN registers’ functions/definitions are listed and described in the Bosch CAN  
User’s Guide with the exception of the CANIF bit.  
This register may be accessed directly in the CIP-51 SFR register space, or through the indi-  
rect, index method (See Section “18.2.5. Using CAN0ADR, CAN0DATH, and CANDATL to  
Access CAN Registers” on page 232).  
SFR Definition 18.4. CAN0TST: CAN Test  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
Please see the Bosch CAN User’s Guide for a complete definition of this register  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xDB  
SFR Page: 1  
All CAN registers’ functions/definitions are listed and described in the Bosch CAN  
User’s Guide.  
This register may be accessed directly in the CIP-51 SFR register space, or through the indi-  
rect, index method (See Section “18.2.5. Using CAN0ADR, CAN0DATH, and CANDATL to  
Access CAN Registers” on page 232).  
236  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 18.5. CAN0STA: CAN Status  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
Please see the Bosch CAN User’s Guide for a complete definition of this register  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0xC0  
SFR Page: 1  
All CAN registers’ functions/definitions are listed and described in the Bosch CAN  
User’s Guide.  
This register may be accessed directly in the CIP-51 SFR register space, or through the indi-  
rect, index method (See Section “18.2.5. Using CAN0ADR, CAN0DATH, and CANDATL to  
Access CAN Registers” on page 232).  
Rev. 1.5  
237  
C8051F040/1/2/3/4/5/6/7  
238  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
19. System Management BUS/I2C BUS (SMBUS0)  
The SMBus0 I/O interface is a two-wire, bi-directional serial bus. SMBus0 is compliant with the System  
2
Management Bus Specification, version 2, and compatible with the I C serial bus. Reads and writes to the  
interface by the system controller are byte oriented with the SMBus0 interface autonomously controlling  
the serial transfer of the data. A method of extending the clock-low duration is available to accommodate  
devices with different speed capabilities on the same bus.  
SMBus0 may operate as a master and/or slave, and may function on a bus with multiple masters. SMBus0  
provides control of SDA (serial data), SCL (serial clock) generation and synchronization, arbitration logic,  
and START/STOP control and generation. SMBus0 is controlled by SFRs as described in Section 19.4 on  
page 245.  
SFR Bus  
SMB0CN  
SMB0STA  
SMB0CR  
B
U
S
Y
E
N
S
M
B
S
T
A
S
T
O
S
I
A
A
F
T
E
T
O
E
S
T
A
7
S
T
A
6
S
T
A
5
S
T
A
4
S
T
A
3
S
T
A
2
S
T
A
1
S
T
A
0
C
R
7
C
R
6
C
R
5
C
R
4
C
R
3
C
R
2
C
R
1
C
R
0
Clock Divide  
Logic  
SYSCLK  
SCL  
FILTER  
SMBUS CONTROL LOGIC  
Arbitration  
SMBUS  
IRQ  
Interrupt  
Request  
SCL Synchronization  
Status Generation  
SCL Generation (Master Mode)  
IRQ Generation  
SCL  
Control  
N
SDA  
Control  
Data Path  
Control  
C
R
O
S
S
B
A
R
Port I/O  
B
A
B
A
0000000b  
7 MSBs  
8
7
SMB0DAT  
7 6 5 4 3 2 1 0  
SDA  
FILTER  
8
8
1
0
S
L
V
6
S
L
V
5
S
L
V
4
S
L
V
3
S
L
V
2
S
L
V
1
S
L
V
0
N
G
C
Read  
SMB0DAT  
Write to  
SMB0DAT  
SMB0ADR  
SFR Bus  
Figure 19.1. SMBus0 Block Diagram  
Rev. 1.5  
239  
C8051F040/1/2/3/4/5/6/7  
Figure 19.2 shows a typical SMBus configuration. The SMBus0 interface will work at any voltage between  
3.0 V and 5.0 V and different devices on the bus may operate at different voltage levels. The bi-directional  
SCL (serial clock) and SDA (serial data) lines must be connected to a positive power supply voltage  
through a pullup resistor or similar circuit. Every device connected to the bus must have an open-drain or  
open-collector output for both the SCL and SDA lines, so that both are pulled high when the bus is free.  
The maximum number of devices on the bus is limited only by the requirement that the rise and fall times  
on the bus will not exceed 300 ns and 1000 ns, respectively.  
VDD = 5 V  
VDD = 3 V  
VDD = 5 V  
VDD = 3 V  
Master  
Device  
Slave  
Device 1  
Slave  
Device 2  
SDA  
SCL  
Figure 19.2. Typical SMBus Configuration  
19.1. Supporting Documents  
It is assumed the reader is familiar with or has access to the following supporting documents:  
2
I C Manual (AN10216-01) -- March 24, 2003, Philips Semiconductor.  
System Management Bus Specification -- Version 1.1, SBS Implementers Forum.  
240  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
19.2. SMBus Protocol  
Two types of data transfers are possible: data transfers from a master transmitter to an addressed slave  
receiver (WRITE), and data transfers from an addressed slave transmitter to a master receiver (READ).  
The master device initiates both types of data transfers and provides the serial clock pulses on SCL. Note:  
multiple master devices on the same bus are supported. If two or more masters attempt to initiate a data  
transfer simultaneously, an arbitration scheme is employed with a single master always winning the arbitra-  
tion. Note that it is not necessary to specify one device as the master in a system; any device who trans-  
mits a START and a slave address becomes the master for that transfer.  
A typical SMBus transaction consists of a START condition followed by an address byte (Bits7-1: 7-bit  
slave address; Bit0: R/W direction bit), one or more bytes of data, and a STOP condition. Each byte that is  
received (by a master or slave) must be acknowledged (ACK) with a low SDA during a high SCL (see  
Figure 19.3). If the receiving device does not ACK, the transmitting device will read a “not acknowledge”  
(NACK), which is a high SDA during a high SCL.  
The direction bit (R/W) occupies the least-significant bit position of the address. The direction bit is set to  
logic 1 to indicate a "READ" operation and cleared to logic 0 to indicate a "WRITE" operation.  
All transactions are initiated by a master, with one or more addressed slave devices as the target. The  
master generates the START condition and then transmits the slave address and direction bit. If the trans-  
action is a WRITE operation from the master to the slave, the master transmits the data one byte at a time  
and expects an ACK from the slave at the end of each byte. For READ operations, the slave transmits the  
data and expects an ACK from the master at the end of each byte. At the end of the data transfer, the mas-  
ter generates a STOP condition to terminate the transaction and free the bus. Figure 19.3 illustrates a typ-  
ical SMBus transaction.  
SCL  
SDA  
SLA6  
SLA5-0  
R/W  
D7  
D6-0  
START  
Slave Address + R/W  
ACK  
Data Byte  
NACK  
STOP  
Figure 19.3. SMBus Transaction  
19.2.1. Arbitration  
A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL  
and SDA lines remain high for a specified time (see Section 19.2.4). In the event that two or more devices  
attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give  
up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a  
LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect  
a LOW SDA and give up the bus. The winning master continues its transmission without interruption; the  
losing master becomes a slave and receives the rest of the transfer. This arbitration scheme is non-  
destructive: one device always wins, and no data is lost.  
Rev. 1.5  
241  
C8051F040/1/2/3/4/5/6/7  
19.2.2. Clock Low Extension  
2
SMBus provides a clock synchronization mechanism, similar to I C, which allows devices with different  
speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow  
slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line  
LOW to extend the clock low period, effectively decreasing the serial clock frequency.  
19.2.3. SCL Low Timeout  
If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore,  
the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus  
protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than  
25 ms as a “timeout” condition. Devices that have detected the timeout condition must reset the communi-  
cation no later than 10 ms after detecting the timeout condition.  
19.2.4. SCL High (SMBus Free) Timeout  
The SMBus specification stipulates that if the SCL and SDA lines remain high for more that 50 µs, the bus  
is designated as free. If an SMBus device is waiting to generate a Master START, the START will be gen-  
erated following the bus free timeout.  
19.3. SMBus Transfer Modes  
The SMBus0 interface may be configured to operate as a master and/or a slave. At any particular time, the  
interface will be operating in one of the following modes: Master Transmitter, Master Receiver, Slave  
Transmitter, or Slave Receiver. See Table 19.1 for transfer mode status decoding using the SMB0STA sta-  
tus register. The following mode descriptions illustrate an interrupt-driven SMBus0 application; SMBus0  
may alternatively be operated in polled mode.  
19.3.1. Master Transmitter Mode  
Serial data is transmitted on SDA while the serial clock is output on SCL. SMBus0 generates a START  
condition and then transmits the first byte containing the address of the target slave device and the data  
direction bit. In this case the data direction bit (R/W) will be logic 0 to indicate a "WRITE" operation. The  
SMBus0 interface transmits one or more bytes of serial data, waiting for an acknowledge (ACK) from the  
slave after each byte. To indicate the end of the serial transfer, SMBus0 generates a STOP condition.  
S
SLA  
W
A
Data Byte  
A
Data Byte  
A
P
Interrupt  
Interrupt  
Interrupt  
Interrupt  
S = START  
P = STOP  
A = ACK  
Received by SMBus  
Interface  
W = WRITE  
Transmitted by  
SLA = Slave Address  
SMBus Interface  
Figure 19.4. Typical Master Transmitter Sequence  
242  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
19.3.2. Master Receiver Mode  
Serial data is received on SDA while the serial clock is output on SCL. The SMBus0 interface generates a  
START followed by the first data byte containing the address of the target slave and the data direction bit.  
In this case the data direction bit (R/W) will be logic 1 to indicate a "READ" operation. The SMBus0 inter-  
face receives serial data from the slave and generates the clock on SCL. After each byte is received,  
SMBus0 generates an ACK or NACK depending on the state of the AA bit in register SMB0CN. SMBus0  
generates a STOP condition to indicate the end of the serial transfer.  
S
SLA  
R
A
Data Byte  
A
Data Byte  
N
P
Interrupt  
Interrupt  
Interrupt  
Interrupt  
S = START  
P = STOP  
A = ACK  
Received by SMBus  
Interface  
N = NACK  
R = READ  
SLA = Slave Address  
Transmitted by  
SMBus Interface  
Figure 19.5. Typical Master Receiver Sequence  
19.3.3. Slave Transmitter Mode  
Serial data is transmitted on SDA while the serial clock is received on SCL. The SMBus0 interface receives  
a START followed by data byte containing the slave address and direction bit. If the received slave address  
matches the address held in register SMB0ADR, the SMBus0 interface generates an ACK. SMBus0 will  
also ACK if the general call address (0x00) is received and the General Call Address Enable bit  
(SMB0ADR.0) is set to logic 1. In this case the data direction bit (R/W) will be logic 1 to indicate a "READ"  
operation. The SMBus0 interface receives the clock on SCL and transmits one or more bytes of serial  
data, waiting for an ACK from the master after each byte. SMBus0 exits slave mode after receiving a  
STOP condition from the master.  
Interrupt  
S
SLA  
R
A
Data Byte  
A
Data Byte  
N
P
Interrupt  
Interrupt  
Interrupt  
S = START  
P = STOP  
N = NACK  
W = WRITE  
Received by SMBus  
Interface  
Transmitted by  
SMBus Interface  
SLA = Slave Address  
Figure 19.6. Typical Slave Transmitter Sequence  
Rev. 1.5  
243  
C8051F040/1/2/3/4/5/6/7  
19.3.4. Slave Receiver Mode  
Serial data is received on SDA while the serial clock is received on SCL. The SMBus0 interface receives a  
START followed by data byte containing the slave address and direction bit. If the received slave address  
matches the address held in register SMB0ADR, the interface generates an ACK. SMBus0 will also ACK if  
the general call address (0x00) is received and the General Call Address Enable bit (SMB0ADR.0) is set to  
logic 1. In this case the data direction bit (R/W) will be logic 0 to indicate a "WRITE" operation. The  
SMBus0 interface receives one or more bytes of serial data; after each byte is received, the interface  
transmits an ACK or NACK depending on the state of the AA bit in SMB0CN. SMBus0 exits Slave Receiver  
Mode after receiving a STOP condition from the master.  
Interrupt  
S
SLA  
W
A
Data Byte  
A
Data Byte  
A
P
Interrupt  
Interrupt  
Interrupt  
S = START  
P = STOP  
A = ACK  
Received by SMBus  
Interface  
R = READ  
SLA = Slave Address  
Transmitted by  
SMBus Interface  
Figure 19.7. Typical Slave Receiver Sequence  
244  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
19.4. SMBus Special Function Registers  
The SMBus0 serial interface is accessed and controlled through five SFRs: SMB0CN Control Register,  
SMB0CR Clock Rate Register, SMB0ADR Address Register, SMB0DAT Data Register and SMB0STA Sta-  
tus Register. The five special function registers related to the operation of the SMBus0 interface are  
described in the following sections.  
19.4.1. Control Register  
The SMBus0 Control register SMB0CN is used to configure and control the SMBus0 interface. All of the  
bits in the register can be read or written by software. Two of the control bits are also affected by the  
SMBus0 hardware. The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by the hardware when a valid  
serial interrupt condition occurs. It can only be cleared by software. The Stop flag (STO, SMB0CN.4) is set  
to logic 1 by software. It is cleared to logic 0 by hardware when a STOP condition is detected on the bus.  
Setting the ENSMB flag to logic 1 enables the SMBus0 interface. Clearing the ENSMB flag to logic 0 dis-  
ables the SMBus0 interface and removes it from the bus. Momentarily clearing the ENSMB flag and then  
resetting it to logic 1 will reset SMBus0 communication. However, ENSMB should not be used to tempo-  
rarily remove a device from the bus since the bus state information will be lost. Instead, the Assert  
Acknowledge (AA) flag should be used to temporarily remove the device from the bus (see description of  
AA flag below).  
Setting the Start flag (STA, SMB0CN.5) to logic 1 will put SMBus0 in a master mode. If the bus is free,  
SMBus0 will generate a START condition. If the bus is not free, SMBus0 waits for a STOP condition to free  
the bus and then generates a START condition after a 5 µs delay per the SMB0CR value (In accordance  
with the SMBus protocol, the SMBus0 interface also considers the bus free if the bus is idle for 50 µs and  
no STOP condition was recognized). If STA is set to logic 1 while SMBus0 is in master mode and one or  
more bytes have been transferred, a repeated START condition will be generated.  
When the Stop flag (STO, SMB0CN.4) is set to logic 1 while the SMBus0 interface is in master mode, the  
interface generates a STOP condition. In a slave mode, the STO flag may be used to recover from an error  
condition. In this case, a STOP condition is not generated on the bus, but the SMBus hardware behaves  
as if a STOP condition has been received and enters the "not addressed" slave receiver mode. Note that  
this simulated STOP will not cause the bus to appear free to SMBus0. The bus will remain occupied until a  
STOP appears on the bus or a Bus Free Timeout occurs. Hardware automatically clears the STO flag to  
logic 0 when a STOP condition is detected on the bus.  
The Serial Interrupt flag (SI, SMB0CN.3) is set to logic 1 by hardware when the SMBus0 interface enters  
any one of the 28 possible states except the Idle state. If interrupts are enabled for the SMBus0 interface,  
an interrupt request is generated when the SI flag is set. The SI flag must be cleared by software.  
Important Note: If SI is set to logic 1 while the SCL line is low, the clock-low period of the serial clock will  
be stretched and the serial transfer is suspended until SI is cleared to logic 0. A high level on SCL is not  
affected by the setting of the SI flag.  
The Assert Acknowledge flag (AA, SMB0CN.2) is used to set the level of the SDA line during the acknowl-  
edge clock cycle on the SCL line. Setting the AA flag to logic 1 will cause an ACK (low level on SDA) to be  
sent during the acknowledge cycle if the device has been addressed. Setting the AA flag to logic 0 will  
cause a NACK (high level on SDA) to be sent during acknowledge cycle. After the transmission of a byte in  
slave mode, the slave can be temporarily removed from the bus by clearing the AA flag. The slave's own  
address and general call address will be ignored. To resume operation on the bus, the AA flag must be  
reset to logic 1 to allow the slave's address to be recognized.  
Rev. 1.5  
245  
C8051F040/1/2/3/4/5/6/7  
Setting the SMBus0 Free Timer Enable bit (FTE, SMB0CN.1) to logic 1 enables the timer in SMB0CR.  
When SCL goes high, the timer in SMB0CR counts up. A timer overflow indicates a free bus timeout: if  
SMBus0 is waiting to generate a START, it will do so after this timeout. The bus free period should be less  
than 50 µs (see SFR Definition 19.2, SMBus0 Clock Rate Register).  
When the TOE bit in SMB0CN is set to logic 1, Timer 4 is used to detect SCL low timeouts. If Timer 4 is  
enabled (see Section “23.2. Timer 2, Timer 3, and Timer 4” on page 295), Timer 4 is forced to reload  
when SCL is high, and forced to count when SCL is low. With Timer 4 enabled and configured to overflow  
after 25 ms (and TOE set), a Timer 4 overflow indicates a SCL low timeout; the Timer 4 interrupt service  
routine can then be used to reset SMBus0 communication in the event of an SCL low timeout.  
246  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 19.1. SMB0CN: SMBus0 Control  
R
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
BUSY  
ENSMB  
STA  
STO  
SI  
AA  
FTE  
TOE  
00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xC0  
SFR Page: 0  
Bit7:  
BUSY: Busy Status Flag.  
0: SMBus0 is free  
1: SMBus0 is busy  
Bit6:  
Bit5:  
ENSMB: SMBus Enable.  
This bit enables/disables the SMBus serial interface.  
0: SMBus0 disabled.  
1: SMBus0 enabled.  
STA: SMBus Start Flag.  
0: No START condition is transmitted.  
1: When operating as a master, a START condition is transmitted if the bus is free. (If the  
bus is not free, the START is transmitted after a STOP is received.) If STA is set after one or  
more bytes have been transmitted or received and before a STOP is received, a repeated  
START condition is transmitted.  
Bit4:  
STO: SMBus Stop Flag.  
0: No STOP condition is transmitted.  
1: Setting STO to logic 1 causes a STOP condition to be transmitted. When a STOP condi-  
tion is received, hardware clears STO to logic 0. If both STA and STO are set, a STOP con-  
dition is transmitted followed by a START condition. In slave mode, setting the STO flag  
causes SMBus to behave as if a STOP condition was received.  
SI: SMBus Serial Interrupt Flag.  
This bit is set by hardware when one of 27 possible SMBus0 states is entered. (Status code  
0xF8 does not cause SI to be set.) When the SI interrupt is enabled, setting this bit causes  
the CPU to vector to the SMBus interrupt service routine. This bit is not automatically  
cleared by hardware and must be cleared by software.  
Bit3:  
Bit2:  
AA: SMBus Assert Acknowledge Flag.  
This bit defines the type of acknowledge returned during the acknowledge cycle on the SCL  
line.  
0: A "not acknowledge" (high level on SDA) is returned during the acknowledge cycle.  
1: An "acknowledge" (low level on SDA) is returned during the acknowledge cycle.  
FTE: SMBus Free Timer Enable Bit  
0: No timeout when SCL is high  
1: Timeout when SCL high time exceeds limit specified by the SMB0CR value.  
TOE: SMBus Timeout Enable Bit  
Bit1:  
Bit0:  
0: No timeout when SCL is low.  
1: Timeout when SCL low time exceeds limit specified by Timer 4, if enabled.  
Rev. 1.5  
247  
C8051F040/1/2/3/4/5/6/7  
19.4.2. Clock Rate Register  
SFR Definition 19.2. SMB0CR: SMBus0 Clock Rate  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xCF  
SFR Page: 0  
Bits7-0: SMB0CR.[7:0]: SMBus0 Clock Rate Preset  
The SMB0CR Clock Rate register controls the frequency of the serial clock SCL in master  
mode. The 8-bit word stored in the SMB0CR Register preloads a dedicated 8-bit timer. The  
timer counts up, and when it rolls over to 0x00, the SCL logic state toggles.  
The SMB0CR setting should be bounded by the following equation, where SMB0CR is the  
unsigned 8-bit value in register SMB0CR, and SYSCLK is the system clock frequency in Hz:  
SMB0CR  288 – 0.85 SYSCLK  1.124E6  
The resulting SCL signal high and low times are given by the following equations:  
TLOW = 256 – SMB0CR  SYSCLK  
THIGH  258 – SMB0CR  SYSCLK + 625ns  
Using the same value of SMB0CR from above, the Bus Free Timeout period is given in the  
following equation:  
256 – SMB0CR+ 1  
----------------------------------------------------  
TBFT 10   
SYSCLK  
248  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
19.4.3. Data Register  
The SMBus0 Data register SMB0DAT holds a byte of serial data to be transmitted or one that has just  
been received. Software can read or write to this register while the SI flag is set to logic 1; software should  
not attempt to access the SMB0DAT register when the SMBus is enabled and the SI flag reads logic 0  
since the hardware may be in the process of shifting a byte of data in or out of the register.  
Data in SMB0DAT is always shifted out MSB first. After a byte has been received, the first bit of received  
data is located at the MSB of SMB0DAT. While data is being shifted out, data on the bus is simultaneously  
being shifted in. Therefore, SMB0DAT always contains the last data byte present on the bus. In the event  
of lost arbitration, the transition from master transmitter to slave receiver is made with the correct data in  
SMB0DAT.  
SFR Definition 19.3. SMB0DAT: SMBus0 Data  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0xC2  
SFR Page: 0  
Bits7-0: SMB0DAT: SMBus0 Data.  
The SMB0DAT register contains a byte of data to be transmitted on the SMBus0 serial inter-  
face or a byte that has just been received on the SMBus0 serial interface. The CPU can  
read from or write to this register whenever the SI serial interrupt flag (SMB0CN.3) is set to  
logic 1. When the SI flag is not set, the system may be in the process of shifting data and the  
CPU should not attempt to access this register.  
19.4.4. Address Register  
The SMB0ADR Address register holds the slave address for the SMBus0 interface. In slave mode, the  
seven most-significant bits hold the 7-bit slave address. The least significant bit (Bit0) is used to enable the  
recognition of the general call address (0x00). If Bit0 is set to logic 1, the general call address will be recog-  
nized. Otherwise, the general call address is ignored. The contents of this register are ignored when  
SMBus0 is operating in master mode.  
Rev. 1.5  
249  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 19.4. SMB0ADR: SMBus0 Address  
R/W  
SLV6  
Bit7  
R/W  
SLV5  
Bit6  
R/W  
SLV4  
Bit5  
R/W  
SLV3  
Bit4  
R/W  
SLV2  
Bit3  
R/W  
SLV1  
Bit2  
R/W  
SLV0  
Bit1  
R/W  
GC  
Bit0  
Reset Value  
00000000  
SFR Address: 0xC3  
SFR Page:  
0
Bits7-1: SLV6-SLV0: SMBus0 Slave Address.  
These bits are loaded with the 7-bit slave address to which SMBus0 will respond when oper-  
ating as a slave transmitter or slave receiver. SLV6 is the most significant bit of the address  
and corresponds to the first bit of the address byte received.  
Bit0:  
GC: General Call Address Enable.  
This bit is used to enable general call address (0x00) recognition.  
0: General call address is ignored.  
1: General call address is recognized.  
19.4.5. Status Register  
The SMB0STA Status register holds an 8-bit status code indicating the current state of the SMBus0 inter-  
face. There are 28 possible SMBus0 states, each with a corresponding unique status code. The five most  
significant bits of the status code vary while the three least-significant bits of a valid status code are fixed at  
zero when SI = ‘1’. Therefore, all possible status codes are multiples of eight. This facilitates the use of sta-  
tus codes in software as an index used to branch to appropriate service routines (allowing 8 bytes of code  
to service the state or jump to a more extensive service routine).  
For the purposes of user software, the contents of the SMB0STA register is only defined when the SI flag is  
logic 1. Software should never write to the SMB0STA register; doing so will yield indeterminate results. The  
28 SMBus0 states, along with their corresponding status codes, are given in Table 19.1.  
250  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 19.5. SMB0STA: SMBus0 Status  
R/W  
STA7  
Bit7  
R/W  
STA6  
Bit6  
R/W  
STA5  
Bit5  
R/W  
STA4  
Bit4  
R/W  
STA3  
Bit3  
R/W  
STA2  
Bit2  
R/W  
STA1  
Bit1  
R/W  
STA0  
Bit0  
Reset Value  
11111000  
SFR Address: 0xC1  
SFR Page: 0  
Bits7-3: STA7-STA3: SMBus0 Status Code.  
These bits contain the SMBus0 Status Code. There are 28 possible status codes; each sta-  
tus code corresponds to a single SMBus state. A valid status code is present in SMB0STA  
when the SI flag (SMB0CN.3) is set to logic 1. The content of SMB0STA is not defined when  
the SI flag is logic 0. Writing to the SMB0STA register at any time will yield indeterminate  
results.  
Bits2-0: STA2-STA0: The three least significant bits of SMB0STA are always read as logic 0 when  
the SI flag is logic 1.  
Rev. 1.5  
251  
C8051F040/1/2/3/4/5/6/7  
Table 19.1. SMB0STA Status Codes and States  
Status  
Code  
Mode  
SMBus State  
Typical Action  
0x08  
0x10  
0x18  
0x20  
START condition transmitted.  
Load SMB0DAT with Slave Address +  
R/W. Clear STA.  
Repeated START condition transmitted.  
Load SMB0DAT with Slave Address +  
R/W. Clear STA.  
Slave Address + W transmitted. ACK  
received.  
Load SMB0DAT with data to be transmit-  
ted.  
Slave Address + W transmitted. NACK  
received.  
Acknowledge poll to retry. Set STO +  
STA.  
1) Load SMB0DAT with next byte, OR  
2) Set STO, OR  
3) Clear STO then set STA for repeated  
START.  
0x28  
0x30  
Data byte transmitted. ACK received.  
Data byte transmitted. NACK received.  
Arbitration Lost.  
1) Retry transfer OR  
2) Set STO.  
0x38  
0x40  
Save current data.  
Slave Address + R transmitted. ACK received. If only receiving one byte, clear AA (send  
NACK after received byte). Wait for  
received data.  
0x48  
0x50  
0x58  
Slave Address + R transmitted. NACK  
received.  
Acknowledge poll to retry. Set STO +  
STA.  
Data byte received. ACK transmitted.  
Read SMB0DAT. Wait for next byte. If  
next byte is last byte, clear AA.  
Data byte received. NACK transmitted.  
Set STO.  
252  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 19.1. SMB0STA Status Codes and States (Continued)  
Status  
Code  
Mode  
SMBus State  
Typical Action  
0x60  
Own slave address + W received. ACK trans-  
mitted.  
Wait for data.  
0x68  
Arbitration lost in sending SLA + R/W as mas-  
Save current data for retry when bus is  
ter. Own address + W received. ACK transmit- free. Wait for data.  
ted.  
0x70  
0x78  
General call address received. ACK transmit-  
ted.  
Wait for data.  
Arbitration lost in sending SLA + R/W as mas-  
ter. General call address received. ACK trans-  
mitted.  
Save current data for retry when bus is  
free.  
0x80  
Data byte received. ACK transmitted.  
Read SMB0DAT. Wait for next byte or  
STOP.  
0x88  
0x90  
Data byte received. NACK transmitted.  
Set STO to reset SMBus.  
Data byte received after general call address.  
ACK transmitted.  
Read SMB0DAT. Wait for next byte or  
STOP.  
0x98  
Data byte received after general call address.  
NACK transmitted.  
Set STO to reset SMBus.  
0xA0  
0xA8  
0xB0  
STOP or repeated START received.  
No action necessary.  
Own address + R received. ACK transmitted.  
Load SMB0DAT with data to transmit.  
Arbitration lost in transmitting SLA + R/W as  
master. Own address + R received. ACK  
transmitted.  
Save current data for retry when bus is  
free. Load SMB0DAT with data to trans-  
mit.  
0xB8  
0xC0  
0xC8  
Data byte transmitted. ACK received.  
Data byte transmitted. NACK received.  
Load SMB0DAT with data to transmit.  
Wait for STOP.  
Last data byte transmitted (AA=0). ACK  
received.  
Set STO to reset SMBus.  
0xD0  
SCL Clock High Timer per SMB0CR timed out Set STO to reset SMBus.  
0x00  
0xF8  
Bus Error (illegal START or STOP)  
Idle  
Set STO to reset SMBus.  
State does not set SI.  
Rev. 1.5  
253  
C8051F040/1/2/3/4/5/6/7  
254  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
20. Enhanced Serial Peripheral Interface (SPI0)  
The Enhanced Serial Peripheral Interface (SPI0) provides access to a flexible, full-duplex synchronous  
serial bus. SPI0 can operate as a master or slave device in both 3-wire or 4-wire modes, and supports mul-  
tiple masters and slaves on a single SPI bus. The slave-select (NSS) signal can be configured as an input  
to select SPI0 in slave mode, or to disable Master Mode operation in a multi-master environment, avoiding  
contention on the SPI bus when more than one master attempts simultaneous data transfers. NSS can  
also be configured as a chip-select output in master mode, or disabled for 3-wire operation. Additional gen-  
eral purpose port I/O pins can be used to select multiple slave devices in master mode.  
SFR Bus  
SPI0CKR  
SPI0CFG  
SPI0CN  
Clock Divide  
Logic  
SYSCLK  
SPI CONTROL LOGIC  
SPI IRQ  
Data Path  
Control  
Pin Interface  
Control  
MOSI  
Tx Data  
C
R
O
S
S
B
A
R
SPI0DAT  
SCK  
MISO  
NSS  
Transmit Data Buffer  
Pin  
Control  
Logic  
Port I/O  
Shift Register  
Rx Data  
7 6 5 4 3 2 1 0  
Receive Data Buffer  
Read  
SPI0DAT  
Write  
SPI0DAT  
SFR Bus  
Figure 20.1. SPI Block Diagram  
Rev. 1.5  
255  
C8051F040/1/2/3/4/5/6/7  
20.1. Signal Descriptions  
The four signals used by SPI0 (MOSI, MISO, SCK, NSS) are described below.  
20.1.1. Master Out, Slave In (MOSI)  
The master-out, slave-in (MOSI) signal is an output from a master device and an input to slave devices. It  
is used to serially transfer data from the master to the slave. This signal is an output when SPI0 is operat-  
ing as a master and an input when SPI0 is operating as a slave. Data is transferred most-significant bit  
first. When configured as a master, MOSI is driven by the MSB of the shift register in both 3- and 4-wire  
mode.  
20.1.2. Master In, Slave Out (MISO)  
The master-in, slave-out (MISO) signal is an output from a slave device and an input to the master device.  
It is used to serially transfer data from the slave to the master. This signal is an input when SPI0 is operat-  
ing as a master and an output when SPI0 is operating as a slave. Data is transferred most-significant bit  
first. The MISO pin is placed in a high-impedance state when the SPI module is disabled and when the SPI  
operates in 4-wire mode as a slave that is not selected. When acting as a slave in 3-wire mode, MISO is  
always driven by the MSB of the shift register.  
20.1.3. Serial Clock (SCK)  
The serial clock (SCK) signal is an output from the master device and an input to slave devices. It is used  
to synchronize the transfer of data between the master and slave on the MOSI and MISO lines. SPI0 gen-  
erates this signal when operating as a master. The SCK signal is ignored by a SPI slave when the slave is  
not selected (NSS = 1) in 4-wire slave mode.  
20.1.4. Slave Select (NSS)  
The function of the slave-select (NSS) signal is dependent on the setting of the NSSMD1 and NSSMD0  
bits in the SPI0CN register. There are three possible modes that can be selected with these bits:  
1. NSSMD[1:0] = 00: 3-Wire Master or 3-Wire Slave Mode: SPI0 operates in 3-wire mode, and  
NSS is disabled. When operating as a slave device, SPI0 is always selected in 3-wire mode.  
Since no select signal is present, SPI0 can be the only slave on the bus in 3-wire mode. This is  
intended for point-to-point communication between a master and one slave.  
2. NSSMD[1:0] = 01: 4-Wire Slave or Multi-Master Mode: SPI0 operates in 4-wire mode, and  
NSS is enabled as an input. When operating as a slave, NSS selects the SPI0 device. When  
operating as a master, a 1-to-0 transition of the NSS signal disables the master function of  
SPI0 so that multiple master devices can be used on the same SPI bus.  
3. NSSMD[1:0] = 1x: 4-Wire Master Mode: SPI0 operates in 4-wire mode, and NSS is enabled as  
an output. The setting of NSSMD0 determines what logic level the NSS pin will output. This  
configuration should only be used when operating SPI0 as a master device.  
See Figure 20.2, Figure 20.3, and Figure 20.4 for typical connection diagrams of the various operational  
modes. Note that the setting of NSSMD bits affects the pinout of the device. When in 3-wire master or  
3-wire slave mode, the NSS pin will not be mapped by the crossbar. In all other modes, the NSS signal will  
be mapped to a pin on the device. See Section “17.1. Ports 0 through 3 and the Priority Crossbar  
Decoder” on page 204 for general purpose port I/O and crossbar information.  
256  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
20.2. SPI0 Master Mode Operation  
A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the  
Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when  
in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer  
is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data  
serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic  
1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag  
is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device  
simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex  
operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The  
data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is  
fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by  
reading SPI0DAT.  
When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire  
single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when  
NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and  
is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in  
this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and  
a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0  
must be manually re-enabled in software under these circumstances. In multi-master systems, devices will  
typically default to being slave devices while they are not acting as the system master device. In multi-mas-  
ter mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins.  
Figure 20.2 shows a connection diagram between two master devices in multiple-master mode.  
3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this  
mode, NSS is not used, and does not get mapped to an external port pin through the crossbar. Any slave  
devices that must be addressed in this mode should be selected using general-purpose I/O pins.  
Figure 20.3 shows a connection diagram between a master device in 3-wire master mode and a slave  
device.  
4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an  
output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value  
of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be  
addressed using general-purpose I/O pins. Figure 20.4 shows a connection diagram for a master device in  
4-wire master mode and two slave devices.  
Rev. 1.5  
257  
C8051F040/1/2/3/4/5/6/7  
NSS  
GPIO  
MISO  
MOSI  
SCK  
MISO  
Master  
Master  
MOSI  
Device 1  
Device 2  
SCK  
GPIO  
NSS  
Figure 20.2. Multiple-Master Mode Connection Diagram  
Master  
Device  
Slave  
Device  
MISO  
MOSI  
SCK  
MISO  
MOSI  
SCK  
Figure 20.3. 3-Wire Single Master and Slave Mode Connection Diagram  
MISO  
MOSI  
SCK  
MISO  
MOSI  
SCK  
Master  
Device  
Slave  
Device  
NSS  
NSS  
GPIO  
MISO  
MOSI  
SCK  
Slave  
Device  
NSS  
Figure 20.4. 4-Wire Single Master and Slave Mode Connection Diagram  
258  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
20.3. SPI0 Slave Mode Operation  
When SPI0 is enabled and not configured as a master, it will operate as a SPI slave. As a slave, bytes are  
shifted in through the MOSI pin and out through the MISO pin by a master device controlling the SCK sig-  
nal. A bit counter in the SPI0 logic counts SCK edges. When 8 bits have been shifted through the shift reg-  
ister, the SPIF flag is set to logic 1, and the byte is copied into the receive buffer. Data is read from the  
receive buffer by reading SPI0DAT. A slave device cannot initiate transfers. Data to be transferred to the  
master device is pre-loaded into the shift register by writing to SPI0DAT. Writes to SPI0DAT are double-  
buffered, and are placed in the transmit buffer first. If the shift register is empty, the contents of the transmit  
buffer will immediately be transferred into the shift register. When the shift register already contains data,  
the SPI will wait until the byte is transferred before loading it with the transmit buffer’s contents.  
When configured as a slave, SPI0 can be configured for 4-wire or 3-wire operation. The default, 4-wire  
slave mode, is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In 4-wire mode, the  
NSS signal is routed to a port pin and configured as a digital input. SPI0 is enabled when NSS is logic 0,  
and disabled when NSS is logic 1. The bit counter is reset on a falling edge of NSS. Note that the NSS sig-  
nal must be driven low at least 2 system clocks before the first active edge of SCK for each byte transfer.  
Figure 20.4 shows a connection diagram between two slave devices in 4-wire slave mode and a master  
device.  
3-wire slave mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. NSS is not  
used in this mode, and does not get mapped to an external port pin through the crossbar. Since there is no  
way of uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present  
on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit  
counter that determines when a full byte has been received. The bit counter can only be reset by disabling  
and re-enabling SPI0 with the SPIEN bit. Figure 20.3 shows a connection diagram between a slave device  
in 3-wire slave mode and a master device.  
20.4. SPI0 Interrupt Sources  
When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to  
logic 1:  
Note: All of the following interrupt bits must be cleared by software.  
1. The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This  
flag can occur in all SPI0 modes.  
2. The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted  
when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the  
write to SPI0DAT will be ignored, and the transmit buffer will not be written.This flag can occur  
in all SPI0 modes.  
3. The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master,  
and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the  
MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master  
device to access the bus.  
4. The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave,  
and a transfer is completed and the receive buffer still holds an unread byte from a previous  
transfer. The new byte is not transferred to the receive buffer, allowing the previously received  
data byte to be read. The data byte which caused the overrun is lost.  
Rev. 1.5  
259  
C8051F040/1/2/3/4/5/6/7  
20.5. Serial Clock Timing  
As shown in Figure 20.5, four combinations of serial clock phase and polarity can be selected using the  
clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one  
of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-  
high or active-low clock. Both master and slave devices must be configured to use the same clock phase  
and polarity. Note: SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the  
clock phase or polarity.  
Note that in master mode, the SPI samples MISO one system clock before the inactive edge of SCK (the  
edge where MOSI changes state) to provide maximum settling time for the slave device.  
The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 20.3 controls the master mode  
serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured  
as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency. When the  
SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the  
system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial  
input data synchronously with the system clock. If the master issues SCK, NSS, and the serial input data  
asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock fre-  
quency. In the special case where the master only wants to transmit data to the slave and does not need to  
receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data  
transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK,  
NSS, and the serial input data synchronously with the system clock.  
SCK  
(CKPOL=0, CKPHA=0)  
SCK  
(CKPOL=0, CKPHA=1)  
SCK  
(CKPOL=1, CKPHA=0)  
SCK  
(CKPOL=1, CKPHA=1)  
MISO/MOSI  
NSS  
MSB  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Figure 20.5. Data/Clock Timing Diagram  
260  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
20.6. SPI Special Function Registers  
SPI0 is accessed and controlled through four special function registers in the system controller: SPI0CN  
Control Register, SPI0DAT Data Register, SPI0CFG Configuration Register, and SPI0CKR Clock Rate  
Register. The four special function registers related to the operation of the SPI0 Bus are described in the  
following definitions.  
SFR Definition 20.1. SPI0CFG: SPI0 Configuration  
R
R/W  
R/W  
CKPHA  
Bit5  
R/W  
R
R
R
R
Reset Value  
SPIBSY MSTEN  
CKPOL SLVSEL  
NSSIN  
Bit2  
SRMT  
Bit1  
RXBMT 00000111  
Bit7  
Bit6  
Bit4  
Bit3  
Bit0  
SFR Address: 0x9A  
SFR Page: 0  
Bit 7:  
SPIBSY: SPI Busy.  
This bit is set to logic 1 when a SPI transfer is in progress (Master or slave Mode).  
MSTEN: Master Mode Enable.  
0: Disable master mode. Operate in slave mode.  
1: Enable master mode. Operate as a master.  
CKPHA: SPI0 Clock Phase.  
Bit 6:  
Bit 5:  
This bit controls the SPI0 clock phase.  
0: Data sampled on first edge of SCK period.  
1: Data sampled on second edge of SCK period.  
Bit 4:  
Bit 3:  
CKPOL: SPI0 Clock Polarity.  
This bit controls the SPI0 clock polarity.  
0: SCK line low in idle state.  
1: SCK line high in idle state.  
SLVSEL: Slave Selected Flag.  
This bit is set to logic 1 whenever the NSS pin is low indicating SPI0 is the selected slave. It  
is cleared to logic 0 when NSS is high (slave not selected). This bit does not indicate the  
instantaneous value at the NSS pin, but rather a de-glitched version of the pin input.  
NSSIN: NSS Instantaneous Pin Input.  
This bit mimics the instantaneous value that is present on the NSS port pin at the time that  
the register is read. This input is not de-glitched.  
SRMT: Shift Register Empty (Valid in Slave Mode).  
This bit will be set to logic 1 when all data has been transferred in/out of the shift register,  
and there is no new information available to read from the transmit buffer or write to the  
receive buffer. It returns to logic 0 when a data byte is transferred to the shift register from  
the transmit buffer or by a transition on SCK.  
Bit 2:  
Bit 1:  
NOTE: SRMT = 1 when in Master Mode.  
Bit 0:  
RXBMT: Receive Buffer Empty (Valid in Slave Mode).  
This bit will be set to logic 1 when the receive buffer has been read and contains no new  
information. If there is new information available in the receive buffer that has not been read,  
this bit will return to logic 0.  
NOTE: RXBMT = 1 when in Master Mode.  
Rev. 1.5  
261  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 20.2. SPI0CN: SPI0 Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
R/W  
Reset Value  
SPIF  
WCOL  
MODF RXOVRN NSSMD1 NSSMD0 TXBMT  
SPIEN 00000110  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0xF8  
SFR Page: 0  
Bit 7:  
SPIF: SPI0 Interrupt Flag.  
This bit is set to logic 1 by hardware at the end of a data transfer. If interrupts are enabled,  
setting this bit causes the CPU to vector to the SPI0 interrupt service routine. This bit is not  
automatically cleared by hardware. It must be cleared by software.  
WCOL: Write Collision Flag.  
This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) to indicate a write to  
the SPI0 data register was attempted while a data transfer was in progress. It must be  
cleared by software.  
Bit 6:  
Bit 5:  
Bit 4:  
MODF: Mode Fault Flag.  
This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when a master mode  
collision is detected (NSS is low, MSTEN = 1, and NSSMD[1:0] = 01). This bit is not auto-  
matically cleared by hardware. It must be cleared by software.  
RXOVRN: Receive Overrun Flag (Slave Mode only).  
This bit is set to logic 1 by hardware (and generates a SPI0 interrupt) when the receive  
buffer still holds unread data from a previous transfer and the last bit of the current transfer  
is shifted into the SPI0 shift register. This bit is not automatically cleared by hardware. It  
must be cleared by software.  
Bits 3-2: NSSMD1-NSSMD0: Slave Select Mode.  
Selects between the following NSS operation modes:  
(See Section “20.2. SPI0 Master Mode Operation” on page 257 and Section “20.3. SPI0  
Slave Mode Operation” on page 259).  
00: 3-Wire Slave or 3-wire Master Mode. NSS signal is not routed to a port pin.  
01: 4-Wire Slave or Multi-Master Mode (Default). NSS is always an input to the device.  
1x: 4-Wire Single-Master Mode. NSS signal is mapped as an output from the device and will  
assume the value of NSSMD0.  
Bit 1:  
Bit 0:  
TXBMT: Transmit Buffer Empty.  
This bit will be set to logic 0 when new data has been written to the transmit buffer. When  
data in the transmit buffer is transferred to the SPI shift register, this bit will be set to logic 1,  
indicating that it is safe to write a new byte to the transmit buffer.  
SPIEN: SPI0 Enable.  
This bit enables/disables the SPI.  
0: SPI disabled.  
1: SPI enabled.  
262  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 20.3. SPI0CKR: SPI0 Clock Rate  
R/W  
SCR7  
Bit7  
R/W  
SCR6  
Bit6  
R/W  
SCR5  
Bit5  
R/W  
SCR4  
Bit4  
R/W  
SCR3  
Bit3  
R/W  
SCR2  
Bit2  
R/W  
SCR1  
Bit1  
R/W  
SCR0  
Bit0  
Reset Value  
00000000  
SFR Address: 0x9D  
SFR Page: 0  
Bits 7-0: SCR7-SCR0: SPI0 Clock Rate  
These bits determine the frequency of the SCK output when the SPI0 module is configured  
for master mode operation. The SCK clock frequency is a divided version of the system  
clock, and is given in the following equation, where SYSCLK is the system clock frequency  
and SPI0CKR is the 8-bit value held in the SPI0CKR register.  
SYSCLK  
2  SPI0CKR + 1  
------------------------------------------------  
=
fSCK  
for 0 <= SPI0CKR <= 255  
Example: If SYSCLK = 2 MHz and SPI0CKR = 0x04,  
2000000  
2  4 + 1  
-------------------------  
=
fSCK  
fSCK = 200kHz  
Rev. 1.5  
263  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 20.4. SPI0DAT: SPI0 Data  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x9B  
SFR Page: 0  
Bits 7-0: SPI0DAT: SPI0 Transmit and Receive Data.  
The SPI0DAT register is used to transmit and receive SPI0 data. Writing data to SPI0DAT  
places the data into the transmit buffer and initiates a transfer when in Master Mode. A read  
of SPI0DAT returns the contents of the receive buffer.  
264  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
21. UART0  
UART0 is an enhanced serial port with frame error detection and address recognition hardware. UART0  
may operate in full-duplex asynchronous or half-duplex synchronous modes, and mutiproccessor commu-  
nication is fully supported. Receive data is buffered in a holding register, allowing UART0 to start reception  
of a second incoming data byte before software has finished reading the previous data byte. A Receive  
Overrun bit indicates when new received data is latched into the receive buffer before the previously  
received byte has been read.  
UART0 is accessed via its associated SFRs, Serial Control (SCON0) and Serial Data Buffer (SBUF0). The  
single SBUF0 location provides access to both transmit and receive registers. Reading SCON0 accesses  
the Receive register and writing SCON0 accesses the Transmit register.  
UART0 may be operated in polled or interrupt mode. UART0 has two sources of interrupts: a Transmit  
Interrupt flag, TI0 (SCON0.1) set when transmission of a data byte is complete, and a Receive Interrupt  
flag, RI0 (SCON0.0) set when reception of a data byte is complete. UART0 interrupt flags are not cleared  
by hardware when the CPU vectors to the interrupt service routine; they must be cleared manually by soft-  
ware. This allows software to determine the cause of the UART0 interrupt (transmit complete or receive  
complete).  
SFR Bus  
Write to  
SBUF0  
TB80  
SET  
D
Q
SBUF0  
TX0  
CLR  
Crossbar  
SSTA0  
F
E
0
R
X
O
V
0
T
X
C
O
L
S
M
O
D
0
S
0
T
C
L
S
0
T
C
L
S
0
R
C
L
S
0
R
C
L
Zero Detector  
0
K
1
K
1
K
1
K
1
Shift  
Stop Bit  
Gen.  
Data  
Tx Control  
Start  
Tx Clock  
Send  
Tx IRQ  
TI0  
RI0  
SCON0  
UART0  
Baud Rate Generation  
Logic  
S
M
0
S
M
1
S
M
2
R
E
N
0
T
B
8
0
R
B
8
T
I
0
R
I
0
Serial Port  
(UART0) Interrupt  
0
0
0
0
EN  
Rx IRQ  
Rx Clock  
Start  
Load  
SBUF  
Rx Control  
Address  
Match  
Port I/O  
Shift  
0x1FF  
Frame Error  
Detection  
Input Shift Register  
(9 bits)  
Load  
SBUF0  
RB80  
SADDR0  
SADEN0  
SBUF0  
Match Detect  
Read  
SBUF0  
SFR Bus  
RX0  
Crossbar  
Figure 21.1. UART0 Block Diagram  
Rev. 1.5  
265  
C8051F040/1/2/3/4/5/6/7  
21.1. UART0 Operational Modes  
UART0 provides four operating modes (one synchronous and three asynchronous) selected by setting  
configuration bits in the SCON0 register. These four modes offer different baud rates and communication  
protocols. The four modes are summarized in Table 21.1.  
Table 21.1. UART0 Modes  
Mode  
Synchronization  
Synchronous  
Baud Clock  
Data Bits Start/Stop Bits  
0
1
2
3
SYSCLK / 12  
8
8
9
9
None  
Asynchronous  
Asynchronous  
Asynchronous  
Timer 1, 2, 3, or 4 Overflow  
SYSCLK / 32 or SYSCLK / 64  
Timer 1, 2, 3, or 4 Overflow  
1 Start, 1 Stop  
1 Start, 1 Stop  
1 Start, 1 Stop  
21.1.1. Mode 0: Synchronous Mode  
Mode 0 provides synchronous, half-duplex communication. Serial data is transmitted and received on the  
RX0 pin. The TX0 pin provides the shift clock for both transmit and receive. The MCU must be the master  
since it generates the shift clock for transmission in both directions (see the interconnect diagram in  
Figure 21.3).  
Data transmission begins when an instruction writes a data byte to the SBUF0 register. Eight data bits are  
transferred LSB first (see the timing diagram in Figure 21.2), and the TI0 Transmit Interrupt Flag  
(SCON0.1) is set at the end of the eighth bit time. Data reception begins when the REN0 Receive Enable  
bit (SCON0.4) is set to logic 1 and the RI0 Receive Interrupt Flag (SCON0.0) is cleared. One cycle after  
the eighth bit is shifted in, the RI0 flag is set and reception stops until software clears the RI0 bit. An inter-  
rupt will occur if enabled when either TI0 or RI0 are set.  
The Mode 0 baud rate is SYSCLK/12. RX0 is forced to open-drain in Mode 0, and an external pullup will  
typically be required.  
MODE 0 TRANSMIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
RX (data out)  
TX (clk out)  
MODE 0 RECEIVE  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
RX (data in)  
TX (clk out)  
Figure 21.2. UART0 Mode 0 Timing Diagram  
TX  
RX  
CLK  
Shift  
Reg.  
C8051Fxxx  
DATA  
8 Extra Outputs  
266  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Figure 21.3. UART0 Mode 0 Interconnect  
21.1.2. Mode 1: 8-Bit UART, Variable Baud Rate  
Mode 1 provides standard asynchronous, full-duplex communication using a total of 10 bits per data byte:  
one start bit, eight data bits (LSB first), and one stop bit. Data are transmitted from the TX0 pin and  
received at the RX0 pin. On receive, the eight data bits are stored in SBUF0 and the stop bit goes into  
RB80 (SCON0.2).  
Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit  
Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data  
reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop  
bit is received, the data byte will be loaded into the SBUF0 receive register if the following conditions are  
met: RI0 must be logic 0, and if SM20 is logic 1, the stop bit must be logic 1.  
If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the  
RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not  
be set. An interrupt will occur if enabled when either TI0 or RI0 are set.  
MARK  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SPACE  
BIT TIMES  
BIT SAMPLING  
Figure 21.4. UART0 Mode 1 Timing Diagram  
The baud rate generated in Mode 1 is a function of timer overflow, shown in Equation 21.1 and  
Equation 21.3. UART0 can use Timer 1 operating in 8-Bit Auto-Reload Mode, or Timer 2, 3, or 4 operating  
in Auto-reload Mode to generate the baud rate (note that the TX and RX clocks are selected separately).  
On each timer overflow event (a rollover from all ones—0xFF for Timer 1, 0xFFFF for Timers 2, 3 and 4—  
to zero) a clock is sent to the baud rate logic.  
Timers 1, 2, 3, and 4 are selected as the baud rate source with bits in the SSTA0 register (see SFR Defini-  
tion 21.2). The transmit baud rate clock is selected using the S0TCLK1 and S0TCLK0 bits, and the receive  
baud rate clock is selected using the S0RCLK1 and S0RCLK0 bits.  
The Mode 1 baud rate equations are shown below, where T1M is bit4 of register CKCON, TH1 is the 8-bit  
reload register for Timer 1, and [RCAPnH, RCAPnL] is the 16-bit reload register for Timer 2, 3, or 4.  
When SMOD0 = 0:  
Mode1_BaudRate = 1 32 Timer1_OverflowRate  
When SMOD0 = 1:  
Mode1_BaudRate = 1 16 Timer1_OverflowRate  
Equation 21.1. Mode 1 Baud Rate using Timer 1  
The Timer 1 overflow rate is determined by the Timer 1 clock source (T1CLK) and reload value (TH1). The  
frequency of T1CLK is selected as described in Section “23.1. Timer 0 and Timer 1” on page 287. The  
Timer 1 overflow rate is calculated as shown in Equation 21.2.  
Rev. 1.5  
267  
C8051F040/1/2/3/4/5/6/7  
Timer1_OverflowRate = T1CLK  256 – TH1  
Equation 21.2. Timer 1 Overflow Rate  
When Timers 2, 3, or 4 are selected as a baud rate source, the baud rate is generated as shown in  
Equation 21.3.  
Mode1_BaudRate = 1 16 Timer234_OverflowRate  
Equation 21.3. Mode 1 Baud Rate using Timer 2, 3, or 4  
The overflow rate for Timer 2, 3, or 4 is determined by the clock source for the timer (TnCLK) and the 16-  
bit reload value stored in the RCAPn register (n = 2, 3, or 4), as shown in Equation 21.4.  
Timer234_OverflowRate = TnCLK  65536 – RCAPn  
Equation 21.4. Timer 2, 3, or 4 Overflow Rate  
268  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
21.1.3. Mode 2: 9-Bit UART, Fixed Baud Rate  
Mode 2 provides asynchronous, full-duplex communication using a total of eleven bits per data byte: a start  
bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. Mode 2 supports multiprocessor  
communications and hardware address recognition (see Section 21.2). On transmit, the ninth data bit is  
determined by the value in TB80 (SCON0.3). It can be assigned the value of the parity flag P in the PSW or  
used in multiprocessor communications. On receive, the ninth data bit goes into RB80 (SCON0.2) and the  
stop bit is ignored.  
Data transmission begins when an instruction writes a data byte to the SBUF0 register. The TI0 Transmit  
Interrupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data  
reception can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop  
bit is received, the data byte will be loaded into the SBUF0 receive register if RI0 is logic 0 and one of the  
following requirements are met:  
SM20 is logic 0  
SM20 is logic 1, the received 9th bit is logic 1, and the received address matches the UART0 address  
as described in Section 21.2.  
If the above conditions are satisfied, the eight bits of data are stored in SBUF0, the ninth bit is stored in  
RB80 and the RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the  
RI0 flag will not be set. An interrupt will occur if enabled when either TI0 or RI0 are set.  
The baud rate in Mode 2 is either SYSCLK / 32 or SYSCLK / 64, according to the value of the SMOD0 bit  
in register SSTA0.  
SYSCLK  
BaudRate = 2SMOD0  
---------------------  
64  
Equation 21.5. Mode 2 Baud Rate  
MARK  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
SPACE  
BIT TIMES  
BIT SAMPLING  
Figure 21.5. UART0 Modes 2 and 3 Timing Diagram  
TX  
RS-232  
RS-232  
LEVEL  
C8051Fxxx  
RX  
XLTR  
OR  
TX  
RX  
TX  
RX  
MCU  
C8051Fxxx  
Figure 21.6. UART0 Modes 1, 2, and 3 Interconnect Diagram  
Rev. 1.5  
269  
C8051F040/1/2/3/4/5/6/7  
21.1.4. Mode 3: 9-Bit UART, Variable Baud Rate  
Mode 3 uses the Mode 2 transmission protocol with the Mode 1 baud rate generation. Mode 3 operation  
transmits 11 bits: a start bit, 8 data bits (LSB first), a programmable ninth data bit, and a stop bit. The baud  
rate is derived from Timer 1 or Timer 2, 3, or 4 overflows, as defined by Equation 21.1 and Equation 21.3.  
Multiprocessor communications and hardware address recognition are supported, as described in Section  
21.2.  
21.2. Multiprocessor Communications  
Modes 2 and 3 support multiprocessor communication between a master processor and one or more slave  
processors by special use of the ninth data bit and the built-in UART0 address recognition hardware. When  
a master processor wants to transmit to one or more slaves, it first sends an address byte to select the tar-  
get(s). An address byte differs from a data byte in that its ninth bit is logic 1; in a data byte, the ninth bit is  
always set to logic 0. UART0 will recognize as “valid” (i.e., capable of causing an interrupt) two types of  
addresses: (1) a masked address and (2) a broadcast address at any given time. Both are described  
below.  
270  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
21.3. Configuration of a Masked Address  
The UART0 address is configured via two SFRs: SADDR0 (Serial Address) and SADEN0 (Serial Address  
Enable). SADEN0 sets the bit mask for the address held in SADDR0: bits set to logic 1 in SADEN0 corre-  
spond to bits in SADDR0 that are checked against the received address byte; bits set to logic 0 in SADEN0  
correspond to “don’t care” bits in SADDR0.  
Example 1, SLAVE #1  
Example 2, SLAVE #2  
Example 3, SLAVE #3  
=
SADDR0  
SADEN0  
= 00110101  
= 00001111  
SADDR0  
SADDR0  
SADEN0  
= 00110101  
= 11000000  
00110101  
=
SADEN0  
11110011  
UART0 Address = xxxx0101  
UART0 Address = 0011xx01  
UART0 Address = 00xxxxxx  
Setting the SM20 bit (SCON0.5) configures UART0 such that when a stop bit is received, UART0 will gen-  
erate an interrupt only if the ninth bit is logic 1 (RB80 = ‘1’) and the received data byte matches the UART0  
slave address. Following the received address interrupt, the slave will clear its SM20 bit to enable inter-  
rupts on the reception of the following data byte(s). Once the entire message is received, the addressed  
slave resets its SM20 bit to ignore all transmissions until it receives the next address byte. While SM20 is  
logic 1, UART0 ignores all bytes that do not match the UART0 address and include a ninth bit that is logic  
1.  
21.4. Broadcast Addressing  
Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple  
slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The broadcast  
address is the logical OR of registers SADDR0 and SADEN0, and ‘0’s of the result are treated as “don’t  
cares”. Typically a broadcast address of 0xFF (hexadecimal) is acknowledged by all slaves, assuming  
“don’t care” bits as ‘1’s. The master processor can be configured to receive all transmissions or a protocol  
can be implemented such that the master/slave role is temporarily reversed to enable half-duplex trans-  
mission between the original master and slave(s).  
Example 4, SLAVE #1  
Example 5, SLAVE #2  
Example 6, SLAVE #3  
SADDR0  
SADEN0  
= 00110101  
= 00001111  
SADDR0  
SADEN0  
= 00110101  
= 11110011  
SADDR0  
SADEN0  
= 00110101  
= 11000000  
Broadcast Address = 00111111  
Broadcast Address = 11110111  
Broadcast Address = 11110101  
Where all ZEROES in the Broadcast address are don’t cares.  
Note in the above examples 4, 5, and 6, each slave would recognize as “valid” an address of 0xFF as a  
broadcast address. Also note that examples 4, 5, and 6 uses the same SADDR0 and SADEN0 register  
values as shown in the examples 1, 2, and 3 respectively (slaves #1, 2, and 3). Thus, a master could  
address each slave device individually using a masked address, and also broadcast to all three slave  
devices. For example, if a Master were to send an address “11110101”, only slave #1 would recognize the  
address as valid. If a master were to then send an address of “11111111”, all three slave devices would rec-  
ognize the address as a valid broadcast address.  
Rev. 1.5  
271  
C8051F040/1/2/3/4/5/6/7  
Master  
Device  
Slave  
Device  
Slave  
Device  
Slave  
Device  
+5V  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
Figure 21.7. UART Multi-Processor Mode Interconnect Diagram  
21.5. Frame and Transmission Error Detection  
All Modes:  
The Transmit Collision bit (TXCOL0 bit in register SSTA0) reads '1' if user software writes data to the  
SBUF0 register while a transmit is in progress.  
Modes 1, 2, and 3:  
The Receive Overrun bit (RXOV0 in register SSTA0) reads '1' if a new data byte is latched into the receive  
buffer before software has read the previous byte. The Frame Error bit (FE0 in register SSTA0) reads '1' if  
an invalid (low) STOP bit is detected.  
272  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 21.2. Oscillator Frequencies for Standard Baud Rates  
Timer 1 Reload  
Oscillator frequency  
(MHz)  
Timer 2, 3, or 4  
Reload Value  
2
Divide Factor  
Resulting Baud Rate (Hz)  
1
Value  
24.0  
22.1184  
18.432  
11.0592  
3.6864  
1.8432  
24.0  
208  
192  
160  
96  
0xF3  
0xF4  
0xF6  
0xFA  
0xFE  
0xFF  
0xCC  
0xD0  
0xD8  
0xE8  
0xF8  
0xFC  
0x64  
0x70  
0x88  
0xB8  
0xE8  
0xF4  
0xFFF3  
0xFFF4  
0xFFF6  
0xFFFA  
0xFFFE  
0xFFFF  
0xFFCC  
0xFFD0  
0xFFD8  
0xFFE8  
0xFFF8  
0xFFFC  
0xFF64  
0xFF70  
0xFF88  
0xFFB8  
0xFFE8  
0xFFF4  
115200 (115384)  
115200  
115200  
115200  
115200  
115200  
28800 (28846)  
28800  
32  
16  
832  
768  
640  
348  
128  
64  
22.1184  
18.432  
11.0592  
3.6864  
1.8432  
24.0  
28800  
28800  
28800  
28800  
2496  
2304  
1920  
1152  
384  
192  
9600 (9615)  
9600  
22.1184  
18.432  
11.0592  
3.6864  
1.8432  
Notes:  
9600  
9600  
9600  
9600  
1. Assumes SMOD0=1 and T1M=1.  
2. Numbers in parenthesis show the actual baud rate.  
Rev. 1.5  
273  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 21.1. SCON0: UART0 Control  
R/W  
SM00  
Bit7  
R/W  
SM10  
Bit6  
R/W  
SM20  
Bit5  
R/W  
REN0  
Bit4  
R/W  
TB80  
Bit3  
R/W  
RB80  
Bit2  
R/W  
TI0  
Bit1  
R/W  
RI0  
Bit0  
Reset Value  
00000000  
SFR Address: 0x98  
SFR Page: 0  
Bits7-6: SM00-SM10: Serial Port Operation Mode:  
Write:  
When written, these bits select the Serial Port Operation Mode as follows:  
SM00  
SM10  
Mode  
0
0
1
1
0
1
0
1
Mode 0: Synchronous Mode  
Mode 1: 8-Bit UART, Variable Baud Rate  
Mode 2: 9-Bit UART, Fixed Baud Rate  
Mode 3: 9-Bit UART, Variable Baud Rate  
Reading these bits returns the current UART0 mode as defined above.  
SM20: Multiprocessor Communication Enable.  
Bit5:  
The function of this bit is dependent on the Serial Port Operation Mode.  
Mode 0: No effect  
Mode 1: Checks for valid stop bit.  
0: Logic level of stop bit is ignored.  
1: RI0 will only be activated if stop bit is logic level 1.  
Mode 2 and 3: Multiprocessor Communications Enable.  
0: Logic level of ninth bit is ignored.  
1: RI0 is set and an interrupt is generated only when the ninth bit is logic 1 and the  
received address matches the UART0 address or the broadcast address.  
REN0: Receive Enable.  
Bit4:  
This bit enables/disables the UART0 receiver.  
0: UART0 reception disabled.  
1: UART0 reception enabled.  
Bit3:  
Bit2:  
TB80: Ninth Transmission Bit.  
The logic level of this bit will be assigned to the ninth transmission bit in Modes 2 and 3. It is  
not used in Modes 0 and 1. Set or cleared by software as required.  
RB80: Ninth Receive Bit.  
The bit is assigned the logic level of the ninth bit received in Modes 2 and 3. In Mode 1, if  
SM20 is logic 0, RB80 is assigned the logic level of the received stop bit. RB8 is not used in  
Mode 0.  
Bit1:  
Bit0:  
TI0: Transmit Interrupt Flag.  
Set by hardware when a byte of data has been transmitted by UART0 (after the 8th bit in  
Mode 0, or at the beginning of the stop bit in other modes). When the UART0 interrupt is  
enabled, setting this bit causes the CPU to vector to the UART0 interrupt service routine.  
This bit must be cleared manually by software.  
RI0: Receive Interrupt Flag.  
Set by hardware when a byte of data has been received by UART0 (as selected by the  
SM20 bit). When the UART0 interrupt is enabled, setting this bit causes the CPU to vector to  
the UART0 interrupt service routine. This bit must be cleared manually by software.  
274  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 21.2. SSTA0: UART0 Status and Clock Selection  
R/W  
FE0  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
RXOV0 TXCOL0 SMOD0 S0TCLK1 S0TCLK0 S0RCLK1 S0RCLK0 00000000  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
SFR Address: 0x91  
SFR Page: 0  
Bit7:  
FE0: Frame Error Flag.  
This flag indicates if an invalid (low) STOP bit is detected.  
0: Frame Error has not been detected  
1: Frame Error has been detected.  
Bit6:  
Bit5:  
Bit4:  
RXOV0: Receive Overrun Flag.  
This flag indicates new data has been latched into the receive buffer before software has  
read the previous byte.  
0: Receive overrun has not been detected.  
1: Receive Overrun has been detected.  
TXCOL0: Transmit Collision Flag.  
This flag indicates user software has written to the SBUF0 register while a transmission is in  
progress.  
0: Transmission Collision has not been detected.  
1: Transmission Collision has been detected.  
SMOD0: UART0 Baud Rate Doubler Enable.  
This bit enables/disables the divide-by-two function of the UART0 baud rate logic for config-  
urations described in the UART0 section.  
0: UART0 baud rate divide-by-two enabled.  
1: UART0 baud rate divide-by-two disabled.  
Bits3-2: UART0 Transmit Baud Rate Clock Selection Bits.  
S0TCLK1 S0TCLK0 Serial Transmit Baud Rate Clock Source  
0
0
1
1
0
1
0
1
Timer 1 generates UART0 TX Baud Rate  
Timer 2 Overflow generates UART0 TX baud rate  
Timer 3 Overflow generates UART0 TX baud rate  
Timer 4 Overflow generates UART0 TX baud rate  
Bits1-0: UART0 Receive Baud Rate Clock Selection Bits  
S0RCLK1 S0RCLK0 Serial Receive Baud Rate Clock Source  
0
0
1
1
0
1
0
1
Timer 1 generates UART0 RX Baud Rate  
Timer 2 Overflow generates UART0 RX baud rate  
Timer 3 Overflow generates UART0 RX baud rate  
Timer 4 Overflow generates UART0 RX baud rate  
Rev. 1.5  
275  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 21.3. SBUF0: UART0 Data Buffer  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: 0x99  
SFR Page: 0  
Bits7-0: SBUF0.[7:0]: UART0 Buffer Bits 7-0 (MSB-LSB)  
This is actually two registers; a transmit and a receive buffer register. When data is moved to  
SBUF0, it goes to the transmit buffer and is held for serial transmission. Moving a byte to  
SBUF0 is what initiates the transmission. When data is moved from SBUF0, it comes from  
the receive buffer.  
SFR Definition 21.4. SADDR0: UART0 Slave Address  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xA9  
SFR Page: 0  
Bits7-0: SADDR0.[7:0]: UART0 Slave Address  
The contents of this register are used to define the UART0 slave address. Register SADEN0  
is a bit mask to determine which bits of SADDR0 are checked against a received address:  
corresponding bits set to logic 1 in SADEN0 are checked; corresponding bits set to logic 0  
are “don’t cares”.  
SFR Definition 21.5. SADEN0: UART0 Slave Address Enable  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xB9  
SFR Page: 0  
Bits7-0: SADEN0.[7:0]: UART0 Slave Address Enable  
Bits in this register enable corresponding bits in register SADDR0 to determine the UART0  
slave address.  
0: Corresponding bit in SADDR0 is a “don’t care”.  
1: Corresponding bit in SADDR0 is checked against a received address.  
276  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
22. UART1  
UART1 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART.  
Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details  
in Section “22.1. Enhanced Baud Rate Generation” on page 278). Received data buffering allows  
UART1 to start reception of a second incoming data byte before software has finished reading the previous  
data byte.  
UART1 has two associated SFRs: Serial Control Register 1 (SCON1) and Serial Data Buffer 1 (SBUF1).  
The single SBUF1 location provides access to both transmit and receive registers. Reading SBUF1  
accesses the buffered Receive register; writing SBUF1 accesses the Transmit register.  
With UART1 interrupts enabled, an interrupt is generated each time a transmit is completed (TI1 is set in  
SCON1), or a data byte has been received (RI1 is set in SCON1). The UART1 interrupt flags are not  
cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually  
by software, allowing software to determine the cause of the UART1 interrupt (transmit complete or receive  
complete).  
SFR Bus  
Write to  
SBUF1  
TB81  
SBUF1  
SET  
(TX Shift)  
D
Q
TX1  
CLR  
Crossbar  
Zero Detector  
Stop Bit  
Shift  
Data  
Send  
Start  
Tx Control  
Tx Clock  
Tx IRQ  
SCON1  
TI1  
UART1 Baud  
Rate Generator  
Serial  
Port  
Interrupt  
Port I/O  
RI1  
Rx IRQ  
Rx Clock  
Rx Control  
Load  
SBUF1  
Start  
Shift  
0x1FF  
RB81  
Input Shift Register  
(9 bits)  
Load SBUF1  
SBUF1  
(RX Latch)  
Read  
SBUF1  
SFR Bus  
RX1  
Crossbar  
Figure 22.1. UART1 Block Diagram  
Rev. 1.5  
277  
C8051F040/1/2/3/4/5/6/7  
22.1. Enhanced Baud Rate Generation  
The UART1 baud rate is generated by Timer 1 in 8-bit auto-reload mode. The TX clock is generated by  
TL1; the RX clock is generated by a copy of TL1 (shown as RX Timer in Figure 22.2), which is not user-  
accessible. Both TX and RX Timer overflows are divided by two to generate the TX and RX baud rates.  
The RX Timer runs when Timer 1 is enabled, and uses the same reload value (TH1). However, an  
RX Timer reload is forced when a START condition is detected on the RX pin. This allows a receive to  
begin any time a START is detected, independent of the TX Timer state.  
Timer 1  
TL1  
UART1  
Overflow  
TX Clock  
2
2
TH1  
Start  
Detected  
Overflow  
RX Clock  
RX Timer  
Figure 22.2. UART1 Baud Rate Logic  
Timer 1 should be configured for Mode 2, 8-bit auto-reload (see Section “23.1.3. Mode 2: 8-bit Counter/  
Timer with Auto-Reload” on page 289). The Timer 1 reload value should be set so that overflows will  
occur at two times the desired baud rate. Note that Timer 1 may be clocked by one of five sources: SYS-  
CLK, SYSCLK / 4, SYSCLK / 12, SYSCLK / 48, or the external oscillator clock / 8. For any given Timer 1  
clock source, the UART1 baud rate is determined by Equation 22.1, where T1  
is the frequency of the  
CLK  
clock supplied to Timer 1, and TH1 is the high byte of Timer 1 (reload value).  
T1CLK  
------------------------------ --  
1
UartBaudRate =  
256 – TH12  
Equation 22.1. UART1 Baud Rate  
Timer 1 clock frequency is selected as described in Section “23.1. Timer 0 and Timer 1” on page 287. A  
quick reference for typical baud rates and system clock frequencies is given in Table 22.1 through  
Table 22.6. Note that the internal oscillator may still generate the system clock when the external oscillator  
is driving Timer 1 (see Section “23.1. Timer 0 and Timer 1” on page 287 for more details).  
278  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
22.2. Operational Modes  
UART1 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is  
selected by the S1MODE bit (SCON1.7). Typical UART connection options are shown below.  
TX  
RS-232  
RS-232  
LEVEL  
C8051Fxxx  
RX  
XLTR  
OR  
TX  
RX  
TX  
RX  
MCU  
C8051Fxxx  
Figure 22.3. UART Interconnect Diagram  
22.2.1. 8-Bit UART  
8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop  
bit. Data are transmitted LSB first from the TX1 pin and received at the RX1 pin. On receive, the eight data  
bits are stored in SBUF1 and the stop bit goes into RB81 (SCON1.2).  
Data transmission begins when software writes a data byte to the SBUF1 register. The TI1 Transmit Inter-  
rupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data recep-  
tion can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to logic 1. After the stop bit is  
received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met:  
RI1 must be logic 0, and if MCE1 is logic 1, the stop bit must be logic 1. In the event of a receive data over-  
run, the first received 8 bits are latched into the SBUF1 receive register and the following overrun data bits  
are lost.  
If these conditions are met, the eight bits of data is stored in SBUF1, the stop bit is stored in RB81 and the  
RI1 flag is set. If these conditions are not met, SBUF1 and RB81 will not be loaded and the RI1 flag will not  
be set. An interrupt will occur if enabled when either TI1 or RI1 is set.  
MARK  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SPACE  
BIT TIMES  
BIT SAMPLING  
Figure 22.4. 8-Bit UART Timing Diagram  
Rev. 1.5  
279  
C8051F040/1/2/3/4/5/6/7  
22.2.2. 9-Bit UART  
9-bit UART mode uses a total of eleven bits per data byte: a start bit, 8 data bits (LSB first), a programma-  
ble ninth data bit, and a stop bit. The state of the ninth transmit data bit is determined by the value in TB81  
(SCON1.3), which is assigned by user software. It can be assigned the value of the parity flag (bit P in reg-  
ister PSW) for error detection, or used in multiprocessor communications. On receive, the ninth data bit  
goes into RB81 (SCON1.2) and the stop bit is ignored.  
Data transmission begins when an instruction writes a data byte to the SBUF1 register. The TI1 Transmit  
Interrupt Flag (SCON1.1) is set at the end of the transmission (the beginning of the stop-bit time). Data  
reception can begin any time after the REN1 Receive Enable bit (SCON1.4) is set to ‘1’. After the stop bit  
is received, the data byte will be loaded into the SBUF1 receive register if the following conditions are met:  
(1) RI1 must be logic 0, and (2) if MCE1 is logic 1, the 9th bit must be logic 1 (when MCE1 is logic 0, the  
state of the ninth data bit is unimportant). If these conditions are met, the eight bits of data are stored in  
SBUF1, the ninth bit is stored in RB81, and the RI1 flag is set to ‘1’. If the above conditions are not met,  
SBUF1 and RB81 will not be loaded and the RI1 flag will not be set to ‘1’. A UART1 interrupt will occur if  
enabled when either TI1 or RI1 is set to ‘1’.  
MARK  
START  
BIT  
STOP  
BIT  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
SPACE  
BIT TIMES  
BIT SAMPLING  
Figure 22.5. 9-Bit UART Timing Diagram  
280  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
22.3. Multiprocessor Communications  
9-Bit UART mode supports multiprocessor communication between a master processor and one or more  
slave processors by special use of the ninth data bit. When a master processor wants to transmit to one or  
more slaves, it first sends an address byte to select the target(s). An address byte differs from a data byte  
in that its ninth bit is logic 1; in a data byte, the ninth bit is always set to logic 0.  
Setting the MCE1 bit (SCON1.5) of a slave processor configures its UART such that when a stop bit is  
received, the UART will generate an interrupt only if the ninth bit is logic one (RB81 = 1) signifying an  
address byte has been received. In the UART interrupt handler, software should compare the received  
address with the slave's own assigned 8-bit address. If the addresses match, the slave should clear its  
MCE1 bit to enable interrupts on the reception of the following data byte(s). Slaves that weren't addressed  
leave their MCE1 bits set and do not generate interrupts on the reception of the following data bytes,  
thereby ignoring the data. Once the entire message is received, the addressed slave should reset its  
MCE1 bit to ignore all transmissions until it receives the next address byte.  
Multiple addresses can be assigned to a single slave and/or a single address can be assigned to multiple  
slaves, thereby enabling "broadcast" transmissions to more than one slave simultaneously. The master  
processor can be configured to receive all transmissions or a protocol can be implemented such that the  
master/slave role is temporarily reversed to enable half-duplex transmission between the original master  
and slave(s).  
Master  
Device  
Slave  
Device  
Slave  
Device  
Slave  
Device  
+5V  
RX  
TX  
RX  
TX  
RX  
TX  
RX  
TX  
Figure 22.6. UART Multi-Processor Mode Interconnect Diagram  
Rev. 1.5  
281  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 22.1. SCON1: Serial Port 1 Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
S1MODE  
-
MCE1  
REN1  
TB81  
RB81  
TI1  
RI1  
01000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: 0x98  
SFR Page: 1  
Bit7:  
S1MODE: Serial Port 1 Operation Mode.  
This bit selects the UART1 Operation Mode.  
0: Mode 0: 8-bit UART with Variable Baud Rate  
1: Mode 1: 9-bit UART with Variable Baud Rate  
UNUSED. Read = 1b. Write = don’t care.  
MCE1: Multiprocessor Communication Enable.  
Bit6:  
Bit5:  
The function of this bit is dependent on the Serial Port 0 Operation Mode.  
Mode 0: Checks for valid stop bit.  
0: Logic level of stop bit is ignored.  
1: RI1 will only be activated if stop bit is logic level 1.  
Mode 1: Multiprocessor Communications Enable.  
0: Logic level of ninth bit is ignored.  
1: RI1 is set and an interrupt is generated only when the ninth bit is logic 1.  
REN1: Receive Enable.  
Bit4:  
This bit enables/disables the UART receiver.  
0: UART1 reception disabled.  
1: UART1 reception enabled.  
Bit3:  
Bit2:  
Bit1:  
TB81: Ninth Transmission Bit.  
The logic level of this bit will be assigned to the ninth transmission bit in 9-bit UART Mode. It  
is not used in 8-bit UART Mode. Set or cleared by software as required.  
RB81: Ninth Receive Bit.  
RB81 is assigned the value of the STOP bit in Mode 0; it is assigned the value of the 9th  
data bit in Mode 1.  
TI1: Transmit Interrupt Flag.  
Set by hardware when a byte of data has been transmitted by UART1 (after the 8th bit in 8-  
bit UART Mode, or at the beginning of the STOP bit in 9-bit UART Mode). When the UART1  
interrupt is enabled, setting this bit causes the CPU to vector to the UART1 interrupt service  
routine. This bit must be cleared manually by software.  
RI1: Receive Interrupt Flag.  
Bit0:  
Set to ‘1’ by hardware when a byte of data has been received by UART1 (set at the STOP  
bit sampling time). When the UART1 interrupt is enabled, setting this bit to ‘1’ causes the  
CPU to vector to the UART1 interrupt service routine. This bit must be cleared manually by  
software.  
282  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 22.2. SBUF1: Serial (UART1) Port Data Buffer  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0x99  
SFR Page: 1  
Bits7-0: SBUF1[7:0]: Serial Data Buffer Bits 7-0 (MSB-LSB)  
This SFR accesses two registers; a transmit shift register and a receive latch register. When  
data is written to SBUF1, it goes to the transmit shift register and is held for serial transmis-  
sion. Writing a byte to SBUF1 is what initiates the transmission. A read of SBUF1 returns the  
contents of the receive latch.  
Rev. 1.5  
283  
C8051F040/1/2/3/4/5/6/7  
Table 22.1. Timer Settings for Standard Baud Rates Using the Internal 24.5 MHz  
Oscillator  
Frequency: 24.5 MHz  
*
Target  
Baud Rate  
(bps)  
Baud Rate Oscillator Timer Clock  
SCA1-SCA0  
Timer 1  
Reload  
Value  
(hex)  
0xCB  
0x96  
0x2B  
0x96  
0xB9  
0x96  
T1M  
% Error  
Divide  
Factor  
Source  
(pre-scale  
*
select)  
230400  
115200  
57600  
28800  
14400  
9600  
-0.32%  
-0.32%  
0.15%  
-0.32%  
0.15%  
-0.32%  
-0.32%  
0.15%  
106  
212  
426  
SYSCLK  
SYSCLK  
SYSCLK  
SYSCLK / 4  
SYSCLK / 12  
SYSCLK / 12  
SYSCLK / 48  
SYSCLK / 48  
XX  
XX  
XX  
01  
00  
00  
10  
10  
1
1
1
0
0
0
0
0
848  
1704  
2544  
10176  
20448  
2400  
1200  
0x96  
0x2B  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
Table 22.2. Timer Settings for Standard Baud Rates Using an External 25.0 MHz  
Oscillator  
Frequency: 25.0 MHz  
*
Target  
Baud Rate  
(bps)  
Baud Rate Oscillator Timer Clock  
SCA1-SCA0  
Timer 1  
Reload  
Value (hex)  
T1M  
% Error  
Divide  
Factor  
Source  
(pre-scale  
*
select)  
230400  
115200  
57600  
28800  
14400  
9600  
-0.47%  
0.45%  
-0.01%  
0.45%  
-0.01%  
0.15%  
0.45%  
-0.01%  
108  
218  
434  
SYSCLK  
SYSCLK  
SYSCLK  
SYSCLK / 4  
SYSCLK / 4  
EXTCLK / 8  
SYSCLK / 48  
SYSCLK / 48  
XX  
XX  
XX  
01  
01  
11  
1
1
1
0
0
0
0
0
0xCA  
0x93  
0x27  
0x93  
0x27  
0x5D  
0x93  
0x27  
872  
1736  
2608  
10464  
20832  
2400  
1200  
10  
10  
57600  
28800  
14400  
9600  
-0.47%  
-0.47%  
0.45%  
432  
864  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
11  
11  
11  
11  
0
0
0
0
0xE5  
0xCA  
0x93  
0x5D  
1744  
2608  
0.15%  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
284  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 22.3. Timer Settings for Standard Baud Rates Using an External  
22.1184 MHz Oscillator  
Frequency: 22.1184 MHz  
*
Target  
Baud Rate  
(bps)  
Baud Rate Oscillator Timer Clock  
SCA1-SCA0  
Timer 1  
Reload  
Value (hex)  
T1M  
% Error  
Divide  
Factor  
Source  
(pre-scale  
*
select)  
230400  
115200  
57600  
28800  
14400  
9600  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
96  
192  
384  
SYSCLK  
SYSCLK  
SYSCLK  
XX  
XX  
XX  
00  
00  
00  
10  
10  
11  
11  
11  
11  
11  
11  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0xD0  
0xA0  
0x40  
0xE0  
0xC0  
0xA0  
0xA0  
0x40  
0xFA  
0xF4  
0xE8  
0xD0  
0xA0  
0x70  
768  
SYSCLK / 12  
SYSCLK / 12  
SYSCLK / 12  
SYSCLK / 48  
SYSCLK / 48  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
1536  
2304  
9216  
18432  
96  
192  
384  
768  
1536  
2304  
2400  
1200  
230400  
115200  
57600  
28800  
14400  
9600  
0.00%  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
Table 22.4. Timer Settings for Standard Baud Rates Using an External 18.432 MHz  
Oscillator  
Frequency: 18.432 MHz  
*
Target  
Baud Rate  
(bps)  
Baud Rate Oscillator Timer Clock  
SCA1-SCA0  
Timer 1  
Reload  
Value  
(hex)  
0xD8  
0xB0  
0x60  
0xB0  
0x60  
0xB0  
0xB0  
0x60  
0xFB  
0xF6  
0xEC  
0xD8  
0xB0  
0x88  
T1M  
% Error  
Divide  
Factor  
Source  
(pre-scale  
*
select)  
230400  
115200  
57600  
28800  
14400  
9600  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
80  
160  
320  
SYSCLK  
SYSCLK  
SYSCLK  
XX  
XX  
XX  
01  
01  
00  
10  
10  
11  
11  
11  
11  
11  
11  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
640  
SYSCLK / 4  
SYSCLK / 4  
SYSCLK / 12  
SYSCLK / 48  
SYSCLK / 48  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
1280  
1920  
7680  
15360  
80  
160  
320  
640  
1280  
1920  
2400  
1200  
230400  
115200  
57600  
28800  
14400  
9600  
Rev. 1.5  
285  
C8051F040/1/2/3/4/5/6/7  
Table 22.4. Timer Settings for Standard Baud Rates Using an External 18.432 MHz  
Oscillator  
Frequency: 18.432 MHz  
*
Target  
Baud Rate  
(bps)  
Baud Rate Oscillator Timer Clock  
SCA1-SCA0  
Timer 1  
Reload  
Value  
T1M  
% Error  
Divide  
Factor  
Source  
(pre-scale  
*
select)  
(hex)  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
286  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 22.5. Timer Settings for Standard Baud Rates Using an External  
11.0592 MHz Oscillator  
Frequency: 11.0592 MHz  
*
Target  
Baud Rate  
(bps)  
Baud Rate  
% Error  
Oscillator Timer Clock  
SCA1-SCA0  
Timer 1  
Reload  
Value  
(hex)  
0xE8  
0xD0  
0xA0  
0x40  
0xE0  
0xD0  
0x40  
0xA0  
0xFD  
0xFA  
0xF4  
0xE8  
0xD0  
0xB8  
T1M  
Divide  
Factor  
Source  
(pre-scale  
*
select)  
230400  
115200  
57600  
28800  
14400  
9600  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
48  
96  
SYSCLK  
SYSCLK  
SYSCLK  
XX  
XX  
XX  
XX  
00  
00  
00  
10  
11  
11  
11  
11  
11  
1
1
1
1
0
0
0
0
0
0
0
0
0
0
192  
384  
768  
1152  
4608  
9216  
48  
SYSCLK  
SYSCLK / 12  
SYSCLK / 12  
SYSCLK / 12  
SYSCLK / 48  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
2400  
1200  
230400  
115200  
57600  
28800  
14400  
9600  
96  
192  
384  
768  
1152  
0.00%  
11  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
Table 22.6. Timer Settings for Standard Baud Rates Using an External 3.6864 MHz  
Oscillator  
Frequency: 3.6864 MHz  
Oscillator Timer Clock SCA1-SCA0  
*
Target  
Baud Rate  
(bps)  
Baud Rate  
% Error  
Timer 1  
Reload  
Value (hex)  
T1M  
Divide  
Factor  
Source  
(pre-scale  
*
select)  
230400  
115200  
57600  
28800  
14400  
9600  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
0.00%  
16  
32  
64  
128  
256  
384  
1536  
3072  
16  
32  
64  
128  
256  
384  
SYSCLK  
SYSCLK  
SYSCLK  
SYSCLK  
SYSCLK  
XX  
XX  
XX  
XX  
XX  
XX  
00  
00  
11  
11  
11  
11  
11  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0xF8  
0xF0  
0xE0  
0xC0  
0x80  
0x40  
0xC0  
0x80  
0xFF  
0xFE  
0xFC  
0xF8  
0xF0  
0xE8  
SYSCLK  
2400  
1200  
SYSCLK / 12  
SYSCLK / 12  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
EXTCLK / 8  
230400  
115200  
57600  
28800  
14400  
9600  
11  
Rev. 1.5  
287  
C8051F040/1/2/3/4/5/6/7  
Table 22.6. Timer Settings for Standard Baud Rates Using an External 3.6864 MHz  
Oscillator  
Frequency: 3.6864 MHz  
Oscillator Timer Clock SCA1-SCA0  
*
Target  
Baud Rate  
(bps)  
Baud Rate  
% Error  
Timer 1  
Reload  
Value (hex)  
T1M  
Divide  
Factor  
Source  
(pre-scale  
*
select)  
X = Don’t care  
*Note: SCA1-SCA0 and T1M bit definitions can be found in Section 23.1.  
288  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
23. Timers  
Each MCU includes 5 counter/timers: Timer 0 and Timer 1 are 16-bit counter/timers compatible with those  
found in the standard 8051. Timer 2, Timer 3, and Timer 4 are 16-bit auto-reload and capture counter/tim-  
ers for use with the ADC, DAC’s, square-wave generation, or for general-purpose use. These timers can  
be used to measure time intervals, count external events and generate periodic interrupt requests. Timer 0  
and Timer 1 are nearly identical and have four primary modes of operation. Timers 2, 3, and 4 are identi-  
cal, and offer not only 16-bit auto-reload and capture, but have the ability to produce a 50% duty-cycle  
square-wave (toggle output) at an external port pin.  
Timer 0 and Timer 1 Modes:  
13-bit counter/timer  
16-bit counter/timer  
8-bit counter/timer with auto-reload  
Two 8-bit counter/timers (Timer 0 only)  
Timer 2, 3, and 4 Modes:  
16-bit counter/timer with auto-reload  
16-bit counter/timer with capture  
Toggle Output  
Timers 0 and 1 may be clocked by one of five sources, determined by the Timer Mode Select bits (T1M-  
T0M) and the Clock Scale bits (SCA1-SCA0). The Clock Scale bits define a pre-scaled clock by which  
Timer 0 and/or Timer 1 may be clocked (See SFR Definition 23.3 for pre-scaled clock selection). Timer 0/1  
may then be configured to use this pre-scaled clock signal or the system clock. Timers 2, 3, and 4 may be  
clocked by the system clock, the system clock divided by 12, or the external oscillator clock source divided  
by 8.  
Timer 0 and Timer 1 may also be operated as counters. When functioning as a counter, a counter/timer  
register is incremented on each high-to-low transition at the selected input pin. Events with a frequency of  
up to one-fourth the system clock's frequency can be counted. The input signal need not be periodic, but it  
should be held at a given logic level for at least two full system clock cycles to ensure the level is properly  
sampled.  
23.1. Timer 0 and Timer 1  
Each timer is implemented as 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and  
a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer  
1 as well as indicate their status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register  
(Section “12.3.5. Interrupt Register Descriptions” on page 156); Timer 1 interrupts can be enabled by  
setting the ET1 bit in the IE register (Section 12.3.5). Both counter/timers operate in one of four primary  
modes selected by setting the Mode Select bits T1M1-T0M0 in the Counter/Timer Mode register (TMOD).  
Each timer can be configured independently.  
23.1.1. Mode 0: 13-bit Counter/Timer  
Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration  
and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same  
manner as described for Timer 0.  
The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions  
TL0.4-TL0.0. The three upper bits of TL0 (TL0.7-TL0.5) are indeterminate and should be masked out or  
ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to  
0x0000, the timer overflow flag TF0 (TCON.5) is set and an interrupt will occur if Timer 0 interrupts are  
enabled.  
Rev. 1.5  
287  
C8051F040/1/2/3/4/5/6/7  
The C/T0 bit (TMOD.2) selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low  
transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to Section  
“17.1. Ports 0 through 3 and the Priority Crossbar Decoder” on page 204 for information on selecting  
and configuring external I/O pins). Clearing C/T0 selects the clock defined by the T0M bit (CKCON.3).  
When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the  
source selected by the Clock Scale bits in CKCON (see SFR Definition 23.3).  
Setting the TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or the input signal  
/INT0 is logic-level 1. Setting GATE0 to ‘1’ allows the timer to be controlled by the external input signal /  
INT0 (see Section “12.3.5. Interrupt Register Descriptions” on page 156), facilitating pulse width mea-  
surements.  
TR0  
0
1
1
1
GATE0  
/INT0  
Counter/Timer  
Disabled  
X
0
1
1
X
X
0
1
Enabled  
Disabled  
Enabled  
Note: X = Don't Care  
Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial  
value before the timer is enabled.  
TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0.  
Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The  
input signal /INT1 is used with Timer 1.  
CKCON  
T T S S  
1 0 C C  
M M A A  
1 0  
TMOD  
G C T T G C T T  
/ 1 1 A / 0 0  
T T M M T T M M  
E 1 1 0 E 0 1 0  
A
1
0
Pre-scaled Clock  
SYSCLK  
0
1
0
1
TF1  
TR1  
TF0  
TR0  
IE1  
T0  
Interrupt  
TCLK  
TL0  
(5 bits)  
TH0  
(8 bits)  
TR0  
IT1  
GATE0  
IE0  
IT0  
Crossbar  
/INT0  
Figure 23.1. T0 Mode 0 Block Diagram  
23.1.2. Mode 1: 16-bit Counter/Timer  
Mode 1 operation is the same as Mode 0, except that the counter/timer registers use all 16 bits. The coun-  
ter/timers are enabled and configured in Mode 1 in the same manner as for Mode 0.  
288  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
23.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload  
Mode 2 configures Timer 0 and Timer 1 to operate as 8-bit counter/timers with automatic reload of the start  
value. TL0 holds the count and TH0 holds the reload value. When the counter in TL0 overflows from 0xFF  
to 0x00, the timer overflow flag TF0 (TCON.5) is set and the counter in TL0 is reloaded from TH0. If Timer  
0 interrupts are enabled, an interrupt will occur when the TF0 flag is set. The reload value in TH0 is not  
changed. TL0 must be initialized to the desired value before enabling the timer for the first count to be cor-  
rect. When in Mode 2, Timer 1 operates identically to Timer 0.  
Both counter/timers are enabled and configured in Mode 2 in the same manner as Mode 0. Setting the  
TR0 bit (TCON.4) enables the timer when either GATE0 (TMOD.3) is logic 0 or when the input signal /INT0  
is low.  
CKCON  
T T S S  
1 0 C C  
M M A A  
1 0  
TMOD  
G C T T G C T T  
/ 1 1 A / 0 0  
T T M M T T M M  
E 1 1 0 E 0 1 0  
A
1
0
Pre-scaled Clock  
SYSCLK  
0
1
0
1
T0  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
TCLK  
TL0  
(8 bits)  
Interrupt  
TR0  
IE0  
IT0  
Crossbar  
GATE0  
TH0  
Reload  
(8 bits)  
/INT0  
Figure 23.2. T0 Mode 2 Block Diagram  
Rev. 1.5  
289  
C8051F040/1/2/3/4/5/6/7  
23.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)  
In Mode 3, Timer 0 is configured as two separate 8-bit counter/timers held in TL0 and TH0. The counter/  
timer in TL0 is controlled using the Timer 0 control/status bits in TCON and TMOD: TR0, C/T0, GATE0 and  
TF0. TL0 can use either the system clock or an external input signal as its timebase. The TH0 register is  
restricted to a timer function sourced by the system clock or prescaled clock. TH0 is enabled using the  
Timer 1 run control bit TR1. TH0 sets the Timer 1 overflow flag TF1 on overflow and thus controls the  
Timer 1 interrupt.  
Timer 1 is inactive in Mode 3. When Timer 0 is operating in Mode 3, Timer 1 can be operated in Modes 0,  
1 or 2, but cannot be clocked by external signals nor set the TF1 flag and generate an interrupt. However,  
the Timer 1 overflow can be used to generate baud rates for the SMBus and/or UART, and/or initiate ADC  
conversions. While Timer 0 is operating in Mode 3, Timer 1 run control is handled through its mode set-  
tings. To run Timer 1 while Timer 0 is in Mode 3, set the Timer 1 Mode as 0, 1, or 2. To disable Timer 1,  
configure it for Mode 3.  
CKCON  
T T S S  
1 0 C C  
M M A A  
1 0  
TMOD  
G C T T G C T T  
/ 1 1 A / 0 0  
T T M M T T M M  
E 1 1 0 E 0 1 0  
A
1
0
Pre-scaled Clock  
SYSCLK  
0
1
TH0  
(8 bits)  
TR1  
Interrupt  
Interrupt  
TF1  
TR1  
TF0  
TR0  
IE1  
0
IT1  
IE0  
IT0  
1
T0  
TL0  
(8 bits)  
TR0  
Crossbar  
GATE0  
/INT0  
Figure 23.3. T0 Mode 3 Block Diagram  
290  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 23.1. TCON: Timer Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
0x88  
0
SFR Address:  
SFR Page:  
Bit7:  
TF1: Timer 1 Overflow Flag.  
Set by hardware when Timer 1 overflows. This flag can be cleared by software but is auto-  
matically cleared when the CPU vectors to the Timer 1 interrupt service routine.  
0: No Timer 1 overflow detected.  
1: Timer 1 has overflowed.  
Bit6:  
Bit5:  
TR1: Timer 1 Run Control.  
0: Timer 1 disabled.  
1: Timer 1 enabled.  
TF0: Timer 0 Overflow Flag.  
Set by hardware when Timer 0 overflows. This flag can be cleared by software but is auto-  
matically cleared when the CPU vectors to the Timer 0 interrupt service routine.  
0: No Timer 0 overflow detected.  
1: Timer 0 has overflowed.  
Bit4:  
Bit3:  
TR0: Timer 0 Run Control.  
0: Timer 0 disabled.  
1: Timer 0 enabled.  
IE1: External Interrupt 1.  
This flag is set by hardware when an edge/level of type defined by IT1 is detected. It can be  
cleared by software but is automatically cleared when the CPU vectors to the External Inter-  
rupt 1 service routine if IT1 = 1. This flag is the inverse of the /INT1 signal.  
IT1: Interrupt 1 Type Select.  
Bit2:  
This bit selects whether the configured /INT1 interrupt will be falling-edge sensitive or  
active-low.  
0: /INT1 is level triggered, active-low.  
1: /INT1 is edge triggered, falling-edge.  
Bit1:  
Bit0:  
IE0: External Interrupt 0.  
This flag is set by hardware when an edge/level of type defined by IT0 is detected. It can be  
cleared by software but is automatically cleared when the CPU vectors to the External Inter-  
rupt 0 service routine if IT0 = 1. This flag is the inverse of the /INT0 signal.  
IT0: Interrupt 0 Type Select.  
This bit selects whether the configured /INT0 interrupt will be falling-edge sensitive or  
active-low.  
0: /INT0 is level triggered, active logic-low.  
1: /INT0 is edge triggered, falling-edge.  
Rev. 1.5  
291  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 23.2. TMOD: Timer Mode  
R/W  
GATE1  
Bit7  
R/W  
C/T1  
Bit6  
R/W  
T1M1  
Bit5  
R/W  
T1M0  
Bit4  
R/W  
GATE0  
Bit3  
R/W  
C/T0  
Bit2  
R/W  
T0M1  
Bit1  
R/W  
T0M0  
Bit0  
Reset Value  
00000000  
0x89  
0
SFR Address:  
SFR Page:  
Bit7:  
GATE1: Timer 1 Gate Control.  
0: Timer 1 enabled when TR1 = 1 irrespective of /INT1 logic level.  
1: Timer 1 enabled only when TR1 = 1 AND /INT1 = logic 1.  
C/T1: Counter/Timer 1 Select.  
Bit6:  
0: Timer Function: Timer 1 incremented by clock defined by T1M bit (CKCON.4).  
1: Counter Function: Timer 1 incremented by high-to-low transitions on external input pin  
(T1).  
Bits5-4: T1M1-T1M0: Timer 1 Mode Select.  
These bits select the Timer 1 operation mode.  
T1M1  
T1M0  
Mode  
0
0
1
1
0
1
0
1
Mode 0: 13-bit counter/timer  
Mode 1: 16-bit counter/timer  
Mode 2: 8-bit counter/timer with auto-reload  
Mode 3: Timer 1 inactive  
Bit3:  
Bit2:  
GATE0: Timer 0 Gate Control.  
0: Timer 0 enabled when TR0 = 1 irrespective of /INT0 logic level.  
1: Timer 0 enabled only when TR0 = 1 AND /INT0 = logic 1.  
C/T0: Counter/Timer Select.  
0: Timer Function: Timer 0 incremented by clock defined by T0M bit (CKCON.3).  
1: Counter Function: Timer 0 incremented by high-to-low transitions on external input pin  
(T0).  
Bits1-0: T0M1-T0M0: Timer 0 Mode Select.  
These bits select the Timer 0 operation mode.  
T0M1  
T0M0  
Mode  
0
0
1
1
0
1
0
1
Mode 0: 13-bit counter/timer  
Mode 1: 16-bit counter/timer  
Mode 2: 8-bit counter/timer with auto-reload  
Mode 3: Two 8-bit counter/timers  
292  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 23.3. CKCON: Clock Control  
R/W  
-
R/W  
-
R/W  
-
R/W  
T1M  
Bit4  
R/W  
T0M  
Bit3  
R/W  
-
R/W  
SCA1  
Bit1  
R/W  
SCA0  
Bit0  
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit2  
0x8E  
0
SFR Address:  
SFR Page:  
Bits7-5: UNUSED. Read = 000b, Write = don’t care.  
Bit4:  
T1M: Timer 1 Clock Select.  
This select the clock source supplied to Timer 1. T1M is ignored when C/T1 is set to logic 1.  
0: Timer 1 uses the clock defined by the prescale bits, SCA1-SCA0.  
1: Timer 1 uses the system clock.  
Bit3:  
T0M: Timer 0 Clock Select.  
This bit selects the clock source supplied to Timer 0. T0M is ignored when C/T0 is set to  
logic 1.  
0: Counter/Timer 0 uses the clock defined by the prescale bits, SCA1-SCA0.  
1: Counter/Timer 0 uses the system clock.  
Bit2:  
UNUSED. Read = 0b, Write = don’t care.  
Bits1-0: SCA1-SCA0: Timer 0/1 Prescale Bits  
These bits control the division of the clock supplied to Timer 0 and/or Timer 1 if configured  
to use prescaled clock inputs.  
SCA1  
SCA0  
Prescaled Clock  
0
0
1
1
0
1
0
1
System clock divided by 12  
System clock divided by 4  
System clock divided by 48  
External clock divided by 8  
SFR Definition 23.4. TL0: Timer 0 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
0x8A  
0
SFR Address:  
SFR Page:  
Bits 7-0: TL0: Timer 0 Low Byte.  
The TL0 register is the low byte of the 16-bit Timer 0.  
Rev. 1.5  
293  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 23.5. TL1: Timer 1 Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
0x8B  
0
SFR Address:  
SFR Page:  
Bits 7-0: TL1: Timer 1 Low Byte.  
The TL1 register is the low byte of the 16-bit Timer 1.  
SFR Definition 23.6. TH0: Timer 0 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
0x8C  
0
SFR Address:  
SFR Page:  
Bits 7-0: TH0: Timer 0 High Byte.  
The TH0 register is the high byte of the 16-bit Timer 0.  
SFR Definition 23.7. TH1: Timer 1 High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
0x8D  
0
SFR Address:  
SFR Page:  
Bits 7-0: TH1: Timer 1 High Byte.  
The TH1 register is the high byte of the 16-bit Timer 1.  
294  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
23.2. Timer 2, Timer 3, and Timer 4  
Timers n are 16-bit counter/timers, each formed by two 8-bit SFRs: TMRnL (low byte) and TMRnH (high  
byte) where n = 2, 3, and 4 for timers 2, 3, and 4 respectively. These timers feature auto-reload, capture,  
and toggle output modes with the ability to count up or down. Capture Mode and Auto-reload mode are  
selected using bits in the Timer n Control registers (TMRnCN). Toggle output mode is selected using the  
Timer 2, 3, and 4 Configuration registers (TMRnCF). These timers may also be used to generate a square-  
wave at an external pin. As with Timers 0 and 1, Timers n can use either the system clock (divided by one,  
two, or twelve), external clock (divided by eight) or transitions on an external input pin as its clock source.  
The Counter/Timer Select bit C/Tn (TMRnCN.1) configures the peripheral as a counter or timer. Clearing  
C/Tn configures the Timer to be in a timer mode (i.e., the system clock or external clock as input for the  
timer). When C/Tn is set to 1, the timer is configured as a counter (i.e., high-to-low transitions at the Tn  
input pin increment (or decrement) the counter/timer register). Refer to Section “17.1. Ports 0 through 3  
and the Priority Crossbar Decoder” on page 204 for information on selecting and configuring external I/  
O pins for digital peripherals, such as the Tn pin. Timer 2 and 3 can be used to start an ADC Data Conver-  
sion and Timers 2, 3, and 4 can schedule DAC outputs. Only Timer 1 can be used to generate baud rates  
for UART 1, and Timers 1, 2, 3, or 4 may be used to generate baud rates for UART 0.  
Timer n can use either SYSCLK, SYSCLK divided by 2, SYSCLK divided by 12, an external clock divided  
by 8, or high-to-low transitions on the Tn input pin as its clock source when operating in Counter/Timer with  
Capture mode. Clearing the C/Tn bit (TMRnCN.1) selects the system clock/external clock as the input for  
the timer. The Timer Clock Select bits TnM0 and TnM1 in TMRnCF can be used to select the system clock  
undivided, system clock divided by two, system clock divided by 12, or an external clock provided at the  
XTAL1/XTAL2 pins divided by 8 (see SFR Definition 23.9). When C/Tn is set to logic 1, a high-to-low tran-  
sition at the Tn input pin increments the counter/timer register (i.e., configured as a counter).  
23.2.1. Configuring Timer 2, 3, and 4 to Count Down  
Timers 2, 3, and 4 have the ability to count down. When the timer’s respective Decrement Enable Bit  
(DCEN) in the Timer Configuration Register (See SFR Definition 23.9) is set to ‘1’, the timer can then count  
up or down. When DCEN = 1, the direction of the timer’s count is controlled by the TnEX pin’s logic level.  
When TnEX = 1, the counter/timer will count up; when TnEX = 0, the counter/timer will count down. To use  
this feature, TnEX must be enabled in the digital crossbar and configured as a digital input.  
Note: When DCEN = 1, other functions of the TnEX input (i.e., capture and auto-reload) are not available.  
TnEX will only control the direction of the timer when DCEN = 1.  
Rev. 1.5  
295  
C8051F040/1/2/3/4/5/6/7  
23.2.2. Capture Mode  
In Capture Mode, Timer n will operate as a 16-bit counter/timer with capture facility. When the Timer Exter-  
nal Enable bit (found in the TMRnCN register) is set to ‘1’, a high-to-low transition on the TnEX input pin  
causes the 16-bit value in the associated timer (TMRnH, TMRnL) to be loaded into the capture registers  
(RCAPnH, RCAPnL). If a capture is triggered in the counter/timer, the Timer External Flag (TMRnCN.6)  
will be set to ‘1’ and an interrupt will occur if the interrupt is enabled. See Section “12.3. Interrupt Han-  
dler” on page 153 for further information concerning the configuration of interrupt sources.  
As the 16-bit timer register increments and overflows TMRnH:TMRnL, the TFn Timer Overflow/Underflow  
Flag (TMRnCN.7) is set to ‘1’ and an interrupt will occur if the interrupt is enabled. The timer can be config-  
ured to count down by setting the Decrement Enable Bit (TMRnCF.0) to ‘1’. This will cause the timer to  
decrement with every timer clock/count event and underflow when the timer transitions from 0x0000 to  
0xFFFF. Just as in overflows, the Overflow/Underflow Flag (TFn) will be set to ‘1’, and an interrupt will  
occur if enabled.  
Counter/Timer with Capture mode is selected by setting the Capture/Reload Select bit CP/RLn  
(TMRnCN.0) and the Timer n Run Control bit TRn (TMRnCN.2) to logic 1. The Timer n respective External  
Enable EXENn (TMRnCN.3) must also be set to logic 1 to enable captures. If EXENn is cleared, transi-  
tions on TnEX will be ignored.  
TMRnCF  
T T T T D  
n n O n C  
M M G O E  
1 0 n E N  
Toggle Logic  
0
2
Tn  
(Port Pin)  
0xFF  
0xFF  
12  
SYSCLK  
1
External Clock  
(XTAL1)  
0
1
8
TMRnL  
RCAPnL  
TMRnH  
RCAPnH  
TCLK  
CP/RLn  
C/Tn  
Crossbar  
Tn  
TRn  
EXENn  
TRn  
EXENn  
Crossbar  
Interrupt  
EXFn  
TFn  
TnE  
X
Figure 23.4. Tn Capture Mode Block Diagram  
296  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
23.2.3. Auto-Reload Mode  
In Auto-Reload Mode, the counter/timer can be configured to count up or down and cause an interrupt/flag  
to occur upon an overflow/underflow event. When counting up, the counter/timer will set its overflow/under-  
flow flag (TFn) and cause an interrupt (if enabled) upon overflow/underflow, the values in the Reload/Cap-  
ture Registers (RCAPnH and RCAPnL) are loaded into the timer, and the timer is restarted. When the  
Timer External Enable Bit (EXENn) bit is set to ‘1’ and the Decrement Enable Bit (DCEN) is ‘0’, a ‘1’-to-‘0’  
transition on the TnEX pin (configured as an input in the digital crossbar) will cause a timer reload (in addi-  
tion to timer overflows causing auto-reloads). When DCEN is set to ‘1’, the state of the TnEX pin controls  
whether the counter/timer counts up (increments) or down (decrements), and will not cause an auto-reload  
or interrupt event. See Section 23.2.1 for information concerning configuration of a timer to count down.  
When counting down, the counter/timer will set its overflow/underflow flag (TFn) and cause an interrupt (if  
enabled) when the value in the timer (TMRnH and TMRnL registers) matches the 16-bit value in the  
Reload/Capture Registers (RCAPnH and RCAPnL). This is considered an underflow event, and will cause  
the timer to load the value 0xFFFF. The timer is automatically restarted when an underflow occurs.  
Counter/Timer with Auto-Reload mode is selected by clearing the CP/RLn bit. Setting TRn to logic 1  
enables and starts the timer.  
In Auto-Reload Mode, the External Flag (EXFn) toggles upon every overflow or underflow and does not  
cause an interrupt. The EXFn flag can be thought of as the most significant bit (MSB) of a 17-bit counter.  
TMRnCF  
D
E
T T T T  
n n O n  
C
M M G O  
E
1 0 n E  
N
Toggle Logic  
0
2
Tn  
(Port Pin)  
0xFF  
0xFF  
1
SYSCLK  
12  
External Clock  
(XTAL1)  
0
1
8
OVF  
TMRnL  
RCAPnL  
TMRnH  
RCAPnH  
TCLK  
CP/RLn  
C/Tn  
TRn  
EXENn  
Tn  
Crossbar  
TRn  
EXENn  
Interrupt  
EXFn  
TFn  
Reload  
TnE  
X
Crossbar  
Figure 23.5. Tn Auto-reload Mode and Toggle Mode Block Diagram  
Rev. 1.5  
297  
C8051F040/1/2/3/4/5/6/7  
23.2.4. Toggle Output Mode  
Timer n have the capability to toggle the state of their respective output port pins (T2, T3, or T4) to produce  
a 50% duty cycle waveform output. The port pin state will change upon the overflow or underflow of the  
respective timer (depending on whether the timer is counting up or down). The toggle frequency is deter-  
mined by the clock source of the timer and the values loaded into RCAPnH and RCAPnL. When counting  
DOWN, the auto-reload value for the timer is 0xFFFF, and underflow will occur when the value in the timer  
matches the value stored in RCAPnH:RCAPnL. When counting UP, the auto-reload value for the timer is  
RCAPnH:RCAPnL, and overflow will occur when the value in the timer transitions from 0xFFFF to the  
reload value.  
To output a square wave, the timer is placed in reload mode (the Capture/Reload Select Bit in TMRnCN  
and the Timer/Counter Select Bit in TMRnCN are cleared to ‘0’). The timer output is enabled by setting the  
Timer Output Enable Bit in TMRnCF to ‘1’. The timer should be configured via the timer clock source and  
reload/underflow values such that the timer overflow/underflows at 1/2 the desired output frequency. The  
port pin assigned by the crossbar as the timer’s output pin should be configured as a digital output (see  
Section “17. Port Input/Output” on page 203). Setting the timer’s Run Bit (TRn) to ‘1’ will start the toggle  
of the pin. A Read/Write of the Timer’s Toggle Output State Bit (TMRnCF.2) is used to read the state of the  
toggle output, or to force a value of the output. This is useful when it is desired to start the toggle of a pin in  
a known state, or to force the pin into a desired state when the toggle mode is halted.  
F
TCLK  
------------------------------------------------------  
F
=
sq  
2  65536 – RCAPn  
Equation 23.1. Square Wave Frequency  
Equation 23.1 applies regardless of whether the timer is configured to count up or down.  
298  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 23.8. TMRnCN: Timer n Control  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
TFn  
EXFn  
-
-
EXENn  
TRn  
C/Tn  
CP/RLn 00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: TMR2CN:0xC8;TMR3CN:0xC8;TMR4CN:0xC8  
SFR Page: TMR2CN: page 0;TMR3CN: page 1;TMR4CN: page 2  
Bit7:  
Bit6:  
TFn: Timer n Overflow/Underflow Flag.  
Set by hardware when either the Timer overflows from 0xFFFF to 0x0000, underflows from  
the value placed in RCAPnH:RCAPnL to 0xFFFF (in Auto-reload Mode), or underflows from  
0x0000 to 0xFFFF (in Capture Mode). When the Timer interrupt is enabled, setting this bit  
causes the CPU to vector to the Timer interrupt service routine. This bit is not automatically  
cleared by hardware and must be cleared by software.  
EXFn: Timer 2, 3, or 4 External Flag.  
Set by hardware when either a capture or reload is caused by a high-to-low transition on the  
TnEX input pin and EXENn is logic 1. When the Timer interrupt is enabled, setting this bit  
causes the CPU to vector to the Timer Interrupt service routine. This bit is not automatically  
cleared by hardware and must be cleared by software.  
Reserved.  
Bit5-4:  
Bit3:  
EXENn: Timer n External Enable.  
Enables high-to-low transitions on TnEX to trigger captures, reloads, and control the direc-  
tion of the timer/counter (up or down count). If DECEN = 1, TnEX will determine if the timer  
counts up or down when in Auto-reload Mode. If EXENn = 1, TnEX should be configured as  
a digital input.  
0: Transitions on the TnEX pin are ignored.  
1: Transitions on the TnEX pin cause capture, reload, or control the direction of timer count  
(up or down) as follows:  
Capture Mode: ‘1’-to-’0’ Transition on TnEX pin causes RCAPnH:RCAPnL to capture timer  
value.  
Auto-Reload Mode:  
DCEN = 0: ‘1’-to-’0’ transition causes reload of timer and sets the EXFn Flag.  
DCEN = 1: TnEX logic level controls direction of timer (up or down).  
TRn: Timer n Run Control.  
This bit enables/disables the respective Timer.  
0: Timer disabled.  
1: Timer enabled and running/counting.  
C/Tn: Counter/Timer Select.  
0: Timer Function: Timer incremented by clock defined by TnM1:TnM0  
(TMRnCF.4:TMRnCF.3).  
1: Counter Function: Timer incremented by high-to-low transitions on external input pin.  
CP/RLn: Capture/Reload Select.  
Bit2:  
Bit1:  
Bit0:  
This bit selects whether the Timer functions in capture or auto-reload mode.  
0: Timer is in Auto-Reload Mode.  
1: Timer is in Capture Mode.  
Rev. 1.5  
299  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 23.9. TMRnCF: Timer n Configuration  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
-
-
-
TnM1  
TnM0  
TOGn  
TnOE  
DCEN 00000000  
Bit  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
Addressable  
SFR Address: TMR2CF:0xC9;TMR3CF:0xC9;TMR4CF:0xC9  
SFR Page TMR2CF: page 0;TMR3CF: page 1;TMR4CF: page 2  
Bit7-5:  
Bit4-3:  
Reserved.  
TnM1 and TnM0: Timer Clock Mode Select Bits.  
Bits used to select the Timer clock source. The sources can be the System Clock  
(SYSCLK), SYSCLK divided by 2 or 12, or an external clock signal routed to Tn (port pin)  
divided by 8. Clock source is selected as follows:  
00: SYSCLK/12  
01: SYSCLK  
10: EXTERNAL CLOCK/8  
11: SYSCLK/2  
Bit2:  
Bit1:  
TOGn: Toggle output state bit.  
When timer is used to toggle a port pin, this bit can be used to read the state of the output, or  
can be written to in order to force the state of the output.  
TnOE: Timer output enable bit.  
This bit enables the timer to output a 50% duty cycle output to the timer’s assigned external  
port pin.  
NOTE: A timer is configured for Square Wave Output as follows:  
CP/RLn= 0  
C/Tn = 0  
TnOE = 1  
Load RCAPnH:RCAPnL (See Section “Equation 23.1. Square Wave Frequency” on  
page 298).  
Configure Port Pin for output (See Section “17. Port Input/Output” on page 203).  
0: Output of toggle mode not available at Timers’ assigned port pin.  
1: Output of toggle mode available at Timers’ assigned port pin.  
DCEN: Decrement Enable Bit.  
Bit0:  
This bit enables the timer to count up or down as determined by the state of TnEX.  
0: Timer will count up, regardless of the state of TnEX.  
1: Timer will count up or down depending on the state of TnEX as follows:  
if TnEX = 0, the timer counts DOWN  
if TnEX = 1, the timer counts UP.  
300  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 23.10. RCAPnL: Timer n Capture Register Low Byte  
R/W  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit6  
Bit5  
Bit4  
Bit3  
SFR Address: RCAP2L: 0xCA; RCAP3L: 0xCA; RCAP4L: 0xCA  
SFR Page: RCAP2L: page 0; RCAP3L: page 1; RCAP4L: page 2  
Bits 7-0: RCAPnL: Timer n Capture Register Low Byte.  
The RCAPnL register captures the low byte of Timer n when Timer n is configured in capture  
mode. When Timer n is configured in auto-reload mode, it holds the low byte of the reload  
value.  
SFR Definition 23.11. RCAPnH: Timer n Capture Register High Byte  
R/W  
Bit7  
R/W  
R/W  
R/W  
R/W  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
Bit6  
Bit5  
Bit4  
Bit3  
SFR Address: RCAP2H: 0xCB; RCAP3H: 0xCB; RCAP4H: 0xCB  
SFR Page: RCAP2H: page 0; RCAP3H: page 1; RCAP4H: page 2  
Bits 7-0: RCAPnH: Timer n Capture Register High Byte.  
The RCAPnH register captures the high byte of Timer n when Timer n is configured in cap-  
ture mode. When Timer n is configured in auto-reload mode, it holds the high byte of the  
reload value.  
SFR Definition 23.12. TMRnL: Timer n Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: TMR2L: 0xCC; TMR3L: 0xCC; TMR4L: 0xCC  
SFR Page: TMR2L: page 0; TMR3L: page 1; TMR4L: page 2  
Bits 7-0: TMRnL: Timer n Low Byte.  
The TMRnL register contains the low byte of the 16-bit Timer n  
Rev. 1.5  
301  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 23.13. TMRnH Timer n High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Bit0  
Reset Value  
00000000  
SFR Address: TMR2H: 0xCD; TMR3H: 0xCD; TMR4H: 0xCD  
SFR Page: TMR2H: page 0; TMR3H: page 1; TMR4H: page 2  
Bits 7-0: TMRnH: Timer n High Byte.  
The TMRnH register contains the high byte of the 16-bit Timer n  
302  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
24. Programmable Counter Array  
The Programmable Counter Array (PCA0) provides enhanced timer functionality while requiring less CPU  
intervention than the standard 8051 counter/timers. PCA0 consists of a dedicated 16-bit counter/timer and  
six 16-bit capture/compare modules. Each capture/compare module has its own associated I/O line  
(CEXn) which is routed through the Crossbar to Port I/O when enabled (See Section “17.1. Ports 0  
through 3 and the Priority Crossbar Decoder” on page 204). The counter/timer is driven by a program-  
mable timebase that can select between six inputs as its source: system clock, system clock divided by  
four, system clock divided by twelve, the external oscillator clock source divided by 8, Timer 0 overflow, or  
an external clock signal on the ECI line. Each capture/compare module may be configured to operate inde-  
pendently in one of six modes: Edge-Triggered Capture, Software Timer, High-Speed Output, Frequency  
Output, 8-Bit PWM, or 16-Bit PWM (each is described in Section 24.2). The PCA is configured and con-  
trolled through the system controller's Special Function Registers. The basic PCA block diagram is shown  
in Figure 24.1.  
SYSCLK/12  
SYSCLK/4  
Timer 0 Overflow  
PCA  
16-Bit Counter/Timer  
CLOCK  
MUX  
ECI  
SYSCLK  
External Clock/8  
Capture/Compare  
Module 0  
Capture/Compare  
Module 1  
Capture/Compare  
Module 2  
Capture/Compare  
Module 3  
Capture/Compare  
Module 4  
Capture/Compare  
Module 5  
Crossbar  
Port I/O  
Figure 24.1. PCA Block Diagram  
Rev. 1.5  
303  
C8051F040/1/2/3/4/5/6/7  
24.1. PCA Counter/Timer  
The 16-bit PCA counter/timer consists of two 8-bit SFRs: PCA0L and PCA0H. PCA0H is the high byte  
(MSB) of the 16-bit counter/timer and PCA0L is the low byte (LSB). Reading PCA0L automatically latches  
the value of PCA0H into a “snapshot” register; the following PCA0H read accesses this “snapshot” register.  
Reading the PCA0L Register first guarantees an accurate reading of the entire 16-bit PCA0 counter.  
Reading PCA0H or PCA0L does not disturb the counter operation. The CPS2-CPS0 bits in the PCA0MD  
register select the timebase for the counter/timer as shown in Table 24.1. Note that in ‘External oscillator  
source divided by 8’ mode, the external oscillator source is synchronized with the system clock,  
and must have a frequency less than or equal to the system clock.  
When the counter/timer overflows from 0xFFFF to 0x0000, the Counter Overflow Flag (CF) in PCA0MD is  
set to logic 1 and an interrupt request is generated if CF interrupts are enabled. Setting the ECF bit in  
PCA0MD to logic 1 enables the CF flag to generate an interrupt request. The CF bit is not automatically  
cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by soft-  
ware (Note: PCA0 interrupts must be globally enabled before CF interrupts are recognized. PCA0 inter-  
rupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit in EIE1 to logic 1). Clearing the  
CIDL bit in the PCA0MD register allows the PCA to continue normal operation while the CPU is in Idle  
mode.  
Table 24.1. PCA Timebase Input Options  
CPS2  
CPS1  
CPS0  
Timebase  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
System clock divided by 12  
System clock divided by 4  
Timer 0 overflow  
1
High-to-low transitions on ECI (max rate = system clock divided by 4)  
System clock  
2
External clock divided by 8  
Notes:  
1. The minimum high or low time for the ECI input signal is at least 2 system clock cycles.  
2. External oscillator source divided by 8 is synchronized with the system clock.  
IDLE  
PCA0MD  
PCA0CN  
C
I
D
L
W W C C C E  
D D P P P C  
C C C C C C C C  
F R C C C C C C  
F F F F F F  
T
L
S S S F  
E C 2 1 0  
5 4 3 2 1 0  
To SFR Bus  
PCA0L  
read  
K
Snapshot  
Register  
SYSCLK/12  
SYSCLK/4  
000  
001  
010  
011  
100  
101  
Timer 0 Overflow  
ECI  
0
Overflow  
To PCA Interrupt System  
PCA0H  
PCA0L  
1
SYSCLK  
CF  
External Clock/8  
To PCA Modules  
Figure 24.2. PCA Counter/Timer Block Diagram  
304  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
24.2. Capture/Compare Modules  
Each module can be configured to operate independently in one of six operation modes: Edge-triggered  
Capture, Software Timer, High Speed Output, Frequency Output, 8-Bit Pulse Width Modulator, or 16-Bit  
Pulse Width Modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-  
51 system controller. These registers are used to exchange data with a module and configure the module's  
mode of operation.  
Table 24.2 summarizes the bit settings in the PCA0CPMn registers used to select the PCA0 capture/com-  
pare module’s operating modes. Setting the ECCFn bit in a PCA0CPMn register enables the module's  
CCFn interrupt. Note: PCA0 interrupts must be globally enabled before individual CCFn interrupts are rec-  
ognized. PCA0 interrupts are globally enabled by setting the EA bit (IE.7) and the EPCA0 bit (EIE1.3) to  
logic 1. See Figure 24.3 for details on the PCA interrupt configuration.  
Table 24.2. PCA0CPM Register Settings for PCA Capture/Compare Modules  
PWM16 ECOM CAPP CAPN MAT TOG PWM ECCF  
Operation Mode  
Capture triggered by positive edge on  
CEXn  
X
X
X
X
1
0
0
1
0
0
0
0
0
0
X
X
Capture triggered by negative edge on  
CEXn  
X
X
X
X
0
X
1
1
1
1
1
1
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
0
0
1
1
1
X
X
X
X
0
Capture triggered by transition on CEXn  
Software Timer  
High-Speed Output  
Frequency Output  
8-Bit Pulse Width Modulator  
16-Bit Pulse Width Modulator  
1
0
X = Don’t Care  
(for n = 0 to 5)  
PCA0CPMn  
PCA0CN  
PCA0MD  
P
E C C M T  
P
E
C C C C C C C C  
F R C C C C C C  
C
I
D
L
C C C E  
P P P C  
S S S F  
W C A A A O W C  
M O P P T G M C  
1
6
n
F
5
F
4
F
3
F
2
F
1
F
0
M P N n  
n
n
F
n
2 1 0  
n
n n  
0
1
PCA Counter/  
Timer Overflow  
ECCF0  
ECCF1  
ECCF2  
ECCF3  
ECCF4  
EPCA0  
(EIE1.3)  
EA  
(IE.7)  
0
1
PCA Module 0  
CCF0  
Interrupt  
Priority  
Decoder  
0
1
0
1
0
1
PCA Module 1  
CCF1  
0
1
PCA Module 2  
CCF2  
0
1
PCA Module 3  
CCF3  
0
1
PCA Module 4  
CCF4  
ECCF5  
0
1
PCA Module 5  
CCF5  
Figure 24.3. PCA Interrupt Block Diagram  
Rev. 1.5  
305  
C8051F040/1/2/3/4/5/6/7  
24.2.1. Edge-triggered Capture Mode  
In this mode, a valid transition on the CEXn pin causes PCA0 to capture the value of the PCA0 counter/  
timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and  
PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transi-  
tion that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge),  
or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn)  
in PCA0CN is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn  
bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and  
must be cleared by software.  
Note: The signal at the CEXn pin must be logic high or low for at least two system clock cycles in order for  
it to be recognized as valid by the hardware.  
PCA Interrupt  
PCA0CPMn  
PCA0CN  
P
W
M
1
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
C C C C C C C C  
F R C C C C C C  
F F F F F F  
5 4 3 2 1 0  
6
n
PCA0CPLn  
PCA0CPHn  
0
1
CEXn  
Capture  
Port I/O  
Crossbar  
0
1
PCA  
Timebase  
PCA0L  
PCA0H  
Figure 24.4. PCA Capture Mode Diagram  
306  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
24.2.2. Software Timer (Compare) Mode  
In Software Timer mode, the PCA0 counter/timer is compared to the module's 16-bit capture/compare reg-  
ister (PCA0CPHn and PCA0CPLn). When a match occurs, the Capture/Compare Flag (CCFn) in PCA0CN  
is set to logic 1 and an interrupt request is generated if CCF interrupts are enabled. The CCFn bit is not  
automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be  
cleared by software. Setting the ECOMn and MATn bits in the PCA0CPMn register enables Software  
Timer mode.  
Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/  
Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
to '0'; writing to PCA0CPHn sets ECOMn to '1'.  
Write to  
0
PCA0CPLn  
ENB  
Reset  
PCA  
Write to  
PCA0CPHn  
Interrupt  
ENB  
1
PCA0CPMn  
PCA0CN  
P
W
M
1
6
n
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
C C C C C C C C  
F R C C C C C C  
F F F F F F  
PCA0CPLn  
PCA0CPHn  
5 4 3 2 1 0  
x
0 0  
0 0 x  
0
1
Enable  
Match  
16-bit Comparator  
PCA  
Timebase  
PCA0L  
PCA0H  
Figure 24.5. PCA Software Timer Mode Diagram  
Rev. 1.5  
307  
C8051F040/1/2/3/4/5/6/7  
24.2.3. High-Speed Output Mode  
In High-Speed Output mode, a module’s associated CEXn pin is toggled each time a match occurs  
between the PCA Counter and the module's 16-bit capture/compare register (PCA0CPHn and  
PCA0CPLn). Setting the TOGn, MATn, and ECOMn bits in the PCA0CPMn register enables the High-  
Speed Output mode.  
Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/  
Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
to '0'; writing to PCA0CPHn sets ECOMn to '1'.  
Write to  
0
PCA0CPLn  
ENB  
Reset  
PCA0CPMn  
Write to  
PCA0CPHn  
P
W
M
1
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
ENB  
1
6
n
PCA  
Interrupt  
x
0 0  
0
x
PCA0CN  
C C C C C C C C  
F R C C C C C C  
F F F F F F  
PCA0CPLn  
PCA0CPHn  
5 4 3 2 1 0  
0
1
Enable  
Match  
16-bit Comparator  
TOGn  
Toggle  
0
CEXn  
Crossbar  
Port I/O  
1
PCA  
Timebase  
PCA0L  
PCA0H  
Figure 24.6. PCA High-Speed Output Mode Diagram  
308  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
24.2.4. Frequency Output Mode  
Frequency Output Mode produces a programmable-frequency square wave on the module’s associated  
CEXn pin. The capture/compare module high byte holds the number of PCA clocks to count before the out-  
put is toggled. The frequency of the square wave is then defined by Equation 24.1, where F  
is the fre-  
PCA  
quency of the clock selected by the CPS2-0 bits in the PCA mode register, PCA0MD.  
Equation 24.1. Square Wave Frequency Output  
FPCA  
----------------------------------------  
=
Fsqr  
2 PCA0CPHn  
Note: A value of 0x00 in the PCA0CPHn register is equal to 256 for this equation.  
The lower byte of the capture/compare module is compared to the PCA0 counter low byte; on a match,  
CEXn is toggled and the offset held in the high byte is added to the matched value in PCA0CPLn. Fre-  
quency Output Mode is enabled by setting the ECOMn, TOGn, and PWMn bits in the PCA0CPMn register.  
PCA0CPMn  
P
W
M
1
6
n
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
PCA0CPLn  
8-bit Adder  
PCA0CPHn  
Adder  
Enable  
TOGn  
0
0 0 0 1  
0
Toggle  
0
CEXn  
8-bit  
Comparator  
match  
Enable  
Crossbar  
Port I/O  
1
PCA Timebase  
PCA0L  
Figure 24.7. PCA Frequency Output Mode  
Rev. 1.5  
309  
C8051F040/1/2/3/4/5/6/7  
24.2.5. 8-Bit Pulse Width Modulator Mode  
Each module can be used independently to generate pulse width modulated (PWM) outputs on its associ-  
ated CEXn pin. The frequency of the output is dependent on the timebase for the PCA0 counter/timer. The  
duty cycle of the PWM output signal is varied using the module's PCA0CPLn capture/compare register.  
When the value in the low byte of the PCA0 counter/timer (PCA0L) is equal to the value in PCA0CPLn, the  
output on the CEXn pin will be high. When the count value in PCA0L overflows, the CEXn output will be  
low (see Figure 24.8). Also, when the counter/timer low byte (PCA0L) overflows from 0xFF to 0x00,  
PCA0CPLn is reloaded automatically with the value stored in the counter/timer's high byte (PCA0H) with-  
out software intervention. Setting the ECOMn and PWMn bits in the PCA0CPMn register enables 8-Bit  
Pulse Width Modulator mode. The duty cycle for 8-Bit PWM Mode is given by Equation 24.2.  
Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/  
Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
to '0'; writing to PCA0CPHn sets ECOMn to '1'.  
256 – PCA0CPHn  
---------------------------------------------------  
DutyCycle =  
256  
Equation 24.2. 8-Bit PWM Duty Cycle  
PCA0CPHn  
PCA0CPMn  
P
W
M
1
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
PCA0CPLn  
6
n
0
0 0 0 0  
0
SET  
8-bit  
Comparator  
match  
CEXn  
Enable  
S
R
Q
Q
Crossbar  
Port I/O  
CLR  
PCA Timebase  
PCA0L  
Overflow  
Figure 24.8. PCA 8-Bit PWM Mode Diagram  
310  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
24.2.6. 16-Bit Pulse Width Modulator Mode  
Each PCA0 module may also be operated in 16-Bit PWM mode. In this mode, the 16-bit capture/compare  
module defines the number of PCA0 clocks for the low time of the PWM signal. When the PCA0 counter  
matches the module contents, the output on CEXn is asserted high; when the counter overflows, CEXn is  
asserted low. To output a varying duty cycle, new value writes should be synchronized with PCA0 CCFn  
match interrupts. 16-Bit PWM Mode is enabled by setting the ECOMn, PWMn, and PWM16n bits in the  
PCA0CPMn register. For a varying duty cycle, CCFn should also be set to logic 1 to enable match inter-  
rupts. The duty cycle for 16-Bit PWM Mode is given by Equation 24.3.  
Important Note About Capture/Compare Registers: When writing a 16-bit value to the PCA0 Capture/  
Compare registers, the low byte should always be written first. Writing to PCA0CPLn clears the ECOMn bit  
to '0'; writing to PCA0CPHn sets ECOMn to '1'.  
65536 – PCA0CPn  
----------------------------------------------------  
DutyCycle =  
65536  
Equation 24.3. 16-Bit PWM Duty Cycle  
PCA0CPMn  
P
W
M
1
E C C M T  
C A A A O  
O P P T G  
M P N n n  
n n n  
P
W
M
n
E
C
C
F
n
PCA0CPHn  
PCA0CPLn  
6
n
1
0 0 0 0  
0
SET  
CLR  
match  
CEXn  
Enable  
16-bit Comparator  
S
R
Q
Q
Crossbar  
Port I/O  
PCA Timebase  
PCA0H  
PCA0L  
Overflow  
Figure 24.9. PCA 16-Bit PWM Mode  
Rev. 1.5  
311  
C8051F040/1/2/3/4/5/6/7  
24.3. Register Descriptions for PCA0  
Following are detailed descriptions of the special function registers related to the operation of PCA0.  
SFR Definition 24.1. PCA0CN: PCA Control  
R/W  
CF  
Bit7  
R/W  
CR  
Bit6  
R/W  
CCF5  
Bit5  
R/W  
CCF4  
Bit4  
R/W  
CCF3  
Bit3  
R/W  
CCF2  
Bit2  
R/W  
CCF1  
Bit1  
R/W  
CCF0  
Bit0  
Reset Value  
00000000  
SFR Address: 0xD8  
SFR Page: 0  
Bit7:  
CF: PCA Counter/Timer Overflow Flag.  
Set by hardware when the PCA0 Counter/Timer overflows from 0xFFFF to 0x0000. When  
the Counter/Timer Overflow (CF) interrupt is enabled, setting this bit causes the CPU to vec-  
tor to the CF interrupt service routine. This bit is not automatically cleared by hardware and  
must be cleared by software.  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
Bit2:  
Bit1:  
Bit0:  
CR: PCA0 Counter/Timer Run Control.  
This bit enables/disables the PCA0 Counter/Timer.  
0: PCA0 Counter/Timer disabled.  
1: PCA0 Counter/Timer enabled.  
CCF5: PCA0 Module 5 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF4: PCA0 Module 4 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF3: PCA0 Module 3 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF2: PCA0 Module 2 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF1: PCA0 Module 1 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
CCF0: PCA0 Module 0 Capture/Compare Flag.  
This bit is set by hardware when a match or capture occurs. When the CCF interrupt is  
enabled, setting this bit causes the CPU to vector to the CCF interrupt service routine. This  
bit is not automatically cleared by hardware and must be cleared by software.  
312  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 24.2. PCA0MD: PCA0 Mode  
R/W  
CIDL  
Bit7  
R/W  
R/W  
R/W  
R/W  
CPS2  
Bit3  
R/W  
CPS1  
Bit2  
R/W  
CPS0  
Bit1  
R/W  
ECF  
Bit0  
Reset Value  
00000000  
Bit6  
Bit5  
Bit4  
SFR Address: 0xD9  
SFR Page: 0  
Bit7:  
CIDL: PCA0 Counter/Timer Idle Control.  
Specifies PCA0 behavior when CPU is in Idle Mode.  
0: PCA0 continues to function normally while the system controller is in Idle Mode.  
1: PCA0 operation is suspended while the system controller is in Idle Mode.  
Bits6-4: UNUSED. Read = 000b, Write = don't care.  
Bits3-1: CPS2-CPS0: PCA0 Counter/Timer Pulse Select.  
These bits select the timebase source for the PCA0 counter  
CPS2  
CPS1  
CPS0  
Timebase  
System clock divided by 12  
System clock divided by 4  
Timer 0 overflow  
0
0
0
0
0
1
0
1
0
1
High-to-low transitions on ECI (max rate = system clock  
divided by 4)  
0
1
1
1
0
0
1
1
0
1
0
1
System clock  
2
1
External clock divided by 8  
Reserved  
Reserved  
1
1
Notes:  
1. The minimum high or low time for the ECI input signal is at least 2 system clock cycles.  
2. External oscillator source divided by 8 is synchronized with the system clock.  
Bit0:  
ECF: PCA Counter/Timer Overflow Interrupt Enable.  
This bit sets the masking of the PCA0 Counter/Timer Overflow (CF) interrupt.  
0: Disable the CF interrupt.  
1: Enable a PCA0 Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is set.  
Rev. 1.5  
313  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 24.3. PCA0CPMn: PCA0 Capture/Compare Mode  
R/W  
R/W  
R/W  
CAPPn  
Bit5  
R/W  
CAPNn  
Bit4  
R/W  
MATn  
Bit3  
R/W  
TOGn  
Bit2  
R/W  
PWMn  
Bit1  
R/W  
Reset Value  
PWM16n ECOMn  
ECCFn 00000000  
Bit0  
Bit7  
Bit6  
PCA0CPM0: 0xDA, PCA0CPM1: 0xDB, PCA0CPM2: 0xDC, PCA0CPM3: 0xDD, PCA0CPM4: 0xDE, PCA0CPM5:  
0xDF  
SFR Address:  
PCA0CPM0: page 0, PCA0CPM1: page 0, PCA0CPM2: page 0, PCA0CPM3: page 0, PCA0CPM4: page 0,  
PCA0CPM5: page 0  
SFR Page:  
Bit7:  
Bit6:  
Bit5:  
Bit4:  
Bit3:  
PWM16n: 16-bit Pulse Width Modulation Enable  
This bit selects 16-bit mode when Pulse Width Modulation mode is enabled (PWMn = 1).  
0: 8-bit PWM selected.  
1: 16-bit PWM selected.  
ECOMn: Comparator Function Enable.  
This bit enables/disables the comparator function for PCA0 module n.  
0: Disabled.  
1: Enabled.  
CAPPn: Capture Positive Function Enable.  
This bit enables/disables the positive edge capture for PCA0 module n.  
0: Disabled.  
1: Enabled.  
CAPNn: Capture Negative Function Enable.  
This bit enables/disables the negative edge capture for PCA0 module n.  
0: Disabled.  
1: Enabled.  
MATn: Match Function Enable.  
This bit enables/disables the match function for PCA0 module n. When enabled, matches of  
the PCA0 counter with a module's capture/compare register cause the CCFn bit in PCA0MD  
register to be set to logic 1.  
0: Disabled.  
1: Enabled.  
Bit2:  
Bit1:  
Bit0:  
TOGn: Toggle Function Enable.  
This bit enables/disables the toggle function for PCA0 module n. When enabled, matches of  
the PCA0 counter with a module's capture/compare register cause the logic level on the  
CEXn pin to toggle. If the PWMn bit is also set to logic 1, the module operates in Frequency  
Output Mode.  
0: Disabled.  
1: Enabled.  
PWMn: Pulse Width Modulation Mode Enable.  
This bit enables/disables the PWM function for PCA0 module n. When enabled, a pulse  
width modulated signal is output on the CEXn pin. 8-bit PWM is used if PWM16n is logic 0;  
16-bit mode is used if PWM16n logic 1. If the TOGn bit is also set, the module operates in  
Frequency Output Mode.  
0: Disabled.  
1: Enabled.  
ECCFn: Capture/Compare Flag Interrupt Enable.  
This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt.  
0: Disable CCFn interrupts.  
1: Enable a Capture/Compare Flag interrupt request when CCFn is set.  
314  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 24.4. PCA0L: PCA0 Counter/Timer Low Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xF9  
SFR Page: 0  
Bits 7-0: PCA0L: PCA0 Counter/Timer Low Byte.  
The PCA0L register holds the low byte (LSB) of the 16-bit PCA0 Counter/Timer.  
SFR Definition 24.5. PCA0H: PCA0 Counter/Timer High Byte  
R/W  
Bit7  
R/W  
Bit6  
R/W  
Bit5  
R/W  
Bit4  
R/W  
Bit3  
R/W  
Bit2  
R/W  
Bit1  
R/W  
Reset Value  
00000000  
Bit0  
SFR Address: 0xFA  
SFR Page: 0  
Bits 7-0: PCA0H: PCA0 Counter/Timer High Byte.  
The PCA0H register holds the high byte (MSB) of the 16-bit PCA0 Counter/Timer.  
Rev. 1.5  
315  
C8051F040/1/2/3/4/5/6/7  
SFR Definition 24.6. PCA0CPLn: PCA0 Capture Module Low Byte  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
PCA0CPL0: 0xFB, PCA0CPL1: 0xFD, PCA0CPL2: 0xE9, PCA0CPL3: 0xEB, PCA0CPL4: 0xED, PCA0CPL5:  
0xE1  
SFR Address:  
PCA0CPL0: page 0, PCA0CPL1: page 0, PCA0CPL2: page 0, PCA0CPL3: page 0, PCA0CPL4: page 0,  
PCA0CPL5: page 0  
SFR Page:  
Bits7-0: PCA0CPLn: PCA0 Capture Module Low Byte.  
The PCA0CPLn register holds the low byte (LSB) of the 16-bit capture module n.  
SFR Definition 24.7. PCA0CPHn: PCA0 Capture Module High Byte  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Reset Value  
00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
PCA0CPH0: 0xFC, PCA0CPH1: 0xFE, PCA0CPH2: 0xEA, PCA0CPH3: 0xEC, PCA0CPH4: 0xEE, PCA0CPH5:  
0xE2  
SFR Address:  
PCA0CPH0: page 0, PCA0CPH1: page 0, PCA0CPH2: page 0, PCA0CPH3: page 0, PCA0CPH4: page 0,  
PCA0CPH5: page 0  
SFR Page:  
Bits7-0: PCA0CPHn: PCA0 Capture Module High Byte.  
The PCA0CPHn register holds the high byte (MSB) of the 16-bit capture module n.  
316  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
25. JTAG (IEEE 1149.1)  
Each MCU has an on-chip JTAG interface and logic to support boundary scan for production and in-sys-  
tem testing, Flash read/write operations, and non-intrusive in-circuit debug. The JTAG interface is fully  
compliant with the IEEE 1149.1 specification. Refer to this specification for detailed descriptions of the Test  
Interface and Boundary-Scan Architecture. Access of the JTAG Instruction Register (IR) and Data Regis-  
ters (DR) are as described in the Test Access Port and Operation of the IEEE 1149.1 specification.  
The JTAG interface is accessed via four dedicated pins on the MCU: TCK, TMS, TDI, and TDO.  
Through the 16-bit JTAG Instruction Register (IR), any of the seven instructions shown in Figure 25.1 can  
be commanded. There are three DRs associated with JTAG Boundary-Scan, and four associated with  
Flash read/write operations on the MCU.  
JTAG Register Definition 25.1. IR: JTAG Instruction Register  
Reset Value  
0x0000  
Bit15  
Bit0  
IR  
Value  
Instruction  
Description  
Selects the Boundary Data Register for control and observability of all  
device pins  
0x0000  
0x0002  
EXTEST  
SAMPLE/  
PRELOAD  
Selects the Boundary Data Register for observability and presetting the  
scan-path latches  
0x0004  
0xFFFF  
IDCODE  
BYPASS  
Selects device ID Register (DEVICEID)  
Selects Bypass Data Register  
Selects FLASHCON Register to control how the interface logic responds  
to reads and writes to the FLASHDAT Register  
0x0082 Flash Control  
0x0083 Flash Data  
0x0084 Flash Address  
Selects FLASHDAT Register for reads and writes to the Flash memory  
Selects FLASHADR Register which holds the address of all Flash read,  
write, and erase operations  
Rev. 1.5  
317  
C8051F040/1/2/3/4/5/6/7  
25.1. Boundary Scan  
The DR in the Boundary Scan path is an 134-bit shift register. The Boundary DR provides control and  
observability of all the device pins as well as the SFR bus and Weak Pullup feature via the EXTEST and  
SAMPLE commands.  
Table 25.1. Boundary Data Register Bit Definitions  
EXTEST provides access to both capture and update actions, while Sample only performs a capture.  
Bit  
0
Action  
Target  
Capture Reset Enable from MCU  
Update Reset Enable to /RST pin  
Capture Reset input from /RST pin  
Update Reset output to /RST pin  
Capture Reset Enable from MCU  
Update Reset Enable to /RST pin  
Capture Reset input from /RST pin  
Update Reset output to /RST pin  
Capture CANRX output enable to pin  
Update CANRX output enable to pin  
Capture CANRX input from pin  
Update CANRX output to pin  
Capture CANTX output enable to pin  
Update CANTX output enable to pin  
Capture CANTX input from pin  
Update CANTX output to pin  
Capture External Clock from XTAL1 pin  
Update Not used  
1
2
3
4
5
6
7
8
9
Capture Weak pullup enable from MCU  
Update Weak pullup enable to Port Pins  
10, 12, 14, 16, 18, Capture P0.n output enable from MCU (e.g. Bit6=P0.0, Bit8=P0.1, etc.)  
20, 22, 24  
11, 13, 15, 17, 19, Capture P0.n input from pin (e.g. Bit7=P0.0, Bit9=P0.1, etc.)  
21, 23, 25  
26, 28, 30, 32, 34, Capture P1.n output enable from MCU  
36, 38, 40  
27, 29, 31, 33, 35, Capture P1.n input from pin  
37, 39, 41  
42, 44, 46, 48, 50, Capture P2.n output enable from MCU  
52, 54, 56  
43, 45, 47, 49, 51, Capture P2.n input from pin  
53, 55, 57  
58, 60, 62, 64, 66, Capture P3.n output enable from MCU  
68, 70, 72  
59, 61, 63, 65, 67, Capture P3.n input from pin  
69, 71, 73  
74, 76, 78, 80, 82, Capture P4.n output enable from MCU  
Update P0.n output enable to pin (e.g. Bit6=P0.0oe, Bit8=P0.1oe, etc.)  
Update P0.n output to pin (e.g. Bit7=P0.0, Bit9=P0.1, etc.)  
Update P1.n output enable to pin  
Update P1.n output to pin  
Update P2.n output enable to pin  
Update P2.n output to pin  
Update P3.n output enable to pin  
Update P3.n output to pin  
84, 86, 88  
Update P4.n output enable to pin  
318  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
Table 25.1. Boundary Data Register Bit Definitions (Continued)  
EXTEST provides access to both capture and update actions, while Sample only performs a capture.  
Bit  
75, 77, 79, 81, 83, Capture P4.n input from pin  
85, 87, 89  
90, 92, 94, 96, 98, Capture P5.n output enable from MCU  
100, 102, 104  
91, 93, 95, 97, 99, Capture P5.n input from pin  
101, 103, 105  
106, 108, 110, 112, Capture P6.n output enable from MCU  
114, 116, 118, 120  
107, 109, 111, 113, Capture P6.n input from pin  
115, 117, 119, 121  
122, 124, 126, 128, Capture P7.n output enable from MCU  
130, 132, 134, 136  
123, 125, 127, 129, Capture P7.n input from pin  
131, 133, 135, 137  
Action  
Target  
Update P4.n output to pin  
Update P5.n output enable to pin  
Update P5.n output to pin  
Update P6.n output enable to pin  
Update P6.n output to pin  
Update P7.n output enable to pin  
Update P7.n output to pin  
25.1.1. EXTEST Instruction  
The EXTEST instruction is accessed via the IR. The Boundary DR provides control and observability of all  
the device pins as well as the Weak Pullup feature. All inputs to on-chip logic are set to logic 1.  
25.1.2. SAMPLE Instruction  
The SAMPLE instruction is accessed via the IR. The Boundary DR provides observability and presetting of  
the scan-path latches.  
25.1.3. BYPASS Instruction  
The BYPASS instruction is accessed via the IR. It provides access to the standard JTAG Bypass data reg-  
ister.  
25.1.4. IDCODE Instruction  
The IDCODE instruction is accessed via the IR. It provides access to the 32-bit Device ID register.  
Rev. 1.5  
319  
C8051F040/1/2/3/4/5/6/7  
JTAG Register Definition 25.2. DEVICEID: JTAG Device ID Register  
Reset Value  
Version  
Part Number  
Manufacturer ID  
1
0xn0005243  
Bit31  
Bit28 Bit27  
Bit12 Bit11  
Bit1  
Bit0  
Version = 0000b  
Part Number = 0000 0000 0000 0101b (C8051F040/1/2/3/4/5/6/7)  
Manufacturer ID = 0010 0100 001b (Silicon Labs)  
320  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
25.2. Flash Programming Commands  
The Flash memory can be programmed directly over the JTAG interface using the Flash Control, Flash  
Data, Flash Address, and Flash Scale registers. These Indirect Data Registers are accessed via the JTAG  
Instruction Register. Read and write operations on indirect data registers are performed by first setting the  
appropriate DR address in the IR register. Each read or write is then initiated by writing the appropriate  
Indirect Operation Code (IndOpCode) to the selected data register. Incoming commands to this register  
have the following format:  
19:18  
17:0  
IndOpCode  
WriteData  
IndOpCode: These bit set the operation to perform according to the following table:  
IndOpCode  
Operation  
Poll  
0x  
10  
11  
Read  
Write  
The Poll operation is used to check the Busy bit as described below. Although a Capture-DR is performed,  
no Update-DR is allowed for the Poll operation. Since updates are disabled, polling can be accomplished  
by shifting in/out a single bit.  
The Read operation initiates a read from the register addressed by the DRAddress. Reads can be initiated  
by shifting only 2 bits into the indirect register. After the read operation is initiated, polling of the Busy bit  
must be performed to determine when the operation is complete.  
The write operation initiates a write of WriteData to the register addressed by DRAddress. Registers of any  
width up to 18 bits can be written. If the register to be written contains fewer than 18 bits, the data in Write-  
Data should be left-justified, i.e. its MSB should occupy bit 17 above. This allows shorter registers to be  
written in fewer JTAG clock cycles. For example, an 8-bit register could be written by shifting only 10 bits.  
After a Write is initiated, the Busy bit should be polled to determine when the next operation can be initi-  
ated. The contents of the Instruction Register should not be altered while either a read or write operation is  
busy.  
Outgoing data from the indirect Data Register has the following format:  
19  
0
18:1  
0
ReadData  
Busy  
The Busy bit indicates that the current operation is not complete. It goes high when an operation is initiated  
and returns low when complete. Read and Write commands are ignored while Busy is high. In fact, if poll-  
ing for Busy to be low will be followed by another read or write operation, JTAG writes of the next operation  
can be made while checking for Busy to be low. They will be ignored until Busy is read low, at which time  
the new operation will initiate. This bit is placed ate bit 0 to allow polling by single-bit shifts. When waiting  
for a Read to complete and Busy is 0, the following 18 bits can be shifted out to obtain the resulting data.  
ReadData is always right-justified. This allows registers shorter than 18 bits to be read using a reduced  
number of shifts. For example, the results from a byte-read requires 9 bit shifts (Busy + 8 bits).  
Rev. 1.5  
321  
C8051F040/1/2/3/4/5/6/7  
JTAG Register Definition 25.3. FLASHCON: JTAG Flash Control Register  
Reset Value  
SFLE  
WRMD2 WRMD1 WRMD0 RDMD3 RDMD2 RDMD1 RDMD0 00000000  
Bit7  
Bit6  
Bit5  
Bit4  
Bit3  
Bit2  
Bit1  
Bit0  
This register determines how the Flash interface logic will respond to reads and writes to the   
FLASHDAT Register.   
Bit 7:  
SFLE: Scratchpad Flash Memory Access Enable  
When this bit is set, Flash reads and writes from user software are directed to the 128-byte  
scratchpad Flash sector. When accessing the scratchpad, Flash accesses out of the  
address range 0x00-0x7F should not be attempted. Reads/Writes outside of this range will  
yield undefined results.  
0: Flash access is directed to the Program/Data Flash sector.  
1: Flash access is directed to the 128-byte scratchpad sector.  
Bits6-4: WRMD2-0: Write Mode Select Bits.  
The Write Mode Select Bits control how the interface logic responds to writes to the FLASH-  
DAT Register per the following values:  
000:  
001:  
010:  
A FLASHDAT write replaces the data in the FLASHDAT register, but is otherwise  
ignored.  
A FLASHDAT write initiates a write of FLASHDAT into the memory address by the  
FLASHADR register. FLASHADR is incremented by one when complete.  
A FLASHDAT write initiates an erasure (sets all bytes to 0xFF) of the Flash page  
containing the address in FLASHADR. The data written must be 0xA5 for the erase  
to occur. FLASHADR is not affected. If FLASHADR targets the Read Lock Byte or  
the Write/Erase Lock Byte, the entire user space will be erased (i.e. entire Flash  
memory except for the Reserved area (See Section “15. Flash Memory” on  
page 179).  
(All other values for WRMD2-0 are reserved.)  
Bits3-0: RDMD3-0: Read Mode Select Bits.  
The Read Mode Select Bits control how the interface logic responds to reads to the FLASH-  
DAT Register per the following values:  
0000: A FLASHDAT read provides the data in the FLASHDAT register, but is otherwise  
ignored.  
0001: A FLASHDAT read initiates a read of the byte addressed by the FLASHADR regis-  
ter if no operation is currently active. This mode is used for block reads.  
0010: A FLASHDAT read initiates a read of the byte addressed by FLASHADR only if no  
operation is active and any data from a previous read has already been read from  
FLASHDAT. This mode allows single bytes to be read (or the last byte of a block)  
without initiating an extra read.  
(All other values for RDMD3-0 are reserved.)  
322  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
JTAG Register Definition 25.4. FLASHDAT: JTAG Flash Data  
Reset Value  
0000000000  
Bit9  
Bit0  
This register is used to read or write data to the Flash memory across the JTAG interface.  
Bits9-2: DATA7-0: Flash Data Byte.  
Bit1:  
FAIL: Flash Fail Bit.  
0: Previous Flash memory operation was successful.  
1: Previous Flash memory operation failed. Usually indicates the associated memory loca-  
tion was locked.  
Bit0:  
BUSY: Flash Busy Bit.  
0: Flash interface logic is not busy.  
1: Flash interface logic is processing a request. Reads or writes while BUSY = 1 will not   
initiate another operation.  
JTAG Register Definition 25.5. FLASHADR: JTAG Flash Address  
Reset Value  
0x0000  
Bit15  
Bit0  
This register holds the address for all JTAG Flash read, write, and erase operations. This register auto-  
increments after each read or write, regardless of whether the operation succeeded or failed.  
Bits15-0: Flash Operation 16-bit Address.  
Rev. 1.5  
323  
C8051F040/1/2/3/4/5/6/7  
25.3. Debug Support  
Each MCU has on-chip JTAG and debug logic that provides non-intrusive, full speed, in-circuit debug sup-  
port using the production part installed in the end application, via the four pin JTAG I/F. Silicon Labs' debug  
system supports inspection and modification of memory and registers, breakpoints, and single stepping.  
No additional target RAM, program memory, or communications channels are required. All the digital and  
analog peripherals are functional and work correctly (remain synchronized) while debugging. The Watch-  
dog Timer (WDT) is disabled when the MCU is halted during single stepping or at a breakpoint.  
The C8051F040DK is a development kit with all the hardware and software necessary to develop applica-  
tion code and perform in-circuit debug with each MCU in the C8051F04x family. Each kit includes an Inte-  
grated Development Environment (IDE) which has a debugger and integrated 8051 assembler. The kit  
also includes a JTAG interface module referred to as the Serial Adapter. There is also a target application  
board with a C8051F040 installed. The required cables and wall-mount power supply are also included.  
324  
Rev. 1.5  
C8051F040/1/2/3/4/5/6/7  
DOCUMENT CHANGE LIST  
Revision 1.4 to Revision 1.5  
High Voltage Difference Amplifier Electrical Characteristics Tables: Corrected Common Mode Rejec-  
tion Ratio MIN and TYP specifications.  
Flash Memory Chapter: Corrected text reference to “C8051F12x and C8051F13x”; Changed to  
“C8051F04x”.  
10 and 12-bit ADC0 Track and Conversion Example Timing Figures: Corrected bit name text from  
“AD0STM” to “AD0CM”.  
ADC0 Chapters (10 and 12-bit): Updated analog multiplexer figure to represent correct connection of  
HVREF to AIN- in differential HVDA configuration.  
ADC0 Chapters (10 and 12-bit): Updated HVDA section text to clarify usage of HVREF pin.  
ADC0 Chapters (10 and 12-bit): Added differential HVDA options to AMUX Selection Chart Table.  
Product Selection Guide Table: Added RoHS-compliant ordering information.  
Global DC Electrical Characteristics Table: Corrected units for “Analog Supply Current with Analog  
Subsystems Inactive” to “µA”.  
Pin Definitions Table: Corrected HVAIN- pin description to “High Voltage Difference Amplifier Negative  
Signal Input.”  
Interrupt Summary Table: Added “SFRPAGE” column and SFRPAGE value for each interrupt source.  
Interrupt Summary Table: Corrected “T4CON” to “TMR4CN”.  
Interrupt Summary Table: Corrected “T2CON” to “TMR2CN”.  
Interrupt Summary Table: Corrected “ADWINT” to “AD0WINT”.  
SFR Memory Map Table: Corrected SFR Page for ADC2CN from page 1 to page 2.  
Oscillators Chapter: Corrected steps for enabling external crystal oscillator.  
PCA0CPHn SFR Definition: Corrected SFR address of PCA0CPH1 from “0xFD” to “0xFE”.  
Rev. 1.5  
325  
C8051F040/1/2/3/4/5/6/7  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Email: MCUinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without  
notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences  
resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the function-  
ing of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon  
Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose,  
nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are  
not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which  
the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and  
hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders  
326  
Rev. 1.5  

相关型号:

C8051F042

25 MIPS, 64 kB Flash, 10-Bit ADC, 100-Pin Mixed-Signal MCU
SILICON

C8051F042-GQ

25 MIPS, 64 kB Flash, 10-Bit ADC, 100-Pin Mixed-Signal MCU
SILICON

C8051F042-GQR

暂无描述
SILICON

C8051F043

25 MIPS, 64 kB Flash, 10-Bit ADC, 64-Pin Mixed-Signal MCU
SILICON

C8051F043-GQ

Mixed Signal ISP Flash MCU Family
SILICON

C8051F043-GQR

This change is considered a minor change which does not affect form, fit, function, quality, or reliability.
SILICON

C8051F043R

暂无描述
SILICON

C8051F044

25 MIPS, 64 kB Flash, 10-Bit ADC, 100-Pin Mixed-Signal MCU
SILICON

C8051F044-GQ

25 MIPS, 64 kB Flash, 10-Bit ADC, 100-Pin Mixed-Signal MCU
SILICON

C8051F044-GQR

This change is considered a minor change which does not affect form, fit, function, quality, or reliability.
SILICON

C8051F045

25 MIPS, 64 kB Flash, 10-Bit ADC, 64-Pin Mixed-Signal MCU
SILICON

C8051F045-GQ

Mixed Signal ISP Flash MCU Family
SILICON