CY28547LFXCT [SILICON]

Processor Specific Clock Generator, 200MHz, CMOS, 10 X 10 MM, LEAD FREE, MO-220, QFN-72;
CY28547LFXCT
型号: CY28547LFXCT
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator, 200MHz, CMOS, 10 X 10 MM, LEAD FREE, MO-220, QFN-72

时钟 外围集成电路 晶体
文件: 总25页 (文件大小:1213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CY28547  
Clock Generator for Intel®CK410M/CK505  
• 96/100-MHz low power spreadable differential video  
clock  
Features  
• Compliant to Intel® CK410M and CK505  
• Selectable CPU frequencies  
• 33-MHz PCI clocks  
• Buffered Reference Clock 14.318 MHz  
• Low-voltage frequency select inputs  
• I2C support with readback capabilities  
• Low power differential CPU clock pairs  
• 100-MHz low power differential SRC clocks  
• 96-MHz low power differential dot clock  
• 27-MHz Spread and Non-spread video clock  
• 48-MHz USB clock  
• Ideal Lexmark Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• 3.3V power supply  
• 72-pin QFN package  
• SRC clocks independently stoppable through  
CLKREQ#[1:9]  
Table 1. Output Confguration Table  
CPU  
SRC  
PCI  
x5  
REF  
x 2  
DOT96  
x 1  
USB_48M  
x 1  
LCD  
x1  
27M  
x2  
x2/x3  
x9/11  
Block Diagram  
Pin Configuration  
VDD_REF  
REF[1:0]  
Xin  
Xout  
14.318MHz  
Crystal  
PLL Reference  
VDD_CPU  
CPUT[1:0]  
CPUC[1:0]  
72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55  
CPU_STP#  
PCI_STP#  
CLKREQ#  
PLL1  
CPU  
VDD_SRC  
SRCC_9  
SRCT_9  
1
2
3
4
5
6
7
8
9
54 VDD_SRC  
53 SRCC_2  
52 SRCT_2  
Divider  
VDD_SRC  
CPUT2_ITP/SRCT10  
CPUC2_ITP/SRCC10  
VSS_SRC  
51 SRCC_1/SATAC  
50 SRCT_1/SATAT  
49 VDD_SRC  
48 SRCC_0 / LCD100MC  
47 SRCT_0 / LCD100MT  
46 CLKREQ1#  
45 FSB/TEST_MODE  
44 DOT96C / 27M_SS  
43 DOT96T / 27M_NSS  
42 VSS_48  
FS[C:A]  
ITP_EN  
CPUC2_ITP / SRCC_10  
CPUT2_ITP / SRCT_10  
VDDA  
VDD_SRC  
Divider  
Divider  
SRCT [9:1]  
SRCC [9:1]  
VSSA  
* PGMODE  
CPUC1_MCH 10  
CPUT1_MCH 11  
VDD_CPU 12  
CPUC0 13  
CY28547  
VDD_PCI  
PCI[4:1]  
VDD_PCI  
CPUT0 14  
VSS_CPU 15  
SCLK 16  
SDATA 17  
VDD_REF 18  
41 48M / FSA  
40 VDD_48  
39 VTT_PWRGD# / PD (CKPWRGD/PD#)  
38 CLKREQ7#  
37 PCIF0/ITP_SEL  
PCIF0  
VDD_SRC  
PLL3  
Graphi  
c
LCD_100MT/SRCT0  
LCD_100MC/SRCC0  
Divider  
Divider  
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36  
VDD_48  
27_SS  
FCTSEL  
VDD_48  
PLL2  
Fixed  
DOT96T  
DOT96C  
VDD_48  
USB_48 [1:0]  
PLL4  
27M  
VDD_48  
27_NSS  
VTTPWR_GD#/PD  
I2C  
Logic  
SDATA  
SCLK  
.......................Document #: 001-05103 Rev *B Page 1 of 24  
400 West Cesar Chavez, Austin, TX 78701 1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
CY28547  
Pin Description  
Pin No.  
Name  
Type  
Description  
1, 49, 54, 65 VDD_SRC  
PWR 3.3V power supply for outputs.  
2, 3, 52, 53, SRCT/C[2:9]  
55, 56, 58,  
O, DIF 100-MHz Differential serial reference clocks.  
59, 60, 61,  
63, 64, 66,  
67, 69, 70  
4, 68  
5, 6  
VSS_SRC  
GND Ground for outputs.  
CPUT2_ITP/SRCT10, O, DIF Selectable differential CPU or SRC clock output.  
CPUC2_ITP/SRCC10  
ITP_SEL = 0 @ pin 39 assertion = SRC10  
ITP_SEL = 1 @ pin 39 assertion = CPU2  
7
8
9
VDDA  
PWR 3.3V power supply for PLL.  
VSSA  
GND Ground for PLL.  
PGMODE  
I, PU 3.3V LVTTL input for selecting the polarity of pin 39  
Internal pull-up resistor of 100K to 3.3V, use 10K resistor to pull it low externally  
if needed  
PGMODE CLK mode Pin 39  
0
CK410  
VTT_PWRGD#/PD  
CK_PWRGD/PD#  
1(default) CK505  
10, 11  
CPUC1_MCH,  
CPUT1_MCH  
O, DIF Differential CPU clock output to MCH  
12  
VDD_CPU  
CPU[T/C]0  
VSS_CPU  
SCLK  
PWR 3.3V power supply for outputs.  
O, DIF Differential CPU clock output  
GND Ground for outputs.  
13, 14  
15  
16  
I
SMBus-compatible SCLOCK.  
17  
SDATA  
I/O, OD SMBus-compatible SDATA.  
PWR 3.3V power supply for outputs.  
O, SE 14.318-MHz crystal output.  
18  
VDD_REF  
XOUT  
19  
20  
XIN  
I
14.318-MHz crystal input.  
21  
VSS_REF  
REF1  
GND Ground for outputs.  
22  
O
Fixed 14.318-MHz clock output.  
23  
REF0/FSC_TESTSEL  
I/O  
Fixed 14.318 clock output/3.3V-tolerant input for CPU frequency  
selection/Selects test mode if pulled to VIMFS_C when pin 39 is asserted LOW.  
Refer to DC Electrical Specifications table for VILFS_C,VIMFS_C,VIHFS_C specifi-  
cations.  
24  
25  
CPU_STP#  
PCI_STP#  
I
I
I
3.3V LVTTL input for CPU_STP# active LOW  
During direct clock off to M1 mode transition, a serial load of BSEL data is driven  
on this pin and sampled on the rising edge of PCI_STP#. See Figure 14.for more  
information.  
3.3V LVTTL input for PCI_STP# active LOW  
During direct clock off to M1 mode transition, a serial load of BSEL data is driven  
on CPU_STP# and sampled on the rising edge of this pin. See Figure 14. for more  
information.  
26, 28, 29,  
38, 46, 57,  
62, 71, 72  
CLKREQ[1:9]#  
3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
27  
PCI1  
O, SE 33MHz clock output  
30, 36  
31, 35  
VDD_PCI  
VSS_PCI  
PWR 3.3V power supply for outputs.  
GND Ground for outputs.  
.......................Document #: 001-05103 Rev *B Page 2 of 24  
CY28547  
Pin Description (continued)  
Pin No.  
Name  
PCI2/TME  
Type  
Description  
32  
I/O, SE 33-MHz clock output/Trusted Mode Enable Strap  
Strap at pin 39 assertion to determine if the part is in trusted mode or not.  
Internal pull-up resistor of 100K to 3.3V, use 10K resistor to pull it low externally  
if needed  
0 = Normal mode  
1= Trusted mode (default)  
33  
34  
PCI3  
O, SE 33-MHz clock output  
PCI4/FCTSEL1  
I/O  
33-MHz clock output/3.3V LVTTL input for selecting pins 47,48 (SRC[T/C]0,  
100M[T/C]) and pins 43,44 (DOT96[T/C] and 27M Spread and Non-spread)  
(sampled on pin 39 assertion).  
Internal pull-down resistor of 100K to GND  
FCTSEL1 Pin 43  
0 DOT96T  
Pin 44  
DOT96C  
27M_SS  
Pin 47  
Pin 48  
96/100M_T 96/100M_C  
1 27M_NSS  
SRCT0 SRCC0  
37  
39  
ITP_SEL/PCIF0  
I/O,SE 3.3V LVTTL input to enable SRC10 or CPU2_ITP/33-MHz clock output. (sampled  
on pin 39 assertion).  
Internal pull-down resistor of 100K to GND  
1 = CPU2_ITP, 0 = SRC10  
VTT_PWRGD#/PD  
CKPWRGD/PD#  
I
3.3V LVTTL input. This pin is a level sensitive strobe. When asserted, according  
to the polarity defined by pin 9 (PGMODE), it latches data on the FSA, FSB, FSC,  
FCTSEL1 and ITP_SEL pins. After assertion, it becomes a real time input for  
controlling power down.  
PGMODE  
0
Pin 39  
0 = POWER GOOD (VTT_PWRGD#)  
0
1
1
1 = POWER DOWN (PD)  
0 = POWER DOWN (PD#)  
1 = POWER GOOD (CKPWRGD)  
40  
41  
VDD_48  
PWR 3.3V power supply for outputs.  
48M/FSA  
I/O  
Fixed 48-MHz clock output/3.3V-tolerant input for CPU frequency selection  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
42  
VSS_48  
GND Ground for outputs.  
43, 44  
DOT96T/ 27M_NSS  
DOT96C/ 27M_SS  
O, DIF Fixed 96-MHz clock output or 27 Mhz Spread and Non-spread output Selected  
via FCTSEL1 at pin 39 assertion.  
45  
FSB/TEST_MODE  
I
3.3V-tolerant input for CPU frequency selection. Selects Ref/N or Tri-state when  
in test mode  
0 = Tri-state, 1 = Ref/N  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
47, 48  
50, 51  
SRC[T/C]0/  
LCD100M[T/C]  
O,DIF 100-MHz differential serial reference clock output/Differential 96/100-MHz SS  
clock for flat-panel display  
Selected via FCTSEL1 at pin 39 assertion.  
SRCT_1/SATAT,  
SRCC_1/SATAC  
O, DIF 100-MHz Differential serial reference clocks.  
samples the FSA, FSB, and FSC input values. For all logic  
levels of FSA, FSB, and FSC, VTT_PWRGD# employs a  
Frequency Select Pins (FSA, FSB, and FSC)  
Host clock frequency selection is achieved by applying the  
appropriate logic levels to FSA, FSB, FSC inputs prior to  
VTT_PWRGD# assertion (as seen by the clock synthesizer).  
Upon VTT_PWRGD# being sampled LOW by the clock chip  
(indicating processor VTT voltage is stable), the clock chip  
one-shot functionality in that once valid LOW on  
a
VTT_PWRGD# has been sampled, all further VTT_PWRGD#,  
FSA, FSB, and FSC transitions will be ignored, except in test  
mode.  
.......................Document #: 001-05103 Rev *B Page 3 of 24  
CY28547  
Serial Data Interface  
Data Protocol  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
initialize to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required. The interface cannot be used during system  
operation for power management functions.  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, the bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
bit first) with the ability to stop after any complete byte has  
been transferred. For byte write and byte read operations, the  
system controller can access individually indexed bytes. The  
offset of the indexed byte is encoded in the command code,  
as described in Table 3.  
The block write and block read protocol is outlined in Table 4  
while Table 5 outlines the corresponding byte write and byte  
read protocol. The slave receiver address is 11010010 (D2h)  
Table 2. Frequency Select Table FSA, FSB, and FSC  
FSC FSB FSA  
CPU  
SRC  
PCIF/PCI  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
27MHz  
27 MHz  
27 MHz  
27 MHz  
27 MHz  
REF  
DOT96  
96 MHz  
96 MHz  
96 MHz  
96 MHz  
USB  
1
0
0
0
0
0
1
1
1
1
1
0
100 MHz  
133 MHz  
166 MHz  
200 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
Table 3. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0)  
Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be  
'0000000'  
Table 4. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
Byte Count–8 bits  
20  
(Skip this step if I2C_EN bit set)  
28  
36:29  
37  
Acknowledge from slave  
Data byte 1–8 bits  
27:21  
28  
Slave address–7 bits  
Read = 1  
Acknowledge from slave  
Data byte 2–8 bits  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte/Slave Acknowledges  
Data Byte N–8 bits  
....  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
....  
....  
Acknowledge from slave  
Stop  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
....  
Data bytes from slave/Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
....  
....  
.......................Document #: 001-05103 Rev *B Page 4 of 24  
 
 
CY28547  
Table 4. Block Read and Block Write Protocol (continued)  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
Description  
Bit  
....  
Stop  
Start  
Table 5. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
Control Registers  
Byte 0 Control Register 0  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
RESEREVD  
RESEREVD  
RESEREVD  
iAMT_EN  
RESERVED  
RESERVED  
RESERVED  
6
5
4
Set via SMBus or by combination of PD, CPU_STP and PCI_STP  
0 = Legacy mode, 1 = iAMT enable  
3
2
1
0
0
0
0
1
RESEREVD  
RESEREVD  
RESEREVD  
PD_Restore  
RESERVED  
RESERVED  
RESERVED  
Save configuration in PD  
0 = Configuration cleared, 1 = Configuration saved  
Byte 1 Control Register 1  
Bit  
@Pup  
Name  
Description  
7
1
SRC[T/C]7  
SRC[T/C]7 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
3
1
1
1
1
SRC[T/C]6  
SRC[T/C]5  
SRC[T/C]4  
SRC[T/C]3  
SRC[T/C]6 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]5 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]4 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]3 Output Enable  
0 = Disabled, 1 = Enabled  
.......................Document #: 001-05103 Rev *B Page 5 of 24  
CY28547  
Byte 1 Control Register 1 (continued)  
Bit  
@Pup  
Name  
Description  
2
1
SRC[T/C]2  
SRC[T/C]2 Output Enable  
0 = Disabled, 1 = Enabled  
1
0
1
1
SRC[T/C]1  
SRC[T/C]1 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]0  
/LCD_96_100M[T/C]  
SRC[T/C]0/LCD_96_100M[T/C] Output Enable  
0 = Disabled, 1 = Enabled  
Byte 2 Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
PCIF0  
PCIF0 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
27M NSS/DOT_96[T/C] 27M Non-spread and DOT_96 MHz Output Enable  
0 = Disable, 1 = Enabled  
48M  
48-MHz Output Enable  
0 = Disabled, 1 = Enabled  
REF0  
REF0 Output Enable  
0 = Disabled, 1 = Enabled  
REF1  
REF1 Output Enable  
0 = Disabled, 1 = Enabled  
CPU[T/C]1  
CPU[T/C]0  
CPU[T/C]1 Output Enable  
0 = Disabled, 1 = Enabled  
CPU[T/C]0 Output Enable  
0 = Disabled, 1 = Enabled  
CPU, SRC, PCI, PCIF PLL1 (CPU PLL) Spread Spectrum Enable  
Spread Enable  
0 = Spread off, 1 = Spread on  
Byte 3 Control Register 3  
Bit  
@Pup  
Name  
Description  
7
1
PCI4  
PCI4 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
1
1
1
PCI3  
PCI2  
PCI1  
PCI3 Output Enable  
0 = Disabled, 1 = Enabled  
PCI2 Output Enable  
0 = Disabled, 1 = Enabled  
PCI1 Output Enable  
0 = Disabled, 1 = Enabled  
3
2
1
1
1
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
CPU[T/C]2/SRC[T/C]10 CPU[T/C]2/SRC[T/C]10 Output Enable  
0 = Disabled, 1 = Enabled  
0
1
RESERVED  
RESERVED  
Byte 4 Control Register 4  
Bit  
@Pup  
Name  
Description  
7
0
SRC7  
Allow control of SRC[T/C]7 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
6
5
4
0
0
0
SRC6  
SRC5  
SRC4  
Allow control of SRC[T/C]6 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]5 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]4 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
.......................Document #: 001-05103 Rev *B Page 6 of 24  
CY28547  
Byte 4 Control Register 4 (continued)  
Bit  
@Pup  
Name  
Description  
3
0
SRC3  
Allow control of SRC[T/C]3 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
2
1
0
0
0
0
SRC2  
SRC1  
SRC0  
Allow control of SRC[T/C]2 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]1 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]0 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Byte 5 Control Register 5  
Bit  
@Pup  
Name  
Description  
7
0
LCD_96_100M[T/C]  
LCD_96_100M[T/C] PWRDWN Drive Mode  
0 = Driven in PWRDWN, 1 = Tri-state  
6
0
DOT96[T/C]  
DOT PWRDWN Drive Mode  
0 = Driven in PWRDWN, 1 = Tri-state  
5
4
3
0
0
0
RESERVED  
RESERVED  
PCIF0  
RESERVED, Set = 0  
RESERVED, Set = 0  
Allow control of PCIF0 with assertion of SW and HW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
2
1
0
1
1
1
CPU[T/C]2  
CPU[T/C]1  
CPU[T/C]0  
Allow control of CPU[T/C]2 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Allow control of CPU[T/C]1 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Allow control of CPU[T/C]0 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Byte 6 Control Register 6  
Bit  
@Pup  
Name  
Description  
7
0
SRC[T/C]  
SRC[T/C] Stop Drive Mode  
0 = Driven when PCI_STP# asserted  
1 = Tri-state when PCI_STP# asserted  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
CPU[T/C]2  
CPU[T/C]1  
CPU[T/C]0  
SRC[T/C][9:1]  
CPU[T/C]2  
CPU[T/C]1  
CPU[T/C]0  
CPU[T/C]2 Stop Drive Mode  
0 = Driven when CPU_STP# asserted  
1 = Tri-state when CPU_STP# asserted  
CPU[T/C]1 Stop Drive Mode  
0 = Driven when CPU_STP# asserted  
1 = Tri-state when CPU_STP# asserted  
CPU[T/C]0 Stop Drive Mode  
0 = Driven when CPU_STP# asserted  
1 = Tri-state when CPU_STP# asserted  
SRC[T/C][9:1] PWRDWN Drive Mode  
0 = Driven when PD asserted  
1 = Tri-state when PD asserted  
CPU[T/C]2 PWRDWN Drive Mode  
0 = Driven when PD asserted  
1 = Tri-state when PD asserted  
CPU[T/C]1 PWRDWN Drive Mode  
0 = Driven when PD asserted  
1 = Tri-state when PD asserted  
CPU[T/C]0 PWRDWN Drive Mode  
0 = Driven when PD asserted  
1 = Tri-state when PD asserted  
.......................Document #: 001-05103 Rev *B Page 7 of 24  
CY28547  
Byte 7 Control Register 7  
Bit  
@Pup  
Name  
Description  
7
0
TEST_SEL  
REF/N or Tri-state Select  
0 = Tri-state, 1 = REF/N Clock  
6
5
4
3
0
1
1
1
TEST_MODE  
REF1  
Test Clock Mode Entry Control  
0 = Normal operation, 1 = REF/N or Tri-state mode,  
REF1 Output Drive Strength  
0 = Low, 1 = High  
REF0  
REF0 Output Drive Strength  
0 = Low, 1 = High  
PCI, PCIF and SRC clock SW PCI_STP Function  
outputs except those set to 0 = SW PCI_STP assert, 1= SW PCI_STP deassert  
free running  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will  
be stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will  
resume in a synchronous manner with no short pulses.  
2
1
0
HW  
HW  
HW  
FSC  
FSB  
FSA  
FSC Reflects the value of the FSC pin sampled on power up  
0 = FSC was low during VTT_PWRGD# assertion  
FSB Reflects the value of the FSB pin sampled on power up  
0 = FSB was low during VTT_PWRGD# assertion  
FSA Reflects the value of the FSA pin sampled on power up  
0 = FSA was low during VTT_PWRGD# assertion  
Byte 8 Vendor ID  
Bit  
7
@Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
0
0
1
1
1
0
0
0
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
6
5
4
3
2
Vendor ID Bit 2  
Vendor ID Bit 2  
1
Vendor ID Bit 1  
Vendor ID Bit 1  
0
Vendor ID Bit 0  
Vendor ID Bit 0  
Byte 9 Control Register 9  
Bit  
@Pup  
Name  
Description  
RESERVED, Set = 0  
RESERVED, Set = 0  
RESERVED  
7
6
5
4
3
2
0
0
0
0
0
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
48M  
RESERVED  
RESERVED  
48-MHz Output Drive Strength  
0 = Low, 1 = High  
1
0
1
1
RESERVED  
PCIF0  
RESERVED  
PCIF0 Output Drive Strength  
0 = Low, 1 = High  
Byte 10 Control Register 10  
Bit  
7
@Pup  
Name  
Description  
0
0
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
.......................Document #: 001-05103 Rev *B Page 8 of 24  
CY28547  
Byte 10 Control Register 10 (continued)  
Bit  
5
@Pup  
Name  
S1  
Description  
0
0
27M_SS/LCD 96_100M SS Spread Spectrum Selection table:  
S[1:0] SS%  
‘00’ = –0.5%(Default value)  
‘01’ = –1.0%  
4
S0  
‘10’ = –1.5%  
‘11’ = –2.0%  
3
2
1
1
RESERVED  
27M_SS  
RESERVED  
27M Spread Output Enable  
0 = Disabled, 1 = Enabled  
1
1
27M_SS/LCD_100M  
Spread Enable  
27M_SS/LCD_100M Spread spectrum enable.  
0 = Disabled, 1 = Enabled  
0
0
RESERVED  
RESERVED  
Byte 11 Control Register 11  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
0
0
1
RESERVED  
RESERVED  
SRC[T/C]9  
6
RESERVED  
5
SRC[T/C]9 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
4
1
SRC[T/C]8  
SRC[T/C]8 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
3
2
1
0
RESERVED  
SRC[T/C]10  
RESERVED  
Allow control of SRC[T/C]10 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
1
0
0
0
SRC[T/C]9  
SRC[T/C]8  
Allow control of SRC[T/C]9 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]8 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Byte 12 Control Register 12  
Bit  
7
@Pup  
0
Name  
RESERVED  
Description  
RESERVED, Set = 0  
RESERVED  
6
HW  
HW  
HW  
0
RESERVED  
5
RESERVED  
RESERVED  
4
RESERVED  
RESERVED  
3
27M_SS/27M_NSS  
27-MHz (spread and non-spread) Output Drive Strength  
0 = Low, 1 = High  
2
1
0
0
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED, Set = 1  
RESERVED  
HW  
Byte 13 Control Register 13  
Bit  
@Pup  
Name  
Description  
7
0
CLKREQ#9  
CLKREQ#9 Input Enable  
0 = Disabled, 1 = Enabled  
6
5
0
0
CLKREQ#8  
CLKREQ#7  
CLKREQ#8 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#7 Input Enable  
0 = Disabled, 1 = Enabled  
.......................Document #: 001-05103 Rev *B Page 9 of 24  
CY28547  
Byte 13 Control Register 13 (continued)  
Bit  
@Pup  
Name  
Description  
4
0
CLKREQ#6  
CLKREQ#6 Input Enable  
0 = Disabled, 1 = Enabled  
3
2
1
0
0
0
0
0
CLKREQ#5  
CLKREQ#4  
CLKREQ#3  
CLKREQ#2  
CLKREQ#5 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#4 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#3 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#2 Input Enable  
0 = Disabled, 1 = Enabled  
Byte 14 Control Register 14  
Bit  
@Pup  
Name  
Description  
7
0
CLKREQ#1  
CLKREQ#1 Input Enable  
0 = Disabled, 1 = Enabled  
6
1
LCD 96_100M Clock  
Speed  
LCD 96_100M Clock Speed  
0 = 96 MHz 1 = 100 MHz  
5
4
3
1
1
1
RESERVED  
RESERVED  
PCI4  
RESERVED, Set = 1  
RESERVED, Set = 1  
PCI4 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
2
1
0
1
1
1
PCI3  
PCI2  
PCI1  
PCI3 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
PCI2 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
PCI1 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
Byte 15 Control Register 15  
Bit  
@Pup  
Name  
Description  
7
HW  
TME_STRAP  
Trusted mode enable strap status,  
0 = Normal  
1 = No overclocking (default)  
6
5
4
3
2
1
0
1
1
1
1
0
1
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
IO_VOUT2  
IO_VOUT1  
IO_VOUT0  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
IO_VOUT[2,1,0]  
000 = 0.63V  
001 = 0.71V  
010 = 0.77V  
011 = 0.82V (Default)  
100 = 0.86V  
101 = 0.90V  
110 = 0.93V  
111 = Reserved  
Table 6. Crystal Recommendations  
Frequency  
Drive  
(max.)  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
(Fund)  
Cut  
Loading Load Cap  
(max.)  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
The CY28547 requires a Parallel Resonance Crystal. Substi-  
tuting a series resonance crystal will cause the CY28547 to  
operate at the wrong frequency and violate the ppm specifi-  
cation. For most applications there is a 300-ppm frequency  
.....................Document #: 001-05103 Rev *B Page 10 of 24  
CY28547  
shift between series and parallel crystals due to incorrect  
loading.  
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Load Capacitance (each side)  
Crystal Loading  
Ce = 2 * CL – (Cs + Ci)  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, the total capacitance  
the crystal will see must be considered to calculate the appro-  
priate capacitive loading (CL).  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
1
1
(
)
+
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. An important clarification for the following  
discussion is that the trim capacitors are in series with the  
crystal not parallel. It’s a common misconception that load  
capacitors are in parallel with the crystal and should be  
approximately equal to the load capacitance of the crystal.  
This is not true.  
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
CL....................................................Crystal load capacitance  
CLe......................................... Actual loading seen by crystal  
using standard value trim capacitors  
Ce..................................................... External trim capacitors  
Cs..............................................Stray capacitance (terraced)  
Ci ...........................................................Internal capacitance  
(lead frame, bond wires etc.)  
CLK_REQ# Description  
The CLKREQ# signals are active LOW inputs used for clean  
enabling and disabling selected SRC outputs. The outputs  
controlled by CLKREQ# are determined by the settings in  
register byte 8. The CLKREQ# signal is a de-bounced signal  
in that it’s state must remain unchanged during two consec-  
utive rising edges of SRCC to be recognized as a valid  
assertion or deassertion. (The assertion and deassertion of  
this signal is absolutely asynchronous.)  
Figure 1. Crystal Capacitive Clarification  
Calculating Load Capacitors  
In addition to the standard external trim capacitors, trace  
capacitance and pin capacitance must also be considered to  
correctly calculate crystal loading. As mentioned previously,  
the capacitance on each side of the crystal is in series with the  
crystal. This means the total capacitance on each side of the  
crystal must be twice the specified crystal load capacitance  
(CL). While the capacitance on each side of the crystal is in  
series with the crystal, trim capacitors (Ce1,Ce2) should be  
calculated to provide equal capacitive loading on both sides.  
CLK_REQ[1:9]# Assertion (CLKREQ# -> LOW)  
All differential outputs that were stopped are to resume normal  
operation in a glitch-free manner. The maximum latency from  
the assertion to active outputs is between 2 and 6 SRC clock  
periods (2 clocks are shown) with all SRC outputs resuming  
simultaneously. All stopped SRC outputs must be driven HIGH  
within 10 ns of CLKREQ# deassertion to a voltage greater than  
200 mV.  
Clock Chip  
Ci2  
Ci1  
Pin  
3 to 6p  
X2  
X1  
Cs2  
Cs1  
Trace  
2.8 pF  
XTAL  
Ce1  
Ce2  
Trim  
33 pF  
Figure 2. Crystal Loading Example  
.....................Document #: 001-05103 Rev *B Page 11 of 24  
 
CY28547  
CLKREQ#X  
SRCT(free running)  
SRCC(free running)  
SRCT(stoppable)  
SRCT(stoppable)  
Figure 3. CLK_REQ#[1:9] Deassertion/Assertion Waveform  
CLK_REQ[1:9]# Deassertion (CLKREQ# -> HIGH)  
DOT) clock output of interest is programmed to ‘0’, the clock  
outputs are held with “Diff clock” pin driven HIGH, and “Diff  
clock#” tri-state. If the control register PD drive mode bit corre-  
sponding to the output of interest is programmed to “1”, then  
both the “Diff clock” and the “Diff clock#” are tri-state. Note that  
Figure 4 shows CPUT = 133 MHz and PD drive mode = ‘1’ for  
all differential outputs. This diagram and description is appli-  
cable to valid CPU frequencies 100, 133, 166, and 200 MHz.  
In the event that PD mode is desired as the initial power-on  
state, PD must be asserted HIGH in less than 10 s after  
asserting Vtt_PwrGd#. It should be noted that 96_100_SSC  
will follow the DOT waveform when selected for 96 MHz and  
the SRC waveform when in 100-MHz mode.  
The impact of deasserting the CLKREQ# pins is that all SRC  
outputs that are set in the control registers to stoppable via  
deassertion of CLKREQ# are to be stopped after their next  
transition. The final state of all stopped SRC clocks is  
Low/Low.  
PD (Power-down) Clarification  
The VTT_PWRGD#/PD pin is a dual-function pin. During initial  
power-up, the pin functions as VTT_PWRGD#. Once  
VTT_PWRGD# has been sampled LOW by the clock chip, the  
pin assumes PD functionality. The PD pin is an asynchronous  
active HIGH input used to shut off all clocks cleanly prior to  
shutting off power to the device. This signal is synchronized  
internal to the device prior to powering down the clock synthe-  
sizer. PD is also an asynchronous input for powering up the  
system. When PD is asserted HIGH, all clocks need to be  
driven to a LOW value and held prior to turning off the VCOs  
and the crystal oscillator.  
PD Deassertion  
The power-up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD pin or the ramping of the power  
supply until the time that stable clocks are output from the  
clock chip. All differential outputs stopped in a three-state  
condition resulting from power down will be driven high in less  
than 300 s of PD deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs will be enabled within a few clock cycles of  
each other. Figure 5 is an example showing the relationship of  
clocks coming up. It should be noted that 96_100_SSC will  
follow the DOT waveform when selected for 96 MHz and the  
SRC waveform when in 100-MHz mode.  
PD (Power-down) Assertion  
When PD is sampled HIGH by two consecutive rising edges  
of CPUC, all single-ended outputs will be held LOW on their  
next HIGH-to-LOW transition and differential clocks must be  
held HIGH or tri-stated (depending on the state of the control  
register drive mode bit) on the next diff clock# HIGH-to-LOW  
transition within 4 clock periods. When the SMBus PD drive  
mode bit corresponding to the differential (CPU, SRC, and  
PD  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33 MHz  
REF  
Figure 4. Power-down Assertion Timing Waveform  
.....................Document #: 001-05103 Rev *B Page 12 of 24  
 
CY28547  
Tstable  
<1.8 ms  
PD  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33MHz  
REF  
Tdrive_PWRDN#  
<300 s, >200 mV  
Figure 5. Power-down Deassertion Timing Waveform  
CPU_STP# Assertion  
set with the SMBus configuration to be stoppable via assertion  
of CPU_STP# will be stopped within two–six CPU clock  
periods after being sampled by two rising edges of the internal  
CPUC clock. The final state of all stopped CPU clocks is  
High/Low when driven, Low/Low when tri-stated.  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
When the CPU_STP# pin is asserted, all CPU outputs that are  
CPU_STP#  
CPUT  
CPUC  
Figure 6. CPU_STP# Assertion Waveform  
CPU_STP#  
CPUT  
CPUC  
CPUT Internal  
CPUC Internal  
Tdrive_CPU_STP#,10 ns>200 mV  
Figure 7. CPU_STP# Deassertion Waveform  
.....................Document #: 001-05103 Rev *B Page 13 of 24  
CY28547  
PCI_STP# Assertion  
driven Low, SRC outputs are High/Low if set to driven and  
Low/Low if set to tri-state.  
The PCI_STP# signal is an active LOW input used for  
synchronous stopping and starting the PCI outputs and SRC  
outputs if they are set to be stoppable in SMbus while the rest  
of the clock generator continues to function. The set-up time  
for capturing PCI_STP# going LOW is 10 ns (tSU). (See  
Figure 9.) The PCIF clocks will not be affected by this pin if  
their corresponding control bit in the SMBus register is set to  
allow them to be free running. All stopped PCI outputs are  
PCI_STP# Deassertion  
The deassertion of the PCI_STP# signal will cause all PCI and  
stoppable PCIF clocks to resume running in a synchronous  
manner within two PCI clock periods after PCI_STP# transi-  
tions to a HIGH level  
1.8mS  
CPU_STOP#  
PD  
CPUT(Free Running)  
CPUC(Free Running)  
CPUT(Stoppable)  
CPUC(Stoppable)  
DOT96T  
DOT96C  
Figure 8. CPU_STP# = Tri-state, CPU_PD = Tri-state, DOT_PD = Tri-state  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 9. PCI_STP# Assertion Waveform  
1.8 ms  
CPU_STOP#  
PD  
CPUT(Free Running  
CPUC(Free Running  
CPUT(Stoppable)  
CPUC(Stoppable)  
Figure 10. CPU_STP# = Driven, CPU_PD = Driven, DOT_PD = Driven  
.....................Document #: 001-05103 Rev *B Page 14 of 24  
 
CY28547  
Tdrive_SRC  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 11. PCI_STP# Deassertion Waveform  
FS_A, FS_B,FS_C  
VTT_PWRGD#  
PWRGD_VRM  
0.2-0.3mS  
Delay  
Wait for  
VTT_PWRGD#  
Device is not affected,  
VTT_PWRGD# is ignored  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 12. VTTPWRGD# Timing DIagram  
Figure 13. CY28547 State Diagram  
.....................Document #: 001-05103 Rev *B Page 15 of 24  
CY28547  
C l o c k O f f t o M1  
3.3V  
Vcc  
2.0V  
T_delay t  
FSC  
FSB  
FSA  
CPU_STOP#  
PCI_STOP#  
CKPWRGD/PWRDWN  
CK505 SMBUS  
CK505 State  
Off  
Latches Open  
Off  
M1  
BSEL[0..2]  
Off  
CK505 Core Logic  
PLL1  
Locked  
CPU1  
PLL2 & PLL3  
All Other Clocks  
REF Oscillator  
T_delay2  
T_delay3  
Figure 14. BSEL Serial Latching  
.....................Document #: 001-05103 Rev *B Page 16 of 24  
CY28547  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
–0.5  
–65  
0
Max.  
4.6  
Unit  
V
4.6  
VDD_A  
VIN  
Analog Supply Voltage  
Input Voltage  
V
V
+ 0.5  
Relative to VSS  
Non-functional  
Functional  
VDC  
°C  
DD  
TS  
Temperature, Storage  
150  
85  
150  
20  
60  
TA  
Temperature, Operating Ambient  
Temperature, Junction  
°C  
TJ  
Functional  
°C  
ØJC  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
Mil-STD-883E Method 1012.1  
JEDEC (JESD 51)  
°C/W  
°C/W  
V
ØJA  
ESDHBM  
UL-94  
MSL  
ESD Protection (Human Body Model) MIL-STD-883, Method 3015  
2000  
Flammability Rating  
At 1/8 in.  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
All VDDs  
VILI2C  
VIHI2C  
VIL_FS  
VIH_FS  
VILFS_C  
VIMFS_C  
VIHFS_C  
VIL  
Description  
3.3V Operating Voltage  
Input Low Voltage  
Condition  
Min.  
3.135  
Max. Unit  
3.3 ± 5%  
3.465  
1.0  
V
V
SDATA, SCLK  
SDATA, SCLK  
Input High Voltage  
2.2  
V
V
V
– 0.3  
FS_[A,B] Input Low Voltage  
FS_[A,B] Input High Voltage  
FS_C Input Low Voltage  
FS_C Input Middle Voltage  
FS_C Input High Voltage  
3.3V Input Low Voltage  
3.3V Input High Voltage  
Input Low Leakage Current  
Input High Leakage Current  
3.3V Output Low Voltage  
3.3V Output High Voltage  
High-impedance Output Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
0.35  
V
SS  
V
+ 0.5  
0.7  
– 0.3  
V
DD  
0.35  
1.7  
+ 0.5  
V
SS  
0.7  
2.0  
– 0.3  
V
V
V
V
DD  
V
0.8  
+ 0.3  
V
SS  
VIH  
2.0  
–5  
V
DD  
IIL  
Except internal pull-up resistors, 0 < VIN < VDD  
Except internal pull-down resistors, 0 < VIN < VDD  
IOL = 1 mA  
5
5
A  
A  
V
IIH  
VOL  
0.4  
VOH  
IOH = –1 mA  
2.4  
–10  
3
V
IOZ  
10  
5
A  
pF  
pF  
nH  
V
CIN  
COUT  
LIN  
3
6
7
VXIH  
Xin High Voltage  
0.7V  
0
VDD  
DD  
0.3V  
VXIL  
Xin Low Voltage  
V
DD  
IDD3.3V  
Dynamic Supply Current  
In low drive mode per Figure 15 and Figure 17  
@133 MHz  
250  
mA  
IPD3.3V  
IPD3.3V  
Power-down Supply Current  
Power-down Supply Current  
PD asserted, Outputs Driven  
PD asserted, Outputs Tri-state  
30  
5
mA  
mA  
.....................Document #: 001-05103 Rev *B Page 17 of 24  
CY28547  
AC Electrical Specifications  
Parameter  
Crystal  
TDC  
Description  
Condition  
Min.  
Max. Unit  
XIN Duty Cycle  
The device will operate reliably with input duty  
cycles up to 30/70 but the REF clock duty cycle  
will not be within specification  
47.5  
52.5  
%
TPERIOD  
TR/TF  
XIN Period  
When XIN is driven from an external clock source 69.841  
71.0  
10.0  
500  
ns  
ns  
ps  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Measured between 0.3VDD and 0.7VDD  
TCCJ  
As an average over 1-s duration  
CPU  
45  
55  
TDC  
CPUT and CPUC Duty Cycle  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
%
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9.99900 10.0100  
7.49925 7.50075  
5.99940 6.00060  
4.99950 5.00050  
3.74963 3.75038  
2.99970 3.00030  
2.49975 2.50025  
10.02406 10.02607  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
100 MHz CPUT and CPUC Period  
133 MHz CPUT and CPUC Period  
166 MHz CPUT and CPUC Period  
200 MHz CPUT and CPUC Period  
266 MHz CPUT and CPUC Period  
333 MHz CPUT and CPUC Period  
400 MHz CPUT and CPUC Period  
TPERIODSS 100 MHz CPUT and CPUC Period, Measured at 0V differential at 0.1s  
SSC  
7.51804 7.51955  
6.01444 6.01564  
5.01203 5.01303  
3.75902 3.75978  
3.00722 3.00782  
2.50601 2.50652  
9.91400 10.0860  
7.41425 7.58575  
5.91440 6.08560  
4.91450 5.08550  
3.66463 3.83538  
2.91470 3.08530  
2.41475 2.58525  
9.91406 10.1362  
7.41430 7.62340  
TPERIODSS 133 MHz CPUT and CPUC Period, Measured at 0V differential at 0.1s  
SSC  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TPERIODSS 166 MHz CPUT and CPUC Period, Measured at 0V differential at 0.1s  
SSC  
TPERIODSS 200 MHz CPUT and CPUC Period, Measured at 0V differential at 0.1s  
SSC  
TPERIODSS 266 MHz CPUT and CPUC Period, Measured at 0V differential at 0.1s  
SSC  
TPERIODSS 333 MHz CPUT and CPUC Period, Measured at 0V differential at 0.1s  
SSC  
TPERIODSS 400 MHz CPUT and CPUC Period, Measured at 0V differential at 0.1s  
SSC  
TPERIODAbs 100 MHz CPUT and CPUC Absolute Measured at 0V differential at 1 clock  
period  
TPERIODAbs 133 MHz CPUT and CPUC Absolute Measured at 0V differential at 1 clock  
period  
TPERIODAbs 166 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period  
TPERIODAbs 200 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period  
TPERIODAbs 266 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period  
TPERIODAbs 333 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period  
TPERIODAbs 400 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period  
TPERI-  
ODSSAbs  
TPERI-  
100 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period, SSC  
133 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period, SSC  
ODSSAbs  
.....................Document #: 001-05103 Rev *B Page 18 of 24  
CY28547  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Min.  
Max. Unit  
5.91444 6.11572  
4.91453 5.11060  
3.66465 3.85420  
2.91472 3.10036  
2.41477 2.59780  
TPERI-  
ODSSAbs  
TPERI-  
ODSSAbs  
TPERI-  
ODSSAbs  
TPERI-  
ODSSAbs  
TPERI-  
ODSSAbs  
TCCJ  
166 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period, SSC  
ns  
ns  
ns  
ns  
ns  
200 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period, SSC  
266 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period, SSC  
333 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period, SSC  
400 MHz CPUT and CPUC Absolute Measured at 0V differential @ 1 clock  
period, SSC  
CPU Cycle to Cycle Jitter  
CPU2_ITP Cycle to Cycle Jitter  
Long-term Accuracy  
Measured at 0V differential  
85  
125  
100  
100  
150  
8
ps  
ps  
TCCJ2  
Measured at 0V differential  
LACC  
Measured at 0V differential  
ppm  
ps  
TSKEW  
TSKEW2  
TR / TF  
TRFM  
CPU0 to CPU1 Clock Skew  
CPU2_ITP to CPU0 Clock Skew  
CPU Rising/Falling Slew rate  
Rise/Fall Matching  
Measured at 0V differential  
Measured at 0V differential  
ps  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
V/ns  
%
20  
VHIGH  
VLOW  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
SRC at 0.7V  
TDC  
SRC Duty Cycle  
Measured at 0V differential  
45  
55  
%
ns  
ns  
ns  
ns  
9.99900 10.0010  
10.02406 10.02607  
9.87400 10.1260  
9.87406 10.1762  
TPERIOD  
100 MHz SRC Period  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 1 clock  
TPERIODSS 100 MHz SRC Period, SSC  
TPERIODAbs 100 MHz SRC Absolute Period  
TPERI-  
100 MHz SRC Absolute Period, SSC Measured at 0V differential @ 1 clock  
ODSSAbs  
TSKEW(windo Any SRC Clock Skew from the  
Measured at 0V differential  
3.0  
ns  
earliest bank to the latest bank  
w)  
TCCJ  
SRC Cycle to Cycle Jitter  
SRC Long Term Accuracy  
SRC Rising/Falling Slew Rate  
Rise/Fall Matching  
Measured at 0V differential  
125  
100  
8
ps  
ppm  
V/ns  
%
LACC  
TR / TF  
TRFM  
VHIGH  
VLOW  
VOX  
Measured at 0V differential  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
20  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
Crossing Point Voltage at 0.7V Swing  
550  
mV  
DOT96 at 0.7V  
TDC  
DOT96 Duty Cycle  
DOT96 Period  
Measured at 0V differential  
45  
55  
%
ns  
10.4156 10.4177  
10.1656 10.6677  
TPERIOD  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
TPERIODAbs DOT96 Absolute Period  
ns  
TCCJ  
DOT96 Cycle to Cycle Jitter  
DOT96 Long Term Accuracy  
DOT96 Rising/Falling Slew Rate  
Rise/Fall Matching  
250  
100  
8
ps  
LACC  
ppm  
V/ns  
%
TR / TF  
TRFM  
VHIGH  
2.5  
20  
Voltage High  
1.15  
V
.....................Document #: 001-05103 Rev *B Page 19 of 24  
CY28547  
AC Electrical Specifications (continued)  
Parameter  
VLOW  
Description  
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Condition  
Min.  
–0.3  
300  
Max. Unit  
V
VOX  
550  
mV  
LCD_100_SSC at 0.7V  
TDC  
LCD_100 Duty Cycle  
100 MHz LCD_100 Period  
Measured at 0V differential  
45  
55  
%
TPERIOD  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
9.99900 10.0010 ns  
10.0240 10.0260 ns  
TPERIODSS 100 MHz LCD_100 Period, SSC  
-0.5%  
6
7
TPERIODAbs 100 MHz LCD_100 Absolute Period Measured at 0V differential at 1 clock  
9.74900 10.2510 ns  
0
TPERI-  
ODSSAbs  
TCCJ  
100 MHz LCD_100 Absolute Period, Measured at 0V differential @ 1 clock  
SSC  
9.74906 10.3012 ns  
LCD_100 Cycle to Cycle Jitter  
LCD_100 Long Term Accuracy  
Measured at 0V differential  
Measured at 0V differential  
250  
100  
8
ps  
ppm  
V/ns  
%
LACC  
TR / TF  
TRFM  
VHIGH  
VLOW  
VOX  
LCD_100 Rising/Falling Slew Rate Measured differentially from ±150 mV  
2.5  
Rise/Fall Matching  
Voltage High  
Measured single-endedly from ±75 mV  
20  
1.15  
V
Voltage Low  
–0.3  
300  
V
Crossing Point Voltage at 0.7V Swing  
550  
mV  
PCI/PCIF at 3.3V  
TDC  
PCI Duty Cycle  
Spread Disabled PCIF/PCI Period  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
ns  
ns  
ns  
ns  
29.99700 30.00300  
30.08421 30.23459  
29.49700 30.50300  
29.56617 30.58421  
TPERIOD  
TPERIODSS Spread Enabled PCIF/PCI Period  
TPERIODAbs Spread Disabled PCIF/PCI Period  
TPERI-  
ODSSAbs  
THIGH  
Spread Enabled PCIF/PCI Period  
Spread Enabled PCIF and PCI high Measurement at 2V  
time  
12.2709 16.2799 ns  
5
5
TLOW  
THIGH  
TLOW  
Spread Enabled PCIF and PCI low Measurement at 0.8V  
time  
11.8709 16.0799 ns  
5
5
Spread Disabled PCIF and PCI high Measurement at 2.V  
time  
12.2736 16.2766 ns  
5
5
Spread Disabled PCIF and PCI low Measurement at 0.8V  
time  
11.8736 16.0766 ns  
5
1.0  
5
TR / TF  
TSKEW  
TCCJ  
PCIF/PCI Rising/Falling Slew Rate Measured between 0.8V and 2.0V  
Any PCI clock to Any PCI clock Skew Measurement at 1.5V  
PCIF and PCI Cycle to Cycle Jitter Measurement at 1.5V  
4.0  
V/ns  
ps  
1000  
500  
100  
ps  
LACC  
PCIF/PCI Long Term Accuracy  
Measurement at 1.5V  
ppm  
48_M at 3.3V  
TDC  
Duty Cycle  
Period  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2V  
45  
55  
%
ns  
20.83125 20.83542  
20.48125 21.18542  
8.216563 11.15198  
7.816563 10.95198  
TPERIOD  
TPERIODAbs Absolute Period  
ns  
THIGH  
TLOW  
TR / TF  
TCCJ  
48_M High time  
ns  
48_M Low time  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
ns  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
48M Long Term Accuracy  
1.0  
2.0  
350  
100  
V/ns  
ps  
LACC  
ppm  
.....................Document #: 001-05103 Rev *B Page 20 of 24  
CY28547  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Measurement at 1.5V  
Min.  
Max. Unit  
27M_NSS/27M_SS at 3.3V  
TDC  
Duty Cycle  
45  
55  
%
TPERIOD  
Spread Disabled 27M Period  
Measurement at 1.5V  
37.0359 37.0381 ns  
4
3
Spread Enabled 27M Period  
Measurement at 1.5V  
37.0359 37.0381 ns  
4
1.0  
3
TR / TF  
TCCJ  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
Measured between 0.4V and 2.0V  
Measurement at 1.5V  
4.0  
200  
50  
V/ns  
ps  
LACC  
27_M Long Term Accuracy  
Measured at crossing point VOX  
ppm  
REF  
TDC  
REF Duty Cycle  
REF Period  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2V  
45  
55  
%
69.82033 69.86224 ns  
68.83429 70.84826 ns  
29.97543 38.46654 ns  
29.57543 38.26654 ns  
TPERIOD  
TPERIODAbs REF Absolute Period  
THIGH  
TLOW  
TR / TF  
TSKEW  
TCCJ  
REF High time  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
REF Low time  
REF Rising and Falling Edge Rate  
REF Clock to REF Clock  
REF Cycle to Cycle Jitter  
Long Term Accuracy  
1.0  
4.0  
500  
V/ns  
ps  
1000  
100  
ps  
LACC  
ppm  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS Stopclock Set-up Time  
1.8  
ms  
ns  
10.0  
Test and Measurement Set-up  
For Single-ended Signals and Reference  
The following diagram shows test load configurations for the  
single-ended PCI, USB, and REF output signals.  
Figure 15.Single-ended Load Configuration Low Drive Option  
.....................Document #: 001-05103 Rev *B Page 21 of 24  
CY28547  
Figure 16. Single-ended Load Configuration High Drive Option  
The following diagram shows the test load configuration for the  
differential CPU and SRC outputs.  
Figure 17. 0.8V Differential Load Configuration  
3 .3 V s ig n a ls  
T D C  
-
-
3.3V  
2.0V  
1.5V  
0.8V  
0V  
T R  
T F  
Figure 18. Single-ended Output Signals (for AC Parameters Measurement)  
Ordering Information  
Part Number  
Lead-free  
CY28547LFXC  
Package Type  
Product Flow  
Commercial, 0to 85C  
72-pin QFN  
.....................Document #: 001-05103 Rev *B Page 22 of 24  
CY28547  
Ordering Information  
CY28547LFXCT  
72-pin QFN–Tape and Reel  
Commercial, 0to 85C  
Package Diagram  
72-Lead QFN 10 x 10 mm (Punch Version) LF72A  
$)-%.3)/.3 ). --;).#(%3= -).ꢃ  
-!8ꢃ  
2%&%2%.#% *%$%# -/ꢊꢅꢅꢂ  
7%)'(4ꢀ ꢂꢃꢅꢉ '2!-3  
0!$$,% 3):%8ꢁ --  
ꢂꢃꢂꢇ;ꢂꢃꢂꢂꢉ=  
#
ꢆꢃꢂꢂ;ꢂꢃꢂꢉꢌ= -!8ꢃ  
ꢂꢃꢇꢂ;ꢂꢃꢂꢉꢆ= -!8ꢃ  
ꢌꢃꢌꢂ;ꢂꢃꢉꢌꢂ=  
ꢆꢂꢃꢆꢂ;ꢂꢃꢉꢌꢇ=  
!
ꢂꢃꢂꢄ;ꢂꢃꢂꢂꢅ= -!8ꢃ  
ꢌꢃꢈꢂ;ꢂꢃꢉꢇꢅ=  
ꢌꢃꢇꢂ;ꢂꢃꢉꢇꢁ=  
ꢂꢃꢅꢂ;ꢂꢃꢂꢂꢇ= 2%&ꢃ  
ꢂꢃꢆꢇ;ꢂꢃꢂꢂꢈ=  
ꢂꢃꢅꢇ;ꢂꢃꢂꢆꢆ=  
0).ꢆ )$  
ꢂꢃꢅꢂ 2ꢃ  
.
.
ꢂꢃꢇꢂ $)!ꢃ  
ꢂꢃꢋꢄ;ꢂꢃꢂꢆꢇ=  
%ꢊ0!$  
0!$ 3):% 6!29  
"9 $%6)#% 490%ꢎ  
ꢂꢃꢉꢂ;ꢂꢃꢂꢆꢅ=  
ꢂꢃꢄꢂ;ꢂꢃꢂꢅꢂ=  
ꢂꢃꢅꢋ;ꢂꢃꢂꢂꢌ=  
ꢂꢃꢁꢂ;ꢂꢃꢂꢅꢋ=  
ꢍꢋ8ꢎ  
ꢂ²ꢊꢆꢅ²  
ꢂꢃꢄꢂ;ꢂꢃꢂꢅꢂ=  
ꢇꢃꢋꢄ;ꢂꢃꢉꢉꢉ=  
ꢇꢃꢄꢄ;ꢂꢃꢉꢉꢈ=  
#
3%!4).'  
0,!.%  
3)$% 6)%7  
4/0 6)%7  
"/44/- 6)%7  
.....................Document #: 001-05103 Rev *B Page 23 of 24  
CY28547  
Document History Page  
Document Title: CY28547 Clock Generator for Intel®CK410M/CK505  
Document Number: 001-05103  
Orig. of  
REV.  
1.0  
Issue Date Change  
Description of Change  
See ECN  
RGL  
New data sheet  
1.1  
See ECN RGL/XLZ Modify the definition of pin 9, 27, 32 and 39  
Re-arrange control register map  
Update AC Electrical Specifications table  
1.2  
1.3  
See ECN  
12/28/06  
RGL  
JMA  
Modify the pin description table  
Update the default values in the control register bytes 7, 8, 9, 11, 12, 14, and 15  
1. Modified Revision ID Bit from 0010 to 0011  
2. Set Byte 12 <7> from DIAG_EN to Reserved  
3. Set Byte 12 <6> from CPU_PLL Status to Reserved  
4. Set Byte 12 <5> from Video_PLL Status to Reserved  
5. Set Byte 12 <4> from Fixed_PLL Status to Reserved  
6. Edited Figure 15 and 16 Terminationa Resistor for double load 12-ohm to  
22-ohm  
7. Edited Figure 15 and 16 Load from 5pF to 4pF.  
8. Changed CPU Vox_min from 250ps to 300ps  
9. Changed SRC Vox_min from 180ps to 300ps  
10. Changed LCD Vox_min from 250ps to 300ps  
11. Changed DOTVox_min from 250ps to 300ps  
1.4  
10/31/07  
JMA  
Added Mitsui package  
.....................Document #: 001-05103 Rev *B Page 24 of 24  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

CY28548

Clock Generator for Intel®Crestline Chipset
SILICON

CY28548LFXC

Clock Generator for Intel®Crestline Chipset
SILICON

CY28548LFXCT

Clock Generator for Intel®Crestline Chipset
SILICON

CY28548ZXC

Clock Generator for Intel®Crestline Chipset
SILICON

CY28548ZXCT

Clock Generator for Intel®Crestline Chipset
SILICON

CY28549LFXC

Clock Generator,
SILICON

CY28551

Universal Clock Generator for Intel, VIA, and SIS㈢
CYPRESS

CY28551-3

Universal Clock Generator for Intel, VIA and SIS㈢
CYPRESS

CY28551LFXC

Universal Clock Generator for Intel, VIA, and SIS㈢
CYPRESS

CY28551LFXC-3

Universal Clock Generator for Intel, VIA and SIS㈢
CYPRESS

CY28551LFXC-3T

Universal Clock Generator for Intel, VIA and SIS㈢
CYPRESS

CY28551LFXCT

Universal Clock Generator for Intel, VIA, and SIS㈢
CYPRESS