SI4156DY [VISHAY]

N-Channel 30-V (D-S) MOSFET; N通道30 -V (D -S )的MOSFET
SI4156DY
型号: SI4156DY
厂家: VISHAY    VISHAY
描述:

N-Channel 30-V (D-S) MOSFET
N通道30 -V (D -S )的MOSFET

文件: 总10页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4156DY  
Vishay Siliconix  
N-Channel 30-V (D-S) MOSFET  
FEATURES  
Halogen-free According to IEC 61249-2-21  
PRODUCT SUMMARY  
Definition  
VDS (V)  
RDS(on) (Ω)  
Qg (Typ.)  
I
D (A)a  
24  
TrenchFET® Power MOSFET  
100 % Rg Tested  
0.006 at VGS = 10 V  
0.008 at VGS = 4.5 V  
30  
12 nC  
100 % UIS Tested  
Compliant to RoHS Directive 2002/95/EC  
21  
APPLICATIONS  
DC/DC Converter  
- Notebook Vcore  
- POL  
SO-8  
D
D
D
D
D
S
S
1
2
3
4
8
7
6
5
S
G
G
Top View  
S
N-Channel MOSFET  
Ordering Information:  
Si4156DY-T1-GE3 (Lead (Pb)-free and Halogen-free)  
ABSOLUTE MAXIMUM RATINGS T = 25 °C, unless otherwise noted  
A
Parameter  
Drain-Source Voltage  
Gate-Source Voltage  
Symbol  
VDS  
VGS  
Limit  
30  
20  
Unit  
V
TC = 25 °C  
TC = 70 °C  
TA = 25 °C  
TA = 70 °C  
24  
19  
15.7b, c  
12.5b, c  
70  
35  
61  
5
2.1b, c  
6
Continuous Drain Current (TJ = 150 °C)  
ID  
A
Pulsed Drain Current  
Avalanche Current  
Avalanche Energy  
IDM  
IAS  
EAS  
L = 0.1 mH  
mJ  
A
T
T
C = 25 °C  
A = 25 °C  
Continuous Source-Drain Diode Current  
IS  
TC = 25 °C  
C = 70 °C  
T
3.8  
Maximum Power Dissipation  
PD  
W
2.5b, c  
1.6b, c  
- 55 to 150  
260  
TA = 25 °C  
TA = 70 °C  
TJ, Tstg  
Operating Junction and Storage Temperature Range  
Soldering Recommendations (Peak Temperature)  
°C  
THERMAL RESISTANCE RATINGS  
Parameter  
Maximum Junction-to-Ambientb, d  
Maximum Junction-to-Foot (Drain)  
Symbol  
RthJA  
RthJF  
Typical  
37  
Maximum  
Unit  
t 10 s  
Steady State  
50  
21  
°C/W  
17  
Notes:  
a. Based on TC = 25 °C.  
b. Surface Mounted on 1" x 1" FR4 board.  
c. t = 10 s.  
d. Maximum under Steady State conditions is 81 °C/W.  
Document Number: 64822  
S09-1220-Rev. A, 29-Jun-09  
www.vishay.com  
1
Si4156DY  
Vishay Siliconix  
SPECIFICATIONS T = 25 °C, unless otherwise noted  
J
Parameter  
Symbol  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
Static  
VDS  
ΔVDS/TJ  
ΔVGS(th)/TJ  
VGS(th)  
VGS = 0 V, ID = 250 µA  
ID = 250 µA  
Drain-Source Breakdown Voltage  
30  
V
V
DS Temperature Coefficient  
24  
- 6  
mV/°C  
VGS(th) Temperature Coefficient  
VDS = VGS , ID = 250 µA  
Gate-Source Threshold Voltage  
Gate-Source Leakage  
1.15  
50  
2.2  
100  
1
V
IGSS  
VDS = 0 V, VGS  
=
20 V  
nA  
VDS = 30 V, VGS = 0 V  
DS = 30 V, VGS = 0 V, TJ = 55 °C  
VDS 5 V, VGS = 10 V  
IDSS  
ID(on)  
RDS(on)  
gfs  
Zero Gate Voltage Drain Current  
On-State Drain Currenta  
µA  
A
V
5
VGS = 10 V, ID = 15.7 A  
VGS = 4.5 V, ID = 13.2 A  
VDS = 15 V, ID = 15.7 A  
0.0048  
0.0064  
82  
0.006  
0.008  
Drain-Source On-State Resistancea  
Ω
S
Forward Transconductancea  
Dynamicb  
Ciss  
Coss  
Crss  
Input Capacitance  
1700  
350  
140  
28  
V
DS = 15 V, VGS = 0 V, f = 1 MHz  
Output Capacitance  
Reverse Transfer Capacitance  
pF  
V
DS = 15 V, VGS = 10 V, ID = 19 A  
42  
21  
Qg  
Total Gate Charge  
12  
nC  
Qgs  
Qgd  
Rg  
Gate-Source Charge  
5.4  
4.6  
1.2  
25  
VDS = 15 V, VGS = 4.5 V, ID = 19 A  
Gate-Drain Charge  
Gate Resistance  
f = 1 MHz  
0.2  
2.4  
40  
30  
40  
25  
20  
15  
40  
15  
Ω
td(on)  
tr  
td(off)  
tf  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
20  
V
DD = 15 V, RL = 1.5 Ω  
ID 10 A, VGEN = 4.5 V, Rg = 1 Ω  
Turn-Off Delay Time  
25  
Fall Time  
15  
ns  
Turn-On Delay Time  
12  
Rise Time  
10  
V
DD = 15 V, RL = 1.5 Ω  
ID 10 A, VGEN = 10 V, Rg = 1 Ω  
Turn-Off Delay Time  
25  
Fall Time  
10  
Drain-Source Body Diode Characteristics  
Continuous Source-Drain Diode Current  
Pulse Diode Forward Current  
Body Diode Voltage  
IS  
ISM  
VSD  
trr  
TC = 25 °C  
30  
70  
1.2  
50  
35  
A
IS = 10 A, VGS = 0 V  
0.8  
25  
17  
13  
12  
V
Body Diode Reverse Recovery Time  
Body Diode Reverse Recovery Charge  
Reverse Recovery Fall Time  
Reverse Recovery Rise Time  
ns  
nC  
Qrr  
ta  
IF = 10 A, dI/dt = 100 A/µs, TJ = 25 °C  
ns  
tb  
Notes:  
a. Pulse test; pulse width 300 µs, duty cycle 2 %.  
b. Guaranteed by design, not subject to production testing.  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation  
of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device reliability.  
www.vishay.com  
2
Document Number: 64822  
S09-1220-Rev. A, 29-Jun-09  
Si4156DY  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
70  
10  
8
V
GS  
= 10 V thru 4 V  
T
C
= - 55 °C  
60  
50  
40  
30  
20  
10  
0
6
T
C
= 25 °C  
4
V
= 3 V  
= 2 V  
GS  
2
T
C
= 125 °C  
1.5  
V
GS  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.0  
0.5  
1.0  
2.0  
2.5  
3.0  
V
DS  
- Drain-to-Source Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
Output Characteristics  
Transfer Characteristics  
0.010  
0.008  
0.006  
0.004  
0.002  
2100  
1800  
1500  
1200  
900  
600  
300  
0
C
iss  
V
= 4.5 V  
= 10 V  
GS  
V
GS  
C
oss  
C
rss  
0
10  
20  
30  
40  
50  
60  
70  
0
5
10  
15  
20  
25  
30  
I
- Drain Current (A)  
V
DS  
- Drain-to-Source Voltage (V)  
D
On-Resistance vs. Drain Current and Gate Voltage  
Capacitance  
10  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
V
DS  
= 15 V  
I
= 19 A  
I
= 15.7 A  
D
D
8
V
GS  
= 10 V, 4.5 V  
6
V
DS  
= 24 V  
4
2
0
0
6
12  
18  
24  
30  
- 50 - 25  
0
25  
50  
75  
100 125 150  
T
J
- Junction Temperature (°C)  
Q
g
- Total Gate Charge (nC)  
On-Resistance vs. Junction Temperature  
Gate Charge  
Document Number: 64822  
S09-1220-Rev. A, 29-Jun-09  
www.vishay.com  
3
Si4156DY  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
0.015  
100  
10  
1
I
= 15.7 A  
D
0.012  
0.009  
0.006  
0.003  
0.000  
T
J
= 25 °C  
T
J
= 150 °C  
T
J
= 125 °C  
T
J
= 25 °C  
0
2
4
6
8
10  
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
SD  
- Source-to-Drain Voltage (V)  
V
GS  
- Gate-to-Source Voltage (V)  
On-Resistance vs. Gate-to-Source Voltage  
Source-Drain Diode Forward Voltage  
2.4  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
50  
40  
I
= 250 µA  
D
30  
20  
10  
0
- 50 - 25  
0
25  
50  
75  
100 125 150  
0.001  
0.01  
0.1  
1
10  
100  
600  
T
J
- Temperature (°C)  
Time (s)  
Threshold Voltage  
Single Pulse Power (Junction-to-Ambient)  
100  
Limited by RDS(on)  
*
100 µs  
10  
1
1 ms  
10 ms  
100 ms  
1 s  
10 s  
0.1  
DC  
BVDSS  
TA = 25 °C  
Single Pulse  
0.01  
0.01  
0.1  
1
10  
100  
VDS - Drain-to-Source Voltage (V)  
* VGS > minimum VGS at which RDS(on) is specified  
Safe Operating Area, Junction-to-Ambient  
www.vishay.com  
4
Document Number: 64822  
S09-1220-Rev. A, 29-Jun-09  
Si4156DY  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
6
5
4
3
2
1
0
30  
25  
20  
15  
10  
5
0
25  
50  
75  
100  
125  
150  
0
25  
50  
75  
100  
125  
150  
T
C
- Case Temperature (°C)  
T
C
- Case Temperature (°C)  
Current Derating*  
Power Derating  
* The power dissipation PD is based on TJ(max) = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper  
dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package  
limit.  
Document Number: 64822  
S09-1220-Rev. A, 29-Jun-09  
www.vishay.com  
5
Si4156DY  
Vishay Siliconix  
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted  
2
1
Duty Cycle = 0.5  
0.2  
Notes:  
0.1  
0.1  
P
DM  
0.05  
t
1
t
2
t
t
1
2
1. Duty Cycle, D =  
0.02  
2. Per Unit Base = R  
= 81 °C/W  
thJA  
(t)  
Z
3. T  
- T = P  
DM thJA  
JM  
A
Single Pulse  
0.01  
4. Surface Mounted  
-4  
-3  
-2  
-1  
10  
10  
10  
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Ambient  
1
10  
100  
600  
2
1
Duty Cycle = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
Single Pulse  
0.01  
-4  
-3  
-2  
-1  
10  
10  
10  
Square Wave Pulse Duration (s)  
Normalized Thermal Transient Impedance, Junction-to-Foot  
10  
1
10  
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon  
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and  
reliability data, see www.vishay.com/ppg?64822.  
www.vishay.com  
6
Document Number: 64822  
S09-1220-Rev. A, 29-Jun-09  
Package Information  
Vishay Siliconix  
SOIC (NARROW): 8-LEAD  
JEDEC Part Number: MS-012  
8
6
7
2
5
4
E
H
1
3
S
h x 45  
D
C
0.25 mm (Gage Plane)  
A
All Leads  
0.101 mm  
q
e
B
A
1
L
0.004"  
MILLIMETERS  
Max  
INCHES  
DIM  
A
Min  
Min  
Max  
1.35  
0.10  
0.35  
0.19  
4.80  
3.80  
1.75  
0.20  
0.51  
0.25  
5.00  
4.00  
0.053  
0.004  
0.014  
0.0075  
0.189  
0.150  
0.069  
0.008  
0.020  
0.010  
0.196  
0.157  
A1  
B
C
D
E
e
1.27 BSC  
0.050 BSC  
H
h
5.80  
0.25  
0.50  
0°  
6.20  
0.50  
0.93  
8°  
0.228  
0.010  
0.020  
0°  
0.244  
0.020  
0.037  
8°  
L
q
S
0.44  
0.64  
0.018  
0.026  
ECN: C-06527-Rev. I, 11-Sep-06  
DWG: 5498  
Document Number: 71192  
11-Sep-06  
www.vishay.com  
1
VISHAY SILICONIX  
TrenchFET® Power MOSFETs  
Application Note 808  
Mounting LITTLE FOOT®, SO-8 Power MOSFETs  
Wharton McDaniel  
0.288  
7.3  
Surface-mounted LITTLE FOOT power MOSFETs use  
integrated circuit and small-signal packages which have  
0.050  
1.27  
0.088  
2.25  
been been modified to provide the heat transfer capabilities  
required by power devices. Leadframe materials and  
design, molding compounds, and die attach materials have  
been changed, while the footprint of the packages remains  
the same.  
0.088  
2.25  
0.027  
0.69  
0.078  
1.98  
0.2  
5.07  
See Application Note 826, Recommended Minimum Pad  
Patterns With Outline Drawing Access for Vishay Siliconix  
MOSFETs, (http://www.vishay.com/ppg?72286), for the  
basis of the pad design for a LITTLE FOOT SO-8 power  
MOSFET. In converting this recommended minimum pad  
to the pad set for a power MOSFET, designers must make  
two connections: an electrical connection and a thermal  
connection, to draw heat away from the package.  
Figure 2. Dual MOSFET SO-8 Pad Pattern  
With Copper Spreading  
The minimum recommended pad patterns for the  
single-MOSFET SO-8 with copper spreading (Figure 1) and  
dual-MOSFET SO-8 with copper spreading (Figure 2) show  
the starting point for utilizing the board area available for the  
heat-spreading copper. To create this pattern, a plane of  
copper overlies the drain pins. The copper plane connects  
the drain pins electrically, but more importantly provides  
planar copper to draw heat from the drain leads and start the  
process of spreading the heat so it can be dissipated into the  
ambient air. These patterns use all the available area  
underneath the body for this purpose.  
In the case of the SO-8 package, the thermal connections  
are very simple. Pins 5, 6, 7, and 8 are the drain of the  
MOSFET for a single MOSFET package and are connected  
together. In a dual package, pins 5 and 6 are one drain, and  
pins 7 and 8 are the other drain. For a small-signal device or  
integrated circuit, typical connections would be made with  
traces that are 0.020 inches wide. Since the drain pins serve  
the additional function of providing the thermal connection  
to the package, this level of connection is inadequate. The  
total cross section of the copper may be adequate to carry  
the current required for the application, but it presents a  
large thermal impedance. Also, heat spreads in a circular  
fashion from the heat source. In this case the drain pins are  
the heat sources when looking at heat spread on the PC  
board.  
Since surface-mounted packages are small, and reflow  
soldering is the most common way in which these are  
affixed to the PC board, “thermal” connections from the  
planar copper to the pads have not been used. Even if  
additional planar copper area is used, there should be no  
problems in the soldering process. The actual solder  
connections are defined by the solder mask openings. By  
combining the basic footprint with the copper plane on the  
drain pins, the solder mask generation occurs automatically.  
0.288  
7.3  
0.050  
1.27  
0.196  
5.0  
A final item to keep in mind is the width of the power traces.  
The absolute minimum power trace width must be  
determined by the amount of current it has to carry. For  
thermal reasons, this minimum width should be at least  
0.020 inches. The use of wide traces connected to the drain  
plane provides a low impedance path for heat to move away  
from the device.  
0.027  
0.69  
0.078  
1.98  
0.2  
5.07  
Figure 1. Single MOSFET SO-8 Pad  
Pattern With Copper Spreading  
Document Number: 70740  
Revision: 18-Jun-07  
www.vishay.com  
1
Application Note 826  
Vishay Siliconix  
RECOMMENDED MINIMUM PADS FOR SO-8  
0.172  
(4.369)  
0.028  
(0.711)  
0.022  
0.050  
(0.559)  
(1.270)  
Recommended Minimum Pads  
Dimensions in Inches/(mm)  
Return to Index  
www.vishay.com  
22  
Document Number: 72606  
Revision: 21-Jan-08  
Legal Disclaimer Notice  
Vishay  
Disclaimer  
ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE  
RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.  
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively,  
“Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other  
disclosure relating to any product.  
Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or  
the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all  
liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special,  
consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular  
purpose, non-infringement and merchantability.  
Statements regarding the suitability of products for certain types of applications are based on Vishay’s knowledge of typical  
requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements  
about the suitability of products for a particular application. It is the customer’s responsibility to validate that a particular  
product with the properties described in the product specification is suitable for use in a particular application. Parameters  
provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All  
operating parameters, including typical parameters, must be validated for each customer application by the customer’s  
technical experts. Product specifications do not expand or otherwise modify Vishay’s terms and conditions of purchase,  
including but not limited to the warranty expressed therein.  
Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining  
applications or for any other application in which the failure of the Vishay product could result in personal injury or death.  
Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree  
to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and  
damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay  
or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to  
obtain written terms and conditions regarding products designed for such applications.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by  
any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.  
Document Number: 91000  
Revision: 11-Mar-11  
www.vishay.com  
1

相关型号:

SI4156DY-T1-GE3

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4160DY

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4160DY-T1-GE3

Small Signal Field-Effect Transistor, 16.8A I(D), 30V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, SOP-8
VISHAY

SI4162DY

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4162DY-T1-GE3

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4164DY

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4166DY

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4166DY-T1-GE3

Small Signal Field-Effect Transistor, 20.5A I(D), 30V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, HALOGEN FREE AND ROHS COMPLIANT, SOP-8
VISHAY

SI4168DY

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4170DY-T1-GE3

Small Signal Field-Effect Transistor, 30A I(D), 30V, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, MS-012AA, SOIC-8
VISHAY

SI4172DY

N-Channel 30-V (D-S) MOSFET
VISHAY

SI4172DY-T1-GE3

Specification Status: Released
MACOM