EFM32TG108F16-QFN24T [SILICON]

Microcontroller, 32-Bit, FLASH, CORTEX-M3 CPU, 32MHz, CMOS, PQCC24;
EFM32TG108F16-QFN24T
型号: EFM32TG108F16-QFN24T
厂家: SILICON    SILICON
描述:

Microcontroller, 32-Bit, FLASH, CORTEX-M3 CPU, 32MHz, CMOS, PQCC24

时钟 微控制器 外围集成电路
文件: 总48页 (文件大小:1298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EFM32TG108 DATASHEET  
F32/F16/F8/F4  
ARM Cortex-M3 CPU platform  
Communication interfaces  
• High Performance 32-bit processor @ up to 32 MHz  
• Wake-up Interrupt Controller  
• Universal Synchronous/Asynchronous Receiv-  
er/Transmitter  
• UART/SPI/SmartCard (ISO 7816)/IrDA/I2S  
• Triple buffered full/half-duplex operation  
• Low Energy UART  
Flexible Energy Management System  
• 20 nA @ 3 V Shutoff Mode  
• 0.6 µA @ 3 V Stop Mode, including Power-on Reset, Brown-out  
Detector, RAM and CPU retention  
• 1.0 µA @ 3 V Deep Sleep Mode, including RTC with 32.768 kHz  
oscillator, Power-on Reset, Brown-out Detector, RAM and CPU  
retention  
• 51 µA/MHz @ 3 V Sleep Mode  
• 150 µA/MHz @ 3 V Run Mode, with code executed from flash  
32/16/8/4 KB Flash  
• Autonomous operation with DMA in Deep Sleep  
Mode  
• I2C Interface with SMBus support  
• Address recognition in Stop Mode  
Ultra low power precision analog peripherals  
• 2× Analog Comparator  
• Capacitive sensing with up to 4 inputs  
• Supply Voltage Comparator  
4/4/2/2 KB RAM  
17 General Purpose I/O pins  
• Configurable push-pull, open-drain, pull-up/down, input filter, drive  
strength  
• Configurable peripheral I/O locations  
• 11 asynchronous external interrupts  
• Output state retention and wake-up from Shutoff Mode  
8 Channel DMA Controller  
8 Channel Peripheral Reflex System (PRS) for autonomous in-  
ter-peripheral signaling  
Low Energy Sensor Interface (LESENSE)  
• Autonomous sensor monitoring in Deep Sleep Mode  
Ultra efficient Power-on Reset and Brown-Out Detec-  
tor  
2-pin Serial Wire Debug interface  
• 1-pin Serial Wire Viewer  
Pre-Programmed UART Bootloader  
Temperature range -40 to 85 ºC  
Single power supply 1.98 to 3.8 V  
QFN24 package  
Timers/Counters  
• 2× 16-bit Timer/Counter  
• 2×3 Compare/Capture/PWM channels  
• 16-bit Low Energy Timer  
• 1× 24-bit Real-Time Counter  
• 1× 16-bit Pulse Counter  
• Watchdog Timer with dedicated RC oscillator @ 50 nA  
32-bit ARM Cortex-M0+, Cortex-M3 and Cortex-M4 microcontrollers for:  
• Energy, gas, water and smart metering  
• Health and fitness applications  
• Smart accessories  
• Alarm and security systems  
• Industrial and home automation  
...the world's most energy friendly microcontrollers  
1 Ordering Information  
Table 1.1 (p. 2) shows the available EFM32TG108 devices.  
Table 1.1. Ordering Information  
Ordering Code  
Flash (kB) RAM (kB)  
Max  
Speed  
(MHz)  
Supply  
Voltage  
(V)  
Temperature  
(ºC)  
Package  
EFM32TG108F4-QFN24  
EFM32TG108F8-QFN24  
EFM32TG108F16-QFN24  
EFM32TG108F32-QFN24  
4
2
2
4
4
32  
32  
32  
32  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
1.98 - 3.8  
-40 - 85  
-40 - 85  
-40 - 85  
-40 - 85  
QFN24  
QFN24  
QFN24  
QFN24  
8
16  
32  
Visit www.silabs.com for information on global distributors and representatives.  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
2
 
 
...the world's most energy friendly microcontrollers  
2 System Summary  
2.1 System Introduction  
The EFM32 MCUs are the world’s most energy friendly microcontrollers. With a unique combination of  
the powerful 32-bit ARM Cortex-M3, innovative low energy techniques, short wake-up time from ener-  
gy saving modes, and a wide selection of peripherals, the EFM32TG microcontroller is well suited for  
any battery operated application as well as other systems requiring high performance and low-energy  
consumption. This section gives a short introduction to each of the modules in general terms and also  
shows a summary of the configuration for the EFM32TG108 devices. For a complete feature set and in-  
depth information on the modules, the reader is referred to the EFM32TG Reference Manual.  
A block diagram of the EFM32TG108 is shown in Figure 2.1 (p. 3) .  
Figure 2.1. Block Diagram  
TG108F4/ 8/ 16/ 32  
Core andMemory  
Clock Management  
Energy Management  
High Frequency  
Crystal  
High Frequency  
RC  
Voltage  
Voltage  
Oscillator  
Oscillator  
ARM Cortex- M3 processor  
Regulator  
Comparator  
Low Frequency  
RC  
Aux High Freq  
RC  
Oscillator  
Oscillator  
Flash  
Memory  
[KB]  
RAM  
Memory  
[KB]  
Debug  
Interface  
DMA  
Controller  
Power-on  
Reset  
Brown-out  
Detector  
Low Frequency  
Crystal  
Oscillator  
Watchdog  
Oscillator  
4/ 8/ 16/ 32  
2/ 2/ 4/ 4  
32-bit bus  
Peripheral Reflex System  
Serial Interfaces  
I/O Ports  
Timers and Triggers  
Analog Interfaces  
Security  
Timer/  
Counter  
Low  
Energy  
Sensor  
General  
Purpose  
I/ O  
Analog  
Comparator  
External  
Interrupts  
USART  
1x  
2x  
17 pins  
Low Energy Real Time  
Timer  
Counter  
Low  
Energy  
UART™  
Pin  
Reset  
I2C  
Pulse  
Counter  
Watchdog  
Timer  
2.1.1 ARM Cortex-M3 Core  
The ARM Cortex-M3 includes a 32-bit RISC processor which can achieve as much as 1.25 Dhrystone  
MIPS/MHz. A Wake-up Interrupt Controller handling interrupts triggered while the CPU is asleep is in-  
cluded as well. The EFM32 implementation of the Cortex-M3 is described in detail in EFM32 Cortex-M3  
Reference Manual.  
2.1.2 Debug Interface (DBG)  
This device includes hardware debug support through a 2-pin serial-wire debug interface . In addition  
there is also a 1-wire Serial Wire Viewer pin which can be used to output profiling information, data trace  
and software-generated messages.  
2.1.3 Memory System Controller (MSC)  
The Memory System Controller (MSC) is the program memory unit of the EFM32TG microcontroller.  
The flash memory is readable and writable from both the Cortex-M3 and DMA. The flash memory is  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
3
 
 
 
...the world's most energy friendly microcontrollers  
divided into two blocks; the main block and the information block. Program code is normally written to  
the main block. Additionally, the information block is available for special user data and flash lock bits.  
There is also a read-only page in the information block containing system and device calibration data.  
Read and write operations are supported in the energy modes EM0 and EM1.  
2.1.4 Direct Memory Access Controller (DMA)  
The Direct Memory Access (DMA) controller performs memory operations independently of the CPU.  
This has the benefit of reducing the energy consumption and the workload of the CPU, and enables  
the system to stay in low energy modes when moving for instance data from the USART to RAM or  
from the External Bus Interface to a PWM-generating timer. The DMA controller uses the PL230 µDMA  
controller licensed from ARM.  
2.1.5 Reset Management Unit (RMU)  
The RMU is responsible for handling the reset functionality of the EFM32TG.  
2.1.6 Energy Management Unit (EMU)  
The Energy Management Unit (EMU) manage all the low energy modes (EM) in EFM32TG microcon-  
trollers. Each energy mode manages if the CPU and the various peripherals are available. The EMU  
can also be used to turn off the power to unused SRAM blocks.  
2.1.7 Clock Management Unit (CMU)  
The Clock Management Unit (CMU) is responsible for controlling the oscillators and clocks on-board  
the EFM32TG. The CMU provides the capability to turn on and off the clock on an individual basis to all  
peripheral modules in addition to enable/disable and configure the available oscillators. The high degree  
of flexibility enables software to minimize energy consumption in any specific application by not wasting  
power on peripherals and oscillators that are inactive.  
2.1.8 Watchdog (WDOG)  
The purpose of the watchdog timer is to generate a reset in case of a system failure, to increase appli-  
cation reliability. The failure may e.g. be caused by an external event, such as an ESD pulse, or by a  
software failure.  
2.1.9 Peripheral Reflex System (PRS)  
The Peripheral Reflex System (PRS) system is a network which lets the different peripheral module  
communicate directly with each other without involving the CPU. Peripheral modules which send out  
Reflex signals are called producers. The PRS routes these reflex signals to consumer peripherals which  
apply actions depending on the data received. The format for the Reflex signals is not given, but edge  
triggers and other functionality can be applied by the PRS.  
2.1.10 Inter-Integrated Circuit Interface (I2C)  
The I2C module provides an interface between the MCU and a serial I2C-bus. It is capable of acting as  
both a master and a slave, and supports multi-master buses. Both standard-mode, fast-mode and fast-  
mode plus speeds are supported, allowing transmission rates all the way from 10 kbit/s up to 1 Mbit/s.  
Slave arbitration and timeouts are also provided to allow implementation of an SMBus compliant system.  
The interface provided to software by the I2C module, allows both fine-grained control of the transmission  
process and close to automatic transfers. Automatic recognition of slave addresses is provided in all  
energy modes.  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
4
...the world's most energy friendly microcontrollers  
2.1.11 Universal Synchronous/Asynchronous Receiver/Transmitter (US-  
ART)  
The Universal Synchronous Asynchronous serial Receiver and Transmitter (USART) is a very flexible  
serial I/O module. It supports full duplex asynchronous UART communication as well as RS-485, SPI,  
MicroWire and 3-wire. It can also interface with ISO7816 SmartCards, IrDA and I2S devices.  
2.1.12 Pre-Programmed UART Bootloader  
The bootloader presented in application note AN0003 is pre-programmed in the device at factory. Auto-  
baud and destructive write are supported. The autobaud feature, interface and commands are described  
further in the application note.  
2.1.13 Low Energy Universal Asynchronous Receiver/Transmitter  
(LEUART)  
The unique LEUARTTM, the Low Energy UART, is a UART that allows two-way UART communication on  
a strict power budget. Only a 32.768 kHz clock is needed to allow UART communication up to 9600 baud/  
s. The LEUART includes all necessary hardware support to make asynchronous serial communication  
possible with minimum of software intervention and energy consumption.  
2.1.14 Timer/Counter (TIMER)  
The 16-bit general purpose Timer has 3 compare/capture channels for input capture and compare/Pulse-  
Width Modulation (PWM) output.  
2.1.15 Real Time Counter (RTC)  
The Real Time Counter (RTC) contains a 24-bit counter and is clocked either by a 32.768 kHz crystal  
oscillator, or a 32.768 kHz RC oscillator. In addition to energy modes EM0 and EM1, the RTC is also  
available in EM2. This makes it ideal for keeping track of time since the RTC is enabled in EM2 where  
most of the device is powered down.  
2.1.16 Low Energy Timer (LETIMER)  
The unique LETIMERTM, the Low Energy Timer, is a 16-bit timer that is available in energy mode EM2  
in addition to EM1 and EM0. Because of this, it can be used for timing and output generation when most  
of the device is powered down, allowing simple tasks to be performed while the power consumption of  
the system is kept at an absolute minimum. The LETIMER can be used to output a variety of waveforms  
with minimal software intervention. It is also connected to the Real Time Counter (RTC), and can be  
configured to start counting on compare matches from the RTC.  
2.1.17 Pulse Counter (PCNT)  
The Pulse Counter (PCNT) can be used for counting pulses on a single input or to decode quadrature  
encoded inputs. It runs off either the internal LFACLK or the PCNTn_S0IN pin as external clock source.  
The module may operate in energy mode EM0 - EM3.  
2.1.18 Analog Comparator (ACMP)  
The Analog Comparator is used to compare the voltage of two analog inputs, with a digital output indi-  
cating which input voltage is higher. Inputs can either be one of the selectable internal references or from  
external pins. Response time and thereby also the current consumption can be configured by altering  
the current supply to the comparator.  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
5
...the world's most energy friendly microcontrollers  
2.1.19 Voltage Comparator (VCMP)  
The Voltage Supply Comparator is used to monitor the supply voltage from software. An interrupt can  
be generated when the supply falls below or rises above a programmable threshold. Response time and  
thereby also the current consumption can be configured by altering the current supply to the comparator.  
2.1.20 Low Energy Sensor Interface (LESENSE)  
The Low Energy Sensor Interface (LESENSE), is a highly configurable sensor interface with support for  
up to 4 individually configurable sensors. By controlling the analog comparators, LESENSE is capable of  
supporting a wide range of sensors and measurement schemes, and can for instance measure resistive  
and capacitive sensors. LESENSE also includes a programmable FSM which enables simple processing  
of measurement results without CPU intervention. LESENSE is available in energy mode EM2, in addi-  
tion to EM0 and EM1, making it ideal for sensor monitoring in applications with a strict energy budget.  
2.1.21 General Purpose Input/Output (GPIO)  
In the EFM32TG108, there are 17 General Purpose Input/Output (GPIO) pins, which are divided into  
ports with up to 16 pins each. These pins can individually be configured as either an output or input. More  
advanced configurations like open-drain, filtering and drive strength can also be configured individually  
for the pins. The GPIO pins can also be overridden by peripheral pin connections, like Timer PWM  
outputs or USART communication, which can be routed to several locations on the device. The GPIO  
supports up to 11 asynchronous external pin interrupts, which enables interrupts from any pin on the  
device. Also, the input value of a pin can be routed through the Peripheral Reflex System to other  
peripherals.  
2.2 Configuration Summary  
The features of the EFM32TG108 is a subset of the feature set described in the EFM32TG Reference  
Manual. Table 2.1 (p. 6) describes device specific implementation of the features.  
Table 2.1. Configuration Summary  
Module  
Cortex-M3  
DBG  
Configuration  
Pin Connections  
Full configuration  
Full configuration  
NA  
DBG_SWCLK, DBG_SWDIO,  
DBG_SWO  
MSC  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
Full configuration with I2S  
Full configuration  
Full configuration  
Full configuration  
Full configuration  
NA  
DMA  
NA  
RMU  
NA  
EMU  
NA  
CMU  
CMU_OUT0, CMU_OUT1  
WDOG  
PRS  
NA  
NA  
I2C0  
I2C0_SDA, I2C0_SCL  
US1_TX, US1_RX, US1_CLK, US1_CS  
LEU0_TX, LEU0_RX  
TIM0_CC[2:0]  
USART1  
LEUART0  
TIMER0  
TIMER1  
RTC  
TIM1_CC[2:0]  
NA  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
6
 
 
...the world's most energy friendly microcontrollers  
Module  
LETIMER0  
PCNT0  
ACMP0  
ACMP1  
VCMP  
Configuration  
Full configuration  
Full configuration, 16-bit count register PCNT0_S[1:0]  
Pin Connections  
LET0_O[1:0]  
Full configuration  
Full configuration  
Full configuration  
17 pins  
ACMP0_CH[1:0], ACMP0_O  
ACMP1_CH[1:0], ACMP1_O  
NA  
GPIO  
Available pins are shown in  
Table 4.3 (p. 33)  
2.3 Memory Map  
The EFM32TG108 memory map is shown in Figure 2.2 (p. 7), with RAM and Flash sizes for the  
largest memory configuration.  
Figure 2.2. EFM32TG108 Memory Map with largest RAM and Flash sizes  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
7
 
 
...the world's most energy friendly microcontrollers  
3 Electrical Characteristics  
3.1 Test Conditions  
3.1.1 Typical Values  
The typical data are based on TAMB=25°C and VDD=3.0 V, as defined in Table 3.2 (p. 8), by simu-  
lation and/or technology characterisation unless otherwise specified.  
3.1.2 Minimum and Maximum Values  
The minimum and maximum values represent the worst conditions of ambient temperature, supply volt-  
age and frequencies, as defined in Table 3.2 (p. 8), by simulation and/or technology characterisa-  
tion unless otherwise specified.  
3.2 Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings, and functional operation under such conditions are  
not guaranteed. Stress beyond the limits specified in Table 3.1 (p. 8) may affect the device reliability  
or cause permanent damage to the device. Functional operating conditions are given in Table 3.2 (p.  
8) .  
Table 3.1. Absolute Maximum Ratings  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
1501 °C  
TSTG  
Storage tempera-  
ture range  
-40  
TS  
Maximum soldering Latest IPC/JEDEC J-STD-020  
260 °C  
temperature  
Standard  
VDDMAX  
External main sup-  
ply voltage  
0
3.8  
V
V
VIOPIN  
Voltage on any I/O  
pin  
-0.3  
VDD+0.3  
1Based on programmed devices tested for 10000 hours at 150°C. Storage temperature affects retention of preprogrammed cal-  
ibration values stored in flash. Please refer to the Flash section in the Electrical Characteristics for information on flash data re-  
tention for different temperatures.  
3.3 General Operating Conditions  
3.3.1 General Operating Conditions  
Table 3.2. General Operating Conditions  
Symbol  
TAMB  
VDDOP  
fAPB  
Parameter  
Min  
Typ  
Max  
Unit  
85 °C  
3.8  
Ambient temperature range  
Operating supply voltage  
Internal APB clock frequency  
Internal AHB clock frequency  
-40  
1.98  
V
32 MHz  
32 MHz  
fAHB  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
8
 
 
 
 
 
 
...the world's most energy friendly microcontrollers  
3.4 Current Consumption  
Table 3.3. Current Consumption  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
32 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V  
157  
150  
153  
155  
157  
162  
200  
53  
µA/  
MHz  
28 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
170 µA/  
MHz  
21 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
172 µA/  
MHz  
EM0 current. No  
prescaling. Running  
prime number cal-  
culation code from  
Flash. (Production  
test condition = 14  
MHz)  
14 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
175 µA/  
MHz  
IEM0  
11 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
178 µA/  
MHz  
6.6 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
183 µA/  
MHz  
1.2 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
240 µA/  
MHz  
32 MHz HFXO, all peripheral  
clocks disabled, VDD= 3.0 V  
µA/  
MHz  
28 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
51  
57 µA/  
MHz  
21 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
55  
59 µA/  
MHz  
EM1 current (Pro-  
duction test condi-  
tion = 14 MHz)  
14 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
56  
61 µA/  
MHz  
IEM1  
11 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
58  
63 µA/  
MHz  
6.6 MHz HFRCO, all peripheral  
clocks disabled, VDD= 3.0 V  
63  
68 µA/  
MHz  
1.2 MHz HFRCO. all peripheral  
clocks disabled, VDD= 3.0 V  
100  
1.0  
122 µA/  
MHz  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=25°C  
1.2 µA  
IEM2  
EM2 current  
EM2 current with RTC  
prescaled to 1 Hz, 32.768  
kHz LFRCO, VDD= 3.0 V,  
TAMB=85°C  
2.4  
5.0 µA  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
VDD= 3.0 V, TAMB=25°C  
VDD= 3.0 V, TAMB=85°C  
0.59  
2.0  
1.0 µA  
4.5 µA  
IEM3  
EM3 current  
EM4 current  
0.02  
0.25  
0.055 µA  
0.70 µA  
IEM4  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
9
 
 
...the world's most energy friendly microcontrollers  
Figure 3.1. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO.  
Figure 3.2. EM3 current consumption.  
Figure 3.3. EM4 current consumption.  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
10  
 
 
 
...the world's most energy friendly microcontrollers  
3.5 Transition between Energy Modes  
The transition times are measured from the trigger to the first clock edge in the CPU.  
Table 3.4. Energy Modes Transitions  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
tEM10  
Transition time from EM1 to EM0  
0
HF-  
CORE-  
CLK  
cycles  
tEM20  
tEM30  
tEM40  
Transition time from EM2 to EM0  
Transition time from EM3 to EM0  
Transition time from EM4 to EM0  
2
2
µs  
µs  
µs  
163  
3.6 Power Management  
The EFM32TG requires the AVDD_x, VDD_DREG and IOVDD_x pins to be connected together (with  
optional filter) at the PCB level. For practical schematic recommendations, please see the application  
note, "AN0002 EFM32 Hardware Design Considerations".  
Table 3.5. Power Management  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
VBODextthr-  
BOD threshold on  
falling external sup-  
ply voltage  
1.74  
1.96  
1.98  
1.98  
V
VBODextthr+  
BOD threshold on  
rising external sup-  
ply voltage  
1.85  
V
V
VPORthr+  
Power-on Reset  
(POR) threshold on  
rising external sup-  
ply voltage  
tRESET  
Delay from reset  
is released until  
program execution  
starts  
Applies to Power-on Reset,  
Brown-out Reset and pin reset.  
163  
1
µs  
CDECOUPLE  
Voltage regulator  
decoupling capaci-  
tor.  
X5R capacitor recommended.  
Apply between DECOUPLE pin  
and GROUND  
µF  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
11  
 
 
 
 
...the world's most energy friendly microcontrollers  
3.7 Flash  
Table 3.6. Flash  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
ECFLASH  
Flash erase cycles  
before failure  
20000  
cycles  
TAMB<150°C  
10000  
10  
h
RETFLASH  
Flash data retention TAMB<85°C  
TAMB<70°C  
years  
years  
µs  
20  
tW_PROG  
Word (32-bit) pro-  
gramming time  
20  
tP_ERASE  
tD_ERASE  
IERASE  
Page erase time  
Device erase time  
Erase current  
20  
40  
20.4  
40.8  
20.8 ms  
41.6 ms  
71 mA  
71 mA  
IWRITE  
Write current  
VFLASH  
Supply voltage dur-  
ing flash erase and  
write  
1.98  
3.8  
V
1Measured at 25°C  
3.8 General Purpose Input Output  
Table 3.7. GPIO  
Symbol  
VIOIL  
Parameter  
Condition  
Min  
Typ  
Max  
0.30VDD  
Unit  
V
Input low voltage  
Input high voltage  
VIOIH  
0.70VDD  
V
Sourcing 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
0.80VDD  
0.90VDD  
0.85VDD  
0.90VDD  
V
Sourcing 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
V
V
V
V
V
V
Sourcing 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Output high volt-  
age (Production test  
condition = 3.0V,  
DRIVEMODE =  
STANDARD)  
Sourcing 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
VIOOH  
Sourcing 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.75VDD  
0.85VDD  
0.60VDD  
Sourcing 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
Sourcing 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
12  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
0.80VDD  
Typ  
Max  
Unit  
Sourcing 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
V
Sinking 0.1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
0.20VDD  
0.10VDD  
0.10VDD  
0.05VDD  
V
V
V
V
V
V
V
V
Sinking 0.1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST  
Sinking 1 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Sinking 1 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= LOW  
Output low voltage  
(Production test  
condition = 3.0V,  
DRIVEMODE =  
STANDARD)  
VIOOL  
Sinking 6 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.30VDD  
Sinking 6 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= STANDARD  
0.20VDD  
0.35VDD  
0.20VDD  
Sinking 20 mA, VDD=1.98 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
Sinking 20 mA, VDD=3.0 V,  
GPIO_Px_CTRL DRIVEMODE  
= HIGH  
IIOLEAK  
Input leakage cur-  
rent  
High Impedance IO connected  
to GROUND or VDD  
±0.1  
40  
±100 nA  
RPU  
I/O pin pull-up resis-  
tor  
kOhm  
kOhm  
Ohm  
RPD  
I/O pin pull-down re-  
sistor  
40  
RIOESD  
Internal ESD series  
resistor  
200  
tIOGLITCH  
Pulse width of puls-  
es to be removed  
by the glitch sup-  
pression filter  
10  
50 ns  
GPIO_Px_CTRL DRIVEMODE  
= LOWEST and load capaci-  
tance CL=12.5-25pF.  
20+0.1CL  
20+0.1CL  
0.1VDD  
250 ns  
250 ns  
V
tIOOF  
Output fall time  
GPIO_Px_CTRL DRIVEMODE  
= LOW and load capacitance  
CL=350-600pF  
VIOHYST  
I/O pin hysteresis  
VDD = 1.98 - 3.8 V  
(VIOTHR+ - VIOTHR-  
)
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
13  
...the world's most energy friendly microcontrollers  
Figure 3.4. Typical Low-Level Output Current, 2V Supply Voltage  
0.20  
0.15  
0.10  
0.05  
0.00  
5
4
3
2
1
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
20  
45  
40  
35  
30  
25  
20  
15  
10  
5
15  
10  
5
- 40°C  
25°C  
- 40°C  
25°C  
85°C  
85°C  
0
0.0  
0
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
14  
 
...the world's most energy friendly microcontrollers  
Figure 3.5. Typical High-Level Output Current, 2V Supply Voltage  
0.00  
0.05  
0.10  
0.15  
0.20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
–5  
10  
15  
20  
0.0  
0.5  
1.0  
1.5  
2.0  
0.0  
0.5  
1.0  
1.5  
2.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
15  
 
...the world's most energy friendly microcontrollers  
Figure 3.6. Typical Low-Level Output Current, 3V Supply Voltage  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
10  
8
6
4
2
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
40  
35  
30  
25  
20  
15  
10  
50  
40  
30  
20  
10  
0
5
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
16  
 
...the world's most energy friendly microcontrollers  
Figure 3.7. Typical High-Level Output Current, 3V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
17  
 
...the world's most energy friendly microcontrollers  
Figure 3.8. Typical Low-Level Output Current, 3.8V Supply Voltage  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
14  
12  
10  
8
6
4
2
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
50  
40  
30  
20  
10  
50  
40  
30  
20  
10  
0
- 40°C  
25°C  
- 40°C  
25°C  
85°C  
85°C  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Low- Level Output Voltage [V]  
Low- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
18  
 
...the world's most energy friendly microcontrollers  
Figure 3.9. Typical High-Level Output Current, 3.8V Supply Voltage  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0
- 40°C  
25°C  
85°C  
- 40°C  
25°C  
85°C  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = LOWEST  
GPIO_Px_CTRL DRIVEMODE = LOW  
0
0
- 40°C  
- 40°C  
25°C  
85°C  
25°C  
85°C  
10  
20  
30  
40  
50  
10  
20  
30  
40  
50  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
High- Level Output Voltage [V]  
High- Level Output Voltage [V]  
GPIO_Px_CTRL DRIVEMODE = STANDARD  
GPIO_Px_CTRL DRIVEMODE = HIGH  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
19  
 
...the world's most energy friendly microcontrollers  
3.9 Oscillators  
3.9.1 LFXO  
Table 3.8. LFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFXO  
Supported nominal  
crystal frequency  
32.768  
30  
kHz  
ESRLFXO  
Supported crystal  
equivalent series re-  
sistance (ESR)  
120 kOhm  
CLFXOL  
Supported crystal  
external load range  
X1  
25 pF  
nA  
ILFXO  
Current consump-  
tion for core and  
buffer after startup.  
ESR=30 kOhm, CL=10 pF,  
LFXOBOOST in CMU_CTRL is  
1
190  
400  
tLFXO  
Start- up time.  
ESR=30 kOhm, CL=10 pF,  
40% - 60% duty cycle has  
been reached, LFXOBOOST in  
CMU_CTRL is 1  
ms  
1See Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup in energyAware Designer in Simplicity Studio  
For safe startup of a given crystal, the energyAware Designer in Simplicity Studio contains a tool to help  
users configure both load capacitance and software settings for using the LFXO. For details regarding  
the crystal configuration, the reader is referred to application note "AN0016 EFM32 Oscillator Design  
Consideration".  
3.9.2 HFXO  
Table 3.9. HFXO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fHFXO  
Supported nominal  
crystal Frequency  
4
32 MHz  
Supported crystal  
equivalent series re-  
sistance (ESR)  
Crystal frequency 32 MHz  
Crystal frequency 4 MHz  
30  
60 Ohm  
ESRHFXO  
400  
1500 Ohm  
gmHFXO  
The transconduc-  
tance of the HFXO  
input transistor at  
crystal startup  
HFXOBOOST in CMU_CTRL  
equals 0b11  
20  
5
mS  
CHFXOL  
Supported crystal  
external load range  
25 pF  
µA  
4 MHz: ESR=400 Ohm,  
CL=20 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
85  
165  
400  
Current consump-  
tion for HFXO after  
startup  
IHFXO  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
µA  
µs  
tHFXO  
Startup time  
32 MHz: ESR=30 Ohm,  
CL=10 pF, HFXOBOOST in  
CMU_CTRL equals 0b11  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
20  
 
 
 
...the world's most energy friendly microcontrollers  
3.9.3 LFRCO  
Table 3.10. LFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fLFRCO  
Oscillation frequen-  
cy , VDD= 3.0 V,  
TAMB=25°C  
31.29  
32.768  
150  
34.24 kHz  
tLFRCO  
Startup time not in-  
cluding software  
calibration  
µs  
ILFRCO  
Current consump-  
tion  
210  
1.5  
380 nA  
%
TUNESTEPL- Frequency step  
for LSB change in  
FRCO  
TUNING value  
Figure 3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage  
42  
40  
38  
36  
34  
32  
30  
42  
40  
38  
36  
34  
32  
30  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.9.4 HFRCO  
Table 3.11. HFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fHFRCO = 14 MHz  
27.16  
20.37  
13.58  
10.67  
6.401  
1.162  
28.0  
21.0  
14.0  
11.0  
6.601  
1.202  
0.6  
28.84 MHz  
21.63 MHz  
14.42 MHz  
11.33 MHz  
6.801 MHz  
1.242 MHz  
Oscillation frequen-  
cy, VDD= 3.0 V,  
TAMB=25°C  
fHFRCO  
tHFRCO_settling Settling time after  
start-up  
Cycles  
fHFRCO = 28 MHz  
fHFRCO = 21 MHz  
160  
125  
190 µA  
155 µA  
Current consump-  
tion (Production test  
condition = 14 MHz)  
IHFRCO  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
21  
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
120 µA  
fHFRCO = 14 MHz  
fHFRCO = 11 MHz  
fHFRCO = 6.6 MHz  
fHFRCO = 1.2 MHz  
104  
94  
110 µA  
90 µA  
32 µA  
%
63  
22  
TUNESTEPH- Frequency step  
0.33  
for LSB change in  
FRCO  
TUNING value  
1For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.  
2For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.  
3The TUNING field in the CMU_HFRCOCTRL register may be used to adjust the HFRCO frequency. There is enough adjustment  
range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and temperature. By  
using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the TUNING bits and the  
frequency band to maintain the HFRCO frequency at any arbitrary value between 7 MHz and 28 MHz across operating conditions.  
Figure 3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
1.45  
1.40  
1.35  
1.30  
1.25  
1.20  
1.15  
1.10  
1.05  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
6.70  
6.65  
6.60  
6.55  
6.50  
6.45  
6.40  
6.35  
6.30  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
22  
 
 
...the world's most energy friendly microcontrollers  
Figure 3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
11.2  
11.1  
11.0  
10.9  
10.8  
10.7  
10.6  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
14.2  
14.1  
14.0  
13.9  
13.8  
13.7  
13.6  
13.5  
13.4  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
Figure 3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
21.2  
21.0  
20.8  
20.6  
20.4  
20.2  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
23  
 
 
 
...the world's most energy friendly microcontrollers  
Figure 3.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
27.0  
26.8  
28.4  
28.2  
28.0  
27.8  
27.6  
27.4  
27.2  
27.0  
26.8  
- 40°C  
25°C  
85°C  
2.0 V  
3.0 V  
3.8 V  
2.0  
2.2  
2.4  
2.6  
2.8  
3.0  
3.2  
3.4  
3.6  
3.8  
40  
15  
5
25  
45  
65  
85  
Vdd [V]  
Temperature [°C]  
3.9.5 AUXHFRCO  
Table 3.12. AUXHFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
28 MHz frequency band  
21 MHz frequency band  
14 MHz frequency band  
11 MHz frequency band  
7 MHz frequency band  
1 MHz frequency band  
fAUXHFRCO = 14 MHz  
27.16  
20.37  
13.58  
10.67  
6.401  
1.162  
28.0  
21.0  
14.0  
11.0  
6.601  
1.202  
0.6  
28.84 MHz  
21.63 MHz  
14.42 MHz  
11.33 MHz  
6.801 MHz  
1.242 MHz  
Oscillation frequen-  
cy, VDD= 3.0 V,  
TAMB=25°C  
fAUXHFRCO  
tAUXHFRCO_settlingSettling time after  
start-up  
Cycles  
TUNESTEPAUX-Frequency step  
0.33  
%
for LSB change in  
HFRCO  
TUNING value  
1For devices with prod. rev. < 19, Typ = 7MHz and Min/Max values not applicable.  
2For devices with prod. rev. < 19, Typ = 1MHz and Min/Max values not applicable.  
3The TUNING field in the CMU_AUXHFRCOCTRL register may be used to adjust the AUXHFRCO frequency. There is enough  
adjustment range to ensure that the frequency bands above 7 MHz will always have some overlap across supply voltage and  
temperature. By using a stable frequency reference such as the LFXO or HFXO, a firmware calibration routine can vary the  
TUNING bits and the frequency band to maintain the AUXHFRCO frequency at any arbitrary value between 7 MHz and 28 MHz  
across operating conditions.  
3.9.6 ULFRCO  
Table 3.13. ULFRCO  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
fULFRCO  
Oscillation frequen- 25°C, 3V  
cy  
0.70  
1.75 kHz  
TCULFRCO  
Temperature coeffi-  
cient  
0.05  
%/°C  
%/V  
VCULFRCO  
Supply voltage co-  
efficient  
-18.2  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
24  
 
 
 
...the world's most energy friendly microcontrollers  
3.10 Analog Comparator (ACMP)  
Table 3.14. ACMP  
Symbol  
VACMPIN  
VACMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
0
0
VDD  
VDD  
ACMP Common  
V
Mode voltage range  
BIASPROG=0b0000, FULL-  
BIAS=0 and HALFBIAS=1 in  
ACMPn_CTRL register  
0.1  
2.87  
195  
0.0  
0.6 µA  
12 µA  
BIASPROG=0b1111, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
IACMP  
Active current  
BIASPROG=0b1111, FULL-  
BIAS=1 and HALFBIAS=0 in  
ACMPn_CTRL register  
520 µA  
0.5 µA  
Internal voltage reference off.  
Using external voltage refer-  
ence  
Current consump-  
tion of internal volt-  
age reference  
IACMPREF  
Internal voltage reference  
2.15  
0
3.00 µA  
12 mV  
VACMPOFFSET Offset voltage  
BIASPROG= 0b1010, FULL-  
BIAS=0 and HALFBIAS=0 in  
ACMPn_CTRL register  
-12  
VACMPHYST  
ACMP hysteresis  
Programmable  
17  
39  
mV  
CSRESSEL=0b00 in  
ACMPn_INPUTSEL  
kOhm  
CSRESSEL=0b01 in  
ACMPn_INPUTSEL  
71  
104  
136  
kOhm  
kOhm  
kOhm  
Capacitive Sense  
Internal Resistance  
RCSRES  
CSRESSEL=0b10 in  
ACMPn_INPUTSEL  
CSRESSEL=0b11 in  
ACMPn_INPUTSEL  
tACMPSTART  
Startup time  
10 µs  
The total ACMP current is the sum of the contributions from the ACMP and its internal voltage reference  
as given in Equation 3.1 (p. 25) . IACMPREF is zero if an external voltage reference is used.  
Total ACMP Active Current  
IACMPTOTAL = IACMP + IACMPREF  
(3.1)  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
25  
 
 
 
...the world's most energy friendly microcontrollers  
Figure 3.17. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
20  
15  
10  
5
HYSTSEL= 0  
HYSTSEL= 2  
HYSTSEL= 4  
HYSTSEL= 6  
0
0
4
8
12  
0
2
4
6
8
10  
12  
14  
ACMP_CTRL_BIASPROG  
ACMP_CTRL_BIASPROG  
Current consumption, HYSTSEL = 4  
Response time , Vcm  
=
1.25V, CP+ to CP- = 100mV  
100  
80  
60  
40  
20  
0
BIASPROG= 0.0  
BIASPROG= 4.0  
BIASPROG= 8.0  
BIASPROG= 12.0  
0
1
2
3
4
5
6
7
ACMP_CTRL_HYSTSEL  
Hysteresis  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
26  
 
...the world's most energy friendly microcontrollers  
3.11 Voltage Comparator (VCMP)  
Table 3.15. VCMP  
Symbol  
VVCMPIN  
VVCMPCM  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Input voltage range  
VDD  
VDD  
VCMP Common  
V
Mode voltage range  
BIASPROG=0b0000 and  
HALFBIAS=1 in VCMPn_CTRL  
register  
0.3  
22  
10  
0.6 µA  
IVCMP  
Active current  
BIASPROG=0b1111 and  
HALFBIAS=0 in VCMPn_CTRL  
register. LPREF=0.  
30 µA  
µs  
tVCMPREF  
Startup time refer-  
ence generator  
NORMAL  
Single ended  
Differential  
10  
10  
17  
mV  
mV  
VVCMPOFFSET Offset voltage  
VVCMPHYST  
tVCMPSTART  
VCMP hysteresis  
Startup time  
mV  
10 µs  
The VDD trigger level can be configured by setting the TRIGLEVEL field of the VCMP_CTRL register in  
accordance with the following equation:  
VCMP Trigger Level as a Function of Level Setting  
VDD Trigger Level=1.667V+0.034 ×TRIGLEVEL  
(3.2)  
3.12 I2C  
Table 3.16. I2C Standard-mode (Sm)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
4.7  
4.0  
250  
8
1001 kHz  
tLOW  
SCL clock low time  
µs  
tHIGH  
SCL clock high time  
µs  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
ns  
SDA hold time  
34502,3 ns  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
Bus free time between a STOP and START condition  
4.7  
4.0  
4.0  
4.7  
µs  
µs  
µs  
µs  
1For the minimum HFPERCLK frequency required in Standard-mode, see the I2C chapter in the EFM32TG Reference Manual.  
2The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((3450*10-9 [s] * fHFPERCLK [Hz]) - 4).  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
27  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
Table 3.17. I2C Fast-mode (Fm)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
1.3  
0.6  
100  
8
4001 kHz  
tLOW  
SCL clock low time  
µs  
tHIGH  
SCL clock high time  
µs  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
ns  
SDA hold time  
9002,3 ns  
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
Bus free time between a STOP and START condition  
0.6  
0.6  
0.6  
1.3  
µs  
µs  
µs  
µs  
1For the minimum HFPERCLK frequency required in Fast-mode, see the I2C chapter in the EFM32TG Reference Manual.  
2The maximum SDA hold time (tHD,DAT) needs to be met only when the device does not stretch the low time of SCL (tLOW).  
3When transmitting data, this number is guaranteed only when I2Cn_CLKDIV < ((900*10-9 [s] * fHFPERCLK [Hz]) - 4).  
Table 3.18. I2C Fast-mode Plus (Fm+)  
Symbol  
fSCL  
Parameter  
Min  
Typ  
Max  
Unit  
SCL clock frequency  
0
0.5  
10001 kHz  
tLOW  
SCL clock low time  
µs  
µs  
ns  
ns  
µs  
µs  
µs  
µs  
tHIGH  
SCL clock high time  
0.26  
50  
tSU,DAT  
tHD,DAT  
tSU,STA  
tHD,STA  
tSU,STO  
tBUF  
SDA set-up time  
SDA hold time  
8
Repeated START condition set-up time  
(Repeated) START condition hold time  
STOP condition set-up time  
Bus free time between a STOP and START condition  
0.26  
0.26  
0.26  
0.5  
1For the minimum HFPERCLK frequency required in Fast-mode Plus, see the I2C chapter in the EFM32TG Reference Manual.  
3.13 Digital Peripherals  
Table 3.19. Digital Peripherals  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
IUSART  
USART current  
USART idle current, clock en-  
abled  
7.5  
150  
6.25  
8.75  
75  
µA/  
MHz  
ILEUART  
LEUART current  
I2C current  
LEUART idle current, clock en-  
abled  
nA  
II2C  
I2C idle current, clock enabled  
µA/  
MHz  
ITIMER  
ILETIMER  
IPCNT  
TIMER current  
LETIMER current  
PCNT current  
TIMER_0 idle current, clock  
enabled  
µA/  
MHz  
LETIMER idle current, clock  
enabled  
nA  
PCNT idle current, clock en-  
abled  
60  
nA  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
28  
 
 
 
 
...the world's most energy friendly microcontrollers  
Symbol  
IRTC  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
RTC current  
GPIO current  
RTC idle current, clock enabled  
40  
nA  
IGPIO  
GPIO idle current, clock en-  
abled  
5.31  
µA/  
MHz  
IPRS  
PRS current  
DMA current  
PRS idle current  
2.81  
8.12  
µA/  
MHz  
IDMA  
Clock enable  
µA/  
MHz  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
29  
...the world's most energy friendly microcontrollers  
4 Pinout and Package  
Note  
Please refer to the application note "AN0002 EFM32 Hardware Design Considerations" for  
guidelines on designing Printed Circuit Boards (PCB's) for the EFM32TG108.  
4.1 Pinout  
The EFM32TG108 pinout is shown in Figure 4.1 (p. 30) and Table 4.1 (p. 30). Alternate locations  
are denoted by "#" followed by the location number (Multiple locations on the same pin are split with "/").  
Alternate locations can be configured in the LOCATION bitfield in the *_ROUTE register in the module  
in question.  
Figure 4.1. EFM32TG108 Pinout (top view, not to scale)  
Table 4.1. Device Pinout  
QFN24 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
0
1
VSS  
PA0  
Ground.  
LEU0_RX #4  
I2C0_SDA #0  
PRS_CH0 #0  
GPIO_EM4WU0  
TIM0_CC0 #0/1/4  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
30  
 
 
 
 
...the world's most energy friendly microcontrollers  
QFN24 Pin#  
and Name  
Pin Alternate Functionality / Description  
Pin Name  
Analog  
Timers  
Communication  
Other  
2
3
IOVDD_0  
PC0  
Digital IO power supply 0.  
ACMP0_CH0  
TIM0_CC1 #4  
PCNT0_S0IN #2  
US1_TX #0  
I2C0_SDA #4  
LES_CH0 #0  
PRS_CH2 #0  
TIM0_CC2 #4  
PCNT0_S1IN #2  
US1_RX #0  
I2C0_SCL #4  
LES_CH1 #0  
PRS_CH3 #0  
4
PC1  
ACMP0_CH1  
5
6
PB7  
PB8  
LFXTAL_P  
LFXTAL_N  
TIM1_CC0 #3  
TIM1_CC1 #3  
US1_CLK #0  
US1_CS #0  
Reset input, active low.  
7
8
RESETn  
PB11  
To apply an external reset source to this pin, it is required to only drive this pin low during reset, and let the internal pull-up  
ensure that reset is released.  
TIM1_CC2 #3  
LETIM0_OUT0 #1  
9
AVDD_2  
PB13  
Analog power supply 2.  
10  
11  
12  
HFXTAL_P  
HFXTAL_N  
LEU0_TX #1  
LEU0_RX #1  
PB14  
AVDD_0  
Analog power supply 0.  
TIM1_CC0 #4  
LETIM0_OUT0 #0  
PCNT0_S0IN #3  
US1_RX #2  
I2C0_SDA #1  
LES_ALTEX0 #0  
ACMP0_O #2  
13  
14  
PD6  
PD7  
TIM1_CC1 #4  
LETIM0_OUT1 #0  
PCNT0_S1IN #3  
CMU_CLK0 #2  
LES_ALTEX1 #0  
ACMP1_O #2  
US1_TX #2  
I2C0_SCL #1  
15  
16  
VDD_DREG  
DECOUPLE  
Power supply for on-chip voltage regulator.  
Decouple output for on-chip voltage regulator. An external capacitance of size CDECOUPLE is required at this pin.  
TIM1_CC1 #0  
17  
18  
PC14  
PC15  
ACMP1_CH6  
LES_CH14 #0  
PCNT0_S1IN #0  
LES_CH15 #0  
DBG_SWO #1  
ACMP1_CH7  
TIM1_CC2 #0  
US1_CLK #2  
LEU0_TX #3  
I2C0_SDA #5  
TIM0_CC0 #5  
LETIM0_OUT0 #2  
DBG_SWCLK #0/1  
BOOT_TX  
19  
20  
21  
PF0  
PF1  
PF2  
US1_CS #2  
LEU0_RX #3  
I2C0_SCL #5  
DBG_SWDIO #0/1  
GPIO_EM4WU3  
BOOT_RX  
TIM0_CC1 #5  
LETIM0_OUT1 #2  
ACMP1_O #0  
DBG_SWO #0  
GPIO_EM4WU4  
TIM0_CC2 #5  
TIM1_CC2 #1  
LEU0_TX #4  
22  
23  
IOVDD_5  
PE12  
Digital IO power supply 5.  
CMU_CLK1 #2  
LES_ALTEX6 #0  
I2C0_SDA #6  
I2C0_SCL #6  
LES_ALTEX7 #0  
ACMP0_O #0  
24  
PE13  
GPIO_EM4WU5  
4.2 Alternate Functionality Pinout  
A wide selection of alternate functionality is available for multiplexing to various pins. This is shown in  
Table 4.2 (p. 32). The table shows the name of the alternate functionality in the first column, followed  
by columns showing the possible LOCATION bitfield settings.  
Note  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
31  
 
...the world's most energy friendly microcontrollers  
Some functionality, such as analog interfaces, do not have alternate settings or a LOCA-  
TION bitfield. In these cases, the pinout is shown in the column corresponding to LOCA-  
TION 0.  
Table 4.2. Alternate functionality overview  
Alternate  
LOCATION  
3
Functionality  
ACMP0_CH0  
ACMP0_CH1  
ACMP0_O  
0
1
2
PD6  
PD7  
4
5
6
Description  
Analog comparator ACMP0, channel 0.  
Analog comparator ACMP0, channel 1.  
Analog comparator ACMP0, digital output.  
Analog comparator ACMP1, channel 6.  
Analog comparator ACMP1, channel 7.  
Analog comparator ACMP1, digital output.  
Bootloader RX.  
PC0  
PC1  
PE13  
PC14  
PC15  
PF2  
ACMP1_CH6  
ACMP1_CH7  
ACMP1_O  
BOOT_RX  
PF1  
BOOT_TX  
PF0  
Bootloader TX.  
CMU_CLK0  
CMU_CLK1  
PD7  
Clock Management Unit, clock output number 0.  
Clock Management Unit, clock output number 1.  
Debug-interface Serial Wire clock input.  
PE12  
DBG_SWCLK  
DBG_SWDIO  
DBG_SWO  
PF0  
PF1  
PF2  
PF0  
Note that this function is enabled to pin out of reset, and has  
a built-in pull down.  
Debug-interface Serial Wire data input / output.  
PF1  
Note that this function is enabled to pin out of reset, and has  
a built-in pull up.  
Debug-interface Serial Wire viewer Output.  
PC15  
Note that this function is not enabled after reset, and must be  
enabled by software to be used.  
GPIO_EM4WU0  
GPIO_EM4WU3  
GPIO_EM4WU4  
GPIO_EM4WU5  
PA0  
PF1  
PF2  
PE13  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
Pin can be used to wake the system up from EM4  
High Frequency Crystal negative pin. Also used as external  
optional clock input pin.  
HFXTAL_N  
PB14  
PB13  
HFXTAL_P  
I2C0_SCL  
High Frequency Crystal positive pin.  
I2C0 Serial Clock Line input / output.  
I2C0 Serial Data input / output.  
LESENSE alternate exite output 0.  
LESENSE alternate exite output 1.  
LESENSE alternate exite output 6.  
LESENSE alternate exite output 7.  
LESENSE channel 0.  
PD7  
PD6  
PC1  
PC0  
PF1  
PF0  
PE13  
PE12  
I2C0_SDA  
PA0  
LES_ALTEX0  
LES_ALTEX1  
LES_ALTEX6  
LES_ALTEX7  
LES_CH0  
PD6  
PD7  
PE12  
PE13  
PC0  
PC1  
PC14  
PC15  
PD6  
PD7  
LES_CH1  
LESENSE channel 1.  
LES_CH14  
LES_CH15  
LETIM0_OUT0  
LETIM0_OUT1  
LEU0_RX  
LESENSE channel 14.  
LESENSE channel 15.  
PB11  
PB14  
PF0  
PF1  
Low Energy Timer LETIM0, output channel 0.  
Low Energy Timer LETIM0, output channel 1.  
LEUART0 Receive input.  
PF1  
PA0  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
32  
 
...the world's most energy friendly microcontrollers  
Alternate  
LOCATION  
3
Functionality  
0
1
2
4
5
6
Description  
LEUART0 Transmit output. Also used as receive input in half  
duplex communication.  
LEU0_TX  
PB13  
PF0  
PF2  
Low Frequency Crystal (typically 32.768 kHz) negative pin.  
Also used as an optional external clock input pin.  
LFXTAL_N  
PB8  
LFXTAL_P  
PCNT0_S0IN  
PCNT0_S1IN  
PRS_CH0  
PRS_CH2  
PRS_CH3  
TIM0_CC0  
TIM0_CC1  
TIM0_CC2  
TIM1_CC0  
TIM1_CC1  
TIM1_CC2  
US1_CLK  
US1_CS  
PB7  
Low Frequency Crystal (typically 32.768 kHz) positive pin.  
Pulse Counter PCNT0 input number 0.  
PC0  
PC1  
PD6  
PD7  
PC14  
PA0  
PC0  
PC1  
PA0  
Pulse Counter PCNT0 input number 1.  
Peripheral Reflex System PRS, channel 0.  
Peripheral Reflex System PRS, channel 2.  
Peripheral Reflex System PRS, channel 3.  
Timer 0 Capture Compare input / output channel 0.  
Timer 0 Capture Compare input / output channel 1.  
Timer 0 Capture Compare input / output channel 2.  
Timer 1 Capture Compare input / output channel 0.  
Timer 1 Capture Compare input / output channel 1.  
Timer 1 Capture Compare input / output channel 2.  
USART1 clock input / output.  
PA0  
PA0  
PF0  
PF1  
PF2  
PC0  
PC1  
PD6  
PD7  
PB7  
PB8  
PB11  
PC14  
PC15  
PB7  
PE12  
PF0  
PF1  
PB8  
USART1 chip select input / output.  
USART1 Asynchronous Receive.  
US1_RX  
US1_TX  
PC1  
PC0  
PD6  
PD7  
USART1 Synchronous mode Master Input / Slave Output  
(MISO).  
USART1 Asynchronous Transmit.Also used as receive input  
in half duplex communication.  
USART1 Synchronous mode Master Output / Slave Input  
(MOSI).  
4.3 GPIO Pinout Overview  
The specific GPIO pins available in EFM32TG108 is shown in Table 4.3 (p. 33). Each GPIO port is  
organized as 16-bit ports indicated by letters A through F, and the individual pin on this port is indicated  
by a number from 15 down to 0.  
Table 4.3. GPIO Pinout  
Port  
Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin Pin  
Pin  
0
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Port A  
Port B  
Port C  
Port D  
Port E  
Port F  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PA0  
PB14 PB13  
PB11  
-
PB8  
PB7  
-
-
-
-
-
-
PC1  
-
-
PC0  
-
PC15 PC14  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PD7  
PD6  
-
-
-
-
-
PE13 PE12  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PF2  
PF1  
PF0  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
33  
 
 
...the world's most energy friendly microcontrollers  
4.4 QFN24 Package  
Figure 4.2. QFN24  
Note:  
1. Dimensioning & tolerancing confirm to ASME Y14.5M-1994.  
2. All dimensions are in millimeters. Angles are in degrees.  
3. Dimension 'b' applies to metallized terminal and is measured between 0.25 mm and 0.30 mm from  
the terminal tip. Dimension L1 represents terminal full back from package edge up to 0.1 mm is  
acceptable.  
4. Coplanarity applies to the exposed heat slug as well as the terminal.  
5. Radius on terminal is optional  
Table 4.4. QFN24 (Dimensions in mm)  
Symbol  
Min  
A
A1  
A3  
b
D
E
D2  
E2  
e
L
L1  
aaa bbb ccc ddd  
eee  
0.80 0.00  
0.25  
0.30  
0.35  
3.50 3.50  
3.60 3.60  
3.70 3.70  
0.35 0.00  
0.40  
0.203  
REF  
5.00 5.00  
BSC BSC  
0.65  
BSC  
Nom  
Max  
0.85  
-
0.10 0.10 0.10 0.05 0.08  
0.90 0.05  
0.45 0.10  
The QFN24 Package uses Nickel-Palladium-Gold preplated leadframe.  
All EFM32 packages are RoHS compliant and free of Bromine (Br) and Antimony (Sb).  
For additional Quality and Environmental information, please see:  
http://www.silabs.com/support/quality/pages/default.aspx  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
34  
 
 
 
...the world's most energy friendly microcontrollers  
5 PCB Layout and Soldering  
5.1 Recommended PCB Layout  
Figure 5.1. QFN24 PCB Land Pattern  
a
p8  
p7  
p1  
p6  
b
p9  
e
g
c
p2  
p5  
p3  
p4  
f
d
Table 5.1. QFN24 PCB Land Pattern Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.80  
Symbol  
P1  
Pin number  
Symbol  
Pin number  
a
b
c
d
e
f
1
6
P8  
24  
25  
-
0.30  
P2  
P9  
0.65  
P3  
7
-
-
-
-
-
5.00  
P4  
12  
13  
18  
19  
-
5.00  
P5  
-
3.60  
P6  
-
g
3.60  
P7  
-
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
35  
 
 
 
 
...the world's most energy friendly microcontrollers  
Figure 5.2. QFN24 PCB Solder Mask  
a
b
c
e
g
f
d
Table 5.2. QFN24 PCB Solder Mask Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.92  
Symbol  
Dim. (mm)  
a
b
c
d
e
f
5.00  
3.72  
3.72  
-
0.42  
0.65  
g
-
5.00  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
36  
 
 
...the world's most energy friendly microcontrollers  
Figure 5.3. QFN24 PCB Stencil Design  
a
b
c
x
y
e
z
d
Table 5.3. QFN24 PCB Stencil Design Dimensions (Dimensions in mm)  
Symbol  
Dim. (mm)  
0.60  
Symbol  
Dim. (mm)  
5.00  
a
b
c
d
e
x
y
z
0.25  
1.00  
0.65  
1.00  
5.00  
0.50  
1. The drawings are not to scale.  
2. All dimensions are in millimeters.  
3. All drawings are subject to change without notice.  
4. The PCB Land Pattern drawing is in compliance with IPC-7351B.  
5. Stencil thickness 0.125 mm.  
6. For detailed pin-positioning, see Figure 4.2 (p. 34) .  
5.2 Soldering Information  
The latest IPC/JEDEC J-STD-020 recommendations for Pb-Free reflow soldering should be followed.  
The packages have a Moisture Sensitivity Level rating of 3, please see the latest IPC/JEDEC J-STD-033  
standard for MSL description and level 3 bake conditions. Place as many and as small as possible vias  
underneath each of the solder patches under the ground pad.  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
37  
 
 
 
...the world's most energy friendly microcontrollers  
6 Chip Marking, Revision and Errata  
6.1 Chip Marking  
In the illustration below package fields and position are shown.  
Figure 6.1. Example Chip Marking (top view)  
6.2 Revision  
The revision of a chip can be determined from the "Revision" field in Figure 6.1 (p. 38) .  
6.3 Errata  
Please see the errata document for EFM32TG108 for description and resolution of device erratas. This  
document is available in Simplicity Studio and online at:  
http://www.silabs.com/support/pages/document-library.aspx?p=MCUs--32-bit  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
38  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
7 Revision History  
7.1 Revision 1.40  
March 6th, 2015  
Updated Block Diagram.  
Updated Energy Modes current consumption.  
Updated Power Management section.  
Updated LFRCO and HFRCO sections.  
Added AUXHFRCO to block diagram and Electrical Characteristics.  
Corrected unit to kHz on LFRCO plots y-axis.  
Updated ACMP section and the response time graph.  
Updated VCMP section.  
Updated Package dimensions table.  
Updated Digital Peripherals section.  
7.2 Revision 1.30  
July 2nd, 2014  
Corrected single power supply voltage minimum value from 1.85V to 1.98V.  
Updated current consumption.  
Updated transition between energy modes.  
Updated power management data.  
Updated GPIO data.  
Updated LFXO, HFXO, HFRCO and ULFRCO data.  
Updated LFRCO and HFRCO plots.  
Updated ACMP data.  
7.3 Revision 1.21  
November 21st, 2013  
Updated figures.  
Updated errata-link.  
Updated chip marking.  
Added link to Environmental and Quality information.  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
39  
 
 
 
 
...the world's most energy friendly microcontrollers  
7.4 Revision 1.20  
September 30th, 2013  
Added I2C characterization data.  
Corrected GPIO operating voltage from 1.8 V to 1.85 V.  
Document changed status from "Preliminary".  
Updated Environmental information.  
Updated trademark, disclaimer and contact information.  
Other minor corrections.  
7.5 Revision 1.10  
June 28th, 2013  
Updated power requirements in the Power Management section.  
Removed minimum load capacitance figure and table. Added reference to application note.  
Other minor corrections.  
7.6 Revision 1.00  
September 11th, 2012  
Updated the HFRCO 1 MHz band typical value to 1.2 MHz.  
Updated the HFRCO 7 MHz band typical value to 6.6 MHz.  
Added GPIO_EM4WU3, GPIO_EM4WU4 and GPIO_EM4WU5 pins and removed GPIO_EM4WU1 in  
the Alternate functionality overview table.  
Other minor corrections.  
7.7 Revision 0.96  
May 4th, 2012  
Corrected PCB footprint figures and tables.  
7.8 Revision 0.95  
February 27th, 2012  
Corrected operating voltage from 1.8 V to 1.85 V.  
Added rising POR level and corrected Thermometer output gradient in Electrical Characteristics section.  
Updated Minimum Load Capacitance (CLFXOL) Requirement For Safe Crystal Startup.  
Added Gain error drift and Offset error drift to ADC table.  
Added reference to errata document.  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
40  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
7.9 Revision 0.92  
July 22nd, 2011  
Updated current consumption numbers from latest device characterization data.  
7.10 Revision 0.91  
February 4th, 2011  
Corrected max DAC sampling rate.  
Increased max storage temperature.  
Added data for <150°C and <70°C on Flash data retention.  
Changed latch-up sensitivity test description.  
Added IO leakage current.  
Added Flash current consumption.  
Updated HFRCO data.  
Updated LFRCO data.  
7.11 Revision 0.90  
December 1st, 2010  
New peripherals added to pinout, including LESENSE and OpAmps.  
7.12 Revision 0.50  
May 25th, 2010  
Block diagram update.  
7.13 Revision 0.40  
March 26th, 2010  
Initial preliminary release.  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
41  
 
 
 
 
 
...the world's most energy friendly microcontrollers  
A Disclaimer and Trademarks  
A.1 Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation  
of all peripherals and modules available for system and software implementers using or intending to use  
the Silicon Laboratories products. Characterization data, available modules and peripherals, memory  
sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and  
do vary in different applications. Application examples described herein are for illustrative purposes only.  
Silicon Laboratories reserves the right to make changes without further notice and limitation to product  
information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the conse-  
quences of use of the information supplied herein. This document does not imply or express copyright  
licenses granted hereunder to design or fabricate any integrated circuits. The products must not be  
used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life  
Support System" is any product or system intended to support or sustain life and/or health, which, if it  
fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories  
products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological  
or chemical weapons, or missiles capable of delivering such weapons.  
A.2 Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®,  
EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most ener-  
gy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISO-  
modem®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered  
trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or reg-  
istered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products  
or brand names mentioned herein are trademarks of their respective holders.  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
42  
 
 
 
...the world's most energy friendly microcontrollers  
B Contact Information  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Please visit the Silicon Labs Technical Support web page:  
http://www.silabs.com/support/pages/contacttechnicalsupport.aspx  
and register to submit a technical support request.  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
43  
 
 
...the world's most energy friendly microcontrollers  
Table of Contents  
1. Ordering Information .................................................................................................................................. 2  
2. System Summary ...................................................................................................................................... 3  
2.1. System Introduction ......................................................................................................................... 3  
2.2. Configuration Summary .................................................................................................................... 6  
2.3. Memory Map ................................................................................................................................. 7  
3. Electrical Characteristics ............................................................................................................................. 8  
3.1. Test Conditions .............................................................................................................................. 8  
3.2. Absolute Maximum Ratings .............................................................................................................. 8  
3.3. General Operating Conditions ........................................................................................................... 8  
3.4. Current Consumption ....................................................................................................................... 9  
3.5. Transition between Energy Modes .................................................................................................... 11  
3.6. Power Management ....................................................................................................................... 11  
3.7. Flash .......................................................................................................................................... 12  
3.8. General Purpose Input Output ......................................................................................................... 12  
3.9. Oscillators .................................................................................................................................... 20  
3.10. Analog Comparator (ACMP) .......................................................................................................... 25  
3.11. Voltage Comparator (VCMP) ......................................................................................................... 27  
3.12. I2C ........................................................................................................................................... 27  
3.13. Digital Peripherals ....................................................................................................................... 28  
4. Pinout and Package ................................................................................................................................. 30  
4.1. Pinout ......................................................................................................................................... 30  
4.2. Alternate Functionality Pinout .......................................................................................................... 31  
4.3. GPIO Pinout Overview ................................................................................................................... 33  
4.4. QFN24 Package ........................................................................................................................... 34  
5. PCB Layout and Soldering ........................................................................................................................ 35  
5.1. Recommended PCB Layout ............................................................................................................ 35  
5.2. Soldering Information ..................................................................................................................... 37  
6. Chip Marking, Revision and Errata .............................................................................................................. 38  
6.1. Chip Marking ................................................................................................................................ 38  
6.2. Revision ...................................................................................................................................... 38  
6.3. Errata ......................................................................................................................................... 38  
7. Revision History ...................................................................................................................................... 39  
7.1. Revision 1.40 ............................................................................................................................... 39  
7.2. Revision 1.30 ............................................................................................................................... 39  
7.3. Revision 1.21 ............................................................................................................................... 39  
7.4. Revision 1.20 ............................................................................................................................... 40  
7.5. Revision 1.10 ............................................................................................................................... 40  
7.6. Revision 1.00 ............................................................................................................................... 40  
7.7. Revision 0.96 ............................................................................................................................... 40  
7.8. Revision 0.95 ............................................................................................................................... 40  
7.9. Revision 0.92 ............................................................................................................................... 41  
7.10. Revision 0.91 .............................................................................................................................. 41  
7.11. Revision 0.90 .............................................................................................................................. 41  
7.12. Revision 0.50 .............................................................................................................................. 41  
7.13. Revision 0.40 .............................................................................................................................. 41  
A. Disclaimer and Trademarks ....................................................................................................................... 42  
A.1. Disclaimer ................................................................................................................................... 42  
A.2. Trademark Information ................................................................................................................... 42  
B. Contact Information ................................................................................................................................. 43  
B.1. ................................................................................................................................................. 43  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
44  
...the world's most energy friendly microcontrollers  
List of Figures  
2.1. Block Diagram ....................................................................................................................................... 3  
2.2. EFM32TG108 Memory Map with largest RAM and Flash sizes ........................................................................ 7  
3.1. EM2 current consumption. RTC prescaled to 1kHz, 32.768 kHz LFRCO. ......................................................... 10  
3.2. EM3 current consumption. ..................................................................................................................... 10  
3.3. EM4 current consumption. ..................................................................................................................... 10  
3.4. Typical Low-Level Output Current, 2V Supply Voltage .................................................................................. 14  
3.5. Typical High-Level Output Current, 2V Supply Voltage ................................................................................. 15  
3.6. Typical Low-Level Output Current, 3V Supply Voltage .................................................................................. 16  
3.7. Typical High-Level Output Current, 3V Supply Voltage ................................................................................. 17  
3.8. Typical Low-Level Output Current, 3.8V Supply Voltage ............................................................................... 18  
3.9. Typical High-Level Output Current, 3.8V Supply Voltage ............................................................................... 19  
3.10. Calibrated LFRCO Frequency vs Temperature and Supply Voltage .............................................................. 21  
3.11. Calibrated HFRCO 1 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 22  
3.12. Calibrated HFRCO 7 MHz Band Frequency vs Supply Voltage and Temperature ............................................ 22  
3.13. Calibrated HFRCO 11 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 23  
3.14. Calibrated HFRCO 14 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 23  
3.15. Calibrated HFRCO 21 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 23  
3.16. Calibrated HFRCO 28 MHz Band Frequency vs Supply Voltage and Temperature ........................................... 24  
3.17. ACMP Characteristics, Vdd = 3V, Temp = 25°C, FULLBIAS = 0, HALFBIAS = 1 ............................................. 26  
4.1. EFM32TG108 Pinout (top view, not to scale) .............................................................................................. 30  
4.2. QFN24 ................................................................................................................................................ 34  
5.1. QFN24 PCB Land Pattern ...................................................................................................................... 35  
5.2. QFN24 PCB Solder Mask ....................................................................................................................... 36  
5.3. QFN24 PCB Stencil Design .................................................................................................................... 37  
6.1. Example Chip Marking (top view) ............................................................................................................. 38  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
45  
...the world's most energy friendly microcontrollers  
List of Tables  
1.1. Ordering Information ................................................................................................................................ 2  
2.1. Configuration Summary ............................................................................................................................ 6  
3.1. Absolute Maximum Ratings ...................................................................................................................... 8  
3.2. General Operating Conditions ................................................................................................................... 8  
3.3. Current Consumption ............................................................................................................................... 9  
3.4. Energy Modes Transitions ...................................................................................................................... 11  
3.5. Power Management ............................................................................................................................... 11  
3.6. Flash .................................................................................................................................................. 12  
3.7. GPIO .................................................................................................................................................. 12  
3.8. LFXO .................................................................................................................................................. 20  
3.9. HFXO ................................................................................................................................................. 20  
3.10. LFRCO .............................................................................................................................................. 21  
3.11. HFRCO ............................................................................................................................................. 21  
3.12. AUXHFRCO ....................................................................................................................................... 24  
3.13. ULFRCO ............................................................................................................................................ 24  
3.14. ACMP ............................................................................................................................................... 25  
3.15. VCMP ............................................................................................................................................... 27  
3.16. I2C Standard-mode (Sm) ...................................................................................................................... 27  
3.17. I2C Fast-mode (Fm) ............................................................................................................................ 28  
3.18. I2C Fast-mode Plus (Fm+) .................................................................................................................... 28  
3.19. Digital Peripherals ............................................................................................................................... 28  
4.1. Device Pinout ....................................................................................................................................... 30  
4.2. Alternate functionality overview ................................................................................................................ 32  
4.3. GPIO Pinout ........................................................................................................................................ 33  
4.4. QFN24 (Dimensions in mm) .................................................................................................................... 34  
5.1. QFN24 PCB Land Pattern Dimensions (Dimensions in mm) .......................................................................... 35  
5.2. QFN24 PCB Solder Mask Dimensions (Dimensions in mm) ........................................................................... 36  
5.3. QFN24 PCB Stencil Design Dimensions (Dimensions in mm) ........................................................................ 37  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
46  
...the world's most energy friendly microcontrollers  
List of Equations  
3.1. Total ACMP Active Current ..................................................................................................................... 25  
3.2. VCMP Trigger Level as a Function of Level Setting ..................................................................................... 27  
www.silabs.com  
2015-03-06 - EFM32TG108FXX - d0032_Rev1.40  
47  

相关型号:

EFM32TG108F32-QFN24

RISC Microcontroller, 32-Bit, FLASH, CORTEX-M3 CPU, 32MHz, CMOS, ANTIMONY AND HALOGEN FREE, ROHS COMPLIANT, QFN-24
SILICON

EFM32TG108F32-QFN24T

Microcontroller, 32-Bit, FLASH, CORTEX-M3 CPU, 32MHz, CMOS, PQCC24
SILICON

EFM32TG108F4-D-QFN24

RISC Microcontroller, 32-Bit, FLASH, 32MHz, CMOS, PQCC24, QFN-24
SILICON

EFM32TG108F4-D-QFN24T

RISC Microcontroller,
SILICON

EFM32TG108F4-QFN24

RISC Microcontroller, 32-Bit, FLASH, CORTEX-M3 CPU, 32MHz, CMOS, ANTIMONY AND HALOGEN FREE, ROHS COMPLIANT, QFN-24
SILICON

EFM32TG108F4-QFN24T

Updated specifications based on the results of additional silicon characterization
SILICON

EFM32TG108F8-D-QFN24

RISC Microcontroller, 32-Bit, FLASH, 32MHz, CMOS, PQCC24, QFN-24
SILICON

EFM32TG108F8-QFN24

RISC Microcontroller, 32-Bit, FLASH, CORTEX-M3 CPU, 32MHz, CMOS, ANTIMONY AND HALOGEN FREE, ROHS COMPLIANT, QFN-24
SILICON

EFM32TG108F8-QFN24T

Updated specifications based on the results of additional silicon characterization
SILICON

EFM32TG110

Output state retention and wake-up from Shutoff Mode
SILICON

EFM32TG110F16-QFN24

Updated specifications based on the results of additional silicon characterization.
SILICON

EFM32TG110F16-QFN24T

Updated specifications based on the results of additional silicon characterization
SILICON