SI4206-BM [SILICON]

RF and Baseband Circuit, CMOS, 8 X 8 MM, LEAD FREE, LGA-32;
SI4206-BM
型号: SI4206-BM
厂家: SILICON    SILICON
描述:

RF and Baseband Circuit, CMOS, 8 X 8 MM, LEAD FREE, LGA-32

电信 电信集成电路
文件: 总40页 (文件大小:1136K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Aero I+  
AEROI+ TRANSCEIVER  
FOR GSM AND GPRS WIRELESS COMMUNICATIONS  
Features  
Pin Assignments  
(Top View)  
„
„
„
Single 8 x 8 mm package  
CMOS process technology  
„
Quad-band support:  
z GSM 850 Class 4, small MS  
z E-GSM 900 Class 4, small MS  
z DCS 1800 Class 1  
Si4206-BM  
(Pin description, see page 35)  
Integrated GSM/GPRS transceiver  
including:  
z Low-IF receiver  
z Universal baseband interface  
z Offset-PLL transmitter  
z Dual RF synthesizer  
z Digitally-controlled crystal oscillator  
(DCXO)  
z PCS 1900 Class 1  
„
„
„
GPRS Class 12 compliant  
28  
27  
26  
25  
24  
23  
22  
32  
31  
3-wire serial interface  
21  
1
2
3
4
5
6
7
RFIGN  
RFIGP  
RFIDN  
RFIDP  
RFIPN  
RFIPP  
GND  
BQP  
BQN  
GND  
GND  
2.7 V to 3.0 V operation  
20  
19  
18  
17  
16  
15  
BIP  
BIN  
„
Integrated VCOs, frequency  
synthesizers, and tuning inductors  
XTAL1  
XTAL2  
XAFC  
GND  
9
GND  
13  
Applications  
29  
30  
8
10  
11  
12  
14  
„
„
Multi-band GSM/GPRS digital cellular handsets  
Multi-band GSM/GPRS wireless data modems  
Description  
Ordering Information:  
See page 36.  
The Aero I+ transceiver is a complete RF front end for multi-band GSM  
and GPRS wireless communications. The transmit section interfaces  
between the baseband processor and the power amplifier. The receive  
section interfaces between the RF band-select SAW filters and the  
baseband processor. All sensitive components, such as RF/IF VCOs,  
loop filters, and tuning inductors, are completely integrated into a single  
compact package. The Aero I+ includes a digitally-controlled crystal  
oscillator (DCXO) function and completely integrates the reference  
oscillator and varactor.  
Patents pending  
Functional Block Diagram  
Si4206  
GSM  
LNA  
PGA  
PGA  
ADC  
ADC  
PGA  
PGA  
DCS  
PCS  
LNA  
LNA  
I
100 kHz  
0 / 90  
Q
I
DET  
GSM  
DCS  
PCS  
PA  
XOUT  
XAFC  
RF  
PLL  
IF  
PLL  
DCXO  
Rev. 1.0 7/04  
Copyright © 2004 by Silicon Laboratories  
Aero I+  
Aero I+  
2
Rev. 1.0  
Aero I+  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4.1. Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.2. Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.3. Frequency Synthesizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4.4. DCXO Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.5. Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.6. XOUT Buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
5. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
6. Pin Descriptions: Si4206-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
8. Package Outline: Si4206-BM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Rev. 1.0  
3
Aero I+  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
Parameter  
Symbol  
TA  
Test Condition  
Min  
–20  
2.7  
Typ  
25  
Max  
85  
Unit  
°C  
Ambient Temperature  
DC Supply Voltage  
VDD  
2.85  
3.0  
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at 2.85 V and an operating temperature of 25 °C unless otherwise stated. Parameters are tested in  
production unless otherwise stated.  
Table 2. Absolute Maximum Ratings1,2  
Parameter  
Symbol  
VDD  
Value  
–0.5 to 3.3  
±10  
Unit  
V
DC Supply Voltage  
3
Input Current  
IIN  
mA  
V
3
Input Voltage  
VIN  
–0.3 to (V + 0.3)  
DD  
Operating Temperature  
Storage Temperature  
TOP  
–40 to 95  
–55 to 150  
10  
°C  
TSTG  
°C  
4
RF Input Level  
dBm  
Notes:  
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. The Si4206 device is a high-performance RF integrated circuit with an ESD rating of < 2 kV. Handling and  
assembly of this device should only be done at ESD-protected workstations.  
3. For signals SCLK, SDI, SEN, PDN, XIN, XEN, XTALEN, and XDRVEN.  
4. At SAW filter output for all bands.  
4
Rev. 1.0  
Aero I+  
Table 3. DC Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
IRX  
Test Condition  
Receive mode  
Min  
Typ  
83  
Max  
115  
109  
6.0  
Unit  
mA  
mA  
mA  
1
Supply Current  
ITX  
Transmit mode  
PDN = 0, XEN = 1,  
85  
IXTAL13  
4.0  
f
= 13 MHz  
XTAL  
PDN = 0, XEN = 1,  
= 26 MHz  
IXTAL26  
IPDN  
5.0  
5
7.0  
80  
mA  
f
XTAL  
PDN = 0, XEN = 0,  
XBUF = 0, XPD1 = 1  
µA  
2
High Level Input Voltage  
VIH  
VIL  
IIH  
0.7 VDD  
0.3 VDD  
10  
V
V
2
Low Level Input Voltage  
2
High Level Input Current  
VIH = VDD = 3.0 V  
–10  
µA  
µA  
2
Low Level Input Current  
IIL  
VIL = 0 V,  
–10  
10  
VDD = 3.0 V  
3
High Level Output Voltage  
VOH  
VOL  
VOH  
VOL  
IOH = –500 µA  
IOL = 500 µA  
IOH = –10 mA  
IOL = 10 mA  
VDD–0.4  
0.4  
V
V
V
V
3
Low Level Output Voltage  
4
High Level Output Voltage  
VDD–0.4  
4
Low Level Output Voltage  
0.4  
Notes:  
1. Measured with load on XOUT pin of 10 pF and fXTAL = 13 MHz. Limits with XEN = 1 guaranteed by characterization.  
Measured with XEN, XDRVEN, and XTALEN tied together and controlled simultaneously.  
2. For pins SCLK, SDI, SEN, XEN, PDN, XDRVEN, and XTALEN.  
3. For pins SDO, XOUT.  
4. For pins DIAG1, DIAG2.  
Rev. 1.0  
5
Aero I+  
Table 4. AC Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Parameter  
SCLK Cycle Time  
tCLK  
tR  
Figures 1, 3  
Figures 1, 3  
Figures 1, 3  
Figures 1, 3  
Figures 1, 3  
Figure 2  
35  
10  
10  
15  
10  
10  
12  
12  
10  
50  
50  
10  
10  
27  
5
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
pF  
SCLK Rise Time  
SCLK Fall Time  
tF  
SCLK High Time  
tHI  
SCLK Low Time  
tLO  
tPR  
tPF  
PDN Rise Time  
PDN Fall Time  
Figure 2  
SDI Setup Time to SCLK↑  
SDI Hold Time from SCLK↑  
SENto SCLKDelay Time  
SCLKto SENDelay Time  
SENto SCLKDelay Time  
SEN Pulse Width  
tSU  
tHOLD  
tEN1  
tEN2  
tEN3  
tW  
Figure 3  
Figure 3  
Figure 3  
Figures 3, 4  
Figures 3, 4  
Figures 3, 4  
Figure 4  
SCLKto SDO Time  
tCA  
*
Digital Input Pin Capacitance  
*Note: For pins SCLK, SDI, SEN, XEN, PDN, XDRVEN, and XTALEN.  
tR  
tF  
80%  
50%  
20%  
SCLK  
tHI  
tLO  
tCLK  
Figure 1. SCLK Timing Diagram  
tPR  
tPF  
80%  
20%  
PDN  
Figure 2. PDN Timing Diagram  
6
Rev. 1.0  
Aero I+  
80%  
50%  
20%  
D17  
D16  
A0  
SDI  
SCLK  
SEN  
tSU  
tHOLD  
80%  
50%  
20%  
tR  
tLO  
tHI  
tF  
tEN2  
tEN3  
tEN1  
tCLK  
80%  
50%  
20%  
tW  
Figure 3. Serial Interface Write Timing Diagram  
80%  
50%  
20%  
A0  
SDI  
SDO  
80%  
50%  
20%  
OD17  
OD16  
OD0  
tCA  
80%  
50%  
20%  
SCLK  
SEN  
tEN2  
tEN3  
80%  
50%  
20%  
tW  
Figure 4. Serial Interface Read Timing Diagram  
Rev. 1.0  
7
Aero I+  
Table 5. Receiver Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
GSM input  
Min  
869  
925  
1805  
1930  
Typ  
Max  
894  
960  
1880  
1990  
3.8  
3.9  
4.1  
4.5  
4.5  
4.6  
5.0  
5.7  
4.6  
4.7  
5.4  
6.0  
Unit  
MHz  
MHz  
MHz  
MHz  
dB  
1
GSM Input Frequency  
f
IN  
1
DCS or PCS Input Frequency  
2,3  
Noise Figure at 25 °C  
NF  
NF  
NF  
2.9  
3.0  
3.3  
3.7  
3.6  
3.7  
4.2  
4.9  
3.7  
3.8  
4.6  
5.2  
–21  
–25  
–16  
–15  
40  
25  
75  
85  
dB  
dB  
dB  
2,3  
Noise Figure at 75 °C  
dB  
dB  
dB  
dB  
2,3  
Noise Figure at 85 °C  
dB  
dB  
dB  
dB  
2,3,4  
3 MHz Input Desensitization  
DES  
–25  
–28  
–20  
–19  
29  
dBm  
dBm  
dBm  
dBm  
dBm  
3
DCS/PCS inputs  
GSM input  
2,3,4  
20 MHz Input Desensitization  
DES  
20  
DCS/PCS inputs  
|f – f | 6 MHz,  
2
Input IP2  
IP2  
IP3  
IR  
1,2  
0
|f – f | = 100 kHz  
2
1
2
Input IP3  
|f – f | 800 kHz,  
–18  
–12  
dBm  
2
1
f = 2f – f  
0
1
2
2,4  
Image Rejection  
GSM Input  
28  
28  
35  
40  
dB  
dB  
DCS/PCS Inputs  
GSM Input  
2,5  
1 dB Input Compression  
CP  
–28  
–27  
–23  
–23  
3.0  
10.0  
100  
96  
–23  
–22  
–18  
–18  
8.5  
15.5  
104  
102  
17  
dBm  
dBm  
dBm  
dBm  
dB  
MAX  
DCS/PCS inputs  
GSM Input  
2,6  
1 dB Input Compression  
CP  
MIN  
MIN  
DCS/PCS inputs  
GSM input  
2,6,7  
Minimum Voltage Gain  
G
12.5  
19.5  
109  
107  
DCS/PCS inputs  
GSM input  
dB  
2,7  
Maximum Voltage Gain  
G
dB  
MAX  
DCS/PCS inputs  
GSM input  
dB  
3,8  
G
dB  
LNA Voltage Gain  
LNA  
DCS/PCS inputs  
GSM input  
15  
dB  
LNA Gain Control Range  
G  
13  
17  
21  
dB  
LNA  
DCS/PCS inputs  
4
8
12  
dB  
8
Rev. 1.0  
Aero I+  
Table 5. Receiver Characteristics (Continued)  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
13  
Typ  
16  
Max  
19  
Unit  
dB  
Analog PGA Control Range  
Analog PGA Step Size  
Digital PGA Control Range  
Digital PGA Step Size  
G  
APGA  
3.2  
4.0  
63  
4.8  
dB  
G  
dB  
DPGA  
1
dB  
9
Maximum Differential Output Voltage  
DACFS[1:0] = 00  
DACFS[1:0] = 01  
DACFS[1:0] = 10  
DACCM[1:0] = 00  
DACCM[1:0] = 01  
DACCM[1:0] = 10  
0.7  
1.5  
2.6  
0.8  
1.05  
1.15  
1.0  
2.0  
3.5  
1.0  
1.25  
1.35  
1.3  
2.5  
4.4  
1.2  
1.45  
1.55  
16  
V
PPD  
PPD  
V
V
PPD  
9
Output Common Mode Voltage  
V
V
V
9,10,11  
Differential Output Offset Voltage  
Differential Output Offset Voltage  
mV  
mV  
5
9,10,11  
Drift  
9,11  
Baseband Gain Error  
10  
1
1
%
deg  
kΩ  
pF  
µs  
9,11  
Baseband Phase Error  
9
Output Load Resistance  
R
Single-ended  
Single-ended  
CSEL = 0  
10  
22  
16  
1.5  
1
L
9
Output Load Capacitance  
C
L
12  
Group Delay  
CSEL = 1  
µs  
12  
Differential Group Delay  
CSEL = 0  
µs  
CSEL = 1  
µs  
3,13  
Powerup Settling Time  
From powerdown  
200  
220  
µs  
Notes:  
1. GSM input pins RFIGP and RFIGN. DCS input pins RFIDP and RFIDN. PCS input pins RFIPP and RFIPN.  
2. Measurement is performed with a 2:1 balun (50 input, 200 balanced output) and includes matching network and  
PCB losses. Measured at max gain (AGAIN[2:0] =100b, LNAG[1:0] = 01b, LNAC[1:0] = 01b) unless otherwise noted.  
Noise figure measurements are referred to 290 °K. Insertion loss of the balun is removed.  
3. Specifications guaranteed by characterization using LQW15AN series matching inductors.  
4. Input signal at balun is –102 dBm. SNR at baseband output is 9 dB.  
5. AGAIN[2:0]=min=000b, LNAG[1:0] = max=01b, LNAC[1:0] =max= 01b.  
6. AGAIN[2:0]=min=000b, LNAG[1:0] = min=00b, LNAC[1:0] = min=00b.  
7. Voltage gain is defined as the differential rms voltage at the BIP/BIN pins or BQP/BQN pins divided by the rms voltage  
at the balun input with DACFS[1:0] = 01 and CSEL = 1. Gain is 1.5 dB higher with CSEL = 0. Minimum and maximum  
values do not include the variation in the DAC full scale voltage (also see Maximum Differential Output Voltage  
specification).  
8. Voltage gain is defined as the differential rms voltage at the LNA output divided by the rms voltage at the balun output.  
9. Output pins BIP, BIN, BQP, BQN.  
10. Specified as root sum square:  
2 . Drift specification applies to dc offset  
(RXIP RXIN)2 + (RXQP RXQN)  
calibration and is guaranteed by characterization. See ZERODEL[2:0] in the register description.  
11. The baseband signal path is entirely digital. Gain, phase, and offset errors at the baseband outputs are because of the  
D/A converters. Offsets can be measured and calibrated out. See ZERODEL[2:0] in the register description.  
12. Group delay is measured from antenna input to baseband outputs. Differential group delay is measured in-band.  
13. Includes settling time of the frequency synthesizer. Settling to 5 degrees phase error measured at BIP, BIN, BQP, and  
BQN pins.  
Rev. 1.0  
9
Aero I+  
Receive Path Magnitude Response (CSEL = 0)  
Receive Path Magnitude Response (CSEL = 1)  
0
0
−20  
−20  
−40  
−60  
−80  
−40  
−60  
−80  
−100  
−120  
0
50  
100  
150  
200  
250  
300  
350  
400  
0
50  
100  
150  
200  
250  
300  
350  
400  
Frequency (KHz)  
Frequency (KHz)  
Figure 8. Receive Path Magnitude Response  
(CSEL = 1)  
Figure 5. Receive Path Magnitude Response  
(CSEL = 0)  
Receive Path Passband Magnitude Response (CSEL = 1)  
2
Receive Path Passband Magnitude Response (CSEL = 0)  
2
0
−2  
0
−2  
−4  
−4  
−6  
−6  
−8  
−8  
−10  
−12  
−14  
−16  
−10  
−12  
−14  
−16  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Frequency (KHz)  
Frequency (KHz)  
Figure 9. Receive Path Passband Magnitude  
Response (CSEL = 1)  
Figure 6. Receive Path Passband Magnitude  
Response (CSEL = 0)  
Receive Path Passband Group Delay (CSEL = 1)  
20  
Receive Path Passband Group Delay (CSEL = 0)  
25  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Frequency (KHz)  
Frequency (KHz)  
Figure 10. Receive Path Passband Group Delay  
(CSEL = 1)  
Figure 7. Receive Path Passband Group Delay  
(CSEL = 0)  
10  
Rev. 1.0  
Aero I+  
Table 6. Transmitter Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
Min  
824  
880  
1710  
1850  
0.88  
1.1  
16  
Typ  
Max  
849  
915  
1785  
1910  
2.2  
1.4  
22  
Unit  
MHz  
MHz  
MHz  
MHz  
1
RFOG Output Frequency  
2
RFOD Output Frequency  
3,4  
I/Q Differential Input Swing  
V
PPD  
3
I/Q Input Common Mode  
V
3,4  
I/Q Differential Input Resistance  
BBG[1:0] = 11  
19  
kΩ  
kΩ  
b
BBG[1:0] = 00  
14  
17  
20  
b
BBG[1:0] = 01  
12  
15  
18  
kΩ  
b
Powered down  
Hi-Z  
kΩ  
3,5  
I/Q Input Capacitance  
5
pF  
3
I/Q Input Bias Current  
13  
16  
19  
µA  
Sideband Suppression  
Carrier Suppression  
IM3 Suppression  
67.7 kHz sinusoid  
67.7 kHz sinusoid  
67.7 kHz sinusoid  
–46  
–48  
–57  
1.9  
5
–34  
–33  
–50  
3.0  
10  
dBc  
dBc  
dBc  
5
o
Phase Error  
rms  
o
PEAK  
1,2  
TXVCO Pushing  
Open loop  
100  
200  
kHz/V  
1,2  
TXVCO Pulling  
VSWR 2:1, all phases,  
open loop  
kHz  
PP  
1,6  
RFOG Output Modulation Spectrum  
400 kHz offset  
1.8 MHz offset  
400 kHz offset  
1.8 MHz offset  
10 MHz offset  
20 MHz offset  
20 MHz offset  
7
–65  
–70  
–65  
–70  
–160  
–166  
–163  
9
–63  
–68  
–63  
–65  
–155  
–164  
–157  
11  
dBc  
dBc  
dBc  
2,6  
RFOD Output Modulation Spectrum  
dBc  
1,5,7  
RFOG Output Phase Noise  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBm  
2,5,7  
RFOD Output Phase Noise  
1
RFOG Output Power Level  
Z = 50 Ω  
L
2
RFOD Output Power Level  
Z = 50 Ω  
6
8
10  
dBm  
L
Rev. 1.0  
11  
Aero I+  
Table 6. Transmitter Characteristics (Continued)  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
2nd harmonic  
Min  
Typ  
Max  
–20  
–10  
150  
Unit  
dBc  
dBc  
µs  
1,2  
RF Output Harmonic Suppression  
3rd harmonic  
5,8  
Powerup Settling Time  
From powerdown  
Notes:  
1. Measured at RFOG pin.  
2. Measured at RFOD pin.  
3. Input pins BIP, BIN, BQP, and BQN.  
4. Differential Input Swing is programmable with the BBG[1:0] bits in register 04h. Program these bits to the closest  
appropriate value. The I/Q Input Resistance scales inversely with the BBG[1:0] setting.  
5. Specifications guaranteed by characterization.  
6. Measured with pseudo-random pattern. Carrier power and noise power < 1.8 MHz measured with 30 kHz RBW. Noise  
power 1.8 MHz measured with 100 kHz RBW.  
7. Measured with all 1s pattern.  
8. Including settling time of the frequency synthesizer. Settling time measured at the RFOD and RFOG pins to 0.1 ppm  
frequency error.  
12  
Rev. 1.0  
Aero I+  
Table 7. Frequency Synthesizer Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1
f
GSM 850 band  
E-GSM 900 band  
DCS 1800 band  
PCS 1900 band  
GSM 850 band  
E-GSM 900  
1737.8  
1849.8  
1804.9  
1929.9  
1272  
1279  
1327  
1423  
1787.8  
1919.8  
1879.9  
1989.9  
1297  
1314  
1402  
1483  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
RF1 VCO Frequency  
RF1  
1
f
RF2 VCO Frequency  
RF2  
DCS 1800 band  
PCS 1900 band  
GSM 850 band  
1
f
896  
798  
IF VCO Frequency  
IF  
E-GSM 900 band  
880–895 MHz  
900–915 MHz  
E-GSM 900 band  
895–900 MHz  
790  
MHz  
DCS 1800 band  
PCS 1900 band  
766  
854  
200  
MHz  
MHz  
kHz  
f
GSM input,  
RFUP = 0  
RF1 PLL Phase Detector Update  
Frequency  
φ
DCS/PCS inputs,  
RFUP = 1  
100  
200  
kHz  
kHz  
f
IF and RF2 PLL Phase Detector  
Update Frequency  
φ
2
Open Loop  
500  
400  
300  
400  
100  
100  
–144  
–126  
–128  
–95  
–80  
–80  
kHz/V  
kHz/V  
kHz/V  
RF1 VCO Pushing  
2
RF2 VCO Pushing  
2
IF VCO Pushing  
2
VSWR = 2:1,  
all phases, open loop  
kHz  
RF1 VCO Pulling  
PP  
2
kHz  
RF2 VCO Pulling  
PP  
2
kHz  
IF VCO Pulling  
PP  
2
3 MHz offset  
400 kHz offset  
400 kHz offset  
3 MHz offset  
–138  
–121  
–123  
–83  
–75  
–70  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
RF1 PLL Phase Noise  
2
RF2 PLL Phase Noise  
2
IF PLL Phase Noise  
2
RF1 PLL Spurious  
2
400 kHz offset  
400 kHz offset  
dBc  
RF2 PLL Spurious  
2
dBc  
IF PLL Spurious  
Notes:  
1. For the GSM input, the RF1 VCO is divided by two. During transmit, the IF VCO is divided by two.  
2. Specifications are guaranteed by characterization.  
Rev. 1.0  
13  
Aero I+  
Table 8. Reference Oscillator Characteristics  
(VDD = 2.7 to 3.0 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
XSEL = 0, DIV2 = 0  
XSEL = 1, DIV2 = 1  
Min  
0
Typ  
13  
Max  
Unit  
MHz  
MHz  
V
Crystal Oscillation Frequency  
f
XTAL  
26  
AFC Input Voltage  
V
2.5  
AFC  
*
AFC Capacitance Range  
C
f
f
f
f
f
f
= 13 MHz  
= 26 MHz  
= 13 MHz  
= 26 MHz  
= 13 MHz  
= 26 MHz  
1.7  
1.4  
3.0  
2.9  
4.4  
4.3  
1.0  
pF  
VAR  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
XTAL  
pF  
*
DAC Capacitance Range  
C
pF  
DAC  
pF  
*
Fixed Capacitance  
C
pF  
FIX  
pF  
Powerup Settling Time  
t
V
= 0 to 1.25 V  
ms  
DCXO  
CTL  
*Note: Parameters relate to reference oscillator frequency tuning range depending on the crystal characteristics. See “AN83:  
Selecting a Crystal for Aero™+/I+ Designs” for detailed instructions on crystal selection.  
14  
Rev. 1.0  
Aero I+  
2. Typical Application Schematic  
RFOG  
RFOD  
DIAG1  
DIAG2  
PDNB  
XEN  
C1  
C2  
Z1  
Z2  
Z3  
XOUT  
GSM900 IN  
OUT+  
OUT-  
IN  
L1  
L2  
L3  
VDD  
GND  
32  
VDD  
31  
GND  
C8  
1
2
3
4
5
6
7
21  
20  
19  
18  
17  
16  
15  
BQP  
BQN  
BIP  
BQP  
RFIGN  
RFIGP  
RFIDN  
RFIDP  
RFIPN  
RFIPP  
GND  
BQN  
BIP  
U1  
SI4206  
C3  
BIN  
BIN  
XTAL1  
XTAL2  
XAFC  
DCS 1800 IN  
OUT+  
OUT-  
IN  
GND  
X1  
13/26MHz  
GND  
29  
30  
GND  
VDD  
C4  
C5  
VDD  
GND  
C7  
XAFC  
XTALEN  
XDRVEN  
SDO  
PCS 1900 IN  
OUT+  
OUT-  
IN  
SENB  
SCLK  
SDI  
GND  
C6  
Notes:  
1. Connect pads on bottom of U1 to GND.  
2. See “AN92: Aero™ I/Aero™ I+ Transceiver PCB Layout Guidelines” for details on the following:  
z LNA matching network (C1–C6, L1–L3). Values should be custom tuned for a specific PCB layout and SAW filter to  
optimize performance.  
z Differential traces between the SAW filters (Z1–Z3) and transceiver (U1) pins 16–21.  
z Detailed SAW filter requirements.  
z Crystal connection to U1 pins 5–6.  
3. XEN, XDRVEN, and XTALEN are recommended to be tied together and controlled simultaneously.  
Rev. 1.0  
15  
Aero I+  
3. Bill of Materials  
Component  
Value/Description  
Supplier(s)  
C1–C2  
1.2 pF, ±0.1 pF, C0G  
(GSM 850 and E-GSM 900)  
Murata GRM36C0G series  
Venkel C0402C0G500 series  
C3–C4  
C5–C6  
1.2 pF, ±0.1 pF, C0G  
(DCS 1800)  
Murata GRM36C0G series  
Venkel C0402C0G500 series  
1.5 pF, ±0.1 pF, C0G  
(PCS 1900)  
Murata GRM36C0G series  
Venkel C0402C0G500 series  
C7  
C8  
L1  
22 nF, ±20%, Z5U/X7R  
10 pF, ±5%, C0G  
24 nH, ±2%  
Murata LQG15HN series (0402 size)  
Murata LQW15AN series (0402 size)  
L2  
L3  
6.8 nH, ±0.2 nH  
5.6 nH, ±0.2 nH  
Murata LQG15HN series (0402 size)  
Murata LQW15AN series (0402 size)  
Murata LQG15HN series (0402 size)  
Murata LQW15AN series (0402 size)  
U1  
X1  
GSM/GPRS Transceiver  
13 or 26 MHz crystal  
Silicon Laboratories Si4206  
KDS 1BR13000AA0F  
KSS CX96FFFBQAJ13  
NDK W-168-237  
Toyocom TN4-25999-r0-2  
Z1  
GSM 850 RX SAW Filter  
(150 balanced output)  
EPCOS B39881-B9001-C710 (5-pin, 1.4 x 2.0 mm)  
EPCOS B39881-B9004-E710 (6-pin, 1.6 x 2.0 mm)  
Murata SAFEK881MFL0T00R00 (6-pin, 1.6 x 2.0 mm)  
E-GSM 900 RX SAW Filter  
(150 balanced output)  
EPCOS B39941-B7820-C710 (5-pin, 1.4 x 2.0 mm)  
Murata SAFEK942MFM0T00R00 (6-pin, 1.6 x 2.0 mm)  
Z2  
Z3  
DCS 1800 RX SAW Filter  
(150 balanced output)  
EPCOS B39182-B7821-C710 (5-pin, 1.4 x 2.0 mm)  
EPCOS B39182-B9013-K310 (6-pin, 1.6 x 2.0 mm)  
Murata SAFEK1G84FA0T00R00 (6-pin, 1.6 x 2.0 mm)  
PCS 1900 RX SAW Filter  
(150 balanced output)  
EPCOS B39202-B7825-C710 (5-pin, 1.4 x 2.0 mm)  
Murata SAFEK1G96FA0T00R00 (6-pin, 1.6 x 2.0 mm)  
16  
Rev. 1.0  
Aero I+  
4. Functional Description  
Si4206  
GSM  
LNA  
PGA  
PGA  
ADC  
ADC  
PGA  
PGA  
DCS  
LNA  
PCS  
LNA  
I
100 kHz  
0 / 90  
Q
I
DET  
GSM  
DCS  
PCS  
PA  
XOUT  
XAFC  
RF  
PLL  
IF  
PLL  
DCXO  
Figure 11. Aero I+ Transceiver Block Diagram  
The Aero I+ transceiver is the industry’s most integrated from the baseband subsystem to the power amplifier,  
RF front end for multi-band GSM/GPRS digital cellular and uses an offset phase-locked loop (PLL) with a fully  
handsets and wireless data modems. The highly integrated transmit VCO. The frequency synthesizer  
integrated solution eliminates the IF SAW filter, external uses Silicon Laboratories’ proven technology that  
low noise amplifiers (LNAs) for three bands, transmit includes integrated RF and IF VCOs, varactors, and  
and RF voltage-controlled oscillator (VCO) modules, loop filters.  
and more than 70 other discrete components found in  
conventional designs.  
The unique integer-N PLL architecture produces a  
transient response superior in speed to fractional-N  
The high level of integration obtained through high- architectures without suffering the high phase noise or  
performance packaging and fine line CMOS process spurious modulation effects often associated with those  
technology results in a solution with 50% less area and designs. This fast transient response makes the Aero I+  
80% fewer components than competing solutions. A transceiver well suited to GPRS multi-slot applications  
triple-band GSM transceiver using the Aero I+ where channel switching and settling times are critical.  
transceiver can be implemented with 15 components in  
While conventional solutions use BiCMOS or other  
2
less than 1.2 cm of board area. This level of integration  
bipolar process technologies, the Aero I+ transceiver  
is an enabling force in lowering the cost, simplifying the  
employs 100% CMOS process. This brings the dramatic  
design and manufacturing, and shrinking the form factor  
cost savings and extensive manufacturing capacity of  
in next-generation GSM/GPRS voice and data  
CMOS to the GSM market.  
terminals.  
The receive section uses a digital low-IF architecture  
that avoids the difficulties associated with direct  
conversion while delivering lower solution cost and  
reduced complexity. The baseband interface is  
compatible with any supplier’s baseband subsystem.  
The transmit section is a complete up-conversion path  
Rev. 1.0  
17  
Aero I+  
4.1. Receiver  
Si4206  
LNA  
LNA  
LNA  
GSM  
DCS  
PCS  
PGA  
ADC  
ADC  
PGA  
PGA  
DAC  
I
PGA  
DAC  
Q
CSEL DGAIN[5:0]  
DACCM[1:0]  
DACFS[1:0]  
ZERODEL[2:0]  
100 kHz  
AGAIN[2:0]  
0/90  
RXBAND[1:0]  
LNAC[1:0]  
LNAG[1:0]  
RF  
PLL  
DCXO  
XOUT  
NRF1[15:0]  
RFUP  
CDAC[5:0]  
Figure 12. Receiver Block Diagram  
The Aero I+ transceiver uses  
a low-IF receiver converters (ADCs).  
architecture that allows for on-chip integration of the  
channel selection filters, eliminating the external RF  
image reject filters and the IF SAW filter required in  
conventional superheterodyne architectures. Compared  
The ADC output is downconverted to baseband with a  
digital 100 kHz quadrature LO signal. Digital decimation  
and IIR filters perform channel selection to remove  
blocking and reference interference signals. The  
response of the IIR filter is programmable to a high  
selectivity setting (CSEL = 0) or a low selectivity setting  
(CSEL = 1). The low selectivity filter has a flatter group  
delay response that may be desirable where the final  
channelization filter is in the baseband chip. After  
channel selection, the digital output is scaled with a  
digital PGA, which is controlled with the DGAIN[5:0] bits  
to  
a
direct-conversion architecture, the low-IF  
architecture has a much greater degree of immunity to  
dc offsets that can arise from RF local oscillator (RFLO)  
self-mixing, 2nd-order distortion of blockers, and device  
1/f noise. This relaxes the common mode balance  
requirements on the input SAW filters and simplifies PC  
board design and manufacturing.  
Three differential-input LNAs are integrated. The GSM in Register 05h.  
input supports the GSM 850 (869–894 MHz) or E-  
The LNAG[1:0], LNAC[1:0], AGAIN[2:0] and DGAIN[5:0]  
GSM 900 (925–960 MHz) bands. The DCS input  
supports the DCS 1800 (1805–1880 MHz) band. The  
PCS input supports the PCS 1900 (1930–1990 MHz)  
band.  
bits must be set to provide a constant amplitude signal  
to the baseband receive inputs. See “AN51: Aero  
Transceiver AGC Strategy” for more details.  
DACs drive a differential analog signal onto the BIP,  
BIN, BQP, and BQN pins to interface to standard  
analog-input baseband ICs. No special processing is  
required in the baseband for offset compensation or  
extended dynamic range. The receive and transmit  
The LNA inputs are matched to the 200 balanced-  
output SAW filters through external LC matching  
networks. The LNA gain is controlled with the  
LNAG[1:0] and LNAC[1:0] bits in Register 05h.  
A quadrature image-reject mixer downconverts the RF baseband I/Q pins are multiplexed together through the  
signal to a 100 kHz intermediate frequency (IF) with the BIP, BIN, BQP, and BQN pins. The common mode  
RFLO from the frequency synthesizer. The RFLO output level is programmable with the DACCM[1:0] bits,  
frequency is between 1737.8 and 1989.9 MHz, and is and the full scale level is programmable with the  
divided by two for GSM 850 and E-GSM 900 modes. DACFS[1:0] bits in Register 12h.  
The mixer output is amplified with an analog  
programmable gain amplifier (PGA), which is controlled  
with the AGAIN[2:0] bits in Register 05h. The  
quadrature IF signal is digitized with high resolution A/D  
18  
Rev. 1.0  
Aero I+  
4.2. Transmitter  
Si4206  
NRF2[15:0]  
PDRB  
NIF[15:0]  
PDIB  
RF  
PLL  
IF  
PLL  
BBG[1:0]  
SWAP  
y2  
REG  
RFOG  
FIF[3:0]  
PA  
PA  
I
GSM  
REG  
RFOD  
I
DET  
y1, 2  
TXBAND[1:0]  
Figure 13. Transmitter Block Diagram  
DCS/PCS  
Q
The transmit (TX) section consists of an I/Q baseband the DCS 1800 and PCS 1900 bands. The I and Q  
upconverter, an offset phase-locked loop (OPLL), and signals are automatically swapped when switching  
two 50 output buffers that can drive external power bands. Therefore, there is no need for the customer to  
amplifiers (PA), one for the GSM 850 (824–849 MHz) externally swap the I and O signals. However, for  
and E-GSM 900 (880–915 MHz) bands and one for the additional layout flexibility, the SWAP bit in register 03h  
DCS 1800 (1710–1785 MHz) and PCS 1900 (1850– can be used to manually exchange the I and Q signals.  
1910 MHz) bands. The OPLL requires no external  
Low-pass filters before the OPLL phase detector reduce  
duplexer to attenuate transmitter noise and spurious  
the harmonic content of the quadrature modulator and  
signals in the receive band, saving both cost and power.  
feedback mixer outputs. The cutoff frequency of the  
Additionally, the output of the transmit VCO (TXVCO) is  
filters is programmable with the FIF[3:0] bits in  
a constant-envelope signal that reduces the problem of  
Register 04h and should be set to the recommended  
spectral spreading caused by non-linearity in the PA.  
settings detailed in the register description.  
A quadrature mixer upconverts the differential in-phase  
(BIP, BIN) and quadrature (BQP, BQN) signals with the  
IFLO to generate a SSB IF signal that is filtered and  
used as the reference input to the OPLL. The IFLO  
frequency is generated between 766 and 896 MHz. The  
IFLO is divided by two to generate the quadrature LO  
signals for the quadrature modulator, resulting in an IF  
between 383 and 448 MHz. For the E-GSM 900 band,  
two different IFLO frequencies are required for spur  
management. Therefore, the IF PLL must be  
programmed per channel in the E-GSM 900 band. The  
IFLO frequencies are defined in Table 6 on page 11.  
The OPLL consists of a feedback mixer, a phase  
detector, a loop filter, and a fully integrated TXVCO. The  
TXVCO is centered between the DCS 1800 and  
PCS 1900 bands, and its output is divided by two for the  
GSM 850 and E-GSM 900 bands. The Si4133T  
generates the RFLO frequency between 1272 and  
1483 MHz. To allow a single VCO to be used for the  
RFLO, high-side injection is used for the GSM 850 and  
E-GSM 900 bands, and low-side injection is used for  
Rev. 1.0  
19  
Aero I+  
4.3. Frequency Synthesizer  
XTALEN  
XAFC  
Si4206  
XTAL1  
y65,  
RF1  
DCXO  
y1, 2  
To  
RX/TX  
I
y130  
DET  
XTAL2  
RF2  
DIV2  
RFUP  
CDAC[5:0]  
RFPWR[1:0]  
N
N
[15:0]  
Self  
RF1  
XOUT  
XEN  
[15:0]  
Tune  
RF2  
RF PLL  
IF PLL  
yN  
yN  
Power  
PDIB  
PDRB  
PDN  
Control  
SDI  
SDO  
Self  
N [15:0]  
IF  
Tune  
Serial  
I/O  
SCLK  
SEN  
SDOSEL[3:0]  
I
DET  
To TX  
Figure 14. Frequency Synthesizer Block Diagram  
The Aero I+ transceiver integrates two complete PLLs A programmable divider in the input stage allows either  
including VCOs, varactors, resonators, loop filters, a 13 or 26 MHz reference frequency depending on the  
reference and VCO dividers, and phase detectors. The choice of crystal. A 26 MHz reference clock can be  
RF PLL uses two multiplexed VCOs. The RF1 VCO is divided by 2 using the DIV2 bit in Register 31h. The RF  
used for receive mode, and the RF2 VCO is used for PLL phase detector update rate (f ) can be programmed  
φ
transmit mode. The IF PLL is used only during transmit with the RFUP bit in register 31h to either f = 100 kHz  
φ
mode. All VCO tuning inductors are also integrated.  
or f = 200 kHz. The IF PLL always uses f = 200 kHz.  
φ
φ
Receive mode should use f = 100 kHz in DCS 1800  
φ
The IF and RF output frequencies are set by  
and PCS 1900 bands, and f = 200 kHz in the GSM 850  
φ
programming the N-Divider registers, N  
, N  
, and  
RF2  
RF1  
and E-GSM 900 bands. Transmit modes should always  
N . Programming the N-Divider register for either RF1  
IF  
use f = 200 kHz.  
φ
or RF2 automatically selects the proper VCO. The  
output frequency of each PLL is as follows:  
fOUT = N × fφ  
20  
Rev. 1.0  
Aero I+  
adjustments to compensate for aging may also be  
performed over time to ensure accuracy.  
4.4. DCXO Overview  
The Aero I+ transceiver integrates the DCXO circuitry  
required to generate a precise system reference clock  
using only an external crystal resonator. (See  
Figure 15.) An internal digitally programmable capacitor  
array (CDAC) provides a coarse method of adjusting  
The baseband determines the appropriate frequency  
adjustment based on the receipt of the FCCH burst. The  
baseband then adjusts the XAFC voltage using the  
baseband AFC DAC (12 or 13-bit).  
the reference frequency in discrete steps. An integrated The baseband AFC DAC can adjust CVAR to correct for  
analog varactor (CVAR) allows for a fine and continuous frequency variations caused by temperature drift. The  
adjustment of the reference frequency by an external step size per bit depends on the resolution of the AFC  
control voltage (XAFC). This control voltage is supplied DAC and its output voltage range.  
by the AFC DAC on the baseband IC. The complete  
4.4.2. DCXO Crystal Selection  
DCXO solution effectively replaces TCVCXO modules  
The tuning range specifications listed in Table 8 on  
typically required to provide a 13 or 26 MHz reference  
page 14 for CDAC and CVAR assume that Aero I+ is  
clock for the system.  
used with a crystal that conforms to the crystal  
parameters listed in the same table. Other crystals may  
4.4.1. DCXO Tuning  
The DCXO uses the CDAC and the CVAR to correct for be used with Aero I+ for cost and/or performance  
both static and dynamic frequency errors, respectively. reasons. For example, using a higher sensitivity crystal  
To compensate for crystal offset error, the CDAC extends the CVAR and the CDAC frequency  
ensures a minimum of ±10 ppm frequency adjustment compensation range. However, care must be taken  
capability. The CDAC is programmed using when using a more sensitive crystal because other  
Register 28h.  
system parameters are affected. Contact Silicon  
Laboratories’ Application Support for assistance in  
selecting other crystals.  
The CDAC register (Register 28) may be programmed  
during powerup or after an initial calibration. Periodic  
;(1  
%$6(%$1'  
6Lꢂꢁꢃꢄ  
;287  
72  
3//V  
;7$/ꢀ  
&9$5  
<ꢀ  
;7$/ꢁ  
;$)&  
$)&  
'$&  
&'$&>ꢀꢁꢂ@  
Figure 15. DCXO System Signal Routing Diagram  
Rev. 1.0  
21  
Aero I+  
4.5. Serial Interface  
A three-wire serial interface is provided to allow an  
external system controller to write the control registers  
for dividers, receive path gain, power down settings,  
and other controls. The serial control word is 24 bits in  
length, comprised of an 18-bit data field and a 6-bit  
address field as shown in Figure 16.  
Last bit  
clocked in  
D
D
D
D
D
D
D
D
D
9
D
8
D
7
D
6
D
5
D
4
D
3
D
2
D
1
D
0
A
5
A
4
A
3
A
2
A
1
A
0
17 16 15 14 13 12 11 10  
Address  
Field  
Data Field  
Figure 16. Serial Interface Format  
All registers must be written when the PDN pin is  
asserted (low), except for Register 22h. All serial  
interface pins should be held at a constant level during  
receive and transmit bursts to minimize spurious  
emissions. This includes stopping the SCLK clock. A  
timing diagram for the serial interface is shown in  
Figure 3 on page 7.  
When the serial interface is enabled (i.e., when SEN is  
low), data and address bits on the SDI pin are clocked  
into an internal shift register on the rising edge of SCLK.  
Data in the shift register is then transferred on the rising  
edge of SEN into the internal data register addressed in  
the address field. The internal shift register ignores any  
leading bits before the 24 required bits. The serial  
interface is disabled when SEN is high.  
Optionally, registers can be read as illustrated in  
Figure 4 on page 7. The serial output data appears on  
the SDO pin after writing the revision register with the  
address to be read. Writing to any of the registers  
causes the function of SDO to revert to its previously  
programmed function.  
4.6. XOUT Buffer  
The Aero I+ transceiver contains a reference clock  
buffer to drive the baseband input. The XSEL control  
has no effect on the buffered clock signal. The XOUT  
buffer is a CMOS driver stage with approximately 250 Ω  
of series resistance. This buffer is enabled when the  
XEN pin is set high, independent of the PDN pin.  
The XTALEN signal controls the powerup state of the  
DCXO and must be enabled (XTALEN = 1) before the  
XOUT signal can be sourced. To achieve complete  
powerdown during sleep, the XEN pin must be set low,  
the XBUF bit in Register 12 must be set to zero, and the  
XPD1 bit in Register 11 must be set to one. During  
normal operation, these bits should be set to their  
default values.  
22  
Rev. 1.0  
Aero I+  
5. Control Registers  
Table 9. Register Summary  
Bit  
Reg Name  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1  
D0  
01h  
02h  
03h  
04h  
05h  
11h  
12h  
19h  
20h  
21h  
22h  
23h  
24h  
28h  
31h  
32h  
Reset  
Mode  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
0
SWAP  
0
AUTO  
MODE[1:0]  
Config  
DIAG[1:0]  
TXBAND[1:0] RXBAND[1:0]  
FIF[3:0]  
0
0
1
0
0
0
Transmit  
Receive  
Config  
0
0
BBG[1:0]  
DGAIN[5:0]  
XPD1  
0
0
AGAIN[2:0]  
LNAC[1:0]  
LNAG[1:0]  
DPDS[2:0]  
1
XBUF  
0
XSEL  
1
0
0
1
0
0
0
0
CSEL  
DAC Config  
Reserved  
0
0
0
0
0
0
1
0
0
0
ZDBS  
0
ZERODEL[2:0]  
0
DACCM[1:0]  
DACFS[1:0]  
0
0
0
0
RX Master #1 RXBAND[1:0]  
NRF1[15:0]  
AGAIN[2:0]  
RX Master #2  
RX Master #3  
0
0
DPDS[2:0]  
0
LNAC[1:0]  
LNAG[1:0]  
0
0
DGAIN[5:0]  
DGAIN[5:0]  
0
0
0
0
0
0
0
0
0
TX Master #1 TXBAND[1:0]  
NRF2[15:0]  
NIF[13:0]  
TX Master #2  
CDAC  
FIF[3:0]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CDAC[5:0]  
Config  
SDOSEL[3:0]  
0
0
0
0
RFUP DIV2  
0
0
0
0
Powerdown  
0
0
0
0
PDIB PDRB  
33h RF1 N Divider  
34h RF2 N Divider  
NRF1[15:0]  
NRF2[15:0]  
NIF[15:0]  
35h  
IF N Divider  
Notes:  
1. Any register not listed here is reserved and should not be written. Writing to reserved registers may result in  
unpredictable behavior.  
2. Master registers 20h to 24h simplify programming the Aero I+ to support initiation of receive (RX) and transmit (TX)  
operations with only two register writes.  
3. See “AN50: Aero Transceiver Programming Guide” for detailed instructions on register programming.  
Rev. 1.0  
23  
Aero I+  
Register 01h. Reset  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
RESET  
Name  
Bit  
Name  
Function  
17:1  
0
Reserved  
RESET  
Program to zero.  
Chip Reset.  
0 = Normal operation (default).  
1 = Reset all registers to default values.  
Note: This register must be written to 0 twice after a reset operation. This bit  
does not reset registers 31h to 35h.  
Register 02h. Mode Control  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
AUTO  
MODE[1:0]  
Name  
Bit  
Name  
Function  
17:3  
2
Reserved  
AUTO  
Program to zero.  
Automatic Mode Select.  
0 = Manual. Mode is controlled by MODE[1:0] bits (default).  
1 = Automatic. Last register write to N implies RX mode; Last register  
RF1  
write to N  
implies TX mode. MODE[1:0] bits are ignored.  
RF2  
1:0  
MODE[1:0]  
Transmit/Receive/Cal Mode Select.  
00 = Receive mode (default).  
01 = Transmit mode.  
10 = Calibration mode.  
11 = Reserved.  
Note: These bits are valid only when AUTO = 0.  
Note: Calibration must be performed each time the power supply is applied. To initiate the calibration mode, set  
MODE[1:0] = 10 and pulse the PDN pin high for at least 150 µs.  
24  
Rev. 1.0  
Aero I+  
Register 03h. Configuration  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
DIAG[1:0]  
SWAP  
0
0
0
TXBAND[1:0]  
RXBAND[1:0]  
0
0
1
0
Name  
Bit  
Name  
Function  
17:14  
13:12  
Reserved  
DIAG[1:0]  
Program to zero.  
DIAG1/DIAG2 Output Select.  
DIAG1  
LOW  
LOW  
HIGH  
HIGH  
DIAG2  
LOW (default)  
HIGH  
LOW  
HIGH  
00 =  
01 =  
10 =  
11 =  
Note: These pins can be used to control antenna switch functions. These bits  
must be programmed with the PDN pin is zero. The DIAG1/DIAG2 pins  
will be held at the desired value regardless of the state of the PDN pin.  
11  
SWAP  
Transmit I/Q Swap.  
0 = Normal (default).  
1 = Swap I and Q for TXIP, TXIN, TXQP, and TXQN pins.  
10:8  
7:6  
Reserved  
Program to zero.  
TXBAND[1:0]  
Transmit Band Select.  
00 = GSM 850 or E-GSM 900 (default).  
01 = DCS 1800.  
10 = PCS 1900.  
11 = Reserved.  
5:4  
RXBAND[1:0]  
Receive Band Select.  
00 = GSM input (default).  
01 = DCS input.  
10 = PCS input.  
11 = Reserved.  
3:2  
1
Reserved  
Reserved  
Reserved  
Program to zero.  
Program to one.  
Program to zero.  
0
Rev. 1.0  
25  
Aero I+  
Register 04h. Transmit Control  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
1
BBG[1:0]  
FIF[3:0]  
0
0
0
0
Name  
Bit  
Name  
Function  
17:11  
10  
Reserved  
Reserved  
BBG[1:0]  
Program to zero.  
Program to one.  
9:8  
TX Baseband Input Full Scale Differential Input Voltage.  
10 = Reserved.  
11 = 2.0 V  
00 = 1.6 V  
01 = 1.2 V  
PPD  
PPD  
PPD  
(default).  
Note: Refer to Table 6 on page 11 for minimum and maximum values. Set this  
register to the nearest value.  
7:4  
3:0  
FIF[3:0]  
TX IF Filter Cutoff Frequency.  
0111 = Use for GSM 850, E-GSM 900 and PCS 1900 bands.  
0110 = Use for DCS 1800 band.  
Note: Use the recommended setting for each band. Other settings reserved.  
Reserved  
Program to zero.  
26  
Rev. 1.0  
Aero I+  
Register 05h. Receive Gain  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
DGAIN[5:0]  
0
AGAIN[2:0]  
LNAC[1:0]  
LNAG[1:0]  
Name  
Bit  
Name  
Function  
17:14  
13:8  
Reserved  
Program to zero.  
DGAIN[5:0]  
Digital PGA Gain Control.  
00h = 0 dB (default).  
01h = 1 dB.  
...  
3Fh = 63 dB.  
Note: See “AN51: Aero Transceiver AGC Strategy” for details on setting the gain  
registers.  
7
Reserved  
Program to zero.  
6:4  
AGAIN[2:0]  
Analog PGA Gain Control.  
000 = 0 dB (default).  
001 = 4 dB.  
010 = 8 dB.  
011 = 12 dB.  
100 = 16 dB.  
101 = Reserved.  
110 = Reserved.  
111 = Reserved.  
Note: See “AN51: Aero Transceiver AGC Strategy” for details on setting the gain  
registers.  
3:2  
1:0  
LNAC[1:0]  
LNAG[1:0]  
LNA Bias Current Control.  
00 = Minimum current (default).  
01 = Maximum current.  
10 = Reserved.  
11 = Reserved.  
Note: Program these bits to the same value as same as LNAG[1:0].  
LNA Gain Control.  
00 = Minimum gain (default).  
01 = Maximum gain.  
10 = Reserved.  
11 = Reserved.  
Notes:  
1. Program these bits to the same value as LNAC[1:0].  
2. See “AN51: Aero Transceiver AGC Strategy” for details on setting the gain  
registers.  
Rev. 1.0  
27  
Aero I+  
Register 11h. Configuration  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
DPDS[2:0]  
XPD1  
1
XSEL  
0
1
0
1
0
0
0
CSEL  
Name  
Bit  
Name  
Function  
17:14  
13:11  
Reserved  
Program to zero.  
Data Path Delayed Start.  
111= Use for GSM 850 and GSM 900 bands.  
011= Use for DCS 1800 and PCS 1900 bands (default).  
DPDS[2:0]  
Note: Use the recommended setting for each band. Other settings reserved.  
10  
XPD1  
Reference Buffer Powerdown.  
0 = Reference buffer always powered up (default).  
1 = Reference buffer powered down when not in use.  
Note: This bit should be set to 0 during normal operation. To achieve lowest  
Si4206 powerdown current (IPDN1), this bit should be set to 1.  
9
8
Reserved  
XSEL  
Program to one.  
Reference Frequency Select.  
0 = No divider. XIN = 13 MHz (default).  
1 = Divide XIN by 2. XIN = 26 MHz.  
Note: The internal clock should always be 13 MHz.  
7
6
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
CSEL  
Program to zero.  
Program to one.  
Program to zero.  
Program to one.  
Program to zero.  
5
4
3:1  
0
Digital IIR Coefficient Select.  
0 = High selectivity filter (default).  
1 = Low selectivity filter.  
28  
Rev. 1.0  
Aero I+  
Register 12h. DAC Configuration  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
1
XBUF  
0
ZDBS  
ZERODEL[2:0]  
DACCM[1:0]  
DACFS[1:0]  
Name  
Bit  
Name  
Function  
17:11  
10  
Reserved  
Reserved  
XBUF  
Program to zero.  
Program to one.  
9
Reference Buffer Power Control.  
0 = Reference buffer powered down when not in use.  
1 = Reference buffer always powered up (default).  
Note: This bit should be set to 1 during normal operation. To achieve the lowest  
Aero I+ powerdown current (IPDN1), this bit should be set to 0.  
8
7
Reserved  
ZDBS  
Program to zero.  
ZERODEL Band Select.  
0 = Use ZERODEL[2:0] settings corresponding to DCS/PCS column  
(default).  
1 = Use RXBAND[1:0] to determine ZERODEL[2:0] delay setting (GSM  
or DCS/PCS).  
6:4  
ZERODEL[2:0]  
RX Output Zero Delay.  
Code  
000:  
001:  
010:  
011:  
100:  
101:  
110:  
111:  
GSM  
90 µs  
DCS/PCS  
130 µs  
150 µs  
170 µs  
180 µs  
190 µs  
200 µs  
220 µs  
(default)  
110 µs  
130 µs  
140 µs  
150 µs  
160 µs  
180 µs  
Reserved  
Note: DAC input is forced to zero after PDN is deasserted. This feature can be  
used by the baseband processor to cancel the Si4206 DAC dc offset.  
Offsets induced on channels due to 13 MHz harmonics will not be  
included in the calibrated value.  
3:2  
1:0  
DACCM[1:0]  
DACFS[1:0]  
RX Output Common Mode Voltage.  
00 = 1.0 V.  
01 = 1.25 V (default).  
10 = 1.35 V.  
11 = Reserved.  
RX Output Differential Full Scale Voltage.  
00 = 1.0 V  
01 = 2.0 V  
10 = 3.5 V  
.
PPD  
PPD  
PPD  
(default).  
.
11 = Reserved.  
Rev. 1.0  
29  
Aero I+  
Register 19h. Reserved  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Name  
Bit  
17:0  
Name  
Function  
Reserved  
Program to zero.  
Register 20h. RX Master #1  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
NRF1[15:0]  
RXBAND[1:0]  
Name  
Notes:  
1. See registers 03h and 33h for bit definitions.  
2. When this register is written, the PDIB bit is automatically set to 0, the PDRB bit is set to 1 and the RFUP bit is set as a  
function of RXBAND[1:0].  
Register 21h. RX Master #2  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
LNAC[1:0]  
LNAG[1:0]  
AGAIN[2:0]  
0
DGAIN[5:0]  
0
DPDS[2:0]  
Name  
Note: See registers 05h and 11h for bit definitions.  
Register 22h. RX Master #3  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
DGAIN[5:0]  
0
0
0
0
0
0
0
0
0
0
0
Name  
Notes:  
1. See register 05h for bit definitions.  
2. The DGAIN[5:0] in register 22h can be changed without powering down.  
30  
Rev. 1.0  
Aero I+  
Register 23h. TX Master #1  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
NRF2[15:0]  
TXBAND[1:0]  
Name  
Notes:  
1. See registers 03h and 34h for bit definitions.  
2. When this register is written, the PDIB bit is automatically set to 1, and the PDRB bit is set to 1.  
Register 24h. TX Master #2  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
NIF[13:0]  
FIF[3:0]  
Name  
Note: See registers 04h and 35h for bit definitions.  
Rev. 1.0  
31  
Aero I+  
Register 28h. CDAC (Si4134T)  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
Name  
CDAC[5:0]  
Bit  
Name  
Function  
17:6  
5:0  
Reserved  
Read as zero.  
DCXO Coarse Frequency DAC Adjustment.  
CDAC[5:0]  
64 steps. 1.0 ppm typical per step. An increase in CDAC results in a  
lower oscillating frequency. Likewise, a decrease in CDAC results in a  
higher oscillating frequency.  
000000 = Highest frequency  
...  
111111 = Lowest frequency  
Register 31h. Main Configuration  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
SDOSEL[3:0]  
0
0
0
0
0
0
RFUP DIV2  
0
0
0
Name  
Bit  
Name  
Function  
17:15  
14:11  
Reserved  
Program to zero.  
SDO Output Control Register.  
The mux_output table is as follows:  
SDOSEL[3:0]  
0000 Connected to the Output Shift Register (default).  
0001 Force the Output to Low.  
0010 Reference Clock.  
0011 Lock Detect (LDETB) Signal from Phase Detectors.  
1111 High Impedance.  
Notes:  
1. SDO is high-impedance when PDN = 0.  
2. SDO is Serial Data Output when in register read mode.  
10:5  
4
Reserved  
RFUP  
Program to zero.  
RF PLL Update Rate (RF1 VCO only).  
0 = 200 kHz update rate (Receive GSM modes).  
1 = 100 kHz update rate (Receive DCS and PCS modes).  
Notes:  
1. This bit is set to 1 when register 20h D[17:16] = 01b or 10b (DCS 1800 or  
PCS 1900 receive modes) and is set to 0 when D[17:16] = 00b or 11b  
(GSM 850 or GSM 900 modes).  
2. This bit is set to 0 when register 23h is written (transmit mode)  
3
DIV2  
Input Clock Frequency.  
0 = No divider. XIN = 13 MHz.  
1 = Divide XIN by 2. XIN = 26 MHz.  
2:0  
Reserved  
Program to zero.  
32  
Rev. 1.0  
Aero I+  
Register 32h. Powerdown  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PDIB PDRB  
Name  
Bit  
17:2  
1
Name  
Reserved  
PDIB  
Function  
Program to zero.  
Powerdown IF PLL.  
0 = IF synthesizer powered down.  
1 = IF synthesizer powered up when the PDN pin is high.  
Notes:  
1. The IF PLL is only used in transmit mode. Powerdown for receive mode.  
2. This bit is set to 0 when register 20h is written (receive mode).  
3. This bit is set to 1 when register 23h is written (transmit mode).  
0
PDRB  
Powerdown RF PLL.  
0 = RF synthesizer powered down.  
1 = RF synthesizer powered up when the PDN pin is high.  
Notes:  
1. This bit is set to 1 when register 20h is written (receive mode).  
2. This bit is set to 1 when register 23h is written (transmit mode).  
Register 33h. RF1 N Divider  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
Name  
N
[15:0]  
RF1  
Bit  
Name  
Function  
17:16  
15:0  
Reserved  
Program to zero.  
N
[15:0]  
N Divider for RF PLL (RF1 VCO).  
RF1  
Used for receive mode.  
Register 34h. RF2 N Divider  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
Name  
N
[15:0]  
RF2  
Bit  
Name  
Function  
17:16  
15:0  
Reserved  
Program to zero.  
N
[15:0]  
N Divider for RF PLL (RF2 VCO).  
RF2  
Used for transmit mode.  
Rev. 1.0  
33  
Aero I+  
Register 35h. IF N Divider  
Bit  
D17 D16 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0  
0
0
Name  
N [15:0]  
IF  
Bit  
Name  
Function  
17:16  
15:0  
Reserved  
Program to zero.  
N [15:0]  
N Divider for IF PLL.  
Used for transmit mode.  
IF  
34  
Rev. 1.0  
Aero I+  
6. Pin Descriptions: Si4206-BM  
28  
27  
26  
25  
24  
23  
22  
32  
31  
21  
1
2
3
4
5
6
7
RFIGN  
RFIGP  
RFIDN  
RFIDP  
RFIPN  
RFIPP  
GND  
BQP  
BQN  
GND  
GND  
20  
19  
18  
17  
16  
15  
BIP  
BIN  
XTAL1  
XTAL2  
XAFC  
GND  
9
GND  
13  
29  
30  
8
10  
11  
12  
14  
Pin Number(s)  
Name  
BQP, BQN  
BIP, BIN  
XTAL1  
XTAL2  
XAFC  
Description  
1, 2  
Transmit/Receive Q signal (differential).  
Transmit/Receive I signal (differential).  
Crystal input.  
3, 4  
5
6
Crystal output.  
7
Baseband AFC signal input.  
Crystal enable.  
8
XTALEN  
XDRVEN  
SDO  
9
10  
XDRV enable.  
Serial data output.  
11  
SEN  
Serial enable input (active low).  
Serial clock input.  
12  
SCLK  
13  
SDI  
Serial data input.  
14, 30, 32  
15, 29, 31  
16, 17  
V
Supply voltage.  
DD  
GND  
Ground. Connect to ground plane on PCB.  
RFIPP, RFIPN PCS LNA input (differential).  
Use for PCS 1900 band.  
18, 19  
20, 21  
22  
RFIDP, RFIDN DCS LNA input (differential).  
Use for DCS 1800 band.  
RFIGP, RFIGN GSM LNA input (differential).  
Use for GSM 850 or E-GSM 900 bands.  
RFOD  
RFOG  
DCS and PCS transmit output to power amplifier.  
Use for DCS 1800 and PCS 1900 bands.  
23  
GSM transmit output to power amplifier.  
Use for GSM 850 and E-GSM 900 bands.  
24, 25  
DIAG1, DIAG2 Diagnostic output.  
Can be used as digital outputs to control antenna switch functions.  
26  
27  
28  
PDN  
XEN  
Powerdown input (active low).  
XOUT pin enable.  
XOUT  
Clock output to baseband.  
Rev. 1.0  
35  
Aero I+  
7. Ordering Guide  
Part Number Description  
Operating  
Temperature  
Si4206-BM  
Tri-band Transceiver with DCXO  
–20 to 85 °C  
GSM 850 or E-GSM 900, DCS 1800, PCS 1900  
Note: Add an “R” at the end of the part number to denote tape and reel option; 2500 quantity per  
reel. The Si4206 is a lead-free device.  
36  
Rev. 1.0  
Aero I+  
8. Package Outline: Si4206-BM  
C
0.10  
C
7.30  
4x  
(4x)  
0.10  
1.35±0.07  
6x 0.80 (=4.80)  
4x  
8.00  
4x 1.25  
4x 0.35  
A
Pin 1 Indicator  
Pin 1  
4x 0.35  
2x 3.80  
8.00  
2x 1.75  
28x 0.50 x 0.30  
M
0.10  
C
A
B
B
B
4x 0.50 x 0.50  
2x 1.75  
2x 3.80  
M
0.10  
C A  
4x 1.20 x 1.20  
M
0.10  
C A B  
Top View  
Side View  
Bottom View  
Figure 17. 32-Pin Land Grid Array (LGA)  
Notes:  
1. Dimensions in mm.  
2. Approximate device weight is 184 mg.  
Rev. 1.0  
37  
Aero I+  
DOCUMENT CHANGE LIST  
Revision 0.81 to Revision 1.0  
„
Table 8 on page 14 updated.  
z CVAR Range, CDAC Range, and CFIX updated.  
Functional Description text on page 19 updated.  
„
„
Figure 15, “DCXO System Signal Routing  
Diagram,” on page 21 updated.  
„
"Ordering Guide" on page 36 updated.  
Rev. 1.0  
38  
Aero I+  
NOTES:  
Rev. 1.0  
39  
Aero I+  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, Texas 78735  
Tel:1+ (512) 416-8500  
Fax:1+ (512) 416-9669  
Toll Free:1+ (877) 444-3032  
Email: Aeroinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed fea-  
tures or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no war-  
ranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume  
any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applica-  
tions intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and Aero are trademarks of Silicon Laboratories Inc.  
Other products or brand names mentioned herein are trademarks or registered trademarks of their respective holder.  
40  
Rev. 1.0  

相关型号:

SI4206-BMR

RF and Baseband Circuit, CMOS, 8 X 8 MM, LEAD FREE, LGA-32
SILICON

SI4210DY

Dual N-Channel 30-V (D-S) MOSFET
VISHAY

SI4210DY-T1-GE3

Dual N-Channel 30-V (D-S) MOSFET
VISHAY

SI4214DDY

Dual N-Channel 30-V (D-S) MOSFET
VISHAY

SI4214DDY-T1-GE3

Dual N-Channel 30-V (D-S) MOSFET
VISHAY

SI4214DY-T1-GE3

Dual N-Channel 30-V (D-S) MOSFET
VISHAY

SI4226DY-T1-E3

MOSFET 2N-CH 25V 8A 8SOIC
VISHAY

SI4226DY-T1-GE3

MOSFET N-CH DUAL 25V 8A 8-SOIC
VISHAY

SI4228DY

Dual N-Channel 25 V (D-S) MOSFET
VISHAY

SI4228DY-T1-GE3

Dual N-Channel 25 V (D-S) MOSFET
VISHAY

Si4230DY

Dual N-Channel 30-V (D-S) MOSFET
VISHAY

SI4230DY-T1-GE3

Dual N-Channel 30-V (D-S) MOSFET
VISHAY