SI3011-KS [SILICON]

Consumer Circuit, PDSO16, SOIC-16;
SI3011-KS
型号: SI3011-KS
厂家: SILICON    SILICON
描述:

Consumer Circuit, PDSO16, SOIC-16

光电二极管 商用集成电路
文件: 总102页 (文件大小:1759K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si3052  
Si3017/11/18  
GLOBAL PCI DAA CHIPSET  
Features  
! Si3052 PCI DAA and Si3018  
! Watchdog timer  
global, Si3011 TBR21, or Si3017 ! External EPROM interface  
FCC line-side DAA  
! 32-bit, 33 MHz, PCI 2.3 compliant  
interface  
! Compliant with FCC, TBR21,  
JATE, and other PTTs  
! 80 dB dynamic range TX/RX Path  
! PPMI 1.1 and wake support with ! 2- to 4-wire Hybrid  
PME and Vaux  
! Patented ISOcap™ technology  
! Bus master and target operation, ! >5000 V isolation  
DMA controller  
! Wake-on-ring and ring validation  
Ordering Information  
! 16 x 8 FIFO on DMA paths  
! Interrupt controller  
! Lowest cost external bill-of-  
material (BOM)  
! 3.3 V digital power supply  
! 64-Pin TQFP, 0 to 70 °C  
See page 97.  
Pin Assignments  
Applications  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
! V.92 soft data/fax modems  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
3
Description  
4
5
6
The Si3052 is a system-side silicon direct access arrangement (DAA)  
device that integrates a 32-bit, 33 MHz PCI bus interface. The Si3052 is  
paired with the Si3018 global line-side device, Si3011 FCC/TBR21 line-  
side device, or Si3017 FCC line-side device. The PCI DAA chipset is  
compliant with global standards and includes a V.92 quality codec (80 dB  
SNR, –75 dB THD), dc termination (50 , current limiting), ac termination  
(600 , complex impedance), and an integrated hybrid.  
Si3052  
64-Lead TQFP  
(epad)  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Functional Block Diagram  
Si3017/11/18  
Call Progress  
Speaker  
16  
15  
1
2
DCT2  
QE  
AOUT  
IGND  
DCT3  
DCT  
RX  
TIP  
Si3018  
3
4
5
6
14  
DAA Control  
DAA  
RING  
IB  
13  
12  
11  
QB  
QE2  
SC  
PCI  
Addr/Data  
C1B  
C2B  
VREG  
RNG1  
PCI  
Interface  
with  
DMA Control  
Interrupt Control  
ID/ROM Interface  
PCI  
Control  
VREG2  
RNG2  
7
8
10  
9
FIFOs  
EPROM  
US Patent # 5,870,046  
US Patent # 6,061,009  
Patents pending  
VD  
Vaux  
GND  
Rev. 1.0 7/03  
Copyright © 2003 by Silicon Laboratories  
Si3052-DS10  
Si3052/17/11/18  
2
Rev. 1.0  
Si3052/17/11/18  
TABLE OF CONTENTS  
Section  
Page  
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
AOUT PWM Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
PCI Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
DMA Bus Master Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
DAA Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
Interrupt Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
FIFO Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Telephone Line Interface Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Isolation Barrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Parallel Handset Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Loop Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Off-Hook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
DC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
AC Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Transhybrid Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Ring Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Ring Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Ringer Impedance and Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
DTMF Dialing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Pulse Dialing and Spark Quenching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Billing Tone Detection and Receive Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Billing Tone Filter (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
On-Hook Line Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Caller ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Overload Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Gain Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Sample Rate Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Filter Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
In-Circuit Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Revision Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
PCI Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
PCI and DAA Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Pin Descriptions: Si3052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Pin Descriptions: Si3017/11/18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97  
Package Outline: 64-Pin TQFP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Package Outline: 16-Pin SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Rev. 1.0  
3
Si3052/17/11/18  
Electrical Specifications  
Table 1. Recommended Operating Conditions  
1
2
2
Symbol  
Test Condition  
Unit  
°C  
V
Parameter  
Min  
Typ  
25  
Max  
70  
Ambient Temperature  
Si3052 Supply Voltage, Core  
Si3052 IO Supply Voltage  
Si3052 IO Supply Voltage  
Note:  
T
K-Grade  
0
A
VD  
3.0  
3.0  
3.3  
3.3  
5.0  
3.6  
3.6  
V
V
3.3 V Signaling  
5 V Signaling  
V
IO  
IO  
4.75  
5.25  
V
1. The Si3052 specifications are guaranteed when the typical application circuit (including component tolerance) and  
Si3052 and Si3017/11/18 are used. Refer to Figure 13 on page 16 for the typical application schematic.  
2. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
4
Rev. 1.0  
Si3052/17/11/18  
1
Table 2. PCI Interface DC Characteristics for 5 VIO  
(VIO = 4.75 to 5.25 V, TA = 0 to 70 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
20  
20  
12  
1
Max  
21  
28  
15  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
2
Power Supply Current, Core  
I
D0 uninitialized  
D,VD  
3
D0 initialized  
4
D3 wake-on-ring  
5
D3 deep sleep  
2
Power Supply Current, IO  
I
D0 uninitialized  
0.35  
0.35  
0.35  
52  
47  
D,VIO  
3
D0 initialized  
4,5  
D3  
High Level Input Voltage  
Low Level Input Voltage  
Input/Hi-Z Leakage Current  
High Level Output Voltage  
Low Level Output Voltage  
Input Pin Capacitance  
CLK Pin Capacitance  
IDSEL Pin Capacitance  
Pin Inductance  
V
2.0  
–0.5  
V +0.5  
IH  
IO  
V
I
0.8  
±10  
V
IL  
0 < V < V  
IO  
µA  
V
IL  
IN  
V
I = –2 mA  
2.4  
OH  
O
6
V
I = 3 mA,6 mA  
0.55  
10  
12  
8
V
OL  
O
C
pF  
pF  
pF  
nH  
µA  
in  
C
5
CLK  
C
IDSEL  
L
4
20  
1
PIN  
PME input leakage  
I
0 < Vo 5.25 V,  
OFF  
7
V
off or floating  
IO  
Notes:  
1. Applies to pins AD[31:0], CBE[3:0], FRAME, IRDY, TRDY, DEVSEL, STOP, PERR, SERR, PAR, INTA, PME, GNT,  
REQ, CLK, RESET, and IDSEL.  
2. The D0 uninitialized condition is defined as active PCI interface and idle line-side device. Max power numbers assume  
constant PCI reads of worst case data using no output stepping. Typical power numbers assume no further PCI bus  
reads (control bits PDN = 0, PDL = 1).  
3. The D0 initialized condition is defined as conducting audio through the line-side device. Max power numbers assume  
constant PCI reads of worst case data using no output stepping. Typical power numbers assume servicing DMA for  
8 kHz audio sampling rate and two-stage output stepping (control bits PDN = 0, PDL = 0).  
4. D3 condition is defined as inactive PCI bus. Wake-on-ring configuration assumes inactive PCI interface and active line-  
side device (control bits PDN = 1, PDL = 0).  
5. D3 condition is defined as inactive PCI bus. Deep Sleep configuration assumes inactive PCI interface and line-side  
device (control bits PDN = 1, PDL = 1).  
6. Signals without pullups have 3 mA low output current. Signals requiring pullups have 6 mA; the latter include FRAME,  
RDY, TRDY, DEVSEL, STOP, SERR, PERR, INTA.  
7. This input leakage is the maximum leakage into the PME open drain driver when power is removed from V , assuming  
IO  
that no event has occurred to cause the device to assert PME.  
Rev. 1.0  
5
Si3052/17/11/18  
1
Table 3. PCI Interface DC Characteristics for 3.3 VIO  
(VIO = 3.0 to 3.6 V, TA = 0 to 70 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
20  
20  
12  
1
Max  
21  
28  
15  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
V
2
Power Supply Current, Core  
I
D0 unitialized  
D,VD  
3
D0 initialized  
4
D3 wake-on-ring  
5
D3 deep sleep  
2
Power Supply Current, IO  
I
D0 unitialized  
0.35  
0.35  
0.35  
36  
35  
D,VIO  
3
D0 initialized  
4,5  
D3  
High Level Input Voltage  
Low Level Input Voltage  
Input Leakage Current  
High Level Output Voltage  
Low Level Output Voltage  
Input Pin Capacitance  
CLK Pin Capacitance  
IDSEL Pin Capacitance  
Pin Inductance  
V
0.5 V  
V +0.5  
IO  
IH  
IO  
V
I
–0.5  
0.3 V  
V
IL  
IO  
0 < V < V  
IO  
±10  
µA  
V
IL  
IN  
V
I = –0.5 mA  
0.9 V  
OH  
O
IO  
V
I = 1.5 mA  
0.1 V  
10  
12  
8
V
OL  
O
IO  
C
pF  
pF  
pF  
nH  
µA  
in  
C
5
CLK  
C
IDSEL  
L
4
20  
1
PIN  
PME input leakage  
I
0 < Vo 3.6,  
OFF  
6
V
off or floating  
IO  
Notes:  
1. Applies to pins AD[31:0], CBE[3:0], FRAME, TRDY, DEVSEL, STOP, PERR, SERR, PAR, INTA, PME, GNT, REQ, CLK,  
RESET, and IDSEL.  
2. The D0 uninitialized condition is defined as active PCI interface and idle line-side device. Max power numbers assume  
constant PCI reads of worst case data using no output stepping. Typical power numbers assume no further PCI bus  
reads (control bits PDN = 0, PDL = 1).  
3. The D0 initialized condition is defined as conducting audio through the lines-side device. Max power numbers assume  
constant PCI reads of worst case data using no output stepping. Typical power numbers assume servicing DMA for  
8 kHz audio sampling rate and 2-stage output stepping (control bits PDN = 0, PDL = 0).  
4. D3 condition is defined as inactive PCI bus. Wake-on-ring configuration assumes inactive PCI interface and active line-  
side device (control bits PDN = 1, PDL = 0).  
5. D3 condition is defined as inactive PCI bus. Deep sleep configuration assumes inactive PCI interface and line-side  
device (control bits PDN = 1, PDL = 1).  
6. This input leakage is the maximum leakage into the PME open drain driver when power is removed from VIO, assuming  
that no event has occurred to cause the device to assert PME.  
6
Rev. 1.0  
Si3052/17/11/18  
Table 4. DC Characteristics for Non-PCI pins1  
(VD = 3.0 to 3.6 V, TA = 0 to 70 °C)  
Parameter  
Symbol  
Test Condition  
Min  
2.0  
Max  
Unit  
V
2
High Level Input Voltage  
V
IH  
2
Low Level Input Voltage  
V
0.8  
±10  
±10  
V
IL  
2
Input Leakage Current  
I
0 < V < V  
IO  
µA  
µA  
V
IL,1  
IL,2  
IN  
3
Input Leakage Current  
I
0 < V < V  
IN  
D
2
High Level Output Voltage  
V
IO = –2 mA  
IO = –7.5 mA  
IO = 2 mA  
2.4  
2.0  
OH  
V
2
Low Level Output Voltage  
V
V
0.35  
0.8  
10  
V
OL  
OL  
IO = 8 mA  
V
Input Pin Capacitance  
C
pF  
in  
Notes:  
1. Applies to PIN_37, PIN_38, VAUX_SENSE, XIN, XOUT, C1A, C2A.  
2. Applies to 5 V-tolerant 3.3 V pins PIN_37, PIN_38, and VAUX_SENSE.  
3. Applies to 3.3 V pins XIN, XOUT, C1A, C2A.  
Rev. 1.0  
7
Si3052/17/11/18  
1
Table 5. PCI Interface AC Characteristics for 5VIO  
(VIO = 4.75 to 5.25 V, TA = 0 to 70 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
mA  
mA  
mA  
3
Switching Current,  
IOH(AC)  
0 < V  
< 1.4  
–44  
OUT  
2
High  
3
1.4 < V  
3.1 < V  
< 2.4  
–44 + (V  
– 1.4)/0.024  
OUT  
OUT  
OUT  
3
< V  
11.9 x (V  
-5.25) x  
IO  
OUT  
(V  
+2.45)  
OUT  
V
= 3.1  
–142  
mA  
OUT  
(Test Point)  
3
Switching Current,  
Low  
IOH(AC)  
V
2.2  
95  
32  
mA  
mA  
mA  
mA  
OUT  
V
= 1.375  
OUT  
3
2.2 > V  
> 0.55  
V
/0.023  
OUT  
OUT  
3
0.71>V  
>0  
78.5 x V  
x
OUT  
OUT  
(4.4 – V  
)
OUT  
V
= 0.71  
206  
mA  
OUT  
(Test Point)  
Low Clamp Current  
High Clamp Current  
ICL  
-5<V <-1  
–25 + (V +1)/0.015  
mA  
mA  
IN  
IN  
I
V
+ 1 < V < V + 4  
–25 + (V – V – 1)/  
CH  
IO  
IN  
IO  
IN  
IO  
0.015  
4
Output Rise Slew  
Rate  
slew  
0.4 to 2.4 V  
2.4 to 0.4 V  
1
5
5
V/ns  
V/ns  
R
4
Output Fall Slew  
Rate  
slew  
F
1
Notes:  
1. Applies to pins AD[31:0], CBE[3:0], FRAME, IRDY, TRDY, DEVSEL, STOP, PERR, SERR, PAR, INTA, PME, GNT, REQ,  
and IDSEL.  
2. Switching current High parameters do not apply to open-drain signals SERR, PME, and INTA.  
3. Outputs are characterized to meet switching current templates. IOH is tested at 1.4 V and 2.4 V only. IOL is tested at 0.53 V  
and 1.375 V only.  
4. Cumulative edge rate across the specified range with load of 1 kto VIO, 1 kto ground and 10 pF to ground.  
8
Rev. 1.0  
Si3052/17/11/18  
1
Table 6. PCI Interface AC Characteristics for 3.3VIO  
(VIO = 3.0 to 3.6 V, TA = 0 to 70 °C)  
Symbo  
Parameter  
Test Condition  
Min  
Max  
Unit  
l
3
Switching Current,  
High2  
IOH(AC)  
0 < V  
< 0.3 VIO  
–12 VIO  
–17.1(VIO V  
mA  
mA  
mA  
OUT  
3
0.3 VIO < V  
< 0.9 VIO  
)
OUT  
OUT  
3
0.7 VIO < V  
< VIO  
(98/VIO) x (V  
– VI  
OUT  
OUT  
O) x (V  
– 0.4 VIO)  
OUT  
V
= 0.7 VIO  
–32 VIO  
mA  
OUT  
(Test Point)  
3
Switching Current,  
Low  
IOH(AC)  
VIO > V  
0.6 > V  
0.6VIO  
16 VIO  
mA  
mA  
mA  
OUT  
OUT  
3
> 0.1VIO  
>03  
26.7 VOUT  
0.18 VIO >V  
(256/VIO) x V  
x
OUT  
OUT  
(VIO V  
)
OUT  
V
= 0.71  
38xVIO  
mA  
OUT  
(Test Point)  
Low Clamp Current  
High Clamp Current  
ICL  
ICH  
–3 < V 1  
–25 + (V + 1)/0.015  
mA  
mA  
IN  
IN  
VIO + 1 VIN < VIO + 4  
–25+(V – VIO – 1)/  
IN  
0.015  
4
Output Rise Slew  
Rate  
slewR  
slewF  
0.2 VIO to 0.6 VIO  
1
4
4
V/ns  
V/ns  
4
Output Fall Slew  
Rate  
0.6 VIO to 0.2 VIO  
1
Notes:  
1. Applies to pins AD[31:0], CBE[3:0], FRAME, IRDY, TRDY, DEVSEL, STOP, PERR, SERR, PAR, INTA, PME, GNT,  
REQ, and IDSEL.  
2. Switching current high parameters do not apply to open-drain signals SERR, PME, and INTA.  
3. Outputs are characterized to meet switching current templates. Production testing is done at the designated Test Point  
voltages only.  
4. Cumulative edge rate across the specified range with load of 1 kto VIO, 1 kto ground and 10 pF to ground.  
Rev. 1.0  
9
Si3052/17/11/18  
Table 7. PCI Interface Timing Characteristics  
(VD = 3.0 to 3.6 V, VIO = 3.0 to 5.25 V, TA = 0 to 70 °C, see Figure 1)  
Parameter  
Symbol  
Test Condition  
Min  
30  
11  
11  
2
Typ  
Max  
Unit  
ns  
PCICLK Cycle Time  
PCICLK High Time  
PCICLK Low Time  
PCICLK to Signal Valid Delay—  
t
cyc  
t
ns  
high  
t
ns  
low  
t
11  
ns  
val  
1
Bused Signals  
PCICLK to Signal Valid Delay—  
t
2
12  
ns  
val(ptp)  
1,3  
Point to Point  
2
Float to Active Delay  
t
t
2
7
28  
ns  
ns  
ns  
on  
2
Active to Float Delay  
off  
Input Setup Time to PCICLK—  
Bused Signals  
t
su  
Input Setup Time to PCICLK—  
Point to Point  
t
10  
ns  
su(ptp)  
3
Input Hold Time for PCICLK  
Reset Active to Output Float Delay  
Notes:  
t
0
ns  
ns  
h
2
t
30  
rst-off  
1. For 5 V signaling, Tval is evaluated with 50 pF load to ground. For 3.3 V signaling, Tval is evaluated with 25 in parallel  
with 10 pF to ground (rising) or 25 to VIO with 10 pF to ground (falling).  
2. For purposes of identifying float timing measurements, the Hi-Z or off state is defined to be when the total current is less  
than or equal to the leakage current specification.  
3. The point-to-point signals are REQ and GNT.  
thigh  
PCICLK  
tlow  
tcyc  
RESET  
toff  
trst-off  
ton  
OUTPUTS  
Hi-Z  
tval  
OUTPUTS  
Valid  
tsu  
th  
Valid  
Input  
INPUTS  
Figure 1. PCI Timing  
10  
Rev. 1.0  
Si3052/17/11/18  
Table 8. DAA Loop Characteristics1  
(VD = 3.0 to 3.6 V, TA = 0 to 70 °C, see Figure 2)  
Parameter  
Symbol  
Test Condition  
IL = 20 mA, ILIM = 0  
Min  
Typ  
Max  
Unit  
DC Termination Voltage  
V
6.0  
V
TR  
TR  
TR  
TR  
TR  
TR  
TR  
TR  
TR  
DCV = 00, MINI = 11, DCR = 0  
IL = 120 mA, ILIM = 0  
DCV = 00, MINI = 11, DCR = 0  
IL = 20 mA, ILIM = 0  
DCV = 11, MINI = 00, DCR = 0  
IL = 120 mA, ILIM = 0  
DCV = 11, MINI = 00, DCR = 0  
IL = 20 mA, ILIM = 1  
DCV = 11, MINI = 00, DCR = 0  
IL = 60 mA, ILIM = 1  
DCV = 11, MINI = 00, DCR = 0  
IL = 50 mA, ILIM = 1  
DCV = 11, MINI = 00, DCR = 0  
IL = 20 mA, ILIM = 0  
DCV = 11, MINI = 00, DCR = 1  
IL = 60 mA, ILIM = 0  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
DC Termination Voltage  
V
V
V
V
V
V
V
V
9
7.5  
V
V
V
V
V
V
V
V
2
2
9
40  
40  
7.5  
40  
16  
DCV = 11, MINI = 00, DCR = 1  
VTR = –48 V  
2
On-Hook Leakage Current  
I
I
I
10  
10  
5
120  
60  
3
µA  
mA  
mA  
µA  
LK  
LP  
LP  
2
Operating Loop Current  
MINI = 00, ILIM = 0  
Operating Loop Current  
MINI = 00, ILIM = 1  
2
DC Ring Current  
dc current flowing through ring  
detection circuitry  
1.5  
2,3  
Ring Detect Voltage  
V
V
RT = 0  
RT = 1  
12  
18  
13  
15  
21  
18  
25  
68  
0.2  
V
V
RD  
RD  
rms  
3
Ring Detect Voltage  
rms  
2
Ring Frequency  
F
Hz  
R
2
Ringer Equivalence Number  
REN  
Notes:  
1. All parameters apply to Si3018 Global and Si3011 TBR21 line-side devices.  
2. Parameter applies to Si3017 FCC line-side device.  
3. The ring signal is guaranteed to not be detected below the minimum. The ring signal is guaranteed to be detected  
above the maximum.  
TIP  
+
600 Ω  
IL  
V
Si3017/11/18  
TR  
10 µF  
RING  
Figure 2. Test Circuit for Loop Characteristics  
Rev. 1.0  
11  
Si3052/17/11/18  
Table 9. DAA AC Characteristics1  
(VD = 3.0 to 3.6 V, TA = 0 to 70 °C, Fs = 8 kHz)  
Parameter  
2
Symbol  
Fs  
Test Condition  
Min Typ Max  
Unit  
kHz  
Hz  
Sample Rate  
7.2  
5
16  
2
Receive Frequency Response  
Low –3 dBFS Corner  
0 dBm  
2,3  
Transmit Full Scale Level  
V
1.1  
1.1  
78  
V
FS  
FS  
PEAK  
2,3,4  
Receive Full Scale Level  
V
0 dBm  
VPEAK  
2,5,6,7  
Dynamic Range  
DR  
ILIM = 0, DCV = 11, MINI = 00  
DCR = 0, IL = 100 mA  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
5,6,8  
Dynamic Range  
DR  
ILIM = 0, DCV = 00, MINI = 11  
DCR = 0, IL = 20 mA  
79  
5,6,9  
Dynamic Range  
DR  
ILIM = 1, DCV = 11, MINI = 00  
DCR = 0, IL = 50 mA  
78  
7,8  
Transmit Total Harmonic Distortion  
THD  
THD  
THD  
THD  
ILIM = 0, DCV = 11, MINI = 00  
DCR = 0, IL = 100 mA  
–72  
–78  
–78  
–78  
Transmit Total Harmonic  
ILIM = 0, DCV = 00, MINI = 11  
DCR = 0, IL = 20 mA  
2,7,8  
Distortion  
7,8  
7,8  
Receive Total Harmonic Distortion  
ILIM = 0, DCV = 00, MINI = 11  
DCR = 0, IL = 20 mA  
Receive Total Harmonic Distortion  
ILIM = 1,DCV = 11, MINI = 00  
DCR = 0, IL = 50 mA  
2,7  
Dynamic Range (caller ID mode)  
DR  
V
= 1 kHz, –13 dBm  
IN  
50  
6
CID  
2
Caller ID Full Scale Level  
V
CID  
V
PP  
Notes:  
1. All parameters apply to Si3018 Global and Si3011 TBR21 line-side devices.  
2. Parameter applies to Si3017 FCC line-side device.  
3. Measured at TIP and RING with 600 . termination at 1 kHz, as shown in Figure 2.  
4. Receive full scale level produces –0.9 dBFS.  
5. DR = 20 x log (rms VFS/rms V )+ 20 x log (rms V /rms noise). VFS is the 0 dBm full-scale level.  
IN  
IN  
6. Measurement is 300 to 3400 Hz. Applies to both transmit and receive paths.  
7. VIN = 1 kHz, –3 dBFS  
8. THD = 20 x log (rms distortion / rms signal).  
9. DRCID = 20 x log (rms VCID/rms VIN)+ 20 x log (rms VIN/rms noise). VCID is the 6 V full-scale level.  
12  
Rev. 1.0  
Si3052/17/11/18  
Table 10. Digital FIR Filter Characteristics—Transmit and Receive  
(VD = 3.0 to 3.6 V, Sample Rate = 8 kHz, TA = 0 to 70 °C)  
Parameter  
Symbol  
Min  
0
Typ  
Max  
3.3  
3.6  
0.1  
Unit  
kHz  
kHz  
dB  
Passband (0.1 dB)  
Passband (3 dB)  
Passband Ripple Peak-to-Peak  
Stopband  
F
(0.1 dB)  
F
0
(3 dB)  
–0.1  
4.4  
kHz  
dB  
Stopband Attenuation  
Group Delay  
–74  
t
12/Fs  
s
gd  
Note: Typical FIR filter characteristics for Fs = 8000 Hz are shown in Figures 3, 4, 5, and 6.  
Table 11. Digital IIR Filter Characteristics—Transmit and Receive  
(VD = 3.0 to 3.6 V, Sample Rate = 8 kHz, TA = 0 to 70 °C)  
Parameter  
Symbol  
Min  
0
Typ  
Max  
3.6  
0.2  
Unit  
kHz  
dB  
Passband (3 dB)  
Passband Ripple Peak-to-Peak  
Stopband  
F
(3 dB)  
–0.2  
4.4  
kHz  
dB  
Stopband Attenuation  
Group Delay  
–40  
t
1.6/Fs  
s
gd  
Note: Typical IIR filter characteristics for Fs = 8000 Hz are shown in Figures 7, 8, 9, and 10. Figures 11 and 12 show group  
delay versus input frequency.  
Rev. 1.0  
13  
Si3052/17/11/18  
Input Frequency—Hz  
Input Frequency—Hz  
Figure 3. FIR Receive Filter Response  
Figure 5. FIR Transmit Filter Response  
Input Frequency—Hz  
Input Frequency—Hz  
Figure 4. FIR Receive Filter Passband Ripple  
Figure 6. FIR Transmit Filter Passband Ripple  
For Figures 3–6, all filter plots apply to a sample rate of  
Fs = 8 kHz. The filters scale with the sample rate as follows:  
F(0.1 dB) = 0.4125 Fs  
F(–3 dB) = 0.45 Fs  
where Fs is the sample frequency.  
For Figures 7–10, all filter plots apply to a sample rate of  
Fs = 8 kHz. The filters scale with the sample rate as follows:  
F(–3 dB) = 0.45 Fs  
where Fs is the sample frequency.  
14  
Rev. 1.0  
Si3052/17/11/18  
Input Frequency—Hz  
Input Frequency—Hz  
Figure 7. IIR Receive Filter Response  
Figure 10. IIR Transmit Filter Passband Ripple  
Input Frequency—Hz  
Input Frequency—Hz  
Figure 11. IIR Receive Group Delay  
Figure 8. IIR Receive Filter Passband Ripple  
Input Frequency—Hz  
Input Frequency—Hz  
Figure 12. IIR Transmit Group Delay  
Figure 9. IIR Transmit Filter Response  
Rev. 1.0  
15  
Si3052/17/11/18  
Typical Application Schematic  
16  
Rev. 1.0  
Si3052/17/11/18  
Rev. 1.0  
17  
Si3052/17/11/18  
Bill of Materials  
Component(s)  
Value  
Supplier(s)  
Panasonic, Murata, Vishay  
Venkel, SMEC  
C1, C2  
C3  
33pF, Y2, X7R, ±20%  
10 nF, 250 V, X7R, ±20%  
1.0 µF, 35 V, Elec/Tant, ±20%  
0.1 µF, 16 V, X7R, ±20%  
2.7 nF, 50 V, X7R, 20%  
680 pF, Y2, X7R, ±10%  
0.01 µF, 16 V, X7R, ±20%  
C4  
Panasonic  
1
C5, C6, C50, C117  
Venkel, SMEC  
C7  
Venkel, SMEC  
C8, C9  
Panasonic, Murata, Vishay  
Venkel, SMEC  
C10, C52-C53, C56–C57, C60,  
C81, C84–C87, C103–C115,  
1
C123–C125  
C40–41  
22 pF, 50 V, COG, ±5%  
1.0 µF, 16 V, X7R, ±20%  
1.0uF, 16V, X7R, ±20%  
10 µF, 16 V, Elec, ±20%  
0.047 µF, 16 V, X7R, ±20%  
Venkel, SMEC  
Venkel, SMEC  
Venkel, SMEC  
Panasonic  
1
C51,C54,C55,C58,C59  
1
C81-C82, C85-C86, C88  
1
C80, C82, C88, C116  
1
C83, C118, C119, C120, C121  
Venkel, SMEC  
Central Semiconductor  
2
D1, D2  
Dual Diode, 225 mA, 300 V,  
CMPD2004S  
FB1, FB2  
Ferrite Bead, BLM21AJ601S  
NPN, 300 V, MMBTA42  
PNP, 300 V, MMBTA92  
NPN, 80 V, 330 mW, MMBTA06  
Sidactor, 275 V, 100 A  
1.07 k, 1/2 W, 1%  
Murata  
Q1, Q3  
Fairchild, OnSemi, Central Semi  
Fairchild, OnSemi, Central Semi  
Fairchild, OnSemi, Central Semi  
Teccor, Protek, ST Micro  
Q2  
Q4, Q5  
RV1  
R1  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
R2  
150 , 1/16 W, 5%  
R3  
3.65 k, 1/2 W, 1%  
R4  
2.49 k, 1/2 W, 1%  
R5, R6  
100 k, 1/16 W, 5%  
20 M, 1/16 W, 5%  
R7, R8  
R9  
1 M, 1/16 W, 1%  
R10  
536 , 1/4 W, 1%  
Notes:  
1. Decoupling capacitors based on PCI Specification Rev 2.2.  
2. Several diode bridge configurations are acceptable; parts, such as a single DF-04S or four 1N4004 diodes, may be  
used (suppliers include General Semiconductor, Diodes Inc., etc.).  
3. A 56 , 1%, 1/16 W resistor may be used if needed for R12–R13 (0 Ω) to decrease emissions.  
4. Murata BLM21AJ601S may be used if needed for R15–R16 (0 Ω) to decrease emissions.  
5. R40 should be populated with a 0 resistor if 3.3 V aux is present; otherwise, R41 should be populated with a 0 Ω  
resistor.  
6. Required for compatibility with future line-side devices.  
18  
Rev. 1.0  
Si3052/17/11/18  
Component(s)  
Value  
73.2 , 1/2 W, 1%  
0 , 1/16 W  
Supplier(s)  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
Silicon Labs  
R11  
3
R12, R13  
5
R15, R16  
0 , 1/16 W  
5
R40  
0 , 1/16 W  
5
6
R41 , R60–R64  
NI  
R51, R52  
20 M, 1/16 W, 5%  
Si3052  
U1  
U2  
Y1  
Z1  
Si3017/11/18  
32.768 kHz, 50 ppm  
Zener Diode, 43 V, 1/2 W  
Silicon Labs  
ECS, Epson, CTS  
General Semiconductor, Diodes Inc.  
Notes:  
1. Decoupling capacitors based on PCI Specification Rev 2.2.  
2. Several diode bridge configurations are acceptable; parts, such as a single DF-04S or four 1N4004 diodes, may be  
used (suppliers include General Semiconductor, Diodes Inc., etc.).  
3. A 56 , 1%, 1/16 W resistor may be used if needed for R12–R13 (0 Ω) to decrease emissions.  
4. Murata BLM21AJ601S may be used if needed for R15–R16 (0 Ω) to decrease emissions.  
5. R40 should be populated with a 0 resistor if 3.3 V aux is present; otherwise, R41 should be populated with a 0 Ω  
resistor.  
6. Required for compatibility with future line-side devices.  
Rev. 1.0  
19  
Si3052/17/11/18  
AOUT PWM Output  
Figure 15 illustrates an optional circuit to support the ARM[1:0] and ATM[1:0] (Offset 0x36) control receive  
pulse-width modulation (PWM) output capability of the and transmit gains in 6 dB steps and receive and  
Si3052 for call progress monitoring. This mode is transmit muting. Alternatively, ARM[7:0] and ATM[7:0]  
enabled by setting the PWME bit (Offset 0x31).  
(Offset 0x44 and 0x45) control gains and muting with  
finer resolution. These registers allow the receive and  
transmit paths to be independently controlled and  
attenuated linearly. Setting these 8-bit registers to all 0s  
mutes the receive and transmit paths. These registers  
affect the call progress output only and do not affect  
transmit and receive operations on the telephone line.  
The AOUT signal is a standard digital output from  
PIN_39, which represents the sum of independently-  
scalable receive and transmit call progress contents in  
pulse-width modulation (PWM) form. The sampling rate  
of the audio path signals is 32 kHz. The format of the  
PWM is configurable by the PWMM bits (Offset 0x31).  
12 V  
5 VCC  
3.3 VCCbus  
R61  
R62  
R63  
Only install one  
LS1  
SPEAKER  
Q10  
R60  
1
PIN_39  
C101  
Figure 15. AOUT PWM Circuit for Call Progress  
Table 12. Component Values—AOUT PWM  
Component  
C101  
Value  
Supplier(s)  
Venkel, SMEC  
Intervox  
1 nF, 16 V, X7R, ±20%  
BRT1209PF-06  
LS1  
Q10  
MOSFET N GSD, FDV301N  
Fairchild  
R60  
15 k, 1/10 W, 5%  
0 , 1/10 W, 5%  
NI  
Venkel, SMEC, Panasonic  
Venkel, SMEC, Panasonic  
R61  
R62, R63  
20  
Rev. 1.0  
Si3052/17/11/18  
programming the DMA interrupt address register (Offset  
0x10 read and 0x20 write). The current DMA address  
PCI Functional Description  
The Si3052 provides the interface between a PCI 2.3- register (read or write) contains the physical memory  
compliant bus and the Si3018 using the Silicon address of the DMA operation in progress. If the DMA  
Laboratories’ proprietary ISOcap™ technology. The Interrupt Address register (read or write) is  
Si3052 has several major functional blocks including programmed, an interrupt is generated and the interrupt  
DMA, bus mastering, DAA control/status, power status register flag (Offset 0x04) is set when the DMA  
management, PNP configuration, EPROM interface, transfer reaches the interrupt address. When the flag is  
interrupt control/status, FIFO buffering, and a watchdog set, it is cleared by setting the interrupt status register  
timer. Table 13 on page 23 indicates which PCI flag.  
commands are supported and the method of  
implementation. The PCI timing for write, read, and  
the status of the current DMA operation. Each bit  
arbitration operations is shown in Figures 15 through  
The DMA Status register (Offset 0x04, bits 3:0) contains  
generates an interrupt if the corresponding mask bit is  
set. If the PCI bus master logic detects an abort  
17.  
condition, the DMA Status register (Offset 0x04, bits  
DMA Bus Master Operation  
5:4) is set based on the abort condition. The DMA  
The Si3052 supports DMA bus master for write and  
Status register is cleared by reading the register value.  
read operations to memory. A DMA write is a data  
To recover the PCI bus master state machine, clear the  
transfer from memory to the Si3052 FIFO buffers. A  
DMA reset bit in the DMA Control register (Offset 0x00,  
DMA read is a data transfer from the Si3052 FIFO  
bit 1) and enable DMA operation by setting the DMA  
buffers to memory. Separate registers are defined and  
enable bit in the DMA Control register (Offset 0x00,  
configured for independent operation of DMA read and  
bit 8).  
DMA write.  
DMA Master Control  
DMA Master Transfer Setup  
The DMA interrupt mode bit (Offset 0x00, bit 6)  
A DMA transfer is set up by programming the DMA start  
configures the interrupt mode. For level trigger mode,  
address register (read or write) and DMA end address  
the interrupt occurs when the event happens and the  
register (read or write) to physical memory locations.  
status bit remains set as long as the conditions that  
The size of the data transfer is calculated as the  
created the interrupt remain active. In level trigger  
difference between the DMA start and end memory  
mode, the status bit is non-sticky. For edge trigger  
address locations. The DMA start and end memory  
mode, the interrupt occurs when the event happens and  
addresses must be on a double-word (4-byte) boundary.  
the status bit remains set until cleared by setting the  
A programming sequence for a DMA write is as follows: DMA Status register. In edge trigger mode, the status bit  
is sticky.  
1. Allocate DMA memory buffer (non-cacheable, continuous).  
The DMA master mode bit (Offset 0x00, bit 7)  
configures the DMA operation mode. In multiple mode,  
the DMA address wraps around to the starting address  
when the ending address is reached. In single mode,  
the DMA stops when it reaches the end address. The  
advantage of multiple DMA mode over single DMA  
mode is that the Si3052 continuously transfers data  
without processor intervention. The single DMA mode  
has a control flow similar to the PC core logic DMA  
controller.  
2. Set DMA write start address register to physical memory  
address.  
3. Set DMA write end address register to physical memory  
address.  
4. Fill DMA write FIFO buffer.  
5. Set DMA control register start bit.  
To start the DMA operation, set the DMA enable bit  
(Offset 0x00, bit 8). To stop the DMA operation, clear  
this bit. DMA restart bit (Offset 0x00, bit 9) restarts the  
DMA operation in single mode but is ignored in multiple  
mode.  
DAA Control  
When the DMA is setup, the processor can use a polling  
routine to monitor the current DMA status and process  
the FIFO read and FIFO write buffers. Base the polling  
interval on the size of the allocated DMA memory buffer.  
The DAA registers are accessed by either direct or  
indirect methods. The access mode is selected by the  
data mode bits (Offset 0x00, bits 11, 12).  
Direct DAA Register Access  
DMA Master Status  
The DAA registers are accessed directly through either  
memory or I/O cycles. For memory accesses, the base  
address is set in PCI configuration register 10h. For I/O  
DMA status is monitored by reading the current DMA  
address (Offset 0x14 read and 0x24 write) or by  
Rev. 1.0  
21  
Si3052/17/11/18  
accesses, the base address is set in PCI configuration secondary timeslot for control data. If data mode (Offset  
register 14h. Memory and I/O cycles are used 0x00, bits 12:11) is set to indirect, the LSB of the 16-bit  
interchangeably to access internal registers.  
transmit word is used as a flag to indicate control  
address/data in the DMA write buffer. If the LSB is 1, the  
transmit word is interpreted as control address/data and  
written to the corresponding control register. Only 15-bit  
data is transmitted resulting in a loss of SNR but  
allowing efficient access to DAA control registers.  
Indirect DAA Register Access  
The DAA registers can be indirectly accessed through  
the DMA master write buffer. The DMA write buffer can  
contain DAA control and data. This is equivalent to  
having a primary timeslot for modem data and a  
DMA WRITE Buffer  
DMA READ Buffer  
Signaling Bits  
0
1
DATA  
DATA  
DATA  
DATA  
CONTROL (write command)  
DATA  
CONTROL (all 0s)  
DATA  
1
Interleaved data  
and control  
words  
CONTROL (read command)  
CONTROL (register data)  
Core Logic  
(PCI Target)  
PCI Bus  
Si3052  
(PCI Master)  
DAA Registers  
Figure 16. Indirect DAA Register Access  
22  
Rev. 1.0  
Si3052/17/11/18  
Table 13. PCI Command Summary  
C/BE[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
Command Type  
Implementation  
Not Supported  
Interrupt Acknowledge  
Special Cycle  
Not Supported  
Supported  
I/O Read  
I/O Write  
Supported  
Reserved  
Reserved  
Memory Read  
Support only linear addressing mode  
Support only linear addressing mode  
Memory Write  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
Reserved  
Reserved  
Configuration Read  
Configuration Write  
Memory Read Multiple  
Dual Address Cycle  
Memory Ready Line  
Memory Write and Invalidate  
Supported  
Supported  
Aliases to Memory Read  
Not Supported  
Aliases to Memory Read  
Aliases to Memory Write  
1111  
PCICLK  
3
4
5
6
7
8
9
1
2
FRAME  
AD  
ADDRESS  
BUS CMD  
DATA-1  
BE-1  
DATA-2  
BE-2  
DATA-3  
BE-3  
C/BE  
IRDY  
TRDY  
DEVSEL  
ADDRESS  
PHASE  
DATA  
PHASE  
DATA  
PHASE  
DATA  
PHASE  
BUS TRANSACTION  
Figure 17. PCI Write Operation  
Rev. 1.0  
23  
Si3052/17/11/18  
PCICLK  
3
4
5
6
7
8
9
1
2
FRAME  
AD  
ADDRESS  
BUS CMD  
DATA-1  
DATA-2  
DATA-3  
BE  
C/BE  
IRDY  
TRDY  
ADDRESS  
PHASE  
DATA  
PHASE  
DATA  
PHASE  
BUS TRANSACTION  
DATA  
PHASE  
DEVSEL  
Figure 18. PCI Read Operation  
PCICLK  
REQ-a  
4
5
6
7
3
1
2
REQ-b  
GNT-a  
GNT-b  
FRAME  
AD  
ADDRESS  
DATA  
ADDRESS  
DATA  
access - A  
access - B  
Figure 19. PCI Arbitration  
24  
Rev. 1.0  
Si3052/17/11/18  
B3 State  
Power Management  
B3 is the powerdown condition. The 3.3 V PCI power  
bus is removed so there is no power to any PCI I/O  
pads and non-Vaux PCI core logic. No PCI bus activity  
is allowed. All PCI BUS signals are guaranteed to be  
held static, with the exception of PME. Vaux is available  
for all PME-related logic and I/O. Exit from B3 requires  
application of supply and is always accompanied by an  
active RESET. Software must guarantee that the DAA  
PCI Function enters D3 before placing the PCI Bus in  
B3.  
The Si3052 conforms to the PCI Bus Power  
Management Specification, Revision 1.1. The PCI  
functions operate between the D0 and D3 power states.  
The PCI Bus controller operates between the B0 and B3  
bus power states.  
D0 Uninitialized State  
D0 Uninitialized is the default condition after either a  
warm or a cold reset. 3.3 V is available from the PCI  
power bus to power all PCI I/O pads and non-Vaux PCI  
core logic. 3.3 V Vaux is available for all Vaux-power I/O  
and logic. Powerdown (Offset 0x36, bit 3) defaults low  
(inactive) and Powerdown Link (Offset 0x36, bit 4)  
defaults high (active), meaning that the system-side  
device is fully operational except for the ISOcap, and  
the line-side device has no communication or power.  
PME-related logic is not cleared by reset.  
EPROM Interface  
During Si3052 initialization, the EE_SD and EE_SC  
pins are examined to determine if an external EPROM  
is present. A pullup resistor on EE_SC and a logic high  
on EE_SD indicate this condition. The EPROM load  
sequence reads six data bytes immediately after a cold  
reset. The first data byte is a header of 95h. the next  
four data bytes are the PCI subsystem Vendor ID  
(SVID) and the subsystem ID (SSID) values. The final  
data byte is a cyclic redundancy check (CRC) code. The  
EPROM map is shown in Figure 20.  
D0 Active State  
D0 active is the fully-active condition arrived at from D0  
Uninitialized after software configuration. 3.3 V is  
available from the PCI power bus to power all PCI I/O  
pads and non-Vaux PCI core logic. 3.3 V Vaux is  
available for all Vaux-power I/O and logic.  
.
Bits  
7
6
5
4
3
2
1
0
D3 Hot State  
0x05  
CRC  
D3 (hot) is the powered-up idle condition. 3.3 V is  
available from the PCI power bus to power all PCI I/O  
pads and non-Vaux PCI core logic; however, PCICLK  
can be stopped for minimal power consumption. PCI  
BUS signals are guaranteed to be held low during D3  
(hot). 3.3 V Vaux is available for all Vaux-power I/O and  
logic at a max current draw of 20 mA per card if wake-  
on-ring is not enabled or 375 mA per card if wake-on-  
ring is enabled.  
SSID(15:8)  
0x04  
0x03  
Bytes  
SSID(7:0)  
0x02  
0x01  
SVID(15:8)  
SVID(7:0)  
D3 Cold State  
0x00  
EPROM ID(0x95)  
D3 (cold) is the powered-down idle condition. The 3.3 V  
PCI power bus is removed so there is no power to all  
PCI I/O pads and non-Vaux PCI core logic. PCI BUS  
signals are guaranteed to be held low during D3 (cold).  
Vaux is available for all Vaux-power I/O and logic at a  
max current draw of 20 mA per card if wake-on-ring is  
not enabled, or 375 mA per card if wake-on-ring is  
enabled.  
Figure 20. EPROM Map  
The 8-bit CRC code indicates error detection in a faulty  
EPROM. The CRC is calculated using the following  
generator polynomial:  
G(X) = X8 + X2 + X1 + 1  
B0 State  
B0 is the fully-active bus power condition. 3.3 V is  
available from the PCI power bus to power to all PCI I/O  
pads and non-Vaux PCI core logic. 3.3 V Vaux is  
available for all Vaux-power I/O and logic. The PCICLK  
is active, and all bus transactions are available.  
The CRC byte is calculated by appending an all-zero  
byte to the end of the data bytes and dividing the string  
by the generator polynomial in modulo-2 fashion. The  
remainder of the division is the CRC byte value.  
An example calculation follows.  
Rev. 1.0  
25  
Si3052/17/11/18  
Data Bytes:  
EPROM Bytes:  
0x95  
0x43  
0x15  
0x52  
Header byte  
SVID[7:0]  
SVID[15:8]  
SSID[7:0]  
SSID[15:8]  
CRC byte  
0x95  
0x43  
0x15  
0x52  
0x30  
0x00  
Header byte  
SVID[7:0]  
SVID[15:8]  
SSID[7:0]  
SSID[15:8]  
All zero byte  
0x30  
0x3D  
3.3 VCC bus  
VA  
R62  
<Optional>  
U3  
1
2
3
4
8
NC Vcc  
A1 NC  
A2 SCL  
Vss SDA  
7
6
5
PIN_39  
PIN_38  
C100  
Option PIN_38  
PIN_39  
PIN_38 Function  
CLKRUN  
CLKRUN  
CLKRUN  
PNPID  
PIN_39 Function  
AOUT  
0
1
2
3
4
5
6
7
8
X
X
X
A
A
A
1
1
1
0
A
1
0
A
1
0
A
1
PNPID  
AOUT  
AOUT  
PNPID  
AOUT  
SCL/AOUT  
PNPID  
PNPID  
PNPID  
SDA  
---  
SDA  
SCL/AOUT  
Note: X = No Install  
1 = 4.7 kW pullup to 3.3 V  
0 = 4.7 kW pulldown to GND  
A = Voltage divider between VA and GND  
Figure 21. EPROM Circuit  
26  
Rev. 1.0  
Si3052/17/11/18  
Interrupt Sources  
INTA is a level triggered interrupt pin for Si3052  
interrupt sources. The sources for the INTA interrupt are  
as follows:  
! Ring Detect  
! PCI Target Abort  
! PCI Master Abort  
! DMA Read End of Buffer  
! DMA Read Interrupt Address  
! DMA Write End of Buffer  
! DMA Write Interrupt Address  
! Interrupt Counter  
! ISOcap Frame Detect  
! Receive Overload  
! Billing tone Detect  
! Drop Out Detect  
! Overload Detect  
PME is a level triggered interrupt pin for PCI Power  
Management events. The source for the PME interrupt  
is ring detect with or without ring validation.  
FIFO Buffers  
The FIFO buffers are fixed as 16 bits wide by 8 samples  
deep for DMA master read and write. The sample data  
is contained in the lowest 16 bits of a 32-bit word. The  
FIFO buffers do not support DMA target operations. The  
FIFO buffers are not memory mapped and cannot be  
accessed directly.  
Rev. 1.0  
27  
Si3052/17/11/18  
and other circuitry.  
Telephone Line Interface Functional  
Description  
The Si3018 can be fully programmed to meet  
international requirements and is compliant with FCC,  
TBR21, JATE, and other country-specific PTT  
specifications as shown in Table 14. Also, the Si3018  
meets the most stringent global requirements for out-of-  
band energy, emissions, immunity, lightning surges, and  
safety. The Si3011 meets all TBR21 and FCC  
requirements. The Si3017 meets all FCC requirements.  
Together, the Si3052 and Si3017/11/18 comprise an  
integrated direct access arrangement (DAA) that  
provides a programmable line interface to meet global  
telephone line interface requirements. The device  
implements Silicon Laboratories’ proprietary ISOcap™  
technology, which offers the highest level of integration  
by replacing an analog front end (AFE), an isolation  
transformer, relays, opto-isolators, a 2- to 4-wire hybrid,  
Table 14. Country Specific Register Settings  
Offset 0x40  
ACT2,ACT DCT[1:0]  
Line-Side  
Country  
Argentina  
OHS  
0
RZ  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3018  
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
3011  
3017  
00  
10  
10  
10  
10  
00  
10  
00  
00  
00  
00  
10  
10  
10  
10  
00  
00  
00  
10  
10  
10  
10  
00  
00  
00  
10  
10  
01  
11  
11  
11  
01  
11  
10  
10  
10  
10  
11  
11  
11  
11  
10  
01  
10  
11  
11  
11  
11  
10  
10  
10  
11  
!
!
Australia  
1
1
Austria  
0
!
!
!
Bahrain  
0
1
Belgium  
Brazil  
0
0
Bulgaria  
Canada  
Chile  
0
!
!
!
!
!
!
!
!
!
!
0
!
!
!
!
0
China  
0
Colombia  
Croatia  
0
0
Cyprus  
0
Czech Republic  
0
1
Denmark  
0
Ecuador  
Egypt  
0
!
!
0
El Salvador  
0
!
!
!
!
!
!
!
!
!
1
Finland  
0
1
France  
0
1
Germany  
0
1
0
Greece  
Guam  
0
!
!
!
Hong Kong  
Hungary  
0
0
1
Iceland  
0
Notes:  
1. TBR21 includes the following countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland,  
Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom.  
2. Supported for loop currents 20 mA.  
3. Products using the Si3011/17 which have been submitted for JATE approval should document a waiver for the JATE  
dc termination specification. This specification is met in the Si3018 global line-side device.  
28  
Rev. 1.0  
Si3052/17/11/18  
Table 14. Country Specific Register Settings (Continued)  
Offset 0x40  
Line-Side  
Country  
OHS  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
ACT2,ACT DCT[1:0]  
RZ  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
1
1
RT  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
3018  
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
3011  
!
3017  
!
India  
00  
00  
10  
10  
10  
00  
00  
00  
00  
10  
10  
10  
00  
00  
10  
00  
10  
10  
11  
10  
10  
00  
00  
00  
00  
00  
10  
00  
00  
00  
00  
00  
10  
00  
00  
10  
10  
11  
11  
11  
01  
01  
01  
10  
11  
11  
11  
10  
01  
11  
10  
11  
11  
10  
11  
11  
01  
01  
10  
01  
10  
11  
10  
01  
10  
10  
10  
11  
10  
10  
Indonesia  
!
!
1
Ireland  
!
Israel  
!
1
Italy  
!
3
3
Japan  
!
!
Jordan  
Kazakhstan  
Kuwait  
!
!
!
!
!
!
Latvia  
Lebanon  
Luxembourg  
Macao  
1
!
!
2
Malaysia  
Malta  
!
!
!
!
Mexico  
Morocco  
1
Netherlands  
New Zealand  
Nigeria  
!
!
1
Norway  
Oman  
Pakistan  
Peru  
!
!
!
Philippines  
Poland  
1
Portugal  
!
!
Romania  
Russia  
Saudi Arabia  
Singapore  
Slovakia  
!
!
!
!
!
!
!
Slovenia  
South Africa  
South Korea  
Notes:  
1. TBR21 includes the following countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland,  
Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom.  
2. Supported for loop currents 20 mA.  
3. Products using the Si3011/17 which have been submitted for JATE approval should document a waiver for the JATE  
dc termination specification. This specification is met in the Si3018 global line-side device.  
Rev. 1.0  
29  
Si3052/17/11/18  
Table 14. Country Specific Register Settings (Continued)  
Offset 0x40  
Line-Side  
Country  
OHS  
ACT2,ACT DCT[1:0]  
RZ  
0
RT  
0
3018  
!
3011  
!
3017  
1
Spain  
Sweden  
0
0
0
0
0
0
0
0
0
0
10  
10  
10  
00  
00  
00  
00  
10  
00  
00  
11  
11  
11  
01  
10  
01  
10  
11  
10  
10  
1
0
0
!
!
1
Switzerland  
Syria  
0
0
!
!
0
0
!
Taiwan  
0
0
!
!
!
!
Thailand  
UAE  
0
0
!
0
0
!
!
!
!
!
1
United Kingdom  
USA  
0
0
!
0
0
!
!
!
Yemen  
0
0
!
Notes:  
1. TBR21 includes the following countries: Austria, Belgium, Denmark, Finland, France, Germany, Greece, Iceland,  
Ireland, Italy, Luxembourg, Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, and the United Kingdom.  
2. Supported for loop currents 20 mA.  
3. Products using the Si3011/17 which have been submitted for JATE approval should document a waiver for the JATE  
dc termination specification. This specification is met in the Si3018 global line-side device.  
Initialization  
Isolation Barrier  
When the Si3052 is initially powered up, the RESET pin The Si3052 achieves an isolation barrier through low-  
must be asserted. When the RESET pin is de-asserted, cost, high-voltage capacitors in conjunction with Silicon  
the registers have their default values. The DAA Laboratories’ proprietary ISOcap™ signal processing  
registers cannot be accessed during the crystal warm- techniques. These techniques eliminate signal  
up period. The following is an example initialization degradation from capacitor mismatches, common mode  
procedure:  
interference, or noise coupling. The C1, C2, C8, and C9  
capacitors isolate the Si3052 system-side device from  
the Si3017/11/18 line-side device. All transmit, receive,  
control, ring detect, and caller ID data are  
communicated through this barrier. Y2 class capacitors  
can be used to achieve surge performance of 5 kV or  
greater.  
1. Select the crystal frequency using the XTAL bit  
(Offset 0x28, bit 24).  
2. Poll the DAA status bit (Offset 0x4, bit 23) until it indicates  
the DAA is ready.  
3. Select the desired sample rate using the SRC bits  
(Offset 0x37, bits 3:0).  
The ISOcap communications link is disabled by default.  
To enable it, the PDL bit (Offset 0x36, bit 4) must be  
cleared. No communication between the Si3052 and  
Si3017/11/18 can occur until this bit is cleared and the  
FDT bit (Offset 0x3C, bit 6) is high.  
4. Power up the line side by clearing the PDL bit  
(Offset 0x36, bit 4).  
5. Enable AOUT by setting ARM[1:0] (Offset 0x36, bits 5:0)  
and ATM[1:0] (Offset 36, bits 6:1) to the desired level.  
6. Set the required line interface parameters (i.e., DCT[1:0],  
ACT, OHS, and RT) as defined in Table 14.  
Parallel Handset Detection  
7. Prior to receiving or transmitting data, ensure FDT (Offset  
3C, bit 6) is set indicating the Si3018 is ready for normal  
operation.  
The Si3052 can detect a parallel handset going off-  
hook. When the Si3052 is off-hook, the loop current can  
be monitored via the LCS bits (Offset 0x3C, bits 4:0). A  
significant drop in loop current can signal a parallel  
handset going off-hook. If a parallel handset causes the  
LCS bits to read 0s, the DropOut Detect Interrupt bit  
(Offset 0x34, bit 3) can be checked to verify that a valid  
line still exists.  
After the procedure is complete, the DAA is ready for  
off-hook, on-hook line monitoring, and ring detection.  
30  
Rev. 1.0  
Si3052/17/11/18  
For the Si3052 to operate in parallel with another Loop Current Measurement  
handset, the parallel handset must have a sufficiently  
high dc termination to support two DAAs off-hook on the  
same line. Improved parallel handset operation can be  
achieved by changing the dc impedance from 50 to  
800 by setting the DCR bit (Offset 0x4A, bit 0) and  
setting DCV[1:0] (Offset 0x4A, bits 7:6) to 00b. MAP = 1  
is necessary to access the DCR and DCV bits.  
When the Si3052 is off-hook, the LCS bits measure loop  
current in 3.3 mA/bit resolution. These bits detect  
another phone going off-hook by monitoring the dc loop  
current. The line current sense transfer function is  
shown in Figure 22 and is detailed in Table 15. The LCS  
bits display loop current down to the minimum operation  
loop current for the DAA, which is set by the MINI[1:0]  
bits.  
Loop Current Sensing  
When the LCS bits have reached their maximum value,  
the Loop Current Sense Overload Interrupt bit fires;  
however, LCSI firing does not necessarily guarantee  
that an overload situation has occurred. An overload  
situation in the DAA is determined by the status of the  
OPD bit. After the LCSI interrupt fires, the OPD bit  
should be checked to determine if an overload situation  
exists. The OPD bit indicates an overload situation  
when loop current exceeds either 160 mA (ILIM = 0) or  
60 mA (ILIM = 1).  
The Si3052 measures loop current. The LCS[4:0] bits  
(Offset 0x3C, bits 4:0) report loop current  
measurements when off-hook. The following can be  
determined with the LCS bits:  
! When off-hook, detect if a parallel phone goes on- or  
off-hook.  
! Determine if sufficient loop current is available to  
operate.  
! Detect if there is an overload condition (see  
"Overload Detection" on page 37).  
Overload  
30  
25  
20  
LCS  
BITS  
15  
10  
5
0
0
3.3 6.6 9.9 13.2 16.5 19.8 23.1 26.4 29.7 33 36.3 39.6 42.9 46.2 49.5 52.8 56.1 59.7 62.7 66 69.3 72.6 75.9 79.2 82.5 85.8 89.1 92.4 95.7 99 102.3  
127  
Loop Current  
(mA)  
Figure 22. Typical LCS Transfer Function (ILIM = 0)  
Table 15. Loop Current Transfer Function  
Condition  
LCS[4:0]  
00000  
Insufficient line current for normal operation. Use the DODI bit (Offset 0x34, bit 3) to  
determine if a line is still connected.  
00100  
11111  
Minimum line current for normal operation. (MINI[1:0] = 01)  
Loop current may be excessive. For FCC, low voltage, and JATE termination, cur-  
rent may be >120 mA. For TBR21, current may be >60 mA. Use the OPD bit (Offset  
0x43, bit 1) to determine if an overload condition exists.  
Rev. 1.0  
31  
Si3052/17/11/18  
Off-Hook  
FCC DCT Mode  
The software generates an off-hook command by  
setting the OH bit (Offset 0x35, bit 0). This state seizes  
the line for incoming/outgoing calls and can also be  
used for pulse dialing. When on-hook, negligible dc  
current flows through the hookswitch. When off-hook,  
the hookswitch transistor pair, Q1 and Q2, turn on. A  
termination impedance is applied across TIP and RING  
and causes dc loop current to flow. The termination  
impedance has an ac and dc component.  
12  
11  
10  
9
8
Several events occur internally to the DAA when the OH  
bit is set. There is a 250 µs latency for the off-hook  
command to communicate to the line-side device. When  
the line-side device goes off-hook, an off-hook counter  
forces a delay before transmission or reception can  
occur. This off-hook counter time is controlled by the  
FOH[1:0] bits (Offset 0x4F, bits 6:5). The default setting  
for the off-hook counter time is 128 ms, but can be  
adjusted up to 512 ms or down to either 64 or 8 ms.  
After the off-hook counter expires, a resistor calibration  
is performed for 17 ms. The resistor calibration can be  
disabled by setting the RCALD bit (Offset 0x49, bit 5).  
After the resistor calibration is performed, an ADC  
calibration is performed for 256 ms. The ADC  
calibration can be disabled by setting the CALD bit  
(Offset 0x41, bit 5). Refer to "Calibration" on page 37 for  
information on automatic and manual calibration.  
Disabling the resistor and the ADC calibrations should  
only be done when a fast response is needed after  
going off-hook, such as when responding to a Type II  
caller-ID signal. See "Caller ID" on page 36. To  
calculate the total time required to go off-hook and start  
transmission or reception, the digital filter delay  
(typically 1.5 ms with the FIR filter) should be included  
in the calculation.  
7
6
.01 .02 .03 .04 .05 .06 .07 .08 .09 .1 .11  
Loop C urrent (A)  
Figure 23. FCC Mode I/V Characteristics  
TBR21 mode (DCT[1:0] = 11 ), shown in Figure 24,  
b
provides current limiting while maintaining a transmit  
full-scale level of –0.5 dBm at TIP and RING. The dc  
termination current limits before reaching 60 mA.  
CTR21 DCT Mode  
45  
40  
35  
30  
25  
25  
15  
10  
5
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6  
Loop Current (A)  
DC Termination  
Figure 24. TBR21 Mode I/V Characteristics  
The Si3052 has four programmable dc termination  
modes that are selected with the DCT[1:0] bits (Offset  
0x40, bits 3:2).  
Japan mode (DCT[1:0] = 01 ), shown in Figure 25, is a  
b
lower voltage mode and supports a transmit full-scale  
level of –0.5 dBm. The low voltage requirement is  
dictated by countries, such as Japan and Malaysia.  
FCC mode (DCT[1:0] = 10 ), shown in Figure 23, is the  
b
default dc termination mode and supports a transmit full  
scale level of –0.5 dBm at TIP and RING. This mode  
meets FCC requirements and the requirements of many  
other countries.  
32  
Rev. 1.0  
Si3052/17/11/18  
Table 16. AC Termination Settings  
Japan DCT Mode  
10.5  
10  
ACT2 ACT  
AC Termination  
9.5  
0
0
Real, nominal 600 termination that  
satisfies the impedance requirements of  
FCC part 68, JATE, and other countries.  
9
8.5  
8
7.5  
7
0
1
1
0
Complex impedance that satisfies global  
complex impedance requirements.  
6.5  
6
Complex impedance that satisfies global  
complex impedance requirements  
EXCEPT New Zealand. Achieves higher  
return loss for some complex ac termi-  
nation.  
5.5  
.01 .02 .03 .04 .05 .06 .07 .08 .09 .1 .11  
Loop Current (A)  
Figure 25. Japan Mode I/V Characteristics  
1
1
Complex impedance for use in New  
Zealand.  
Low-voltage mode (DCT[1:0] = 00 ), shown in  
b
Figure 26, is the lowest line voltage mode supported on  
the Si3052, with a transmit full-scale level of –0.5 dBm.  
This low-voltage mode is offered for situations that  
require low line voltage operation.  
Transhybrid Balance  
The Si3052 contains an on-chip analog hybrid that  
performs the 2- to 4-wire conversion and near-end echo  
cancellation. This hybrid circuit is adjusted for each ac  
termination setting selected. The Si3052 also offers a  
digital hybrid for additional near-end echo cancellation.  
For each ac termination setting selected, the eight  
programmable hybrid registers (Offsets 0x5D–0x64)  
can be programmed with coefficients to increase  
cancellation of real-world line characteristics. The digital  
filter can produce 10 dB or greater of near-end echo  
cancellation in addition to the echo cancellation  
provided by the analog hybrid circuitry.  
Low Voltage Mode  
10.5  
10  
9.5  
9
8.5  
8
7.5  
7
6.5  
6
Ring Detection  
5.5  
The ring signal is connected from TIP and RING to the  
RNG1 and RNG2 pins. The Si3052 supports either full-  
or half-wave ring detection. Full-wave ring detection  
detects a polarity reversal and the ring signal. See  
“Caller ID” on page 36. The ring detection threshold is  
programmable with the RT bit (Offset 0x40, bit 0).  
.01 .02 .03 .04 .05 .06 .07 .08 .09 .1 .11  
Loop Current (A)  
Figure 26. Low-Voltage Mode I/V  
Characteristics  
AC Termination  
The ring detector output can be monitored with the  
register bits RDTP, RDTN, and RDT (Offset 0x35, bits 6,  
5, and 2). Software must detect the frequency of the ring  
signal to distinguish a ring from pulse dialing by  
The Si3052 has four ac termination impedance settings.  
The ACT and ACT2 bits select the ac impedance. The  
available ac termination settings are listed in Table 16.  
telephone  
equipment  
connected  
in  
parallel.  
Alternatively, hardware ring validation can be used. See  
"Ring Validation" on page 34.  
The ring detector mode is controlled by the RFWE bit  
(Offset 0x42, bit 1). When the RFWE bit is 0 (default  
mode), the ring detector operates in half-wave rectifier  
mode. Only positive ring signals are detected. A positive  
ring signal is defined as a voltage greater than the ring  
threshold across RNG1-RNG2. Conversely, a negative  
Rev. 1.0  
33  
Si3052/17/11/18  
ring signal is defined as a voltage less than the negative Ring validation requires five parameters:  
ring threshold across RNG1-RNG2.  
! Timeout parameter to place a lower limit on the  
When the RFWE bit is 1, the ring detector operates in  
full-wave rectifier mode. Positive and negative ring  
signals are detected.  
frequency of the ring signal on the RAS[5:0] bits  
(Offset 0x48, bits 5:0). The frequency is measured  
by calculating the time between crossings of positive  
and negative ring thresholds.  
The RDTP and RDTN behavior is based on the RNG1-  
RNG2 voltage. When the signal on RNG1-RNG2 is  
above the positive ring threshold, the RDTP bit is set.  
When the signal on RNG1-RNG2 is below the negative  
ring threshold, the RDTN bit is set. When the signal on  
RNG1-RNG2 is between these thresholds, neither bit is  
set.  
! Minimum count to place an upper limit on the  
frequency on the RMX[5:0] bits (Offset 0x46, bits  
5:0).  
! Time interval over which the ring signal must be the  
correct frequency on the RCC[2:0] bits (Offset 0x47,  
bits 2:0).  
The RDT behavior is also based on the RNG1-RNG2 ! Timeout period that defines when the ring pulse has  
voltage. When the RFWE bit is 0, a positive ring signal  
sets the RDT bit for a period of time. When the RFWE  
bit is 1, either a positive or negative ring signal sets the  
RDT bit.  
ended with the most recent ring threshold crossing  
on the RTO [3:0] bits (Offset 0x47, bits 6:3).  
! Delay period between when the ring signal is  
validated and when a valid ring signal is indicated to  
help accommodate distinctive ring on the RDLY [2:0]  
bits (Offset 0x47, bit 7; Offset 0x46, bits 7:6)  
The RDT bit acts like a one shot. When a new ring  
signal is detected, the one shot is reset. If no new ring  
signals are detected before the one shot counter  
reaches 0, the RDT bit returns to 0. The length of this  
count (in seconds) is 65536 divided by the sample rate.  
The RDT bit is also reset to 0 by an off-hook event.  
The ring validation enable bit, RNGV (Offset 0x48,bit 7),  
enables or disables the ring validation feature in normal  
operating mode and low-power sleep mode.  
Ringer Impedance and Threshold  
Ring Validation  
The ring detector in many DAAs is ac coupled to the line  
with a large 1 µF, 250 V decoupling capacitor. The ring  
detector on the Si3052 is resistively coupled to the line.  
The network produces a high ringer impedance to the  
line of approximately 20 Mto meet the majority of  
country PTT specifications including FCC and TBR21.  
This feature prevents false triggering of a ring detection  
by validating the ring parameters. Invalid signals, such  
as line-voltage changes when a parallel handset goes  
off-hook, pulse dialing, and high-voltage line tests, are  
ignored. Ring validation can be enabled during normal  
operation and in low-power sleep mode.  
Several countries including Poland, South Africa, and  
Slovenia require a maximum ringer impedance that can  
be met with an internally-synthesized impedance by  
setting the RZ bit (Offset 0x40, bit 1).  
The ring validation circuit operates by calculating the  
time between alternating crossings of positive and  
negative ring thresholds to validate that the ring  
frequency is within tolerance. High- and low-frequency  
tolerances are programmable in the RAS[5:0] and  
RMX[5:0] fields. The RCC[2:0] bits define the length of  
time the ring signal must be within tolerance.  
Countries also specify ringer thresholds differently. The  
RT bit (Offset 0x40, bit 0) selects between two different  
ringer thresholds: 15 V ±10% and 21.5 V ±10%. These  
two settings satisfy ringer threshold requirements  
worldwide. The thresholds are set so that a ring signal is  
guaranteed to not be detected below the minimum, and  
a ring signal is guaranteed to be detected above the  
maximum.  
Once the duration of the ring frequency is validated by  
the RCC bits, the circuitry stops checking for frequency  
tolerance and begins checking for the end of the ring  
signal, which is defined by a lack of additional threshold  
crossings for a period of time configured by the  
RTO[3:0] bits. When the ring frequency is first validated,  
a timer defined by the RDLY[2:0] bits is started. If the  
RDLY[2:0] timer expires before the ring timeout, the ring  
is validated, and a valid ring is indicated. If the ring  
timeout expires before the RDLY[2:0] timer, a valid ring  
is not indicated.  
DTMF Dialing  
The Si3018 meets all the country requirements for  
DTMF dialing listed in Table 14 on page 28. If desired,  
higher DTMF levels can be achieved by setting the  
DIAL bit (Offset 0x42, bit 6) at low loop currents  
(<15 mA). Higher DTMF levels can also be achieved if  
the amplitude is increased and the peaks of the DTMF  
signal are clipped at digital full scale, avoiding wrapping  
the waveform.  
34  
Rev. 1.0  
Si3052/17/11/18  
Clipping the signal produces distortion and the line are filtered out by the low-pass digital filter on  
intermodulation of the signal. Generally, increased the Si3052. The ROV bit (Offset 0x41, bit 1) is set when  
distortion between 10–20% is acceptable during DTMF a line signal is greater than 1.1 V , indicating a receive  
PK  
signaling. Several dB higher DTMF levels can be overload condition. The BTD bit (Offset 0x41, bit 0) is  
achieved with this technique, compared with a digital set when a line signal (billing tone) is large enough to  
full-scale peak signal.  
excessively reduce the line-derived power supply of the  
Si3018 line-side device. When the BTD bit is set, the dc  
termination is changed to an 800 dc impedance to  
Pulse Dialing and Spark Quenching  
Going off- and on-hook to generate make and break ensure minimum line voltage levels even in the  
pulses accomplishes pulse dialing. The nominal rate is presence of billing tones.  
10 pulses per second. Some countries have tight  
The OVL bit (Offset 0x43, bit 2) can be pulled following  
specifications for pulse fidelity including make and  
a billing tone detection. When the OVL bit returns to 0,  
break times, make resistance, and rise and fall times. In  
indicating that the billing tone has passed, the ROV bit  
a traditional solid-state dc holding circuit, there are  
considerations for meeting these requirements.  
remains sticky and must be written to 0 to be reset. After  
the billing tone passes, the DAA initiates an auto-  
The Si3052 dc holding circuit has active control of the calibration sequence that must complete before data  
on-hook and off-hook transients to maintain pulse can be transmitted.  
dialing fidelity.  
Certain line events, such as an off-hook event on a  
Spark quenching requirements in countries, such as parallel phone or a polarity reversal, can trigger the  
Italy, the Netherlands, South Africa, and Australia, ROV or the BTD bits, after which the ROV bit must be  
address the on-hook transition during pulse dialing. reset. Look for multiple events before qualifying if billing  
These tests provide an inductive dc feed resulting in a tones are actually present.  
large voltage spike. A spike is caused by the line  
Although the DAA remains off-hook during a billing tone  
inductance and the sudden decrease in current through  
event, the received data from the line is corrupted when  
the loop when going on-hook. The traditional way of  
a large billing tone occurs. To receive data through a  
addressing this problem is to put a parallel RC shunt  
billing tone, an external LC filter must be added. A  
across the hookswitch relay. The capacitor is large  
modem manufacturer can provide this filter in the form  
(~1 µF, 250 V) and relatively expensive. In the Si3052,  
the OHS bit (Offset 0x40, bit 6), OHS2 bit (Offset 0x4F,  
bit 3), and SQ[1:0] bits (Offset 0x6B, bits 6,4) can ramp  
down the loop current to pass these tests without  
requiring additional components. A slow ramp-down of  
the loop current introduces a delay between the time the  
OH bit is cleared and the time the DAA actually goes  
on-hook.  
of a dongle that connects on the phone line before the  
DAA. The manufacturer does not have to include a  
costly LC filter internal to the modem when it is only  
necessary to support a few countries.  
Alternatively, when a billing tone is detected, the system  
software can notify the user that a billing tone has  
occurred. The user can contact the telephone company  
to disable the billing tones or to purchase an external  
LC filter.  
To ensure proper operation of the DAA during pulse  
dialing, disable the automatic resistor calibration that is  
performed each time the DAA enters the off-hook state  
by setting the RCALD bit.  
Billing Tone Filter (Optional)  
To operate without degradation during billing tones in  
Germany, Switzerland, and South Africa, an external LC  
notch filter is required. The Si3052 can remain off-hook  
during a billing tone event, but modem data is lost in the  
presence of large billing tone signals. The notch filter  
design requires two notches, one at 12 kHz and one at  
16 kHz. Because these components are fairly  
expensive and few countries supply billing tone support,  
this filter is placed in an external dongle or added as a  
population option for these countries. Figure 27 shows  
an example billing tone filter.  
Billing Tone Detection and Receive  
Overload  
“Billing tones” or “metering pulses” generated by the  
central office can produce modem connection  
difficulties. The billing tone is a 12 or 16 kHz signal and  
is occasionally used in Germany, Switzerland, and  
South Africa. Depending on line conditions, the billing  
tone might be large enough to cause major errors  
related to the modem data. The Si3052 chipset can  
provide feedback indicating the beginning and end of a  
billing tone.  
L1 must carry the entire loop current. The series  
resistance of the inductors is important to achieve a  
narrow and deep notch. This design has more than  
25 dB of attenuation at 12 and 16 kHz.  
Billing tone detection is enabled by setting the BTE bit  
(Offset 0x41, bit 2). Billing tones less than 1.1 V on  
PK  
Rev. 1.0  
35  
Si3052/17/11/18  
Caller ID  
Table 17. Component Values—Optional Billing  
Tone Filters  
The Si3052 can pass caller ID data from the phone line  
to a software caller ID decoder.  
Symbol  
C1,C2  
C3  
Value  
Type I Caller ID  
Type I Caller ID sends the CID data while the phone is  
on-hook. In systems where the caller ID data is passed  
on the phone line between the first and second rings,  
utilize the following method to capture the caller ID data:  
0.027 µF, 50 V, ±10%  
0.01 µF, 250 V, ±10%  
L1  
3.3 mH, >120 mA, <10 , ±10%  
10 mH, >40 mA, <10 , ±10%  
1. After identifying a ring signal using one of the methods  
described in "Ring Detection" on page 33, determine when  
the first ring has completed.  
L2  
2. Assert the ONHM bit (Offset 0x35, bit 3) to enable current  
caller ID.  
C1  
3. The low-current ADC, which is powered from the system-  
side device, digitizes the caller ID data passed across the  
RNG 1/2 pins.  
C2  
L1  
4. Clear the ONHM bit after the caller ID data is received.  
In systems where the caller ID data is preceded by a  
line polarity (battery) reversal, use the following method  
to capture the caller ID data:  
TIP  
From Line  
RING  
1. Enable full-wave rectified ring detection (Offset 0x42, bit  
1).  
L2  
To  
DAA  
C3  
2. Monitor the RDTP and RDTN register bits to identify  
whether a polarity reversal or ring signal has occurred. A  
polarity reversal trips either the RDTP or RDTN ring  
detection bits, and, thus, the full-wave ring detector must  
be used to distinguish a polarity reversal from a ring. The  
lowest specified ring frequency is 15 Hz; therefore, if a  
battery reversal occurs, the DSP software should wait a  
minimum of 40 ms to verify that the event observed is a  
battery reversal and not a ring signal. This time is greater  
than half the period of the longest ring signal. If another  
edge is detected during this 40 ms pause, this event is  
characterized as a ring signal and not a battery reversal.  
Figure 27. Billing Tone Filter  
The billing tone filter affects the DAA’s ac termination  
and return loss. The current complex ac termination  
passes worldwide return loss specifications with and  
without the billing tone filter by at least 3 dB. The ac  
termination is optimized for frequency response and  
hybrid cancellation while having greater than 4 dB of  
margin with or without the dongles for South Africa,  
Australia, TBR21, Germany, and Switzerland country-  
specific specifications.  
3. Assert the ONHM bit (Offset 0x35, bit 3) to enable the low-  
current caller ID ADC. The low-current ADC, which is  
powered from the system-side device, digitizes the caller  
ID data passed across the RNG 1/2 pins.  
4. Clear the ONHM bit after the caller ID data is received.  
Type II Caller ID  
On-Hook Line Monitor  
Type II Caller ID sends the CID data while the phone is  
off-hook and is often referred to as caller ID/call waiting  
(CID/CW). To receive the CID data while off-hook, use  
the following procedure:  
The Si3052 receives line activity when in an on-hook  
state through the RNG1/2 pins. This mode detects caller  
ID data and no line current is drawn. See “Caller ID” on  
page 36. This mode is enabled by setting the ONHM bit  
(Offset 0x35, bit 3). ARX [2:0] (Offset 0x3F, bits 2:0)  
provides gain to the normal receive path of the DAA and  
functions as a gain bit for the on-hook line monitor.  
1. The Caller Alert Signal (CAS) tone is sent from the Central  
Office (CO) and is digitized along with the line data. The  
software must detect the presence of this tone.  
2. Since the Si3052 is the only device on the line and is Type  
II CID-compliant, the software must mute its upstream data  
output to avoid propagation of its reply tone and the  
subsequent CID data. After muting its upstream data  
output, the software must then return an  
acknowledgement (ACK) tone to the CO to request the  
36  
Rev. 1.0  
Si3052/17/11/18  
transmission of the CID data.  
lower, but non-linear, group delay than the default FIR  
filter.  
3. The CO then responds with the CID data, and the software  
unmutes the upstream data output and continues with  
normal operation.  
Power Management  
The Si3052 supports four basic power management  
operation modes: normal operation, reset operation,  
sleep mode, and full powerdown mode. The power  
management modes are controlled by the PDL and  
PDN bits (Offset 0x36, bits 4,3).  
4. The muting of the upstream data path by the software  
mutes the handset in a telephone application so the user  
cannot hear the acknowledgement tone and CID data  
being sent.  
The CID data presented to the software could have up  
to a 10% dc offset. The software caller ID decoder must  
either use a high-pass or a band-pass filter to accurately  
retrieve the caller ID data.  
On powerup or following a reset, the Si3052 is in reset  
operation. The PDL bit is set, and the PDN bit is  
cleared. The Si3052 is fully-operational except for the  
ISOcap™ link. No communication between the Si3052  
and Si3017/11/18 can occur during reset operation. Bits  
associated with the Si3017/11/18 are not valid in this  
mode.  
Overload Detection  
The Si3052 can be programmed to detect an overload  
condition that exceeds the normal operating power  
range of the DAA circuit. To use the overload detection  
feature, the following steps should be performed:  
1. Set the OH bit (Offset 0x35, bit 0) to go off-hook, and wait  
25 ms to allow line transients to settle.  
The most common mode of operation is normal  
operation. The PDL and PDN bits are cleared. The  
Si3052 is fully-operational, and the ISOcap link is  
passing information between the Si3052 and the  
Si3017/11/18. A valid sample rate must be programmed  
before entering this mode.  
2. Enable overload detection by setting the OPE bit  
(Offset 0x41, bit 3).  
If the DAA senses an overload situation, it automatically  
presents an 800 impedance to the line to reduce the  
hookswitch current. At this time, the DAA also sets the  
OPD bit (Offset 0x43, bit 0) to indicate that an overload  
condition exists. The line current detector within the  
DAA has a threshold that is dependant upon the ILIM bit  
(Offset 0x4A, bit 1). When ILIM = 0, the overload  
detection threshold equals 160 mA. When ILIM = 1, the  
overload detection threshold equals 60 mA. The OPE  
bit should always be cleared before going off-hook.  
The Si3052 supports a low-power sleep mode for the  
wake-up-on-ring feature of many modems. The sample  
rate must be programmed with a valid non-zero value  
before enabling sleep mode. The PDN bit must then be  
set and the PDL bit cleared. The Si3052 is non-  
functional except for the ISOcap link signal. To take the  
Si3052 out of sleep mode, pulse (RESET) low.  
In summary, the powerdown/up sequence for sleep  
mode is as follows:  
1. SRC[3:0] must have a valid non-zero value.  
Gain Control  
2. Set the PDN bit (Offset 0x36, bit 3) and clear the PDL bit  
(Offset 0x36, bit 4).  
The Si3052 supports multiple receive gain and transmit  
attenuation settings (Offset 0x3F). The receive path  
supports gains of 0, 3, 6, 9, and 12 dB, as selected with  
the ARX[2:0] bits. The receive path can be muted with  
the RXM bit. The transmit path supports attenuations of  
0, 3, 6, 9, and 12 dB, as selected with the ATX[2:0] bits.  
The transmit path can be muted with the TXM bit.  
3. Reset the Si3052 by pulsing the RESET pin.  
4. Program registers to required settings.  
The Si3052 also supports an additional powerdown  
mode. When the PDN and PDL bits are set, the chipset  
enters a complete powerdown mode and draws  
negligible current (deep sleep mode). Normal operation  
is restored using the same process for taking the  
Si3052 out of sleep mode.  
Sample Rate Converter  
The SCR [3:0] bits (Offset 0x37, bits 3:0) are used to  
select the sample rate. The following sample rates are  
supported: 7200, 8000, 8229, 8400, 9000, 9600, 10286,  
12000, 13714, and 16000 Hz.  
Calibration  
The Si3017/11/18 initiates an auto-calibration by default  
when the device goes off-hook or experiences a loss in  
line power. Calibration removes offsets that are present  
in the on-chip ADC and which could affect the ADC  
dynamic range. Auto-calibration is initiated after the  
DAA dc termination stabilizes and takes 256 ms to  
complete. Because of the large variation in line  
conditions and line card behavior that is presented to  
Filter Selection  
The Si3052 supports two filter selections for the receive  
and transmit signals as defined in Table 10 and Table 11  
on page 13. The IIRE (Offset 0x40, bit 4) selects  
between the IIR and FIR filters. The IIR filter provides a  
Rev. 1.0  
37  
Si3052/17/11/18  
the DAA, it might be beneficial to use manual calibration components connecting the RJ-11 jack (TIP and RING)  
instead of auto-calibration.  
to the Si3017/11/18. To enable this mode, set the AL bit  
(Offset 0x32, bit 3).  
Execute manual calibration as close to 256 ms as  
possible before valid transmit/receive data is expected. The final testing mode, internal analog loopback, allows  
the system to test the basic operation of the transmit  
The following steps implement manual calibration:  
and receive paths on the line-side device and the  
1. The CALD (Offset 0x41, bit 5) bit must be set to 1.  
external components. In this test mode, the data pump  
2. The MCAL bit (Offset 0x41, bit 6) must be toggled to one  
provides a digital test waveform. Data is passed across  
the isolation barrier, transmitted to and received from  
the line, passed back across the isolation barrier, and  
and then 0 to begin and complete the calibration.  
3. The calibration is completed in 256 ms.  
presented to the data pump. To enable this mode, clear  
In-Circuit Testing  
the HBE bit (Offset 0x32, bit 1). The test circuit in  
Four loopback modes exist allowing increased  
Figure 2 on page 11 is an adequate line feed for this  
coverage of system components. For three of the test  
test.  
modes, an off-hook sequence must be performed.  
Note: All test modes are mutually-exclusive. If more than one  
For the start-up test mode, no line-side power is  
necessary, and no off-hook sequence is required. The  
start-up test mode is enabled by default. When the PDL  
bit (Offset 0x36, bit 4) is set (the default case), the line-  
side is in a powerdown mode, and the PCI side is in a  
digital loop-back mode. Data received is passed through  
the internal filters and transmitted. This path introduces  
approximately 0.9 dB of attenuation. There is a group  
delay of transmit and receive filters. Clearing the PDL  
bit disables this mode, and the data is switched to the  
receive data from the line-side. When the PDL bit is  
cleared, the FDT bit (Offset 0x3C, bit 6) becomes active  
indicating the successful communication between the  
Si3017/11/18 and the Si3052. This verifies that the  
ISOcap™ link is operational.  
test mode is enabled concurrently, the results are  
unpredictable.  
Revision Identification  
The revision of the system side (Si3052) and line side  
(Si3017/11/18) can be determined using the SREV[3:0]  
bits (Offset 0x3B, bits 3:0) and LREV[3:0] bits  
(Offset 0x3D, bits 5:2), respectively. Table 18 lists the  
revision values.  
Table 18. Revision Values  
Revision  
Si3052  
0011  
Si3017/11/18  
0011  
C
D
0100  
0100  
The remaining test modes require an off-hook sequence  
to operate. The following sequence defines the off-hook  
requirements:  
Register Map  
1. Powerup or reset.  
The Si3052 is designed to provide backwards  
compatibility to previous designs based on the Si3035  
and Si3034 DAAs. When the MAP bit (Offset 0x31,  
bit 6) is cleared (default value), the Si3052 operates in  
this backwards-compatible mode. When the MAP bit is  
set, several bits in the register map become available  
and several other bits are no longer accessible. The  
Si3052 is designed to operate in either MAP = 1 or  
MAP = 0. Following powerup or reset, the desired MAP  
mode should be selected prior to setting other bits, and  
the MAP mode should remain in the same state until the  
next power up or reset. Table 19 shows the bits affected  
by the state of the MAP bit.  
2. Program the required sample rate.  
3. Enable line-side device by clearing PDL bit.  
4. Issue off-hook  
5. Allow calibration to occur.  
6. Set required test mode.  
The ISOcap™ digital loopback mode allows the data  
pump to provide a digital input test pattern and receive  
that digital test pattern back. To enable this mode, set  
the DL bit (Offset 0x31, bit 1). The isolation barrier is  
actually being tested. The digital stream is delivered  
across the isolation capacitors (C1 and C2) to the line-  
side device and returned across the same barrier. While  
an off-hook sequence is necessary, a valid line feed is  
not needed for this test.  
The analog loopback mode allows an external device to  
drive  
a signal on the telephone line into the  
Si3017/11/18 line-side device and have it driven back  
out onto the line. This mode is for testing external  
38  
Rev. 1.0  
Si3052/17/11/18  
Table 19. Bits selected by MAP bit  
MAP = 0  
ATM[1:0], TXM  
ARM[1:0], RXM  
DCT[1:0]  
MAP = 1  
ATM[7:0]  
ARM[7:0]  
DCV[1:0]  
MINI[1:0]  
ILIM  
DIAL  
FJM  
VOL [1:0]  
DCR  
HYBx[7:0]  
When MAP = 1, the ATM[7:0] bits replace the ATM[1:0] and TXM bits. The ARM[7:0] replaces the ARM[1:0] and  
RXM bits. The DCV[1:0], MINI[1:0], and ILIM bits replace the DCT[1:0] bits. Table 20 lists the equivalent settings for  
dc termination.  
Table 20. DC Termination Equivalents  
DCV[1:0]  
MINI[1:0]  
ILIM  
DCT[1:0] = 00  
(low voltage)  
00  
11  
0
DCT[1:0] = 01  
(JATE)  
01  
10  
10  
11  
00  
00  
0
0
1
DCT[1:0] = 10  
(FCC)  
DCT[1:0] = 11  
(TBR21)  
Table 20 should be used to translate the DCT[1:0] bits in Table 14, “Country Specific Register Settings,” on  
page 28. The DIAL, FJM, and VOL[1:0] bits do not have a MAP = 1 equivalent and are unused.  
The DCR bit switches the dc termination into 800 mode. This is the same mode used by the billing tone detector  
and overload detector. The HYBx registers are described in the section, "Transhybrid Balance" on page 33.  
Rev. 1.0  
39  
Si3052/17/11/18  
PCI Configuration Registers  
Note: Registers not listed here are reserved and must not be written.  
Table 21. PCI Register Summary  
Register  
Name  
Bits  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
00h  
PCI Device ID  
and Vendor ID  
DID[15:0]  
D15 D14 D13 D12 D11 D10 D9  
D8  
VID[15:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
D7  
D6 D5 D4 D3 D2 D1 D0  
04h  
08h  
PCI Status  
and Command  
DPE  
SSE RMAS RTAS STAS  
DST[1:0]  
DPD FBBC  
C66  
CPM INTS  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
INTD FBBM SEE STEP PEN  
MWI  
BME MAE IOAE  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
Device  
Revision  
Identification  
CC[23:8]  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
CC[7:0]  
REV[7:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
0Ch  
10h  
14h  
2Ch  
Cache Line  
Size, Master  
Latency Timer  
HT[7:0]  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
MLTC[5:0]  
CLS[7:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
Memory Base  
Address  
MBA[31:16]  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
MBA[15:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
I/O Base  
Address  
IOBA[31:16]  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
IOBA[15:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
Subsystem ID,  
Subsystem  
Vendor ID  
SSID[15:0]  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
SVID[15:0]  
40  
Rev. 1.0  
Si3052/17/11/18  
Table 21. PCI Register Summary (Continued)  
Register  
Name  
Bits  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
34h  
Capabilities  
Pointer  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
CPTR[7:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
3Ch  
40h  
80h  
84h  
MAX_LAT,  
MIN_GNT,  
Interrupt Pin,  
Interrupt Line  
MLAT[7:0]  
D15 D14 D13 D12 D11 D10 D9  
INTP[7:0]  
MGNT[7:0]  
D6 D5 D4 D3 D2 D1 D0  
INTL[7:0]  
D8  
D7  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
Retry Time-  
out, TRDY  
Timeout  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
RT[7:0]  
TYT[7:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
Power  
Management  
Capabilities  
P3C P3H PD2 PD1 PD0 D2S D1S  
D15 D14 D13 D12 D11 D10 D9  
NXT[7:0]  
AUXC[2:0]  
D8 D7  
DVS  
PCL  
VER[2:0]  
D6 D5 D4 D3 D2 D1 D0  
CID[7:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
Power  
Management  
Control and  
Status (Vaux  
powered)  
D15 D14 D13 D12 D11 D10 D9  
PMS DSC[1:0] DSE[3:0]  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
PME  
PST[1:0]  
Rev. 1.0  
41  
Si3052/17/11/18  
PCI Register 00h. PCI Device ID and Vendor ID  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
DID[15:0]  
R
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
VID[15:0]  
R
Reset setting = 0x30521543  
Bit  
Name  
Function  
31:16  
DID[15:0]  
Device Identification.  
PCI Device ID is 3052 for the Si3052 device.  
15:0  
VID[15:0]  
Vendor Identification.  
PCI Vendor ID is 1543 for Silicon Laboratories.  
42  
Rev. 1.0  
Si3052/17/11/18  
PCI Register 04h. PCI Status and Command  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
DPE SSE RMAS RTAS STAS  
DST[1:0]  
R
DPD FBBC  
C66 CPM INTS  
R
R
R
R
R
R
R
R
R
R
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INTD FBBM SEE STEP PEN  
R/W R/W R/W R/W  
MWI  
R/W  
BME MAE IOAE  
R/W R/W R/W  
Name  
Type  
R
Reset setting = 0x02900080  
Bit  
31  
30  
29  
Name  
DPE  
Function  
Detect Parity Error.  
SSE  
Signaled System Error.  
RMAS  
Received Master Abort Status.  
Set when PCI master terminates a host-to-PCI transaction with a master abort.  
28  
RTAS  
Received Target Abort Status.  
Set when the Si3052 initiates a PCI transaction and it is terminated by the target.  
27  
STAS  
Signaled Target Abort Status.  
26:25  
DST[1:0]  
Device Select Timing.  
Indicates timing of DEVSEL when the Si3052 responds to a PCI transaction as a target.  
24  
23  
22  
21  
20  
DPD  
FBBC  
Reserved  
C66  
Data Parity Detected.  
Fast Back-to-Back Capable Status Flag.  
Read returns zero.  
66 MHz Capable Status Flag.  
CPM  
Capabilities List.  
PME supported.  
19  
INTS  
Reserved  
INTD  
Interrupt Status.  
18:11  
Read returns zero.  
10  
9
8
7
6
5
4
3
2
1
0
Interrupt Disable.  
FBBM  
SEE  
Fast Back-to-Back Master Enable.  
System Error Enable  
Data Stepping Enable.  
Parity Error Enable.  
Read returns zero.  
STEP  
PEN  
Reserved  
MWI  
Memory Write and Invalidate Enable.  
Read returns zero.  
Reserved  
BME  
Bus Master Enable.  
MAE  
Memory Access Enable.  
I/O Access Enable.  
IOAE  
Rev. 1.0  
43  
Si3052/17/11/18  
PCI Register 08h. Device Revision Identification  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
CC[23:8]  
R
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
REV[7:0]  
R
Name  
Type  
CC[7:0]  
R
Reset setting = 0x07030003  
Bit  
31:8  
7:0  
Name  
Function  
CC[23:0]  
REV[7:0]  
Class Code.  
Revision Identification Number.  
PCI Register 0Ch. Cache Line Size, Master Latency Timer  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
HT[7:0]  
R
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
CLS[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
MLTC[5:0]  
R/W  
Reset setting = 0x00000000  
Bit  
Name  
Reserved  
HT[7:0]  
Function  
31:24  
23:16  
Read returns zero.  
Header Type.  
A single function, non-bridge type header format.  
15:10  
MLTC[5:0]  
Master Latency Timer Count.  
Sets the minimum number of PCI clock cycles that the Si3052 is guaranteed access to  
the PCI bus. After the count has expired, the Si3052 surrenders the PCI bus when other  
PCI master devices are granted the bus by the arbiter. Programmable in increments of  
1 ms.  
9:8  
7:0  
Reserved  
CLS[7:0]  
Read returns zero.  
Cache Line Size.  
All cache type transactions are aliases to normal reads and writes.  
44  
Rev. 1.0  
Si3052/17/11/18  
PCI Register 10h. Memory Base Address  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
MBA[31:16]  
R/W  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
MBA[15:0]  
R/W  
Reset setting = 0x00000000  
Bit  
Name  
Function  
31:0  
MBA[31:0]  
Memory Base Address.  
Memory space is in 4096 byte increments.  
PCI Register 14h. I/O Base Address  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
IOBA[31:16]  
R/W  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
IOBA[15:0]  
R/W  
Reset setting = 0x00000001  
Bit  
Name  
Function  
31:0  
IOBA[31:0] I/O Base Address.  
I/O space is 256 bytes.  
Rev. 1.0  
45  
Si3052/17/11/18  
PCI Register 2Ch. Subsystem ID, Subsystem Vendor ID  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
SSID[15:0]  
R
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
SVID[15:0]  
R
Reset setting = N/A  
Bit  
Name  
Function  
31:16  
SSID[15:0] PCI Subsystem ID.  
EPROM or resistor ID configurable.  
15:0  
SVID[15:0] PCI Subsystem Vendor ID.  
EPROM or resistor ID configurable.  
PCI Register 34h. Capabilities Pointer  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CPTR[7:0]  
R
Name  
Type  
Reset setting = 0x00000080  
Bit  
31:8  
7:0  
Name  
Function  
Reserved  
CPTR[7:0]  
Read returns zero.  
Capabilities Pointer.  
Location of PME information.  
46  
Rev. 1.0  
Si3052/17/11/18  
PCI Register 3Ch. MAX_LAT, MIN_GNT, Interrupt Pin, Interrupt Line  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
MGNT[7:0]  
R
MLAT[7:0]  
R
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
INTL[7:0]  
R/W  
Name  
Type  
INTP[7:0]  
R
Reset setting = 0x3E010100  
Bit  
Name  
Function  
31:24  
MLAT[7:0]  
MAX_LAT.  
Sets the value of MAX_LAT. See PCI 2.2 specification, section 6.2.4 (250 ns units). The  
maximum latency between bus grants is limited to 62–250 ns.  
23:16  
MGNT[7:0] MIN_GNT.  
Identifies the length of the burst period, assuming a 33 MHz clock (250 ns units). A mini-  
mum grant of 250 ns is required for burst transactions.  
15:8  
7:0  
INTP[7:0]  
INTL[7:0]  
Interrupt Pin.  
Identifies which interrupt pin the Si3052 uses. Default interrupt pin is INTA.  
Interrupt Line.  
Identifies the interrupt line register to which the Si3052 is connected.  
PCI Register 40h. Retry Timeout, TRDY Timeout  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TYT[7:0]  
R
Name  
Type  
RT[7:0]  
R
Reset setting = 0x00000000  
Bit  
Name  
Reserved  
RT[7:0]  
Function  
31:16  
15:8  
Read returns zero.  
Retry Timeout.  
Sets number of retries that the Si3052 as master performs.  
7:0  
TYT[7:0]  
TRDY Timeout.  
Sets number of PCI clocks that the Si3052 as master waits for TRDY.  
Rev. 1.0  
47  
Si3052/17/11/18  
PCI Register 80h. Power Management Capabilities  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
P3H PD2 PD1 PD0 D2S D1S  
AUXC[2:0]  
DVS  
R
PCL  
R
VER[2:0]  
Name P3C  
R
R
R
R
R
R
R
R
R
Type  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
CID[7:0]  
R
Name  
Type  
NXT[7:0]  
R
Reset setting = 0xC8420001  
Bit  
Name  
Function  
31  
P3C  
PME Support D3 Cold.  
ANDed with 3.3 Vaux pin.  
30  
29  
P3H  
PD2  
PME Support D3 Hot.  
PME Support D2.  
Not supported.  
28  
PD1  
PME Support D1.  
Not supported.  
27  
26  
PD0  
D2S  
PME Support D0.  
D2 Support.  
Not supported.  
25  
D1S  
D1 Support.  
Not supported.  
24:22  
AUXC[2:0]  
Aux_Current.  
Less than 55 mA in D3 cold.  
21  
20  
DVS  
Reserved  
PCL  
Device Specific.  
Read returns zero.  
PME Clock.  
19  
18:16  
VER[2:0]  
Version.  
Complies with PPM 1.1.  
15:8  
7:0  
NXT[7:0]  
CID[7:0]  
Next Item.  
Capability ID.  
48  
Rev. 1.0  
Si3052/17/11/18  
PCI Register 84h. Power Management Control and Status (Vaux powered register)  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
Name  
Type  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
PME  
R/W  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
PST[1:0]  
R/W  
D0  
DSC[1:0]  
R
DSE[3:0]  
R
Name PMS  
R/W  
Type  
Reset setting = 0x00000000  
Bit  
31:16  
15  
Name  
Reserved  
PMS  
Function  
Read returns zero.  
PME Status (sticky).  
Write 1 to clear.  
14:13  
12:9  
DSC[1:0]  
DSE[3:0]  
Data Scale.  
No data register implemented.  
Data Select.  
No data register implemented.  
8
PME  
PME Enable (sticky).  
7:2  
1:0  
Reserved  
PST[1:0]  
Read returns zero.  
Power State.  
00 = D0  
01 = D1 (Not supported)  
10 = D2 (Not supported)  
11 = D3 Hot  
Rev. 1.0  
49  
Si3052/17/11/18  
PCI and DAA Control Registers  
Note: Registers not listed here are reserved and must not be written.  
Table 22. PCI Register Summary (32-Bit)  
Offset  
Name  
Bits  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
0x00 DMA and  
Interrupt  
MTIE  
DIE  
WIE TAIE MAIE RBIE RAIE WAIE WBIE  
Control  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
DM[1:0]  
DMAR DMAE DMAM DMAI  
DRST PRST  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
0x04 DMA and  
Interrupt  
DAA  
EER WFU WFF WFE RFO RFF  
RFE  
Status  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
MTO DIS WIS PTA PMA DRB DRA DWA DWB  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
0x08 DMA Read  
Address Start  
DRAS[31:16]  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
DRAS[15:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
0x0C DMA Read  
Address Stop  
DRAP[31:16]  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
DRAP[15:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
0x10 DMA Read  
Address  
DRAI[31:16]  
Interrupt  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
DRAI[15:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
0x14 Current DMA  
Read Address  
CDRA[31:16]  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
CDRA[15:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
0x18 DMA Write  
Address Start  
DWAS[31:16]  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
DWAS[15:0]  
50  
Rev. 1.0  
Si3052/17/11/18  
Table 22. PCI Register Summary (32-Bit) (Continued)  
Offset  
Name  
Bits  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
DWAP[31:16]  
0x1C DMA Write  
Address Stop  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
DWAP[15:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
0x20 DMA Write  
Address  
DWAI[31:16]  
Interrupt  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7  
D6 D5 D4 D3 D2 D1 D0  
DWAI[15:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
0x24 Current DMA  
Write Address  
CDWA[31:16]  
D15 D14 D13 D12 D11 D10  
D9  
D8  
CDWA[15:0]  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
D7  
D6 D5 D4 D3 D2 D1 D0  
0x28 Watchdog  
Timer  
STPM STPE XTAL  
D15 D14 D13 D12 D11 D10 D9 D8  
WDT[15:0]  
WTS WTC  
D7  
D6 D5 D4 D3 D2 D1 D0  
Rev. 1.0  
51  
Si3052/17/11/18  
Table 23. DAA Register Summary (8-Bit)  
Offset Name  
Control 1  
Bit 7  
Bit 6  
Bit 5  
PWMM[1:0]  
WDTE  
Bit 4  
Bit 3  
PWME  
AL  
Bit 2  
Bit 1  
DL  
Bit 0  
0x31  
0x32  
0x33  
0x34  
0x35  
0x36  
0x37  
0x38  
0x39  
0x3A  
0x3B  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x41  
0x42  
0x43  
0x44  
0x45  
0x46  
0x47  
0x48  
0x49  
0x4A  
0x4B  
0x4C  
0x4D  
SR  
MAP  
Control 2  
RDM  
HBE  
RXE  
Interrupt Mask  
RDTM ROVM FDTM  
BTDM DODM LCSM  
Interrupt Source  
RDTI  
ROVI  
FDTI  
BTDI  
DODI  
ONHM  
PDN  
LCSI  
RDT  
DAA Control 1  
RDTN  
RDTP  
OH  
1
1
1
1
DAA Control 2  
ATM[1] ARM[1]  
PDL  
ATM[0] ARM[0]  
SRC[3:0]  
Sample Rate Control  
Reserved  
Reserved  
DAA Control 3  
DDL  
System-side Revision  
Line-Side Status  
Line-Side Revision  
Reserved  
LSID[3:0]  
FDT  
SREV[3:0]  
LCS[4:0]  
LREV[3:0]  
1
1
TX/RX Gain Control  
International Control 1  
International Control 2  
International Control 3  
International Control 4  
AOUT RX Attenuation  
AOUT TX Attenuation  
Ring Validation Control 1  
Ring Validation Control 2  
TXM  
ATX[2:0]  
ACT  
RXM  
DCT[1:0]  
OPE  
ARX[2:0]  
RZ  
1
ACT2  
CALZ  
OHS  
IIRE  
RT  
MCAL  
CALD  
BTE  
ROV  
BTD  
1
1
1
DIAL  
FJM  
VOL[1:0]  
RFWE  
OVL  
OPD  
2
ARM[7:0]  
2
ATM[7:0]  
RDLY[1:0]  
RDLY[2]  
RMX[5:0]  
RTO[3:0]  
RCC[2:0]  
Ring Validation Control 3 RNGV  
Resistor Calibration  
RAS[5:0]  
RCALD  
MINI[1:0]  
2
2
2
2
DC Termination Control  
Reserved  
DCV[1:0]  
ILIM  
DCR  
Reserved  
Reserved  
Note: All register bits are available when MAP = 0 and MAP = 1 except  
1. Only available when MAP = 0  
2. Only available when MAP = 1  
52  
Rev. 1.0  
Si3052/17/11/18  
Table 23. DAA Register Summary (8-Bit) (Continued)  
Offset Name  
Reserved  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
0x4E  
0x4F  
0x5D  
0x5E  
0x5F  
0x60  
0x61  
0x62  
0x63  
0x64  
0x65  
0x66  
0x67  
0x68  
0x69  
0x6A  
0x6B  
DAA Control 4  
Hybrid 1  
FOH[1:0]  
OHS2  
2
HYB1[7:0]  
2
2
2
2
2
2
2
Hybrid 2  
HYB2[7:0]  
Hybrid 3  
HYB3[7:0]  
HYB4[7:0]  
HYB5[7:0]  
HYB6[7:0]  
HYB7[7:0]  
HYB8[7:0]  
Hybrid 4  
Hybrid 5  
Hybrid 6  
Hybrid 7  
Hybrid 8  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Spark Quenching Control  
SQ1  
SQ0  
Note: All register bits are available when MAP = 0 and MAP = 1 except  
1. Only available when MAP = 0  
2. Only available when MAP = 1  
Rev. 1.0  
53  
Si3052/17/11/18  
PCI Register Offset 0x00 DMA and Interrupt Control  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
MTIE  
DIE  
WIE  
TAIE  
MAIE  
RBIE  
RAIE  
WAIE  
WBIE  
Name  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Type  
Bit  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
DM[1:0]  
DMAR DMAE DMAM DMAI  
DRST  
PRST  
Name  
R/W  
R/W R/W R/W R/W  
R/W  
R/W  
Type  
Reset setting = 0x00000000  
Bit  
31:25  
24  
Name  
Reserved  
MTIE  
Function  
Read returns zero.  
DMA Master Timeout Interrupt Enable.  
0 = Interrupt disable.  
1 = Interrupt enable.  
23  
22  
21  
20  
19  
18  
17  
16  
DIE  
WIE  
DAA Interrupt Enable.  
0 = Interrupt disable.  
1 = Interrupt enable.  
Watchdog Timer Interrupt Enable.  
0 = Interrupt disable.  
1 = Interrupt enable.  
TAIE  
MAIE  
RBIE  
RAIE  
WAIE  
WBIE  
PCI Target Abort Interrupt Enable.  
0 = Interrupt disable.  
1 = Interrupt enable.  
PCI Master Abort Interrupt Enable.  
0 = Interrupt disable.  
1 = Interrupt enable.  
DMA Read End of Buffer Interrupt Enable.  
0 = Interrupt disable.  
1 = Interrupt enable.  
DMA Read Address Interrupt Enable.  
0 = Interrupt disable.  
1 = Interrupt enable.  
DMA Write Address Interrupt Enable.  
0 = Interrupt disable.  
1 = Interrupt enable.  
DMA Write End of Buffer Interrupt Enable.  
0 = Interrupt disable.  
1 = Interrupt enable.  
54  
Rev. 1.0  
Si3052/17/11/18  
Bit  
Name  
Reserved  
DM[1:0]  
Function  
15:13  
12:11  
Read returns zero.  
Data Mode.  
00 = Direct.  
01 = Indirect, Parallel.  
10 = Indirect, Serial, LSB first.  
11 = Indirect, Serial, MSB first.  
10  
9
Reserved  
DMAR  
Read returns zero.  
DMA Restart.  
0 = DMA continue.  
1 = DMA restart.  
8
7
6
DMAE  
DMAM  
DMAI  
DMA Enable.  
0 = DMA disable.  
1 = DMA enable.  
DMA Master Mode.  
0 = Multiple mode.  
1 = Single mode.  
DMA Interrupt Mode.  
0 = Interrupt status bit is sticky.  
1 = Interrupt status bit is non-sticky.  
Applies to address and end-of-buffer interrupts.  
5:2  
1
Reserved  
DRST  
Read returns zero.  
DMA Reset.  
0 = DMA continue.  
1 = DMA reset.  
0
PRST  
PCI DAA Soft Reset.  
0 = Normal operation.  
1 = DAA reset. The PCI registers are not affected. All DAA registers are reset to default  
values. Write zero to clear.  
Rev. 1.0  
55  
Si3052/17/11/18  
PCI Register Offset 0x04 DMA and Interrupt Status  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
DAA EER WFU WFF WFE RFO RFF RFE  
R
R
R/W R/W R/W R/W R/W R/W  
D5 D4 D3 D2 D1 D0  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
Name  
Type  
MTO DIS WIS PTA PMA DRB DRA DWA DWB  
R/W R/W R/W R/W R/W R/W R/W R/W R/W  
Reset setting = 0x00000000  
Bit  
31:24  
23  
Name  
Reserved  
DAA  
Function  
Read returns zero.  
DAA Status.  
0 = DAA ready.  
1 = DAA not ready.  
22  
EER  
EPROM Read Status.  
0 = No status.  
1 = EPROM read failure.  
21  
20  
19  
18  
17  
16  
15:9  
8
WFU  
WFF  
DMA Write FIFO Underrun.  
DMA Write FIFO Full.  
DMA Write FIFO Empty.  
DMA Read FIFO Overrun.  
DMA Read FIFO Full.  
DMA Read FIFO Empty.  
Read returns zero.  
WFE  
RFO  
RFF  
RFE  
Reserved  
MTO  
DMA Master Timeout Status.  
0 = Normal operation.  
1 = Master timeout from TRDY timer or retry timer. Write 1 to clear.  
7
6
5
DIS  
WIS  
PTA  
DAA Interrupt Status.  
0 = Normal operation.  
1 = DAA interrupt has occurred. Write 1 to clear.  
Watchdog Timer Interrupt Status.  
0 = Normal operation.  
1 = Watchdog timer has expired. Write 1 to clear.  
PCI Target Abort Interrupt Status.  
0 = Normal operation.  
1 = PCI Target Abort has occurred. Write 1 to clear.  
56  
Rev. 1.0  
Si3052/17/11/18  
Bit  
Name  
Function  
4
PMA  
PCI Master Abort Interrupt Status.  
0 = Normal operation.  
1 = PCI Master Abort has occurred. Write 1 to clear.  
3
2
1
0
DRB  
DRA  
DWA  
DWB  
DMA Read End of Buffer Interrupt Status.  
0 = Normal operation.  
1 = DMA Read has reached end of buffer. Write 1 to clear.  
DMA Read Address Interrupt Status.  
0 = Normal operation.  
1 = DMA Read has reached interrupt address. Write 1 to clear.  
DMA Write Address Interrupt Status.  
0 = Normal operation.  
1 = DMA Write has reached interrupt address. Write 1 to clear.  
DMA Write End of Buffer Interrupt Status.  
0 = Normal operation.  
1 = DMA Write has reached end of buffer. Write 1 to clear.  
Rev. 1.0  
57  
Si3052/17/11/18  
PCI Register Offset 0x08 DMA Read Address Start  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
DRAS[31:16]  
R/W  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DRAS[15:0]  
R/W  
Reset setting = 0x00000000  
Bit  
Name  
Function  
31:0  
DRAS[31:0] DMA Read Address Start.  
PCI Register Offset 0x0C DMA Read Address Stop  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
DRAP[31:16]  
R/W  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DRAP[15:0]  
R/W  
Reset setting = 0x00000000  
Bit  
Name  
Function  
31:0  
DRAP[31:0] DMA Read Address Stop.  
58  
Rev. 1.0  
Si3052/17/11/18  
PCI Register Offset 0x10 DMA Read Address Interrupt  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
DRAI[31:16]  
R/W  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DRAI[15:0]  
R/W  
Reset setting = 0x00000000  
Bit  
Name  
Function  
31:0  
DRAI[31:0] DMA Read Address Interrupt.  
PCI Register Offset 0x14 Current DMA Read Address  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
CDRA[31:16]  
R
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CDRA[15:0]  
R
Reset setting = 0x00000000  
Bit  
Name  
Function  
31:0  
CDRA[31:0] Current DMA Read Address.  
Rev. 1.0  
59  
Si3052/17/11/18  
PCI Register Offset 0x18 DMA Write Address Start  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
DWAS[31:16]  
R/W  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DWAS[15:0]  
R/W  
Reset setting = 0x00000000  
Bit  
Name  
Function  
31:0  
DWAS[31:0] DMA Write Address Start.  
PCI Register Offset 0x1C DMA Write Address Stop  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
DWAP[31:16]  
R/W  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DWAP[15:0]  
R/W  
Reset setting = 0x00000000  
Bit  
Name  
Function  
31:0  
DWAP[31:0] DMA Write Address Stop.  
60  
Rev. 1.0  
Si3052/17/11/18  
PCI Register Offset 0x20 DMA Write Address Interrupt  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
DWAI[31:16]  
R/W  
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DWAI[15:0]  
R/W  
Reset setting = 0x00000000  
Bit  
Name  
Function  
31:0  
DWAI[31:0] DMA Write Address Interrupt.  
PCI Register Offset 0x24 Current DMA Write Address  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
CDWA[31:16]  
R
D15 D14 D13 D12 D11 D10 D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CDWA[15:0]  
R
Reset setting = 0x00000000  
Bit  
Name  
Function  
31:0 CDWA[31:0] Current DMA Write Address.  
Rev. 1.0  
61  
Si3052/17/11/18  
PCI Register Offset 0x28 Watchdog Timer  
Bit  
Name  
Type  
Bit  
D31 D30 D29 D28 D27 D26 D25 D24 D23 D22 D21 D20 D19 D18 D17 D16  
STPM STPE XTAL  
WTS WTC  
R/W R/W  
R/W  
R/W  
R/W  
D15 D14 D13 D12 D11 D10  
D9  
D8  
D7 D6 D5 D4 D3  
D2  
D1  
D0  
Name  
Type  
WDT[15:0]  
R/W  
Reset settings = 0x02000000  
Bit  
31:27  
26  
Name  
Reserved  
STPM  
Function  
Read returns zero.  
Address/Data Stepping Mode.  
0 = 4 steps.  
1 = 2 steps.  
STPE  
XTAL  
25  
24  
Address/Data Stepping Enable.  
0 = Disabled.  
1 = Enabled.  
External Crystal Frequency Select.  
0 = 16.384 MHz  
1 = 32.768 kHz  
25:18  
17  
Reserved  
WTS  
Read returns zero.  
PCI Watchdog Timer Status.  
0 = Watchdog timer idle/counting.  
1 = Watchdog timer expired.  
WTC  
16  
PCI Watchdog Timer Control.  
0 = Watchdog timer disabled.  
1 = Watchdog timer enabled. When set this bit is cleared by a hardware reset.  
15:0  
WDT[15:0]  
PCI Watchdog Timer.  
Timer is free running and clocked by the PCI system clock. For 33 MHz PCI, the timer  
increments every (256/33 MHz) = 7.76 µs. The timer overflows in 508 ms without register  
accesses, generating an interrupt and stopping DMA operations.  
62  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x31 Control 1  
Bit  
D7  
SR  
D6  
D5  
PWMM[1:0]  
R/W  
D4  
D3  
D2  
D1  
DL  
D0  
Name  
Type  
MAP  
R/W  
PWME  
R/W  
R/W  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
SR  
Software Reset.  
0 = Enables Si3052 for normal operation.  
1 = Sets all registers to their reset value.  
Note: Bit clears automatically after being set.  
6
MAP  
Register Map.  
0 = Basic register set (Si3014 compatible) selected.  
1 = Enhanced register set selected.  
Note: This bit should be set during initialization only.  
5:4  
PWMM[1:0] Pulse-Width Modulation Mode.  
Selects the type of signal on the call progress AOUT pin.  
00 = PWM output clocked at 16.384 MHz. A local density of 1s and 0s tracks the com-  
bined transmit and receive signal.  
01 = Balanced conventional PWM output signal has high and low portions of the modu-  
lated pulse centered on the 32 kHz sample clock.  
10 = Conventionally PWM output signal returns to 0 at 32 kHz intervals and rises at a  
time in the 32 kHz period proportional to the instantaneous amplitude.  
11 = Reserved  
3
PWME  
Pulse-Width Modulation Enable.  
0 = Call progress PWM AOUT disabled.  
1 = Call progress PWM AOUT enabled.  
2
1
Reserved  
DL  
Read returns zero.  
Isolation Digital Loopback.  
0 = Digital loopback across isolation barrier disabled.  
1 = Enables digital loopback mode across isolation barrier. The line-side device must be  
enabled and off-hook before setting this mode. This data path includes RX and TX filters.  
A valid phone line is not necessary for this mode.  
0
Reserved  
Read returns zero.  
Rev. 1.0  
63  
Si3052/17/11/18  
DAA Register Offset 0x32 Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
AL  
D2  
D1  
D0  
WDTE  
R/W  
Name  
Type  
RDM  
R/W  
HBE  
R/W  
RXE  
R/W  
R/W  
Reset settings = 0000_0011  
Bit  
7:5  
4
Name  
Reserved  
WDTE  
Function  
Read returns zero.  
DAA Watchdog Timer Enable.  
0 = Watchdog timer disabled.  
1 = Watchdog timer enabled. When set, this bit is cleared only by a hardware reset. The  
watchdog timer monitors DAA register writes. If a register write does not occur within a  
4.096 second window, the DAA is put into an on-hook state. Only a write of a DAA regis-  
ter restarts the timer.  
3
2
1
0
AL  
Analog Loopback.  
0 = Analog loopback mode disabled.  
1 = Enables external analog loopback mode.  
RDM  
HBE  
RXE  
Ring Detect Mode.  
0 = Ring detect on positive threshold.  
1 = Ring detect on positive and negative threshold.  
Hybrid Enable.  
0 = Disconnects hybrid in transmit path.  
1 = Connects hybrid in transmit path.  
Receive Enable.  
0 = Receive path disabled.  
1 = Enables receive path.  
64  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x33 Interrupt Mask  
Bit  
D7  
D6  
D5  
D4  
D3  
DODM  
R/W  
D2  
D1  
D0  
Name  
Type  
RDTM  
R/W  
ROVM  
R/W  
FDTM  
R/W  
BTDM  
R/W  
LCSM  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
RDTM  
Ring Detect Interrupt Mask.  
0 = A ring signal does not cause an interrupt.  
1 = A ring signal causes an interrupt.  
6
5
ROVM  
FDTM  
Receive Overload Interrupt Mask.  
0 = A receive overload does not cause an interrupt.  
1 = A receive overload causes an interrupt.  
Frame Detect Interrupt Mask.  
0 = ISOcap frame lock does not cause an interrupt.  
1 = ISOcap frame lock causes an interrupt.  
4
BTDM  
Billing Tone Detect Interrupt Mask.  
0 = A billing tone does not cause an interrupt.  
1 = A billing tone causes an interrupt.  
3
DODM  
LCSM  
Drop Out Detect Interrupt Mask.  
0 = A line supply dropout does not cause an interrupt.  
1 = A line supply dropout causes an interrupt.  
2
Loop Current Sense Overload Interrupt Mask.  
0 = Loop current sense overload does not cause an interrupt.  
1 = Loop current sense overload causes an interrupt.  
1:0  
Reserved  
Read returns zero.  
Rev. 1.0  
65  
Si3052/17/11/18  
DAA Register Offset 0x34 Interrupt Status  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RDTI  
R/W  
ROVI  
R/W  
FDTI  
R/W  
BTDI  
R/W  
DODI  
R/W  
LCSI  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
RDTI  
Ring Detect Interrupt Status.  
0 = No ring.  
1 = Ring detected. Write 0 to clear.  
6
5
4
3
2
ROVI  
FDTI  
BTDI  
DODI  
LCSI  
Receive Overload Interrupt Status.  
0 = No receive overload.  
1 = Receive overload detected. Write 0 to clear.  
Frame Detect Interrupt Status.  
0 = Frame detect established.  
1 = Frame detect lost. Write 0 to clear.  
Billing Tone Detect Interrupt Status.  
0 = No billing tone.  
1 = Billing tone detected. Write 0 to clear.  
Drop Out Detect Interrupt Status.  
0 = Line-side power available.  
1 = Line-side power unavailable. Reads 1 when off hook.  
Loop Current Sense Overload Interrupt.  
0 = The LCS bits have not reached max (all ones).  
1 = The LCS bits have reached max value. If the LCSM bit is set, a hardware interrupt  
occurs. This bit must be written to 0 to clear it.  
LCSI does not necessarily imply that an overload situation has occurred. An overload sit-  
uation in the DAA is determined by the status of the OPD bit. After the LCSI interrupt fires,  
the OPD bit should be checked to determine if an overload situation exists.  
1:0  
Reserved  
Read returns zero.  
66  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x35 DAA Control 1  
Bit  
D7  
D6  
RDTN  
R
D5  
RDTP  
R
D4  
D3  
D2  
RDT  
R
D1  
D0  
OH  
Name  
Type  
ONHM  
R/W  
R/W  
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved  
RDTN  
Function  
Read returns zero.  
6
Ring Detect Signal Negative.  
0 = No ring signal is occurring.  
1 = A negative ring signal is occurring.  
5
RDTP  
Ring Detect Signal Positive.  
0 = No ring signal is occurring.  
1 = A positive ring signal is occurring.  
4
3
Reserved  
ONHM  
Read returns zero.  
On-Hook Line Monitor.  
0 = Normal on-hook mode.  
1 = Enables low-power monitoring mode allowing the DSP to receive line activity without  
going off-hook. This mode is used for caller-ID detection.  
2
RDT  
Ring Detect.  
0 = Reset either 4.5–9 seconds after last positive ring is detected or when the system  
executes an off-hook.  
1 = Indicates a ring is occurring.  
1
0
Reserved  
OH  
Read returns zero.  
Off-Hook.  
0 = Line-side device on-hook.  
1 = Causes the line-side device to go off-hook.  
Rev. 1.0  
67  
Si3052/17/11/18  
DAA Register Offset 0x36 DAA Control 2  
Bit  
D7  
D6  
ATM[1]  
R/W  
D5  
ARM[1]  
R/W  
D4  
D3  
D2  
D1  
ATM[0]  
R/W  
D0  
ARM[0]  
R/W  
Name  
Type  
PDL  
R/W  
PDN  
R/W  
Reset settings = 0111_0000  
Bit  
7
Name  
Function  
Reserved  
ATM[1:0]  
Read returns zero.  
6,1  
AOUT Transmit Path Level Control (MAP = 0 only).  
00 = –20 dB transmit path attenuation for call progress AOUT pin only.  
01 = –32 dB transmit path attenuation for call progress AOUT pin only.  
10 = Mutes transmit path for call progress AOUT pin only.  
11 = –26 dB transmit path attenuation for call progress AOUT pin only.  
5,0  
ARM[1:0]  
AOUT Receive Path Level Control (MAP = 0 only).  
00 = 0 dB receive path attenuation for call progress AOUT pin only.  
01 = –12 dB receive path attenuation for call progress AOUT pin only.  
10 = Mutes receive path for call progress AOUT pin only.  
11 = –6 dB receive path attenuation for call progress AOUT pin only.  
4
3
PDL  
PDN  
Powerdown Line-Side Chip.  
0 = Normal operation. Program the clock generator before clearing this bit.  
1 = Powers down the Si3017/11/18.  
Powerdown PCI DAA.  
0 = Normal operation.  
1 = Powers down the DAA logic. A DAA soft reset is required to restore normal operation.  
The PCI interface is not affected.  
2
Reserved  
Read returns zero.  
68  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x37 Sample Rate Control  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
SRC[3:0]  
R/W  
Reset settings = 0000_0001  
Bit  
7:4  
3:0  
Name  
Function  
Reserved  
SRC[3:0]  
Read returns zero.  
Sample Rate Control.  
Sets the sampling rate.  
0000 = 7200 Hz  
0001 = 8000 Hz  
0010 = 8229 Hz  
0011 = 8400 Hz  
0100 = 9000 Hz  
0101 = 9600 Hz  
0110 = 10286 Hz  
0111 = 12000 Hz  
1000 = 13714 Hz  
1001 = 16000 Hz  
1010–1111 = Reserved  
DAA Register Offset 0x38 Reserved  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
Reserved  
Read returns zero.  
DAA Register Offset 0x39 Reserved  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
Reserved  
Read returns zero.  
Rev. 1.0  
69  
Si3052/17/11/18  
DAA Register Offset 0x3A DAA Control 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DDL  
R/W  
Reset settings = 0000_0000  
Bit  
7:1  
0
Name  
Reserved  
DDL  
Function  
Read returns zero.  
Digital Data Loopback.  
0 = Normal Operation.  
1 = Loopback transmit to receive before the filters. Output data is identical to input data.  
DAA Register Offset 0x3B System-side Revision  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LSID[3:0]  
R
SREV[3:0]  
R
Reset settings = xxxx_xxxx  
Bit  
Name  
Function  
7:4  
LSID[3:0]  
Line-Side ID.  
0000 = Si3017 FCC  
0001 = Si3018 Global  
0100 = Si3011 TBR21  
Other = Reserved  
3:0  
SREV[3:0]  
System-Side Revision.  
Four bit value indicating the revision of the Si3052 device.  
0011 = Rev C  
0100 = Rev D  
70  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x3C Line-side Status  
Bit  
D7  
D6  
FDT  
R
D5  
D4  
D3  
D2  
LCS[4:0]  
R
D1  
D0  
Name  
Type  
Reset settings = N/A  
Bit  
7
Name  
Reserved  
FDT  
Function  
Read returns zero.  
6
Frame Detect.  
0 = Indicates ISOcap link has not established frame lock.  
1 = Indicates ISOcap link frame lock is established.  
5
Reserved  
LCS[4:0]  
Read returns zero.  
4:0  
Loop Current Sense.  
Five-bit value returning the loop current in 3.3 mA/bit resolution when the DAA is in an off-  
hook state.  
00000 = Indicates the loop current is less than required for normal operation.  
00100 = Indicates minimum loop current for normal operation.  
11111 = Indicates a loop current is > 127 mA.  
DAA Register Offset 0x3D Line-Side Revision  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
LREV[3:0]  
R
Reset settings = 00xx_xx00  
Bit  
7:6  
5:2  
Name  
Function  
Reserved  
LREV[3:0]  
Read returns zero.  
Line-Side Revision.  
Four-bit value indicating the revision of the Si3017/11/18 device.  
0011 = Rev C  
0100 = Rev D  
1:0  
Reserved  
Read returns zero.  
Rev. 1.0  
71  
Si3052/17/11/18  
DAA Register Offset 0x3E Reserved  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
Reserved  
Read returns zero.  
DAA Register Offset 0x3F TX/RX Gain Control  
Bit  
D7  
D6  
D5  
ATX[2:0]  
R/W  
D4  
D3  
D2  
D1  
ARX[2:0]  
R/W  
D0  
Name  
Type  
TXM  
R/W  
RXM  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7
TXM  
Transmit Mute (MAP = 0 only).  
0 = Transmit signal is not muted.  
1 = Mutes the transmit signal.  
Analog Transmit Attenuation.  
000 = 0 dB attenuation  
001 = 3 dB attenuation  
010 = 6 dB attenuation  
011 = 9 dB attenuation  
1xx = 12 dB attenuation  
Receive Mute (MAP = 0 only).  
0 = Receive signal is not muted.  
1 = Mutes the receive signal.  
Analog Receive Gain.  
000 = 0 dB gain  
6:4  
ATX[2:0]  
3
RXM  
2:0  
ARX[2:0]  
001 = 3 dB gain  
010 = 6 dB gain  
011 = 9 dB gain  
1xx = 12 dB gain  
72  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x40 International Control 1  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
RZ  
D0  
RT  
Name  
Type  
ACT2  
R/W  
OHS  
R/W  
ACT  
R/W  
IIRE  
R/W  
DCT[1:0]  
R/W  
R/W  
R/W  
Reset settings = 0000_1000  
Bit Name  
Function  
7
ACT2 AC Termination Select 2.  
Works with the ACT bit to select one of four ac terminations.  
Si3018 settings:  
ACT2  
ACT  
AC Termination  
0
0
1
1
0
1
0
1
Real, 600 Ω  
Global complex impedance  
TBR21 complex impedance  
New Zealand complex impedance  
The global complex impedance satisfies minimum return loss requirements in a country requiring  
a complex ac termination. The other complex impedances can be used for improved return loss  
performance.  
Si3011 Settings:  
ACT2  
ACT  
AC Termination  
0
0
1
1
0
1
0
1
Real, 600 Ω  
TBR21 complex impedance  
TBR21 complex impedance  
Real, 600 Ω  
Si3017 Settings:  
ACT2  
ACT  
AC Termination  
X
X
Real, 600 Ω  
6
OHS  
On-Hook Speed.  
This bit, in combination with the OHS2 bit and the SQ[1:0] bits, sets the amount of time for the  
line-side device to go on-hook. The on-hook speeds specified are measured from the time the OH  
bit is cleared until loop current equals zero.  
Si3018 settings:  
OHS  
OHS2  
SQ[1:0]  
00  
Mean On-Hook Speed  
Less than 0.5 ms  
3 ms ±10% (meets ETSI standard)  
26 ms ±10% (meets Australia spark quenching spec)  
0
0
1
0
1
X
00  
11  
Si3011 and Si3017 settings:  
OHS  
OHS2  
SQ[1:0]  
Mean On-Hook Speed  
X
X
XX  
Less than 0.5 ms  
5
4
ACT  
IIRE  
AC Termination Select.  
When the ACT2 bit is cleared, the ACT bit selects the following:  
0 = Selects the real impedance (600 W).  
1 = Selects the complex impedance.  
IIR Filter Select.  
0 = FIR Filter selected.  
1 = IIR Filter selected.  
Rev. 1.0  
73  
Si3052/17/11/18  
Bit Name  
Function  
3:2 DCT[1:0] DC Termination Select (MAP = 0 only).  
Si3018 settings:  
00 = Low voltage mode.  
01 = Japan, Lower voltage mode.  
10 = FCC, Standard voltage mode.  
11 = TBR21, Current limiting mode.  
Si3011 settings:  
00,10 = FCC, standard voltage mode.  
01,11 = TBR21, current limiting mode.  
Si3017 settings:  
XX = FCC, standard voltage mode.  
1
0
RZ  
RT  
Ringer Impedance.  
Si3018 settings:  
0 = Maximum (high) ringer impedance.  
1 = Synthesize ringer impedance. See “Ringer Impedance and Threshold” on page 34..  
Si3011 and Si3017 settings:  
X = Maximum (high) ringer impedance.  
Ringer Threshold Select.  
Satisfies country requirements on ring detection. Signals below the lower level do not generate a  
ring detection; signals above the upper level are guaranteed to generate a ring detection.  
Si3018 settings:  
0 = 11 to 22 Vrms  
1 = 17 to 33 V  
rms  
Si3011 and Si3017 settings:  
X = 11 to 22 V  
rms  
74  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x41 International Control 2  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
CALZ  
R/W  
MCAL  
R/W  
CALD  
R/W  
OPE  
R/W  
BTE  
R/W  
ROV  
R/W  
BTD  
R/W  
Reset Settings = 0000_0000  
Bit  
Name  
Function  
7
CALZ  
Clear Calibration.  
0 = Normal operation.  
1 = Clear calibration data. This bit must be written back to 0 after being set.  
6
5
MCAL  
CALD  
Manual Calibration.  
0 = No calibration.  
1 = Initiate calibration.  
Auto-Calibration Disable.  
0 = Enable auto-calibration.  
1 = Disable auto-calibration.  
4
3
Reserved  
OPE  
Read returns zero.  
Overload Protect Enable.  
0 = Disabled.  
1 = Enabled.  
When the OPE bit is set, the OPD indicates when an overload condition is occurring. The  
OPD bit should always be cleared before going off-hook, and set 25 ms following off-hook  
in order to prevent false overload detections.  
2
BTE  
Billing Tone Protect Enable.  
When set, the DAA can detect a billing tone signal on the line and maintain an off-hook  
state through the billing tone. If a billing tone is detected, the BTD bit is set to indicate the  
event.  
0 = Billing tone detection disabled. The BTD bit is not functional.  
1 = Billing tone detection enabled. The BTD is functional.  
1
0
ROV  
BTD  
Receive Overload.  
Set when the receive input has an excessive input level (i.e., receive pin goes below  
ground). Cleared by writing a zero to this location (sticky).  
0 = Normal receive input level.  
1 = Excessive receive input level.  
Billing Tone Detected.  
Set if a billing tone is detected. Automatically cleared (non-sticky).  
0 = No billing tone detected.  
1 = Billing tone detected.  
Rev. 1.0  
75  
Si3052/17/11/18  
DAA Register Offset 0x42 International Control 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DIAL  
R/W  
FJM  
R/W  
VOL[1:0]  
R/W  
RFWE  
R/W  
Reset Settings = 0000_0000  
Bit  
7
Name  
Reserved Read returns zero.  
Function  
6
DIAL  
DTMF Dialing Mode (MAP = 0 only).  
Si3018 settings:  
0 = Normal operation.  
1 = Increase headroom for DTMF dialing.  
Si3011 and Si3017 settings:  
X = Normal operation.  
5
FJM  
Force Japan DC Termination Mode (MAP = 0 only).  
Si3018 settings:  
0 = Normal operation.  
1 = When DCT[1:0], is set to 10 (FCC mode), setting this bit forces the Japan dc termination  
b
mode.  
Si3011 and Si3017 settings:  
X = Normal operation.  
4:3  
VOL[1:0] Line Voltage Adjust (MAP = 0 only).  
When set, this bit adjusts the TIP-RING line voltage. Lowering this voltage improves margin  
in low voltage countries.  
Si3018 settings:  
00 = Normal operation.  
01 = –0.125 V below Japan mode.  
10 = equivalent to DCT[1:0] = 01 (Japan mode).  
11 = equivalent to DCT[1:0] = 01 (Japan mode).  
Si3011 and Si3017 settings:  
XX = Normal operation.  
2
1
Reserved Read returns zero.  
RFWE  
Ring Detector Full-Wave Rectifier Enable.  
When RNGV is disabled, this bit controls the ring detector mode. When RNGV is enabled,  
this bit configures the RDT bit to either follow the ringing signal detected by the ring valida-  
tion circuit, or to follow an unqualified ring detect one-shot signal initiated by a ring-threshold  
crossing and terminated by a fixed counter timeout of approximately five seconds.  
RNGV  
RFWE  
RDT bit  
0
0
1
1
0
1
0
1
Half-Wave  
Full-Wave  
Validated Ring Envelope  
Ring Threshold Crossing One-Shot  
0
Reserved Read returns zero.  
76  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x43 International Control 4  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
OVL  
R
D1  
D0  
OPD  
R
Name  
Type  
Reset Settings = 0000_0000  
Bit Name  
7:3 Reserved Read returns zero.  
Function  
2
OVL  
Overload Detected.  
Has the same function as ROV but clears itself after the overload is removed. See “Billing Tone  
Detection and Receive Overload” on page 35. Masked by the off-hook counter only and is not  
affected by the BTE bit.  
0 = Normal receive input level.  
1 = Excessive receive input level.  
1
0
Reserved Read returns zero.  
OPD Overload Protect Detect.  
This bit is used to indicate that the DAA has detected a line feed overload. The detector firing  
threshold depends on the setting of the ILIM bit.  
OPD  
ILIM  
Overload Threshold  
160 mA  
Overload Status  
No overload condition exists  
No overload condition exists  
An overload condition has been detected  
An overload condition has been detected  
0
0
1
1
0
1
0
1
60 mA  
160 mA  
60 mA  
This bit must be enabled by setting the OPE bit. OPD is a sticky bit and is cleared by writing  
OPE to zero.  
Rev. 1.0  
77  
Si3052/17/11/18  
DAA Register Offset 0x44 Call Progress Receive Attenuation (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
ARM[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
ARM[7:0] AOUT Receive Path Attenuation.  
Function  
7:0  
When decremented from the default setting, these bits linearly attenuate the AOUT receive  
path signal used for call progress monitoring. Setting the bits to 0s mutes the AOUT receive  
path.  
0111_1111 = +6 dB (gain)  
0100_0000 = 0 dB  
0010_0000 = –6 dB (attenuation)  
0001_0000 = –12 dB  
...  
0000_0000 = Mute  
Note: Function available when DAA Register offset 0x31 bit 6 is set to 1 (MAP = 1).  
78  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x45 Call Progress Transmit Attenuation (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
ATM[7:0]  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
ATM[7:0]  
AOUT Receive Path Attenuation.  
When decremented from the default setting, these bits linearly attenuate the AOUT  
transmit path signal used for call progress monitoring. Setting the bits to 0s mutes the  
AOUT transmit path.  
0111_1111 = +6 dB (gain)  
0100_0000 = 0 dB  
0010_0000 = –6 dB (attenuation)  
0001_0000 = –12 dB  
...  
0000_0000 = Mute  
Note: Function available when DAA Register offset 0x31 bit 6 is set to 1 (MAP = 1).  
Rev. 1.0  
79  
Si3052/17/11/18  
DAA Register Offset 0x46 Ring Validation Control 1  
Bit  
D7  
RDLY[1:0]  
R/W  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RMX[5:0]  
R/W  
Reset settings = 1001_0110  
Bit  
Name  
Function  
7:6  
RDLY[1:0]  
Ring Delay.  
These bits, in combination with the RDLY[2] bit, set the amount of time between when a  
ring signal is validated and when a valid ring signal is indicated.  
RDLY[2]  
RDLY[1:0]  
Delay  
0
0
0
...  
1
00  
01  
10  
0 ms  
256 ms  
512 ms  
11  
1792 ms  
Ring Assertion Maximum Count.  
5:0  
RMX[5:0]  
These bits set the maximum ring frequency for a valid ring signal within a 10% margin of  
error. During ring qualification, a timer is loaded with the RAS[5:0] field upon a TIP/RING  
event and decrements at a regular rate. When a subsequent TIP/RING event occurs,  
the timer value is compared to the RMX[5:0] field, and, if it exceeds the value in  
RMX[5:0], the frequency of the ring is too high and the ring is invalidated. The difference  
between RAS[5:0] and RMX[5:0] identifies the minimum duration between TIP/RING  
events to qualify as a ring, in binary-coded increments of 2.0 ms (nominal). A TIP/RING  
event typically occurs twice per ring tone period. At 20 Hz, TIP/RING events would occur  
every 1/(2 x 20 Hz) = 25 ms. To calculate the correct RMX[5:0] value for a frequency  
range [f_min, f_max], the following equation should be used:  
1
--------------------------------------------  
RMX[5:0] ≥ RAS[5:0] –  
, RMX RAS  
2 × f_max × 2 ms  
To compensate for error margin and ensure a sufficient ring detection window, it is rec-  
ommended that the calculated value of RMX[5:0] be incremented by 1.  
80  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x47 Ring Validation Control 2  
Bit  
D7  
RDLY[2]  
R/W  
D6  
D5  
D4  
D3  
D2  
D1  
RCC[2:0]  
R/W  
D0  
Name  
Type  
RTO[3:0]  
R/W  
Reset settings = 0010_1101  
Bit  
Name  
Function  
7
RDLY[2]  
Ring Delay Bit 2.  
This bit, in combination with the RDLY[1:0] bits, sets the amount of time between when a  
ring signal is validated and when a valid ring signal is indicated.  
RDLY[2]  
RDLY[1:0]  
Delay  
0
0
0
...  
1
00  
01  
10  
0 ms  
256 ms  
512 ms  
11  
1792 ms  
6:3  
RTO[3:0]  
Ring Timeout.  
Determine when ringing is finished after the most recent ring threshold crossing.  
0000 = Invalid  
0001 = 128 x 1 = 128 ms  
0010 = 128 x 2 = 256 ms  
...  
1111 = 128 x 15 = 1920 ms  
2:0  
RCC[2:0]  
Ring Confirmation Count.  
Determine the time interval over which the ring signal must meet tolerances defined by  
RAS[5:0] and RMX[5:0] to be classified as a valid ring signal.  
000 = 100 ms  
001 = 150 ms  
010 = 200 ms  
011 = 256 ms  
100 = 384 ms  
101 = 512 ms  
110 = 640 ms  
111 = 1024 ms  
Rev. 1.0  
81  
Si3052/17/11/18  
DAA Register Offset 0x48 Ring Validation Control 3  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
RNGV  
R/W  
RAS[5:0]  
R/W  
Reset settings = 0001_1001  
Bit  
Name  
Function  
7
RNGV  
Ring Validation Enable.  
0 = Ring validation feature is disabled.  
1 = Ring validation feature is enabled in normal operating mode and low-power mode.  
6
Reserved Read returns zero.  
5:0  
RAS[5:0] Ring Assertion Time.  
These bits set the minimum ring frequency for a valid ring signal. During ring qualifica-  
tion, a timer is loaded with the RAS[5:0] field upon a TIP/RING event and decrements at  
a regular rate. If a second or subsequent TIP/RING event occurs after the timer has  
timed out then the frequency of the ring is too low and the ring is invalidated. The differ-  
ence between RAS[5:0] and RMX[5:0] identifies the minimum duration between  
TIP/RING events to qualify as a ring, in binary-coded increments of 2.0 ms (nominal). A  
TIP/RING event typically occurs twice per ring tone period. At 20 Hz, TIP/RING events  
would occur every  
1/(2 x 20 Hz) = 25 ms. To calculate the correct RAS[5:0] value for a frequency range  
[f_min, f_max], the following equation should be used:  
1
-------------------------------------------  
RAS[5:0] ≥  
2 × f_min × 2 ms  
DAA Register Offset 0x49 Resistor Calibration  
Bit  
D7  
D6  
D5  
RCALD  
R/W  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 000x_xxxx  
Bit  
7:6  
5
Name  
Reserved  
RCALD  
Function  
Read returns zero.  
Resistor calibration disable.  
0 = Internal resistor calibration enabled.  
1 = Internal resistor calibration disabled.  
4:0  
Reserved  
Read returns zero or one.  
82  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x4A DC Termination Control (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
DCV[1:0]  
R/W  
MINI[1:0]  
R/W  
ILIM  
R/W  
DCR  
R/W  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:6  
DCV[1:0]  
TIP/RING Voltage Adjust.  
Adjust the voltage on the DCT pin of the line-side device, which affects the TIP/RING  
voltage on the line. Low voltage countries should use a lower TIP/RING voltage. Raising  
the TIP/RING voltage improves signal headroom.  
Si3018 settings:  
DCV[1:0] DCT Pin Voltage  
00  
01  
10  
11  
3.1 V  
3.2 V  
3.35 V  
3.5 V  
Si3011 and Si3017 settings:  
DCV[1:0] DCT Pin Voltage  
XX  
3.35 V  
5:4  
MINI[1:0]  
Minimum Operational Loop Current.  
Adjusts the minimum loop current so the DAA can operate. Increasing the minimum  
operational loop current improves signal headroom at a lower TIP/RING voltage.  
Si3018 settings:  
MINI[1:0] Min Loop Current  
00  
01  
10  
11  
10 mA  
12 mA  
14 mA  
16 mA  
Si3011 and Si3017 settings:  
MINI[1:0] Min Loop Current  
XX  
10 mA  
3:2  
1
Reserved  
ILIM  
Read returns zero.  
Current Limiting Enable.  
Si3018 and Si3011 settings:  
0 = Current limiting mode disabled.  
1 = Current limiting mode enabled. Limits loop current to a maximum of 60 mA per the  
TBR21 standard.  
Si3017 settings:  
X = Current limiting mode disabled.  
0
DCR  
DC Impedance Selection.  
0 = 50 W dc termination is selected. Use this mode for all standard applications.  
1 = 800 dc termination is selected.  
Note: Function available when DAA Registers offset 0x31 bit 6 is set to 1 (MAP = 1).  
Rev. 1.0  
83  
Si3052/17/11/18  
DAA Register Offset 0x4B Reserved  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_xxxx  
Bit  
Name  
Function  
7:0  
Reserved  
Read returns zero or one.  
DAA Register Offset 0x4C Reserved  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
Reserved  
Read returns zero.  
DAA Register Offset 0x4D Reserved  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
7:0  
Name  
Function  
Reserved  
Read returns zero.  
84  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x4E Reserved  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
Reserved  
Read returns zero.  
DAA Register Offset 0x4F DAA Control 4  
Bit  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Name  
Type  
FOH[1:0]  
R/W  
OHS2  
R/W  
Reset settings = 0010_0000  
Bit  
Name  
Reserved Read returns zero.  
Function  
7
6:5 FOH[1:0] Fast Off-Hook Selection.  
Determines the length of the off-hook counter.  
00 = 512 ms  
01 = 128 ms (default)  
10 = 64 ms  
11 = 8 ms  
4
3
Reserved Read returns zero.  
OHS2  
On-Hook Speed 2.  
Si3018 settings:  
This bit, in combination with the OHS bit and the SQ[1:0] bits on-hook speeds specified are  
measured from the time the OH bit is cleared until loop current equals zero.  
OHS  
OHS2  
SQ[1:0] Mean On-Hook Speed  
0
0
1
0
1
X
00  
00  
11  
Less than 0.5 ms  
3 ms ±10% (meets ETSI standard)  
26 ms ±10% (meets Australia spark quenching spec)  
Si3011 and Si3017 settings:  
OHS  
X
OHS2  
X
SQ[1:0] Mean On-Hook Speed  
XX Less than 0.5 ms  
2:0 Reserved Read returns zero.  
Rev. 1.0  
85  
Si3052/17/11/18  
DAA Register Offset 0x5D Programmable Hybrid Register 1 (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
HYB1[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
HYB1[7:0]  
Hybrid 1.  
Programmed with a coefficient value to adjust the hybrid response to reduce near-end  
echo. This register represents the first tap in the four-tap filter. When this register is set  
to 0s, this filter stage does not effect on the hybrid response. Refer to “AN84: Digital  
Hybrid with the Si305x DAAs” for more information on selecting coefficients for the pro-  
grammable hybrid.  
Note: Function available when DAA Registers offset 0x31 bit 6 is set to 1 (MAP = 1).  
DAA Register Offset 0x5E Programmable Hybrid Register 2 (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
HYB2[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
HYB2[7:0]  
Hybrid 2.  
Programmed with a coefficient value to adjust the hybrid response to reduce near-end  
echo. This register represents the first tap in the four-tap filter. When this register is set  
to 0s, this filter stage does not effect on the hybrid response. Refer to “AN84: Digital  
Hybrid with the Si305x DAAs” for more information on selecting coefficients for the pro-  
grammable hybrid.  
Note: Function available when DAA Registers offset 0x31 bit 6 is set to 1 (MAP = 1).  
86  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x5F Programmable Hybrid Register 3 (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
HYB3[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
HYB3[7:0]  
Hybrid 3.  
Programmed with a coefficient value to adjust the hybrid response to reduce near-end  
echo. This register represents the first tap in the four-tap filter. When this register is set  
to 0s, this filter stage does not effect on the hybrid response. Refer to “AN84: Digital  
Hybrid with the Si305x DAAs” for more information on selecting coefficients for the pro-  
grammable hybrid.  
Note: Function available when DAA Registers offset 0x31 bit 6 is set to 1 (MAP = 1).  
DAA Register Offset 0x60 Programmable Hybrid Register 4 (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
HYB4[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
HYB4[7:0]  
Hybrid 4.  
Programmed with a coefficient value to adjust the hybrid response to reduce near-end  
echo. This register represents the first tap in the four-tap filter. When this register is set  
to 0s, this filter stage has no effect on the hybrid response. Refer to “AN84: Digital  
Hybrid with the Si305x DAAs” for more information on selecting coefficients for the pro-  
grammable hybrid.  
Note: Function available when DAA Registers offset 0x31 bit 6 is set to 1 (MAP = 1).  
Rev. 1.0  
87  
Si3052/17/11/18  
DAA Register Offset 0x61 Programmable Hybrid Register 5 (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
HYB5[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
HYB5[7:0]  
Hybrid 5.  
Programmed with a coefficient value to adjust the hybrid response to reduce near-end  
echo. This register represents the first tap in the four-tap filter. When this register is set  
to 0s, this filter stage does not effect on the hybrid response. Refer to “AN84: Digital  
Hybrid with the Si305x DAAs” for more information on selecting coefficients for the pro-  
grammable hybrid.  
Note: Function available when DAA Registers offset 0x31 bit 6 is set to 1 (MAP = 1).  
DAA Register Offset 0x62 Programmable Hybrid Register 6 (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
HYB6[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
HYB6[7:0]  
Hybrid 6.  
Programmed with a coefficient value to adjust the hybrid response to reduce near-end  
echo. This register represents the first tap in the four-tap filter. When this register is set  
to all 0s, this filter stage does not effect on the hybrid response. Refer to “AN84: Digital  
Hybrid with the Si305x DAAs” for more information on selecting coefficients for the pro-  
grammable hybrid.  
Note: Function available when DAA Registers offset 0x31 bit 6 is set to 1 (MAP = 1).  
88  
Rev. 1.0  
Si3052/17/11/18  
DAA Register Offset 0x63 Programmable Hybrid Register 7 (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
HYB7[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
7:0  
HYB7[7:0]  
Hybrid 7.  
Programmed with a coefficient value to adjust the hybrid response to reduce near-end  
echo. This register represents the first tap in the four-tap filter. When this register is set  
to all 0s, this filter stage does not effect on the hybrid response. Refer to “AN84: Digital  
Hybrid with the Si305x DAAs” for more information on selecting coefficients for the pro-  
grammable hybrid.  
Note: Function available when DAA Registers offset 0x31 bit 6 is set to 1 (MAP = 1).  
DAA Register Offset 0x64 Programmable Hybrid Register 8 (MAP = 1)  
Bit  
D7  
D6  
D5  
D4  
HYB8[7:0]  
R/W  
D3  
D2  
D1  
D0  
Name  
Type  
Reset settings = 0000_0000  
Bit  
Name  
Function  
Hybrid 8.  
7:0  
HYB8[7:0]  
Programmed with a coefficient value to adjust the hybrid response to reduce near-end  
echo. This register represents the first tap in the four-tap filter. When this register is set  
to all 0s, this filter stage does not effect on the hybrid response. Refer to “AN84: Digital  
Hybrid with the Si305x DAAs” for more information on selecting coefficients for the pro-  
grammable hybrid.  
Note: Function available when DAA Registers offset 0x31 bit 6 is set to 1 (MAP = 1).  
Rev. 1.0  
89  
Si3052/17/11/18  
DAA Register Offset 0x6B Spark Quenching Control  
Bit  
Name  
Type  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
SQ1  
R/W  
0
SQ0  
R/W  
0
0
0
0
Reset settings = 0000_0000  
Bit  
7
Name  
Reserved Always write this bit to zero.  
Spark Quenching.  
Function  
6, 4  
SQ[1:0]  
These bits, in combination with the OHS bit and the OHS2 bit, set the amount of time for the  
line-side device to go on-hook. The on-hook speeds specified are measured from the time  
the OH bit is cleared until loop current equals zero.  
Si3018 settings:  
OHS  
OHS2  
SQ[1:0]  
00  
00  
Mean On-Hook Speed  
Less than 0.5 ms  
3 ms ±10% (meets ETSI standard)  
26 ms ±10% (meets Australia spark quenching spec)  
0
0
1
0
1
X
11  
Si3011 and Si3017 settings:  
OHS  
OHS2  
SQ[1:0]  
Mean On-Hook Speed  
X
X
XX  
Less than 0.5 ms  
5
Reserved Always write this bit to zero.  
Reserved Always write these bits to zero.  
3:0  
90  
Rev. 1.0  
Si3052/17/11/18  
Pin Descriptions: Si3052  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
3
4
5
6
Si3052  
64-Lead TQFP  
(epad)  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
Table 24. Pin Descriptions  
Pin #  
Pin Name Description  
3.3/5 V IO Digital Supply Input.  
1
2
V
IO  
AD[17]  
AD[16]  
C/BE[2]  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
3
4
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Command/Byte Enable Bit Input/Output.  
Multiplexed command/byte enables for the PCI interface. The pin is an output during  
master operation and an input during slave operation. The pin indicates cycle type dur-  
ing the address phase and byte enable during the data phase of a transaction.  
5
6
FRAME  
IRDY  
Cycle Frame Indicator Input/Output.  
PCI bus master output indicating the beginning and duration of a bus transfer.  
Initiator Ready Input/Output.  
PCI bus master output indicating that the initiator device is ready to transmit or receive  
data.  
7
8
TRDY  
DEVSEL  
STOP  
Target Ready Input/Output.  
PCI bus target output indicating that the target device is ready to transmit or receive  
data.  
Device Select Input/Output.  
PCI bus target output indicating the device has decoded the address of the current  
transaction that matches the target device’s select range.  
9
Stop Transaction Input/Output.  
PCI bus target output indicating a request to the bus master to stop the current transac-  
tion.  
10  
PERR  
Parity Error Input/Output.  
Reports PCI bus data parity errors.  
Rev. 1.0  
91  
Si3052/17/11/18  
Table 24. Pin Descriptions (Continued)  
Pin #  
Pin Name Description  
11  
SERR  
System Error Input/Output.  
Reports PCI bus system errors.  
12  
13  
PAR  
Address/Data Parity Bit Input/Output.  
Even parity across AD[31:0] and C/BE[3:0] for address and data bus phases. The par-  
ity is delayed one PCI clock cycle from the corresponding address or data bus phase.  
C/BE[1]  
Command/Byte Enable Bit Input/Output.  
Multiplexed command/byte enables for the PCI interface. The pin is an output during  
master operation and an input during slave operation. The pin indicates cycle type dur-  
ing the address phase and byte enable during the data phase of a transaction.  
14  
15  
AD[15]  
AD[14]  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
16  
17  
V
3.3/5 V Digital Supply Input.  
IO  
IO  
AD[13]  
AD[12]  
AD[11]  
AD[10]  
AD[09]  
AD[08]  
C/BE[0]  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
18  
19  
20  
21  
22  
23  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Command/Byte Enable Bit Input/Output.  
Multiplexed command/byte enables for the PCI interface. The pin is an output during  
master operation and an input during slave operation. The pin indicates cycle type dur-  
ing the address phase and byte enable during the data phase of a transaction.  
24  
AD[07]  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
25  
26  
V
3.3/5 V IO Digital Supply Input.  
IO  
AD[06]  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
92  
Rev. 1.0  
Si3052/17/11/18  
Table 24. Pin Descriptions (Continued)  
Pin #  
Pin Name Description  
27  
AD[05]  
AD[04]  
AD[03]  
AD[02]  
AD[01]  
AD[00]  
INTA  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
28  
29  
30  
31  
32  
33  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
PCI Interrupt Output (Open Drain).  
Level triggered interrupt pin for internal device interrupt sources.  
34  
35  
3.3VAUX  
XOUT  
3.3 Vaux Sense Input.  
Crystal Output.  
Connection to 16.384 MHz crystal.  
36  
37  
38  
XIN  
Crystal Input.  
Connection to 16.384 MHz crystal.  
RST  
PCI Device Reset Input.  
PCI bus master reset signal.  
CLKRUN/ System Clock Control Input/Output (Open Drain).  
PNPID/  
EE_SD  
An optional PCI signal defined for mobile applications. As an input, high indicates that  
PCICLK is active. The signal is driven low when the bus controller wants to stop PCI-  
CLK. As an output, low indicates a request to activate PCICLK. If unused, this pin  
requires a weak pulldown.  
PCI PnP ID select Input.  
Resistor selection for PCI Plug-n-Play (PnP) identification.  
EPROM Serial Data Input/Output.  
Serial data input/output to external PnP EPROM.  
39  
AOUT/  
PNPID/  
EE_SC  
Call Progress Monitor Output.  
Pulse-Width Modulation (PWM) signal for driving a call progress speaker.  
PCI PnP ID Select Input.  
Resistor selection for PCI Plug-n-Play (PnP) Identification.  
EPROM Serial Clock Output.  
Serial clock output to external PnP EPROM.  
Rev. 1.0  
93  
Si3052/17/11/18  
Table 24. Pin Descriptions (Continued)  
Pin #  
Pin Name Description  
40  
PME  
Power Management Event Output (Open Drain).  
Indicates a PCI power management event. This pin powers up in the high impedance  
state.  
41  
42  
C2A  
C1A  
Isolation Capacitor 2 A Input/Output.  
Differential isolation for communication with the DAA line-side device.  
Isolation Capacitor 1 A Input/Output.  
Differential isolation for communication with the DAA line-side device.  
43  
44  
45  
VA  
VD  
Voltage Regulator Bypass Output.  
3.3 V Digital Supply Input.  
PCI Bus Clock Input.  
PCICLK  
PCI bus clock for all bus transaction timing. All synchronous signals are driven and  
sampled on the rising edge of this clock.  
46  
47  
GNT  
REQ  
Master Grant Input.  
Indicates that the system arbiter has granted PCI bus access.  
Master Request Output (Tri-State).  
Indicates a request to the system arbiter for access to the PCI bus. When RST is low,  
this pin is high-impedance.  
48  
49  
50  
51  
52  
53  
54  
AD[31]  
AD[30]  
AD[29]  
AD[28]  
AD[27]  
AD[26]  
AD[25]  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
55  
56  
V
3.3/5 V ID Digital Supply Input.  
IO  
AD[24]  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
94  
Rev. 1.0  
Si3052/17/11/18  
Table 24. Pin Descriptions (Continued)  
Pin #  
Pin Name Description  
57  
C/BE[3]  
Command/Byte Enable Bit Input/Output.  
Multiplexed command/byte enables for the PCI interface. The pin is an output during  
master operation and an input during slave operation. The pin indicates cycle type dur-  
ing the address phase and byte enable during the data phase of a transaction.  
58  
59  
IDSEL  
AD[23]  
AD[22]  
AD[21]  
AD[20]  
AD[19]  
AD[18]  
GND  
Initialize Device Select Input.  
Chip select during PCI configuration register read/write cycles.  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
60  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
61  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
62  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
63  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
64  
Address/Data Bit Input/Output.  
Multiplexed address/data bit for the PCI interface.  
epad  
Exposed Die Paddle Ground.  
Rev. 1.0  
95  
Si3052/17/11/18  
Pin Descriptions: Si3017/11/18  
16  
15  
1
2
DCT2  
IGND  
QE  
DCT  
RX  
DCT3  
3
4
5
6
14  
IB  
13  
12  
11  
QB  
QE2  
SC  
C1B  
C2B  
VREG  
RNG1  
VREG2  
RNG2  
7
8
10  
9
Table 25. Si3017/11/18 Pin Descriptions  
Description  
Pin #  
Pin Name  
1
QE  
Transistor Emitter.  
Connects to the emitter of Q3.  
2
3
4
5
6
7
8
DCT  
RX  
DC Termination.  
Provides dc termination to the telephone network.  
Receive Input.  
Serves as the receive side input from the telephone network.  
Internal Bias 1.  
IB  
Provides internal bias.  
Isolation Capacitor 1B.  
C1B  
Connects to one side of isolation capacitor C1 and communicates with the Si3052.  
Isolation Capacitor 2B.  
C2B  
Connects to one side of isolation capacitor C2 and communicate with the Si3052.  
Voltage Regulator.  
Connects to an external capacitor to provide bypassing for an internal power supply.  
Ring 1.  
VREG  
RNG1  
Connects through a capacitor to the RING lead of the telephone line. Provides the ring  
and caller ID signals to the Si3052.  
9
RNG2  
Ring 2.  
Connects through a capacitor to the TIP lead of the telephone line. Provides the ring  
and caller ID signals to the Si3052.  
10  
11  
12  
13  
14  
15  
16  
VREG2  
SC  
Voltage Regulator 2.  
Connects to an external capacitor to provide bypassing for an internal power supply.  
Circuit Enable.  
Enables transistor network.  
Transistor Emitter 2.  
QE2  
Connects to the emitter of Q4.  
Transistor Base.  
QB  
Connects to the base of transistor Q3. Used to go on- and off-hook.  
DC Termination 3.  
DCT3  
IGND  
DCT2  
Provides the dc termination to the telephone network.  
Isolated Ground.  
Connects to ground on the line-side interface.  
DC Termination 2.  
Provides dc termination to the telephone network.  
96  
Rev. 1.0  
Si3052/17/11/18  
Ordering Guide  
System-Side  
Line-Side  
Region  
Interface  
Temperature  
Part #  
Package  
TQFP  
Part #  
Package  
SOIC  
FCC  
PCI  
PCI  
Si3052-KQ  
Si3052-KQ  
Si3052-KQ  
Si3052-KQ  
Si3054-KS  
Si3054-KT  
Si3017-KS  
Si3011-KS  
Si3018-KS  
Si3018-KT  
Si3018-KS  
Si3018-KT  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
0 to 70 °C  
TBR21  
Global  
Global  
Global  
Global  
TQFP  
SOIC  
PCI  
TQFP  
SOIC  
PCI  
TQFP  
TSSOP  
SOIC  
AC-Link  
AC-Link  
SOIC  
TSSOP  
TSSOP  
Rev. 1.0  
97  
Si3052/17/11/18  
Package Outline: 64-Pin TQFP  
Figure 28 illustrates the package details for the Si3052. Table 26 lists the values for the dimensions shown in the  
illustration.  
0° Min.  
64  
49  
0.08/0.20 R  
1
48  
A2  
A1  
GAUGE PLANE  
0-7°  
E1  
E
0.08  
R. Min.  
L
0.20 Min.  
e
16  
33  
1.00 REF  
Detail A  
17  
32  
D1  
D
Exposed Pad  
4.5 x 4.5 mm  
b
with lead finish  
See Detail A  
A
0.09/0.20  
0.09/0.16  
base metal  
b1  
See Detail B  
Detail B  
Figure 28. 64-Pin Thin Quad Flat Package (TQFP)  
Table 26. 64-Pin Package Diagram Dimensions  
Symbol  
Millimeters  
Nom  
Min  
Max  
1.20  
0.15  
1.05  
A
A1  
A2  
D
0.05  
0.95  
1.00  
12.00 BSC  
10.00 BSC  
12.00 BSC  
10.00 BSC  
0.60  
D1  
E
E1  
L
0.45  
0.75  
e
0.50 BSC  
0.22  
b
0.17  
0.17  
0.27  
0.23  
b1  
0.20  
98  
Rev. 1.0  
Si3052/17/11/18  
Package Outline: 16-Pin SOIC  
Figure 29 illustrates the package details for the Si3017/11/18. Table 27 lists the values for the dimensions shown in  
the illustration.  
16  
9
8
h
E
H
0.010  
GAUGE PLANE  
θ
1
L
B
Detail F  
D
C
A2  
A1  
A
e
See Detail F  
γ
Seating Plane  
Figure 29. 16-pin Small Outline Integrated Circuit (SOIC) Package  
Table 27. Package Diagram Dimensions  
Millimeters  
Symbol  
Typical*  
Min  
Max  
A
A1  
A2  
B
C
D
E
e
1.35  
1.75  
!
!
.10  
1.30  
.33  
.25  
1.50  
.51  
.19  
.25  
!
9.80  
3.80  
1.27 BSC  
5.80  
.25  
10.01  
4.00  
H
h
6.20  
.50  
L
.40  
1.27  
0.10  
8º  
γ
θ
0º  
!
*Note: Typical parameters are for information  
purposes only.  
Rev. 1.0  
99  
Si3052/17/11/18  
Document Change List  
Revision 0.86 to Revision 1.0  
! Si3017 descriptions added.  
! Si3011 descriptions added.  
! Table 2 on page 5 TBD values defined.  
! Table 3 on page 6 TBD values defined.  
! Figure 13 on page 16 updated.  
! Figure 14 on page 17 updated.  
! "Bill of Materials" on page 18 updated.  
! Figure 14 on page 17 updated.  
! Table 14 on page 28 updated.  
! "Initialization" on page 30 updated.  
! "Parallel Handset Detection" on page 30 updated.  
! Table 15 on page 31 updated.  
! "DC Termination" on page 32 updated.  
! "Ring Detection" on page 33 updated.  
! "DTMF Dialing" on page 34 updated.  
! "Billing Tone Detection and Receive Overload" on  
page 35 updated.  
! "On-Hook Line Monitor" on page 36 updated.  
! "Overload Detection" on page 37 updated.  
! "In-Circuit Testing" on page 38 updated.  
! "Revision Identification" on page 38 updated.  
! "Register Map" on page 38 updated.  
! Table 19 and Table 20 added.  
! Register descriptions updated.  
100  
Rev. 1.0  
Si3052/17/11/18  
Notes:  
Rev. 1.0  
101  
Si3052/17/11/18  
Contact Information  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: productinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, ISOmodem, and ISOcap are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
102  
Rev. 1.0  

相关型号:

SI3012

3.3 V FCC/JATE DIRECT ACCESS ARRANGEMENT
ETC

SI3012-KS

GLOBAL MC 97 SILICON DAA
ETC

SI3012-KT

3.3 V FCC/JATE DIRECT ACCESS ARRANGEMENT
ETC

SI3014

GLOBAL MC 97 SILICON DAA
ETC

SI3014-FS

Telecom IC,
SILICON

SI3014-FT

Telecom IC,
SILICON

SI3014-KS

3.3 V FCC/JATE DIRECT ACCESS ARRANGEMENT
ETC

SI3014-KT

3.3 V FCC/JATE DIRECT ACCESS ARRANGEMENT
ETC

SI3015

V.22BIS ISOMODEM CHIPSET WITH ERROR CORRECTION
SILICON

SI3015-BS

3.3 V FCC/JATE DIRECT ACCESS ARRANGEMENT
ETC

SI3015-F-FS

Modem, 2.4kbps Data, PDSO16, LEAD FREE, SOIC-16
SILICON

SI3015-F-FSR

V.22BIS ISOMODEM CHIPSET WITH ERROR CORRECTION
SILICON