SI4730-D50-GM [SILICON]

Audio Single Chip Receiver, ROHS COMPLIANT, QFN-20;
SI4730-D50-GM
型号: SI4730-D50-GM
厂家: SILICON    SILICON
描述:

Audio Single Chip Receiver, ROHS COMPLIANT, QFN-20

商用集成电路
文件: 总34页 (文件大小:559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si4730/31-D50  
BROADCAST AM/FM RADIO RECEIVER  
Features  
Worldwide FM band support  
(64–108 MHz)  
Worldwide AM band support  
(520–1710 kHz)  
Excellent real-world performance  
Integrated VCO  
Advanced AM/FM seek tuning  
AM/FM digital tuning  
Automatic frequency control (AFC)  
Automatic gain control (AGC)  
Digital FM stereo decoder  
Programmable AVC max gain  
Programmable de-emphasis  
Seven selectable AM channel filters  
Advanced audio processing  
No manual alignment necessary  
Programmable reference clock  
Volume control  
Adjustable soft mute control  
RDS/RBDS processor (Si4731 only)  
I2S digital audio out  
Ordering Information:  
2-wire and 3-wire control interface  
Integrated LDO regulator  
Wide range of ferrite loop sticks and  
air loop antennas supported  
QFN package  
See page 26.  
Pin Assignments  
Si4730/31  
RoHS compliant  
Not suitable for wall-plugged  
consumer electronic applications*  
*Note: For consumer electronics applications, use Si4730/31-D60 for worldwide  
20 19 18 17  
NC  
FMI  
1
16  
CE and EN compliance.  
2
15 DOUT  
14 LOUT  
13 ROUT  
12 GND  
11 VA  
Applications  
RFGND  
AMI  
3
4
5
GND  
PAD  
Cellular handsets  
MP3 players  
Portable navigation  
Mobile Internet Devices Tablets  
USB FM radio eBooks  
RST  
Description  
6
7
8
9
10  
The Si4730/31-D50 is the fourth generation digtial CMOS AM/FM radio receiver  
IC from Silicon Labs. The Si4730/31-D50 integrates the complete tuner function  
from antenna input to audio output.  
This product, its features, and/or its  
architecture is covered by one or more of  
the following patents, as well as other  
patents, pending and issued, both  
foreign and domestic: 7,127,217;  
Functional Block Diagram  
Si473x  
7,272,373;  
7,355,476;  
7,272,375;  
7,426,376;  
7,321,324;  
7,471,940;  
AMI  
DOUT  
RDS  
(Si4731)  
AM  
ANT  
LNA  
AGC  
DIGITAL  
AUDIO  
RFGND  
7,339,503; 7,339,504.  
DFS  
GPO/DCLK  
LOW-IF  
ADC  
ADC  
DAC  
DAC  
ROUT  
LOUT  
FM  
ANT  
LNA  
AGC  
DSP  
FMI  
2.7– 5.5 V  
VA  
CONTROL  
INTERFACE  
LDO  
AFC  
VD  
1.62–3.6 V  
GND  
Rev. 1.0 2/11  
Copyright © 2011 by Silicon Laboratories  
Si4730/31-D50  
Si4730/31-D50  
2
Rev. 1.0  
Si4730/31-D50  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3. Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
4.3. FM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.4. AM Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.5. Digital Audio Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
4.6. Stereo Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.7. Received Signal Qualifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.8. De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.9. Volume Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.10. Stereo DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.11. Soft Mute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.12. FM Hi-Cut Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.13. RDS/RBDS Processor (Si4731 Only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.14. Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.15. Seek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.16. Reference Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.17. Control Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.18. GPO Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.19. Firmware Upgrades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.20. Reset, Powerup, and Powerdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
4.21. Programming with Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
5. Pin Descriptions: Si4730/31-GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
7. Package Markings (Top Marks) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
7.1. Si4730/31 Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
7.2. Top Mark Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
8. Package Outline: Si4730/31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
9. PCB Land Pattern: Si4730/31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29  
10. Additional Reference Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Document Change List: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Rev. 1.0  
3
Si4730/31-D50  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions*  
Parameter  
Analog Supply Voltage  
Symbol Test Condition  
Min  
2.7  
Typ  
Max  
5.5  
3.6  
Unit  
V
V
A
Digital and I/O Supply Voltage  
V
1.62  
10  
V
D
Analog Power Supply Powerup Rise  
Time  
V
µs  
ARISE  
Digital Power Supply Powerup Rise  
Time  
V
10  
µs  
DRISE  
Ambient Temperature  
T
–20  
25  
85  
C  
A
*Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at VA = 3.3 V and 25 C unless otherwise stated. Parameters are tested in production unless  
otherwise stated.  
Table 2. Absolute Maximum Ratings1,2  
Parameter  
Analog Supply Voltage  
Symbol  
Value  
–0.5 to 5.8  
–0.5 to 3.9  
10  
Unit  
V
V
A
Digital and I/O Supply Voltage  
V
V
D
3
Input Current  
I
mA  
V
IN  
3
Input Voltage  
V
T
–0.3 to (V + 0.3)  
IN  
IO  
Operating Temperature  
Storage Temperature  
–40 to 95  
–55 to 150  
0.4  
C  
C  
OP  
T
STG  
4
RF Input Level  
V
pK  
Notes:  
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure beyond  
recommended operating conditions for extended periods may affect device reliability.  
2. The Si4730/31 device is a high-performance RF integrated circuit with certain pins having an ESD rating of < 2 kV  
HBM. Handling and assembly of these devices should only be done at ESD-protected workstations.  
3. For input pins DFS, SCLK, SEN, SDIO, RST, RCLK, GPO1, GPO2, GPO3, and DCLK.  
4. At RF input pins FMI and AMI.  
4
Rev. 1.0  
Si4730/31-D50  
Table 3. DC Characteristics  
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
FM Mode  
V Supply Current  
I
7.5  
8.5  
8.4  
9.7  
11.1  
11.1  
mA  
mA  
mA  
A
FMVA  
FMVD  
FMVD  
1
V Supply Current  
I
I
Digital Output Mode  
D
V Supply Current  
Analog Output Mode  
D
AM Mode  
V Supply Current  
I
7.5  
8.5  
8.0  
8.5  
11.0  
10.2  
mA  
mA  
mA  
A
AMVA  
AMVD  
AMVD  
1
V Supply Current  
I
I
Digital Output Mode  
D
V Supply Current  
Analog Output Mode  
D
Powerdown and Interface  
V Powerdown Current  
I
4
15  
10  
µA  
µA  
V
A
APD  
V Powerdown Current  
I
SCLK, RCLK inactive  
3
D
DOPD  
2
2
High Level Input Voltage  
V
0.7 x V  
–0.3  
–10  
V + 0.3  
D
IH  
D
2
Low Level Input Voltage  
V
0.3 x V  
10  
V
IL  
D
High Level Input Current  
I
V
= V = 3.6 V  
µA  
µA  
IH  
IN  
D
2
Low Level Input Current  
I
V
= 0 V,  
IN  
–10  
10  
IL  
V = 3.6 V  
D
3
High Level Output Voltage  
V
I
= 500 µA  
0.8 x V  
V
V
OH  
OUT  
OUT  
D
3
Low Level Output Voltage  
V
I
= –500 µA  
0.2 x V  
OL  
D
Notes:  
1. Guaranteed by characterization.  
2. For input pins SCLK, SEN, SDIO, RST, RCLK, DCLK, DFS, GPO1, GPO2, and GPO3.  
3. For output pins SDIO, DOUT, GPO1, GPO2, and GPO3.  
Rev. 1.0  
5
 
 
 
 
Si4730/31-D50  
Table 4. Reset Timing Characteristics1,2,3  
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol  
Min  
100  
30  
Typ  
Max  
Unit  
µs  
RST Pulse Width and GPO1, GPO2/INT Setup to RST  
GPO1, GPO2/INT Hold from RST  
Important Notes:  
t
SRST  
t
ns  
HRST  
1. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
2. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high until  
after the first start condition.  
3. When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
4. If GPO1 and GPO2 are actively driven by the user, then minimum tSRST is only 30 ns. If GPO1 or GPO2 is hi-Z, then  
minimum tSRST is 100 µs, to provide time for on-chip 1 Mdevices (active while RST is low) to pull GPO1 high and  
GPO2 low.  
tHRST  
tSRST  
70%  
30%  
RST  
70%  
30%  
GPO1  
70%  
30%  
GPO2/  
INT  
Figure 1. Reset Timing Parameters for Busmode Select  
6
Rev. 1.0  
 
 
 
Si4730/31-D50  
Table 5. 2-Wire Control Interface Characteristics1,2,3  
(VA = 2.7 to 5.5 V, VD = 1.62 to 3.6 V, TA = –20 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
0
Typ  
Max  
400  
Unit  
kHz  
µs  
SCLK Frequency  
SCLK Low Time  
SCLK High Time  
f
SCL  
t
1.3  
0.6  
0.6  
LOW  
t
µs  
HIGH  
SCLK Input to SDIO Setup  
t
t
µs  
SU:STA  
(START)  
SCLK Input to SDIO Hold  
0.6  
µs  
HD:STA  
(START)  
SDIO Input to SCLK Setup  
t
t
100  
0
900  
ns  
ns  
µs  
SU:DAT  
4,5  
SDIO Input to SCLK Hold  
HD:DAT  
SU:STO  
SCLK input to SDIO Setup  
t
0.6  
(STOP)  
STOP to START Time  
SDIO Output Fall Time  
t
1.3  
µs  
ns  
BUF  
t
250  
f:OUT  
Cb  
----------  
1pF  
20 + 0.1  
SDIO Input, SCLK Rise/Fall Time  
t
t
300  
ns  
f:IN  
r:IN  
Cb  
----------  
1pF  
20 + 0.1  
SCLK, SDIO Capacitive Loading  
Input Filter Pulse Suppression  
Notes:  
C
50  
50  
pF  
ns  
b
t
SP  
1. When VD = 0 V, SCLK and SDIO are low impedance.  
2. When selecting 2-wire mode, the user must ensure that a 2-wire start condition (falling edge of SDIO while SCLK is  
high) does not occur within 300 ns before the rising edge of RST.  
3. When selecting 2-wire mode, the user must ensure that SCLK is high during the rising edge of RST, and stays high  
until after the first start condition.  
4. The Si4730/31 delays SDIO by a minimum of 300 ns from the VIH threshold of SCLK to comply with the minimum  
tHD:DAT specification.  
5. The maximum tHD:DAT has only to be met when fSCL = 400 kHz. At frequencies below 400 KHz, tHD:DAT may be  
violated as long as all other timing parameters are met.  
Rev. 1.0  
7
 
 
 
 
Si4730/31-D50  
tSU:STA tHD:STA  
tLOW  
tHIGH  
tr:IN  
tf:IN  
tSP  
tSU:STO  
tBUF  
70%  
SCLK  
30%  
70%  
SDIO  
30%  
tf:IN,  
tf:OUT  
START  
tHD:DAT tSU:DAT  
tr:IN  
STOP  
START  
Figure 2. 2-Wire Control Interface Read and Write Timing Parameters  
SCLK  
SDIO  
A6-A0,  
R/W  
D7-D0  
D7-D0  
START  
ADDRESS + R/W  
ACK  
DATA  
ACK  
DATA  
ACK  
STOP  
Figure 3. 2-Wire Control Interface Read and Write Timing Diagram  
8
Rev. 1.0  
 
 
Si4730/31-D50  
Table 6. 3-Wire Control Interface Characteristics  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
0
Typ  
Max  
2.5  
Unit  
MHz  
ns  
SCLK Frequency  
SCLK High Time  
SCLK Low Time  
f
CLK  
t
25  
25  
20  
10  
10  
2
HIGH  
t
ns  
LOW  
SDIO Input, SEN to SCLKSetup  
SDIO Input to SCLKHold  
t
ns  
S
t
ns  
HSDIO  
SEN Input to SCLKHold  
t
ns  
HSEN  
SCLKto SDIO Output Valid  
SCLKto SDIO Output High Z  
SCLK, SEN, SDIO, Rise/Fall time  
t
Read  
Read  
25  
25  
10  
ns  
CDV  
t
2
ns  
CDZ  
t , t  
ns  
R
F
Note: When selecting 3-wire mode, the user must ensure that a rising edge of SCLK does not occur within 300 ns before the  
rising edge of RST.  
70%  
SCLK  
30%  
tR  
tF  
tHSDIO  
tHIGH  
tLOW  
tHSEN  
tS  
70%  
30%  
tS  
SEN  
A6-A5,  
R/W,  
A4-A1  
70%  
30%  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
Address In  
Data In  
Figure 4. 3-Wire Control Interface Write Timing Parameters  
70%  
30%  
SCLK  
SEN  
tHSDIO  
tCDV  
tHSEN  
tS  
tCDZ  
70%  
30%  
tS  
70%  
30%  
A6-A5,  
R/W,  
A4-A1  
A7  
A0  
D15  
D14-D1  
D0  
SDIO  
½ Cycle Bus  
Turnaround  
Address In  
Data Out  
Figure 5. 3-Wire Control Interface Read Timing Parameters  
Rev. 1.0  
9
 
 
 
Si4730/31-D50  
Table 7. Digital Audio Interface Characteristics  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol Test Condition  
Min  
26  
10  
10  
5
Typ  
Max  
1000  
Unit  
ns  
DCLK Cycle Time  
t
DCT  
DCH  
DCLK Pulse Width High  
t
ns  
DCLK Pulse Width Low  
t
ns  
DCL  
DFS Set-up Time to DCLK Rising Edge  
DFS Hold Time from DCLK Rising Edge  
t
ns  
SU:DFS  
HD:DFS  
t
5
ns  
DOUT Propagation Delay from DCLK Falling  
Edge  
t
0
12  
ns  
PD:DOUT  
tDCH  
tDCL  
DCLK  
tDCT  
DFS  
tHD:DFS  
tSU:DFS  
DOUT  
tPD:OUT  
Figure 6. Digital Audio Interface Timing Parameters, I2S Mode  
10  
Rev. 1.0  
Si4730/31-D50  
Table 8. FM Receiver Characteristics1,2  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C, 76–108 MHz)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
76  
Typ  
Max  
108  
3.5  
Unit  
MHz  
Input Frequency  
f
RF  
3,4,5  
Sensitivity  
(S+N)/N = 26 dB  
2.2  
11  
µV EMF  
µV EMF  
6
RDS Sensitivity  
f = 2 kHz,  
RDS BLER < 5%  
6,7  
6,7  
LNA Input Resistance  
3
4
4
5
5
6
k  
LNA Input Capacitance  
pF  
6,8  
Input IP3  
100  
40  
35  
60  
35  
72  
15  
35  
55  
70  
45  
105  
50  
50  
70  
90  
1
dBµV EMF  
3,4,6,7  
m = 0.3  
±200 kHz  
±400 kHz  
In-band  
dB  
dB  
dB  
dB  
AM Suppression  
Adjacent Channel Selectivity  
Alternate Channel Selectivity  
Spurious Response Rejection  
6
3,4,7  
80  
mV  
Audio Output Voltage  
RMS  
3,7,9  
dB  
Hz  
Audio Output L/R Imbalance  
Audio Frequency Response Low  
6
–3 dB  
–3 dB  
30  
0.5  
80  
54  
6
kHz  
dB  
Audio Frequency Response High  
7,9  
42  
63  
58  
0.1  
75  
50  
34  
30  
Audio Stereo Separation  
3,4,5,7  
dB  
Audio Mono S/N  
4,5,6,7  
dB  
Audio Stereo S/N  
3,7,9  
%
Audio THD  
6
De-emphasis Time Constant  
FM_DEEMPHASIS = 2  
FM_DEEMPHASIS = 1  
f = ±400 kHz  
µs  
µs  
3,4,5,6,12,13  
Blocking Sensitivity  
dBµV  
dBµV  
f = ±4 MHz  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
4. f = 22.5 kHz.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Guaranteed by characterization.  
7. V  
= 1 mV.  
EMF  
8. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
9. f = 75 kHz.  
10. At L and R  
pins.  
OUT  
OUT  
11. Analog audio output mode.  
12. Blocker Amplitude = 100 dBµV  
13. Sensitivity measured at (S+N)/N = 26 dB.  
14. At temperature (25°C).  
Rev. 1.0  
11  
 
 
 
 
 
 
 
 
Si4730/31-D50  
Table 8. FM Receiver Characteristics1,2 (Continued)  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C, 76–108 MHz)  
A
D
Parameter  
Symbol  
Test Condition  
f = ±400 kHz, ±800 kHz  
f = ±4 MHz, ±8 MHz  
Single-ended  
Min  
Typ  
40  
35  
Max  
Unit  
dBµV  
dBµV  
k  
3,4,5,6,12,13  
Intermod Sensitivity  
6,10  
R
10  
Audio Output Load Resistance  
L
6,10  
C
Single-ended  
50  
60  
pF  
Audio Output Load Capacitance  
L
6
Seek/Tune Time  
RCLK tolerance  
= 100 ppm  
ms/channel  
6
Powerup Time  
From powerdown  
110  
3
ms  
dB  
14  
RSSI Offset  
Input levels of 8 and  
60 dBµV at RF Input  
–3  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
4. f = 22.5 kHz.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Guaranteed by characterization.  
7. V  
= 1 mV.  
EMF  
8. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
9. f = 75 kHz.  
10. At L and R  
pins.  
OUT  
OUT  
11. Analog audio output mode.  
12. Blocker Amplitude = 100 dBµV  
13. Sensitivity measured at (S+N)/N = 26 dB.  
14. At temperature (25°C).  
12  
Rev. 1.0  
Si4730/31-D50  
Table 9. 64–75.9 MHz Input Frequency FM Receiver Characteristics1,2,6  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
64  
3
Typ  
Max  
75.9  
5
Unit  
MHz  
µV EMF  
k  
Input Frequency  
f
RF  
3,4,5  
Sensitivity  
(S+N)/N = 26 dB  
3.5  
4
7
LNA Input Resistance  
7
LNA Input Capacitance  
4
5
6
pF  
8
Input IP3  
72  
15  
70  
45  
10  
105  
50  
50  
70  
80  
90  
1
dBµV EMF  
dB  
3,4,7  
m = 0.3  
±200 kHz  
±400 kHz  
AM Suppression  
dB  
Adjacent Channel Selectivity  
Alternate Channel Selectivity  
dB  
3,4,7  
mV  
Audio Output Voltage  
RMS  
3,7,9  
dB  
Audio Output L/R Imbalance  
–3 dB  
–3 dB  
30  
80  
54  
50  
60  
Hz  
Audio Frequency Response Low  
Audio Frequency Response High  
kHz  
3,4,5,7,10  
63  
0.1  
75  
50  
dB  
Audio Mono S/N  
3,7,9  
%
Audio THD  
De-emphasis Time Constant  
FM_DEEMPHASIS = 2  
FM_DEEMPHASIS = 1  
Single-ended  
µs  
µs  
k  
10  
R
Audio Output Load Resistance  
L
L
10  
C
Single-ended  
pF  
Audio Output Load Capacitance  
Seek/Tune Time  
RCLK tolerance  
= 100 ppm  
ms/channel  
Powerup Time  
From powerdown  
110  
3
ms  
dB  
11  
RSSI Offset  
Input levels of 8 and  
60 dBµV EMF  
–3  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 98.1 MHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. F  
= 1 kHz, 75 µs de-emphasis, MONO = enabled, and L = R unless noted otherwise.  
MOD  
4. f = 22.5 kHz.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Guaranteed by characterization.  
7. V  
= 1 mV.  
EMF  
8. |f – f | > 2 MHz, f = 2 x f – f . AGC is disabled.  
2
1
0
1
2
9. f = 75 kHz.  
10. At L and R  
pins.  
OUT  
OUT  
11. At temperature (25 °C).  
Rev. 1.0  
13  
 
 
 
 
 
 
 
 
 
Si4730/31-D50  
Table 10. AM Receiver Characteristics1,2  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
520  
Typ  
Max  
1710  
35  
Unit  
kHz  
Input Frequency  
f
RF  
3,5,6  
Sensitivity  
(S+N)/N = 26 dB  
THD < 8%  
25  
300  
40  
60  
60  
0.1  
µV EMF  
6,7  
Large Signal Voltage Handling  
mV  
RMS  
RMS  
6
Power Supply Rejection Ratio  
V = 100 mVRMS, 100 Hz  
dB  
A
3,8  
Audio Output Voltage  
54  
67  
mV  
3,5,8  
Audio S/N  
50  
dB  
3,8  
Audio THD  
0.5  
450  
110  
%
6,9  
Antenna Inductance  
180  
µH  
ms  
6
Powerup Time  
From powerdown  
Notes:  
1. Additional testing information is available in “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure.”  
Volume = maximum for all tests. Tested at RF = 520 kHz.  
2. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
3. FMOD = 1 kHz, 30% modulation, 2 kHz channel filter.  
4. Analog audio output mode.  
5. B = 300 Hz to 15 kHz, A-weighted.  
AF  
6. Guaranteed by characterization.  
7. See “AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure” for evaluation method.  
8. V = 5 mVrms.  
IN  
9. Stray capacitance on antenna and board must be < 10 pF to achieve full tuning range at higher inductance levels.  
14  
Rev. 1.0  
 
 
 
 
 
Si4730/31-D50  
Table 11. Reference Clock and Crystal Characteristics  
(V = 2.7 to 5.5 V, V = 1.62 to 3.6 V, TA = –20 to 85 °C)  
A
D
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Reference Clock  
1
RCLK Supported Frequencies  
31.130  
–100  
1
32.768  
40,000  
100  
kHz  
2
RCLK Frequency Tolerance  
ppm  
REFCLK_PRESCALE  
REFCLK  
4095  
31.130  
32.768  
34.406  
kHz  
Crystal Oscillator  
Crystal Oscillator Frequency  
–100  
32.768  
100  
3.5  
kHz  
ppm  
pF  
2
Crystal Frequency Tolerance  
Board Capacitance  
ESR  
40  
C Single-ended  
12  
pF  
L
Notes:  
1. The Si4730/31 divides the RCLK input by REFCLK_PRESCALE to obtain REFCLK. There are some RCLK  
frequencies between 31.130 kHz and 40 MHz that are not supported. For more details, see Table 6 of “AN332: Si47xx  
Programming Guide”.  
2. A frequency tolerance of ±50 ppm is required for FM seek/tune using 50 kHz channel spacing.  
Rev. 1.0  
15  
 
 
 
Si4730/31-D50  
2. Typical Application Schematic  
Optional: Digital Audio Out  
OPMODE: 0xB0, 0xB5  
C9  
GPO1  
GPO2/INT  
R3  
R2  
R1  
GPO3/DCLK  
DFS  
DOUT  
1
15  
NC  
DOUT  
C2  
C3  
2
3
4
5
14  
FM Antenna  
FMI  
LOUT  
LOUT  
13  
RFGND  
AMI  
ROUT  
ROUT  
Si473x  
12  
L1  
GND  
D50  
2.7 to 5.5 V  
C1  
11  
RSTB  
VA  
VA  
1.62 to 3.6 V  
C4  
VD  
RSTB  
RCLK  
SDIO  
SCLK  
SENB  
Optional: AM Air Loop Antenna  
L2  
GPO3  
RCLK  
T1  
C3  
X1  
1
3
AMI  
RFGND  
C6  
C5  
Optional: For Crystal OSC  
Notes:  
1. Place C1 close to V pin.  
A
2. All grounds connect directly to GND plane on PCB.  
3. Pins 1 and 20 are no connects, leave floating.  
4. To ensure proper operation and receiver performance, follow the guidelines in “AN383: Si47xx Antenna, Schematic,  
Layout, and Design Guidelines.” Silicon Laboratories will evaluate schematics and layouts for qualified customers.  
5. Pin 2 connects to the FM antenna interface, and pin 4 connects to the AM antenna interface.  
6. Place Si4730/31 as close as possible to antenna and keep the FMI and AMI traces as short as possible.  
16  
Rev. 1.0  
 
Si4730/31-D50  
3. Bill of Materials  
Table 12. Si4730/31-D50 Bill of Materials  
Value/Description  
Component  
Supplier  
Murata  
C1  
C2  
C3  
C4  
L1  
Supply bypass capacitor, 22 nF, ±20%, Z5U/X7R  
Coupling capacitor, 1 nF, ±20%, Z5U/X7R  
Murata  
Coupling capacitor, 0.47 μF, ±20%, Z5U/X7R  
Supply bypass capacitor, 100 nF, 10%, Z5U/X7R  
Ferrite loop stick, 180–450 μH  
Murata  
Murata  
Jiaxin  
U1  
R1  
Si4730/31 AM/FM Radio Tuner  
Silicon Laboratories  
Venkel  
Resistor, 600   
(Optional for digital audio)  
R2  
R3  
Resistor, 2 k  
(Optional for digital audio)  
Venkel  
Venkel  
Resistor, 2 k  
(Optional for digital audio)  
C5, C6  
C9  
Crystal load capacitors, 22 pF, ±5%, COG  
(Optional for crystal oscillator option)  
Venkel  
Noise mitigating capacitor, 2~5 pF  
(Optional for digital audio)  
Murata  
L2  
Air Loop, 10–20 μH  
Jiaxin  
(Optional for AM Input)  
T1  
Transformer, 1:5 turns ratio  
(Optional for AM Input)  
Jiaxin, UMEC  
Epson  
X1  
32.768 kHz crystal  
(Optional for crystal oscillator option)  
Rev. 1.0  
17  
Si4730/31-D50  
4. Functional Description  
4.1. Overview  
Si473x  
AMI  
RFGND  
DOUT  
RDS  
(Si4731)  
AM  
LNA  
AGC  
DIGITAL  
AUDIO  
ANT  
DFS  
GPO/DCLK  
LOW-IF  
ADC  
ADC  
DAC  
DAC  
ROUT  
LOUT  
FM  
ANT  
LNA  
AGC  
DSP  
FMI  
2.7– 5.5 V  
VA  
CONTROL  
INTERFACE  
LDO  
AFC  
VD  
1.62–3.6 V  
GND  
Figure 7. Functional Block Diagram  
The Si4730/31-D50 is Silicon Labs’ fourth generation fidelity, optimal performance, and design flexibility. The  
fully integrated, 100% CMOS AM/FM radio receiver IC. chip provides excellent pilot rejection, selectivity, and  
Offering unmatched integration and PCB space unmatched audio performance, and offers both the  
savings, the Si4730/31 requires only two external manufacturer  
components and less than 15 mm of board area, programmability and flexibility in the listening  
excluding the antenna inputs. The Si4730/31 AM/FM experience.  
and  
the  
end-user  
extensive  
2
radio provides the space savings and low power  
consumption necessary for portable devices while  
European Radio Data System (RDS) and the North  
delivering the high performance and design simplicity  
The Si4731 incorporates a digital processor for the  
American Radio Broadcast Data System (RBDS)  
including all required symbol decoding, block  
desired for all AM/FM solutions.  
Leveraging Silicon Laboratories' proven and patented synchronization, error detection, and error correction  
Si4700/01 FM tuner's digital low intermediate frequency functions. Using this feature, the Si4731 enables  
(low-IF) receiver architecture, the Si4730/31 delivers broadcast data such as station identification and song  
superior RF performance and interference rejection in name to be displayed to the user.  
both AM and FM bands. The high integration and  
4.2. Operating Modes  
complete system production test simplifies design-in,  
increases  
manufacturability.  
system  
quality,  
and  
improves The Si4730/31 operates in either an FM receive or an  
AM receive mode. In FM mode, radio signals are  
received on FMI and processed by the FM front-end  
The Si4730/31 is a feature-rich solution that includes  
advanced seek algorithms, soft mute, auto-calibrated  
digital tuning, FM stereo processing, and advanced  
audio processing.  
circuitry. In AM mode, radio signals are received on AMI  
and processed by the AM front-end circuitry. In addition  
to the receiver mode, there is an audio output mode to  
choose between an analog and/or digital audio output.  
In the analog audio output mode, ROUT and LOUT are  
used for the audio output pins. In the digital audio mode,  
DOUT, DFS, and DCLK pins are used. Concurrent  
analog/digital audio output mode is also available  
requiring all five pins.  
In addition, the Si4730/31 provides analog and digital  
audio outputs and a programmable reference clock. The  
device supports I C-compatible 2-wire control interface,  
SPI, and a Si4700/01 backwards-compatible 3-wire  
control interface.  
2
The Si4730/31 utilizes digital processing to achieve high  
18  
Rev. 1.0  
Si4730/31-D50  
4.3. FM Receiver  
4.5. Digital Audio Interface  
The Si4730/31 FM receiver is based on the proven The digital audio interface operates in slave mode and  
Si4700/01 FM tuner. The receiver uses a digital low-IF supports a variety of MSB-first audio data formats  
2
architecture allowing the elimination of external including I S and left-justified modes. The interface has  
components and factory adjustments. The Si4730/31 three pins: digital data input (DIN), digital frame  
integrates a low noise amplifier (LNA) supporting the synchronization input (DFS), and  
a
digital bit  
worldwide FM broadcast band (64 to 108 MHz). An synchronization input clock (DCLK). The Si473x  
AGC circuit controls the gain of the LNA to optimize supports a number of industry-standard sampling rates  
sensitivity and rejection of strong interferers. An image- including 32, 40, 44.1, and 48 kHz. The digital audio  
reject mixer downconverts the RF signal to low-IF. The interface enables low-power operation by eliminating  
quadrature mixer output is amplified, filtered, and the need for redundant DACs and ADCs on the audio  
digitized with high resolution analog-to-digital baseband processor.  
converters (ADCs). This advanced architecture allows  
4.5.1. Audio Data Formats  
the Si4730/31 to perform channel selection, FM  
The digital audio interface operates in slave mode and  
demodulation, and stereo audio processing to achieve  
supports three different audio data formats:  
superior performance compared to traditional analog  
2
I S  
architectures.  
Left-Justified  
DSP Mode  
4.4. AM Receiver  
The highly-integrated Si4730/31 supports worldwide AM  
band reception from 520 to 1710 kHz using a digital  
low-IF architecture with a minimum number of external  
components and no manual alignment required. This  
digital low-IF architecture allows for high-precision  
filtering offering excellent selectivity and SNR with  
minimum variation across the AM band. The DSP also  
provides adjustable channel step sizes in 1 kHz  
increments, AM demodulation, soft mute, seven  
different channel bandwidth filters, and additional  
features, such as a programmable automatic volume  
control (AVC) maximum gain allowing users to adjust  
the level of background noise.  
2
In I S mode, by default the MSB is captured on the  
second rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is low, and the right channel is  
transferred when the DFS is high.  
In left-justified mode, by default the MSB is captured on  
the first rising edge of DCLK following each DFS  
transition. The remaining bits of the word are sent in  
order, down to the LSB. The left channel is transferred  
first when the DFS is high, and the right channel is  
transferred when the DFS is low.  
In DSP mode, the DFS becomes a pulse with a width of  
1DCLK period. The left channel is transferred first,  
followed right away by the right channel. There are two  
options in transferring the digital audio data in DSP  
mode: the MSB of the left channel can be transferred on  
the first rising edge of DCLK following the DFS pulse or  
on the second rising edge.  
Similar to the FM receiver, the integrated LNA and AGC  
optimize sensitivity and rejection of strong interferers  
allowing better reception of weak stations.  
The Si4730/31 provides highly-accurate digital AM  
tuning without factory adjustments. To offer maximum  
flexibility, the receiver supports a wide range of ferrite  
loop sticks from 180–450 µH. An air loop antenna is  
supported by using a transformer to increase the  
effective inductance from the air loop. Using a 1:5 turn  
ratio inductor, the inductance is increased by 25 times  
and easily supports all typical AM air loop antennas  
which generally vary between 10 and 20 µH.  
In all audio formats, depending on the word size, DCLK  
frequency, and sample rates, there may be unused  
DCLK cycles after the LSB of each word before the next  
DFS transition and MSB of the next word. If preferred,  
the user can configure the MSB to be captured on the  
falling edge of DCLK via properties. The number of  
audio bits can be configured for 8, 16, 20, or 24 bits.  
4.5.2. Audio Sample Rates  
The device supports a number of industry-standard  
sampling rates including 32, 40, 44.1, and 48 kHz. The  
digital audio interface enables low-power operation by  
eliminating the need for redundant DACs on the audio  
baseband processor.  
Rev. 1.0  
19  
Si4730/31-D50  
INVERTED  
(OFALL = 1)  
DCLK  
(OFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
I2S  
RIGHT CHANNEL  
(OMODE = 0000)  
1 DCLK  
1 DCLK  
n-2  
DOUT  
1
2
3
n-1  
n
n-2  
n-1  
1
2
3
n
MSB  
LSB  
MSB  
LSB  
Figure 8. I2S Digital Audio Format  
INVERTED  
DCLK  
(OFALL = 1)  
(OFALL = 0)  
DCLK  
DFS  
LEFT CHANNEL  
RIGHT CHANNEL  
n-2  
Left-Justified  
(OMODE = 0110)  
DOUT  
1
2
3
n-2  
n-1  
n
n-1  
n
1
2
3
MSB  
LSB  
MSB  
LSB  
Figure 9. Left-Justified Digital Audio Format  
(OFALL = 0)  
DCLK  
DFS  
RIGHT CHANNEL  
n-2  
LEFT CHANNEL  
n-2  
DOUT  
1
2
3
2
n-1  
n
(OMODE = 1100)  
(OMODE = 1000)  
1
2
3
2
n-1  
n
(MSB at 1st rising edge)  
MSB  
LSB  
MSB  
LSB  
LEFT CHANNEL  
n-2  
1 DCLK  
RIGHT CHANNEL  
n-2  
DOUT  
1
3
n-1  
n
1
3
n-1  
n
(MSB at 2nd rising edge)  
MSB  
LSB  
MSB  
LSB  
Figure 10. DSP Digital Audio Format  
20  
Rev. 1.0  
Si4730/31-D50  
4.6. Stereo Audio Processing  
4.7. Received Signal Qualifiers  
The output of the FM demodulator is a stereo The quality of a tuned signal can vary depending on  
multiplexed (MPX) signal. The MPX standard was many factors including environmental conditions, time of  
developed in 1961, and is used worldwide. Today's day, and position of the antenna. To adequately manage  
MPX signal format consists of left + right (L+R) audio, the audio output and avoid unpleasant audible effects to  
left – right (L–R) audio, a 19 kHz pilot tone, and the end-user, the Si473x monitors and provides  
RDS/RBDS data as shown in Figure 11 below.  
indicators of the signal quality. The Si473x monitors  
signal quality metrics including RSSI, SNR, and  
multipath interference on FM signals. These metrics are  
used to optimize audio and signal processing and are  
also reported to the host processor. The signal  
processing algorithms can use either Silicon Labs'  
optimized settings (recommended) or be customized to  
modify performance.  
Mono Audio  
Left + Right  
Stereo  
Pilot  
Stereo Audio  
Left - Right  
RDS/  
RBDS  
4.8. De-emphasis  
0
15 19 23  
38  
53 57  
Frequency (kHz)  
Pre-emphasis and de-emphasis is a technique used by  
FM broadcasters to improve the signal-to-noise ratio of  
FM receivers by reducing the effects of high-frequency  
interference and noise. When the FM signal is  
Figure 11. MPX Signal Spectrum  
4.6.1. Stereo Decoder  
The Si4730/31's  
integrated  
stereo  
decoder  
transmitted,  
a
pre-emphasis filter is applied to  
automatically decodes the MPX signal using DSP  
techniques. The 0 to 15 kHz (L+R) signal is the mono  
output of the FM tuner. Stereo is generated from the  
(L+R), (L–R), and a 19 kHz pilot tone. The pilot tone is  
used as a reference to recover the (L–R) signal. Output  
left and right channels are obtained by adding and  
subtracting the (L+R) and (L–R) signals respectively.  
The Si4731 uses frequency information from the 19 kHz  
stereo pilot to recover the 57 kHz RDS/RBDS signal.  
accentuate the high audio frequencies. The Si4730/31  
incorporates a de-emphasis filter which attenuates high  
frequencies to restore a flat frequency response. Two  
time constants are used in various regions. The de-  
emphasis time constant is programmable to 50 or  
75 µs.  
4.9. Volume Control  
The audio output may be muted. Volume is adjusted  
digitally by the RX_VOLUME property.  
4.6.2. Stereo-Mono Blending  
Adaptive noise suppression is employed to gradually  
combine the stereo left and right audio channels to a  
mono (L+R) audio signal as the signal quality degrades  
to maintain optimum sound fidelity under varying  
reception conditions. Three metrics, received signal  
strength indicator (RSSI), signal-to-noise ratio (SNR),  
4.10. Stereo DAC  
High-fidelity stereo digital-to-analog converters (DACs)  
drive analog audio signals onto the LOUT and ROUT  
pins. The audio output may be muted.  
4.11. Soft Mute  
and  
multipath  
interference,  
are  
monitored  
The soft mute feature is available to attenuate the audio  
outputs and minimize audible noise in very weak signal  
conditions. The soft mute feature is triggered by the  
SNR metric. The SNR threshold for activating soft mute  
is programmable, as are soft mute attenuation levels  
and attack and release rates.  
simultaneously in forcing a blend from stereo to mono.  
The metric which reflects the minimum signal quality  
takes precedence and the signal is blended  
appropriately.  
All three metrics have programmable stereo/mono  
thresholds and attack/release rates detailed in “AN332:  
Si47xx Programming Guide.” If a metric falls below its  
mono threshold, the signal is blended from stereo to full  
mono. If all metrics are above their respective stereo  
thresholds, then no action is taken to blend the signal. If  
a metric falls between its mono and stereo thresholds,  
then the signal is blended to the level proportional to the  
metric’s value between its mono and stereo thresholds,  
with an associated attack and release rate.  
Rev. 1.0  
21  
 
 
Si4730/31-D50  
The Si4730/31 uses RSSI, SNR, and AFC to qualify  
stations. Most of these variables have programmable  
thresholds for modifying the seek function according to  
customer needs.  
4.12. FM Hi-Cut Control  
Hi-cut control is employed on audio outputs with  
degradation of the signal due to low SNR and/or  
multipath interference. Two metrics, SNR and multipath  
interference, are monitored concurrently in forcing hi-cut  
of the audio outputs. Programmable minimum and  
maximum thresholds are available for both metrics. The  
transition frequency for hi-cut is also programmable with  
up to seven hi-cut filter settings. Attack and release  
rates for hi-cut are programmable for both metrics from  
a range of 2 ms to 64 s. The level of hi-cut applied can  
be monitored with the FM_RSQ_STATUS command.  
Hi-cut can be disabled by setting the hi-cut filter to audio  
bandwidth of 15 kHz.  
RSSI is employed first to screen all possible candidate  
stations. SNR and AFC are subsequently used in  
screening the RSSI qualified stations. The more  
thresholds the system engages, the higher the  
confidence that any found stations will indeed be valid  
broadcast stations. The Si4730/31 defaults set RSSI to  
a mid-level threshold and add an SNR threshold set to a  
level delivering acceptable audio performance. This  
trade-off will eliminate very low RSSI stations while  
keeping the seek time to acceptable levels. Generally,  
the time to auto-scan and store valid channels for an  
entire FM band with all thresholds engaged is very short  
depending on the band content. Seek is initiated using  
the FM_SEEK_START command. The RSSI, SNR, and  
AFC threshold settings are adjustable using properties.  
4.13. RDS/RBDS Processor (Si4731 Only)  
The Si4731 implements an RDS/RBDS* processor for  
symbol decoding, block synchronization, error  
detection, and error correction.  
The Si4731 device is user configurable and provides an  
optional interrupt when RDS is synchronized, loses  
synchronization, and/or the user configurable RDS  
FIFO threshold has been met.  
4.16. Reference Clock  
The Si4730/31 reference clock is programmable,  
supporting RCLK frequencies listed in Table 11,  
“Reference Clock and Crystal Characteristics,” on  
page 15. Refer to Table 3, “DC Characteristics,” on  
page 5 for switching voltage levels and Table 11 for  
frequency tolerance information.  
The Si4731 reports RDS decoder synchronization  
status and detailed bit errors in the information word for  
each RDS block with the FM_RDS_STATUS command.  
The range of reportable block errors is 0, 1–2, 3–5, or  
6+. More than six errors indicates that the  
corresponding block information word contains six or  
more non-correctable errors or that the block checkword  
contains errors.  
An onboard crystal oscillator is available to generate the  
32.768 kHz reference when an external crystal and load  
capacitors are provided. Refer to "2. Typical Application  
Schematic" on page 16. This mode is enabled using the  
POWER_UP command. Refer to “AN332: Si47xx  
Programming Guide”.  
*Note: RDS/RBDS is referred to only as RDS throughout the  
remainder of this document.  
The Si4730/31 performance may be affected by data  
activity on the SDIO bus when using the integrated  
4.14. Tuning  
The tuning frequency is directly programmed using the internal oscillator. SDIO activity results from polling the  
FM_TUNE_FREQ and AM_TUNE_FREQ commands. tuner for status or communicating with other devices  
The Si4730/31 supports channel spacing steps of that share the SDIO bus. If there is SDIO bus activity  
10 kHz in FM mode and 1 kHz in AM mode.  
while the Si4730/31 is performing the seek/tune  
function, the crystal oscillator may experience jitter,  
which may result in mistunes, false stops, and/or lower  
4.15. Seek  
The Si4730/31 seek functionality is performed SNR.  
completely on-chip and will search up or down the  
For best seek/tune results, Silicon Laboratories  
selected frequency band for a valid channel. A valid  
channel is qualified according to series of  
recommends that all SDIO data traffic be suspended  
during Si4730/31 seek and tune operations. This is  
achieved by keeping the bus quiet for all other devices  
on the bus, and delaying tuner polling until the tune or  
seek operation is complete. The seek/tune complete  
(STC) interrupt should be used instead of polling to  
determine when a seek/tune operation is complete.  
a
programmable signal indicators and thresholds. The  
seek function can be made to stop at the band edge and  
provide an interrupt, or wrap the band and continue  
seeking until arriving at the original departure frequency.  
The device sets interrupts with found valid stations or, if  
the seek results in zero found valid stations, the device  
indicates failure and again sets an interrupt. Refer to  
“AN332: Si47xx Programming Guide”.  
22  
Rev. 1.0  
Si4730/31-D50  
For write operations, the user then sends an 8-bit data  
byte on SDIO, which is captured by the device on rising  
edges of SCLK. The Si4730/31 acknowledges each  
data byte by driving SDIO low for one cycle, on the next  
falling edge of SCLK. The user may write up to 8 data  
bytes in a single 2-wire transaction. The first byte is a  
command, and the next seven bytes are arguments.  
4.17. Control Interface  
A serial port slave interface is provided, which allows an  
external controller to send commands to the Si4730/31  
and receive responses from the device. The serial port  
can operate in two bus modes: 2-wire mode and 3-wire  
mode. The Si4730/31 selects the bus mode by sampling  
the state of the GPO1 and GPO2 pins on the rising  
edge of RST. The GPO1 pin includes an internal pull-up  
resistor, which is connected while RST is low, and the  
GPO2 pin includes an internal pull-down resistor, which  
is connected while RST is low. Therefore, it is only  
necessary for the user to actively drive pins which differ  
from these states. See Table 13.  
For read operations, after the Si4730/31 has  
acknowledged the control byte, it will drive an 8-bit data  
byte on SDIO, changing the state of SDIO on the falling  
edge of SCLK. The user acknowledges each data byte  
by driving SDIO low for one cycle, on the next falling  
edge of SCLK. If a data byte is not acknowledged, the  
transaction will end. The user may read up to 16 data  
bytes in a single 2-wire transaction. These bytes contain  
the response data from the Si4730/31. A 2-wire  
transaction ends with the STOP condition, which occurs  
when SDIO rises while SCLK is high.  
Table 13. Bus Mode Select on Rising Edge of  
RST  
Bus Mode  
2-Wire  
GPO1  
1
GPO2  
0
0
For details on timing specifications and diagrams, refer  
to Table 5, “2-Wire Control Interface Characteristics” on  
page 7; Figure 2, “2-Wire Control Interface Read and  
Write Timing Parameters,” on page 8, and Figure 3, “2-  
Wire Control Interface Read and Write Timing Diagram,”  
on page 8.  
3-Wire  
0 (must drive)  
After the rising edge of RST, the pins GPO1 and GPO2  
are used as general purpose output (O) pins, as  
described in Section “4.18. GPO Outputs”. In any bus  
mode, commands may only be sent after V and V  
supplies are applied.  
IO  
DD  
4.17.2. 3-Wire Control Interface Mode  
When selecting 3-wire mode, the user must ensure that  
a rising edge of SCLK does not occur within 300 ns  
before the rising edge of RST.  
In any bus mode, before sending a command or reading  
a response, the user must first read the status byte to  
ensure that the device is ready (CTS bit is high).  
The 3-wire bus mode uses the SCLK, SDIO, and SEN_  
pins. A transaction begins when the user drives SEN  
low. Next, the user drives a 9-bit control word on SDIO,  
which is captured by the device on rising edges of  
SCLK. The control word consists of a 9-bit device  
address (A7:A5 = 101b), a read/write bit (read = 1, write  
= 0), and a 5-bit register address (A4:A0).  
4.17.1. 2-Wire Control Interface Mode  
When selecting 2-wire mode, the user must ensure that  
SCLK is high during the rising edge of RST, and stays  
high until after the first start condition. Also, a start  
condition must not occur within 300 ns before the rising  
edge of RST.  
The 2-wire bus mode uses only the SCLK and SDIO  
pins for signaling. A transaction begins with the START  
condition, which occurs when SDIO falls while SCLK is  
high. Next, the user drives an 8-bit control word serially  
on SDIO, which is captured by the device on rising  
edges of SCLK. The control word consists of a 7-bit  
device address, followed by a read/write bit (read = 1,  
write = 0). The Si4730/31 acknowledges the control  
word by driving SDIO low on the next falling edge of  
SCLK.  
For write operations, the control word is followed by a  
16-bit data word, which is captured by the device on  
rising edges of SCLK.  
For read operations, the control word is followed by a  
delay of one-half SCLK cycle for bus turn-around. Next,  
the Si4730/31 will drive the 16-bit read data word  
serially on SDIO, changing the state of SDIO on each  
rising edge of SCLK.  
A transaction ends when the user sets SEN high, then  
pulses SCLK high and low one final time. SCLK may  
either stop or continue to toggle while SEN is high.  
Although the Si4730/31 will respond to only a single  
device address, this address can be changed with the  
SEN pin (note that the SEN pin is not used for signaling  
in 2-wire mode). Refer to “AN332: Si47xx Programming  
Guide”  
In 3-wire mode, commands are sent by first writing each  
argument to register(s) 0xA1–0xA3, then writing the  
command word to register 0xA0. A response is  
retrieved by reading registers 0xA8–0xAF.  
Rev. 1.0  
23  
 
Si4730/31-D50  
For details on timing specifications and diagrams, refer  
to Table 6, “3-Wire Control Interface Characteristics,” on  
page 9; Figure 4, “3-Wire Control Interface Write Timing  
Parameters,” on page 9, and Figure 5, “3-Wire Control  
Interface Read Timing Parameters,” on page 9.  
4.21. Programming with Commands  
To ease development time and offer maximum  
customization, the Si4730/31 provides a simple yet  
powerful software interface to program the receiver. The  
device is programmed using commands, arguments,  
properties, and responses.  
4.18. GPO Outputs  
To perform an action, the user writes a command byte  
and associated arguments, causing the chip to execute  
the given command. Commands control an action such  
as powerup the device, shut down the device, or tune to  
a station. Arguments are specific to a given command  
and are used to modify the command.  
The Si4730/31 provides three general-purpose output  
pins. The GPO pins can be configured to output a  
constant low, constant high, or high-impedance. The  
GPO pins can be reconfigured as specialized functions.  
GPO2/INT can be configured to provide interrupts and  
GPO3 can be configured to provide external crystal  
support or as DCLK in digital audio output mode.  
Properties are a special command argument used to  
modify the default chip operation and are generally  
configured immediately after powerup. Examples of  
4.19. Firmware Upgrades  
The Si4730/31 contains on-chip program RAM to properties are de-emphasis level, RSSI seek threshold,  
accommodate minor changes to the firmware. This and soft mute attenuation threshold.  
allows Silicon Labs to provide future firmware updates  
to optimize the characteristics of new radio designs and  
echoed after a command and associated arguments are  
those already deployed in the field.  
Responses provide the user information and are  
issued. All commands provide a 1-byte status update,  
indicating interrupt and clear-to-send status information.  
4.20. Reset, Powerup, and Powerdown  
For a detailed description of the commands and  
Setting the RST pin low will disable analog and digital  
properties for the Si4730/31, see “AN332: Si47xx  
circuitry, reset the registers to their default settings, and  
Programming Guide.”  
disable the bus. Setting the RST pin high will bring the  
device out of reset.  
A powerdown mode is available to reduce power  
consumption when the part is idle. Putting the device in  
powerdown mode will disable analog and digital circuitry  
while keeping the bus active.  
24  
Rev. 1.0  
Si4730/31-D50  
5. Pin Descriptions: Si4730/31-GM  
20 19 18 17  
NC  
1
16  
FMI 2  
RFGND 3  
AMI 4  
15 DOUT  
14 LOUT  
13 ROUT  
12 GND  
11 VA  
GND  
PAD  
RST 5  
6
7
8
9
10  
Pin Number(s)  
Name  
NC  
Description  
1, 20  
No connect. Leave floating.  
2
FMI  
FM RF inputs. FMI should be connected to the antenna trace.  
RF ground. Connect to ground plane on PCB.  
AM RF input. AMI should be connected to the AM antenna.  
Device reset (active low) input.  
3
RFGND  
AMI  
4
5
RST  
6
SEN  
Serial enable input (active low).  
7
SCLK  
SDIO  
RCLK  
Serial clock input.  
8
Serial data input/output.  
9
External reference oscillator input.  
10  
V
Digital and I/O supply voltage.  
D
11  
V
Analog supply voltage. May be connected directly to battery.  
Ground. Connect to ground plane on PCB.  
Right audio line output in analog output mode.  
Left audio line output in analog output mode.  
Digital output data in digital output mode.  
Digital frame synchronization input in digital output mode.  
A
12, GND PAD  
GND  
ROUT  
LOUT  
DOUT  
DFS  
13  
14  
15  
16  
17  
GPO3/DCLK General purpose output, crystal oscillator, or digital bit synchronous clock input  
in digital output mode.  
18  
19  
GPO2/INT  
GPO1  
General purpose output or interrupt pin.  
General purpose output.  
Rev. 1.0  
25  
Si4730/31-D50  
6. Ordering Guide  
Part Number*  
Description  
Package  
Type  
Operating  
Temperature/Voltage  
Si4730-D50-GM AM/FM Broadcast Radio Receiver  
QFN  
Pb-free  
–20 to 85 °C  
2.7 to 5.5 V  
Si4731-D50-GM AM/FM Broadcast Radio Receiver with  
RDS/RBDS  
QFN  
Pb-free  
–20 to 85 °C  
2.7 to 5.5 V  
*Note: Add an “(R)” at the end of the device part number to denote tape and reel option.  
26  
Rev. 1.0  
Si4730/31-D50  
7. Package Markings (Top Marks)  
7.1. Si4730/31 Top Mark  
3050  
DTTT  
3150  
DTTT  
YWW  
YWW  
7.2. Top Mark Explanation  
Mark Method:  
YAG Laser  
Line 1 Marking:  
Part Number  
30 = Si4730, 31 = Si4731.  
Firmware Revision  
Die Revision  
50 = Firmware Revision 5.0.  
D = Revision D Die.  
Line 2 Marking:  
Line 3 Marking:  
TTT = Internal Code  
Internal tracking code.  
Circle = 0.5 mm Diameter Pin 1 Identifier.  
(Bottom-Left Justified)  
Y = Year  
Assigned by the Assembly House. Corresponds to the last  
significant digit of the year and work week of the mold date.  
WW = Workweek  
Rev. 1.0  
27  
Si4730/31-D50  
8. Package Outline: Si4730/31  
Figure 12 illustrates the package details for the Si4730/31. Table 14 lists the values for the dimensions shown in  
the illustration.  
Figure 12. 20-Pin Quad Flat No-Lead (QFN)  
Table 14. Package Dimensions  
Symbol  
Millimeters  
Nom  
Symbol  
Millimeters  
Nom  
Min  
Max  
Min  
Max  
A
A1  
b
0.50  
0.00  
0.20  
0.27  
0.55  
0.02  
0.60  
0.05  
0.30  
0.37  
f
2.53 BSC  
L
0.35  
0.00  
0.40  
0.45  
0.10  
0.05  
0.05  
0.08  
0.10  
0.10  
0.25  
L1  
c
0.32  
aaa  
bbb  
ccc  
ddd  
eee  
D
3.00 BSC  
1.70  
D2  
e
1.65  
1.75  
0.50 BSC  
3.00 BSC  
1.70  
E
E2  
1.65  
1.75  
Notes:  
1. All dimensions are shown in millimeters (mm) unless otherwise noted.  
2. Dimensioning and tolerancing per ANSI Y14.5M-1994.  
28  
Rev. 1.0  
 
 
Si4730/31-D50  
9. PCB Land Pattern: Si4730/31  
Figure 13 illustrates the PCB land pattern details for the Si4730/31-D50-GM QFN. Table 15 lists the values for the  
dimensions shown in the illustration.  
Figure 13. PCB Land Pattern  
Rev. 1.0  
29  
 
Si4730/31-D50  
Table 15. PCB Land Pattern Dimensions  
Symbol  
Millimeters  
Min Max  
2.71 REF  
1.60 1.80  
Symbol  
Millimeters  
Min  
Max  
D
D2  
e
GE  
W
2.10  
0.34  
0.28  
0.50 BSC  
2.71 REF  
X
E
Y
0.61 REF  
E2  
f
1.60  
2.53 BSC  
2.10  
1.80  
ZE  
ZD  
3.31  
3.31  
GD  
Notes: General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Notes: Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Notes: Stencil Design  
1. A stainless steel, laser-cut, and electro-polished stencil with trapezoidal walls should  
be used to assure good solder paste release.  
2. The stencil thickness should be 0.125mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 1.45 x 1.45 mm square aperture should be used for the center pad. This provides  
approximately 70% solder paste coverage on the pad, which is optimum to assure  
correct component stand-off.  
Notes: Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification  
for Small Body Components.  
30  
Rev. 1.0  
Si4730/31-D50  
10. Additional Reference Resources  
Contact your local sales representatives for more information or to obtain copies of the following references:  
AN332: Si47xx Programming Guide  
AN383: Si47xx Antenna, Schematic, Layout, and Design Guidelines  
AN388: Si470x/1x/2x/3x/4x Evaluation Board Test Procedure  
Si47xx EVB User’s Guide  
Customer Support Site: www.silabs.com  
This site contains all application notes, evaluation board schematics and layouts, and evaluation software.  
Please visit the Silicon Labs Technical Support web page:  
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx and register to submit a technical support  
request.  
Rev. 1.0  
31  
Si4730/31-D50  
DOCUMENT CHANGE LIST:  
Revision 0.2 to Revision 1.0  
Updated functional block diagram.  
Updated specification tables.  
Updated “2. Typical Application Schematic”.  
Updated“Table 3. DC Characteristics”.  
Added Section “4.6. Stereo Audio Processing”.  
32  
Rev. 1.0  
Si4730/31-D50  
NOTES:  
Rev. 1.0  
33  
Si4730/31-D50  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: FMinfo@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
34  
Rev. 1.0  

相关型号:

SI4730-D60

Broadcast AM/FM Radio Receiver
SILICON

Si4730-D60-GM

BROADCAST AM/FM/SW/LW RADIO RECEIVER
SILICON

SI4730-D60-GMR

BROADCAST AM/FM/SW/LW RADIO RECEIVER
SILICON

Si4730-D60-GU2

BROADCAST AM/FM/SW/LW RADIO RECEIVER
SILICON

SI4730EY

Current-Sensing Power MOSFETs
VISHAY

SI4730EY-T1

TRANSISTOR 8000 mA, 30 V, N-CHANNEL, Si, SMALL SIGNAL, MOSFET, SO-8, FET General Purpose Small Signal
VISHAY

SI4731

Broadcast AM/FM Radio Receiver
SILICON

SI4731-A10-GMR

Audio Single Chip Receiver
SILICON

SI4731-B20-GMR

Telecom Circuit, 1-Func, 3 X 3 MM, 0.55 MM HEIGHT, ROHS COMPLIANT, QFN-20
SILICON

SI4731-C40-GM

Audio Single Chip Receiver, ROHS COMPLIANT, QFN-20
SILICON

SI4731-C40-GMR

Audio Single Chip Receiver, ROHS COMPLIANT, QFN-20
SILICON

SI4731-C40-GU

Audio Single Chip Receiver, PDSO24, ROHS COMPLIANT, MO-137AE, SSOP-24
SILICON