SI5013 [SILICON]

OC-12/3, STM-4/1 SONET/SDH CDR IC WITH LIMITING AMPLIFIER; OC - 12/3 , STM - 4/1 SONET /限幅放大器的SDH CDR IC
SI5013
型号: SI5013
厂家: SILICON    SILICON
描述:

OC-12/3, STM-4/1 SONET/SDH CDR IC WITH LIMITING AMPLIFIER
OC - 12/3 , STM - 4/1 SONET /限幅放大器的SDH CDR IC

放大器 CD
文件: 总26页 (文件大小:402K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5013  
OC-12/3, STM-4/1 SONET/SDH CDR IC WITH LIMITING AMPLIFIER  
Features  
High-speed clock and data recovery device with integrated limiting amplifier:  
Supports OC-12/3, STM-4/1  
DSPLL® technology  
Loss-of-signal level alarm  
Data slicing level control  
10 mV differential sensitivity  
(typ)  
Jitter generation 2.3 mUI  
PP  
rms  
3.3 V supply  
Small footprint: 5 x 5 mm  
Reference and reference-less  
Ordering Information:  
operation supported  
See page 22.  
Applications  
SONET/SDH/ATM routers  
Add/drop multiplexers  
Digital cross connects  
Board level serial links  
SONET/SDH test equipment  
Optical transceiver modules  
SONET/SDH regenerators  
Pin Assignments  
Si5013  
Description  
28 27 26 25 24 23 22  
RATESEL  
GND  
VDD  
21  
1
2
3
4
5
6
7
The Si5013 is a fully-integrated, high-performance limiting amplifier (LA)  
and clock and data recovery (CDR) IC for high-speed serial  
communication systems. It derives timing information and data from a  
serial input at OC-12/3 and STM-4/1 rates. Use of an external reference  
clock is optional. Silicon Laboratories DSPLL technology eliminates  
sensitive noise entry points, thus making the PLL less susceptible to  
board-level interaction and helping to ensure optimal jitter performance.  
20 REXT  
LOS_LVL  
SLICE_LVL  
REFCLK+  
REFCLK–  
LOL  
19 RESET/CAL  
GND  
Pad  
18  
17  
16  
15  
VDD  
DOUT+  
DOUT–  
TDI  
®
8
9
10 11 12 13 14  
The Si5013 represents a new standard in low jitter, low power, small size,  
and integration for high-speed LA/CDRs. It operates from a 3.3 V supply  
over the industrial temperature range (–40 to 85 °C).  
Functional Block Diagram  
LOS_LVL  
Signal  
Detect  
DSQLCH  
LOS  
2
DOUT+  
DOUT–  
Retimer  
BUF  
BUF  
2
DIN+  
DIN–  
Limiting  
Amp  
DSPLL  
BER  
Monitor  
2
CLKOUT+  
CLKOUT–  
CLK_DSBL  
REFCLK+  
REFCLK–  
(Optional)  
2
Lock  
Detection  
Reset/  
Calibration  
Bias Gen.  
REXT  
BER_ALM  
RESET/CAL  
RATESEL  
BER_LVL  
SLICE_LVL  
LOL  
LTR  
Rev. 1.5 10/05  
Copyright © 2005 by Silicon Laboratories  
Si5013  
Si5013  
2
Rev. 1.5  
Si5013  
TABLE OF CONTENTS  
Section  
Page  
1. Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
3. Typical Application Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.1. Limiting Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
®
4.2. DSPLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.3. Multi-Rate Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.4. Operation Without an External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.5. Operation With an External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
4.6. Lock Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.7. Lock-to-Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.8. Loss-of-Signal (LOS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
4.9. Bit Error Rate (BER) Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.10. Data Slicing Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.11. PLL Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
4.12. RESET/DSPLL Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.13. Clock Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.14. Data Squelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.15. Device Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.16. Bias Generation Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.17. Voltage Regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.18. Differential Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
4.19. Differential Output Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
5. Pin Descriptions: Si5013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
6. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
7. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Rev. 1.5  
3
Si5013  
1. Detailed Block Diagram  
LTR  
LOS  
BER_LVL  
BER_ALM  
RATESEL  
DSQLCH  
BER  
Monitor  
Signal  
Detect  
LOS_LVL  
DOUT+  
DOUT–  
Retime  
DIN+  
DIN–  
CLKOUT+  
CLKOUT–  
Limiting  
Amp  
Phase  
Detector  
CLK  
Dividers  
A/D  
DSP  
VCO  
n
CLKDSBL  
Slicing  
Control  
SLICE_LVL  
Lock  
Detection  
REFCLK±  
(optional)  
LOL  
Bias  
Generation  
REXT  
Calibration  
RESET/CAL  
4
Rev. 1.5  
Si5013  
2. Electrical Specifications  
Table 1. Recommended Operating Conditions  
1
1
Symbol  
Test Condition  
Typ  
Unit  
Parameter  
Min  
Max  
Ambient Temperature  
Si5013 Supply Voltage  
Notes:  
T
–40  
25  
85  
°C  
V
A
2
V
3.135  
3.3  
3.465  
DD  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise stated.  
2. The Si5013 specifications are guaranteed when using the recommended application circuit (including component  
tolerance) of "3.Typical Application Schematic" on page 11.  
V
SIGNAL+  
SIGNAL–  
VIS  
t
A. Operation with Single-Ended Inputs  
V
SIGNAL+  
SIGNAL–  
0.5 VID  
(SIGNAL+) – (SIGNAL–)  
VID  
t
B. Operation with Differential Inputs and Outputs  
Figure 1. Differential Voltage Measurement (DIN, REFCLK, DOUT, CLKOUT)  
tCf-D  
tCr-D  
DOUT  
CLKOUT  
Figure 2. Clock to Data Timing  
Rev. 1.5  
5
Si5013  
80%  
20%  
DOUT,  
CLKOUT  
tF  
tR  
Figure 3. DOUT and CLKOUT Rise/Fall Times  
taq  
RESET/Cal  
LOL  
DATAIN  
LOL  
taq  
Figure 4. PLL Acquisition Time  
DATAIN  
LOS Threshold  
Level  
LOS  
tLOS  
Figure 5. LOS Response  
6
Rev. 1.5  
Si5013  
Table 2. DC Characteristics  
(VDD = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
1
Supply Current  
I
DD  
OC-12  
OC-3  
180  
190  
190  
197  
mA  
Power Dissipation  
OC-12  
OC-3  
P
D
594  
627  
657  
682  
mW  
2
Common Mode Input Voltage (DIN)  
V
V
See Figure 11  
See Figure 10  
See Figure 1A  
See Figure 1B  
See Figure 1A  
See Figure 1B  
Line-to-Line  
1.30  
1.90  
10  
1.50  
2.10  
1.62  
2.30  
500  
V
V
ICM  
ICM  
2
Common Mode Input Voltage (REFCLK)  
2
DIN Single-ended Input Voltage Swing  
V
mV  
mV  
mV  
mV  
IS  
ID  
IS  
ID  
IN  
2
DIN Differential Input Voltage Swing  
V
10  
1000  
750  
2
REFCLK Single-ended Input Voltage Swing  
V
V
R
200  
200  
84  
2
REFCLK Differential Input Voltage Swing  
1500  
116  
Input Impedance (DIN)  
100  
800  
Differential Output Voltage Swing  
(DOUT)  
V
100 Load  
Line-to-Line  
700  
1000  
mV  
OD  
PP  
Differential Output Voltage Swing  
(CLKOUT)  
V
100 Load  
Line-to-Line  
700  
1.6  
800  
1100  
2.35  
mV  
PP  
OD  
Output Common Mode Voltage  
(DOUT, CLKOUT)  
V
100 Load  
Line-to-Line  
1.95  
V
OCM  
Output Impedance (DOUT,CLKOUT)  
Input Voltage Low (LVTTL Inputs)  
Input Voltage High (LVTTL Inputs)  
Input Low Current (LVTTL Inputs)  
Input High Current (LVTTL Inputs)  
Input Impedance (LVTTL Inputs)  
R
Single-ended  
84  
100  
116  
.8  
V
OUT  
V
IL  
IH  
IL  
V
2.0  
V
I
10  
10  
µA  
µA  
kΩ  
kΩ  
I
IH  
R
R
10  
50  
IN  
IN  
LOS_LVL, BER_LVL, SLICE_LVL Input  
Impedance  
100  
125  
Output Voltage Low (LVTTL Outputs)  
Output Voltage High (LVTTL Outputs)  
V
I = 2 mA  
0.4  
V
V
OL  
O
V
I = 2 mA  
2.0  
OH  
O
Notes:  
1. No Load on LVTTL outputs.  
2. These inputs may be driven differentially or single-endedly. When driven single-endedly, the unused input must be ac  
coupled to ground.  
Rev. 1.5  
7
Si5013  
Table 3. AC Characteristics (Clock and Data)  
(VDD = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Clock Rate  
f
Rate Sel = 1  
Rate Sel = 0  
616  
154  
675  
158  
MHz  
CLK  
Output Rise Time—OC-12  
Output Fall Time—OC-12  
t
Figure 3  
Figure 3  
47  
125  
125  
50  
155  
155  
53  
ps  
ps  
R
t
F
Output Clock Duty Cycle—  
OC-12/3  
% of  
UI  
Clock to Data Delay  
OC-12  
OC-3  
t
Figure 2  
Figure 2  
Cr-D  
800  
4000  
860  
4100  
940  
4200  
ps  
Clock to Data Delay  
OC-12  
t
Cf-D  
0
35  
70  
ps  
OC-3  
800  
850  
1000  
Input Return Loss  
100 kHz–622 MHz  
–15  
dB  
Slicing Level Offset  
V
SLICE_LVL = 750 mV to 2.25 V  
See Figure 8 on page 14.  
SLICE  
(relative to the internally set  
input common mode voltage)  
*
Loss-of-Signal Range  
V
LOS_LVL = 1.50 to 2.50 V  
Figure 5 on page 6  
0
8
40  
25  
mV  
µs  
LOS  
(peak-to-peak differential)  
Loss-of-Signal Response Time  
t
20  
LOS  
*Note: Adjustment voltage is calculated as follows: V  
= (LOS_LVL – 1.50)/25.  
LOS  
8
Rev. 1.5  
Si5013  
Table 4. AC Characteristics (PLL Characteristics)  
(VDD = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Jitter Tolerance  
(OC-12 Mode)  
J
f = 30 Hz  
f = 300 Hz  
60  
6
UI  
UI  
UI  
UI  
UI  
UI  
UI  
UI  
TOL(PP)  
PP  
PP  
PP  
PP  
PP  
PP  
PP  
PP  
*
f = 25 kHz  
4
f = 250 kHz  
0.4  
60  
6
Jitter Tolerance  
J
f = 30 Hz  
TOL(PP)  
*
(OC-3 Mode)  
f = 300 Hz  
f = 6.5 kHz  
4
f = 65 kHz  
0.4  
*
RMS Jitter Generation  
J
with no jitter on serial data  
with no jitter on serial data  
OC-12 Mode  
OC-3 Mode  
2.3  
20  
4.0  
45  
500  
130  
0.1  
2
mUI  
mUI  
kHz  
kHz  
dB  
GEN(rms)  
*
Peak-to-Peak Jitter Generation  
J
GEN(PP)  
*
Jitter Transfer Bandwidth  
J
BW  
*
Jitter Transfer Peaking  
J
0.03  
1.5  
P
Acquisition Time—OC-12  
(Reference clock applied)  
T
After falling edge of  
PWRDN/CAL  
ms  
AQ  
From the return of valid  
data  
60  
4.0  
13  
12  
µs  
ms  
Acquisition Time—OC-12  
(Reference-less operation)  
T
After falling edge of  
PWRDN/CAL  
AQ  
From the return of valid  
data  
ms  
Reference Clock Range  
See "4.4.Operation With-  
out an External Refer-  
ence" on page 12.  
155.5  
77.76  
19.44  
MHz  
Input Reference Clock Frequency  
Tolerance  
C
–500  
500  
ppm  
ppm  
TOL  
Frequency Difference at which  
Receive PLL goes out of Lock  
(REFCLK compared to the divided  
down VCO clock)  
±650  
*Note: As defined in Bellcore specifications: GR-253-CORE, Issue 3, September 2000. Using PRBS 223 – 1 data pattern.  
Rev. 1.5  
9
Si5013  
Table 5. Absolute Maximum Ratings  
Parameter  
Symbol  
Value  
Unit  
DC Supply Voltage  
V
–0.5 to 3.5  
–0.3 to 3.6  
V
V
DD  
LVTTL Input Voltage  
V
DIG  
Differential Input Voltages  
Maximum Current any output PIN  
Operating Junction Temperature  
Storage Temperature Range  
ESD HBM Tolerance (100 pf, 1.5 k)  
V
–0.3 to (V + 0.3)  
V
DIF  
DD  
±50  
–55 to 150  
–55 to 150  
1
mA  
°C  
°C  
kV  
T
JCT  
T
STG  
Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation  
should be restricted to the conditions as specified in the operational sections of this data sheet. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Table 6. Thermal Characteristics  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Thermal Resistance Junction to Ambient  
ϕ
Still Air  
38  
°C/W  
JA  
10  
Rev. 1.5  
Si5013  
3. Typical Application Schematic  
BER Alarm  
Indicator  
LVTTL  
Control Inputs  
Loss-of-Signal  
Indicator  
Loss-of-Lock  
Indicator  
DIN+  
DOUT+  
DOUT–  
High-Speed  
Serial Input  
Recovered  
Data  
DIN–  
System  
Reference  
Clock  
Si5013  
REFCLK+  
REFCLK–  
CLKOUT+  
CLKOUT–  
Recovered  
Clock  
(Optional)  
100 pF x 4  
VDD  
10 kΩ  
(1%)  
0.1  
F
µ
Loss-of-Signal Data Slice  
Level Set  
Level Set  
Bit Error Rate  
Level Set  
Rev. 1.5  
11  
Si5013  
traditional methods, and it eliminates performance  
degradation caused by external component aging. In  
4. Functional Description  
The Si5013 integrates a high-speed limiting amplifier addition, because external loop filter components are  
with a multi-rate CDR unit. No external reference clock not required, sensitive noise entry points are eliminated,  
is required for clock and data recovery. The limiting thus making the DSPLL less susceptible to board-level  
amplifier magnifies very low-level input data signals so noise sources and making SONET/SDH jitter  
that accurate clock and data recovery can be compliance easier to attain in the application.  
performed. The CDR uses Silicon Laboratories DSPLL®  
4.3. Multi-Rate Operation  
technology to recover a clock synchronous to the input  
data stream. The recovered clock retimes the incoming The Si5013 supports clock and data recovery for OC-  
data, and both are output synchronously via current- 12/3 and STM-4/1 data streams.  
mode logic (CML) drivers. Silicon Laboratories’ DSPLL  
Multi-rate operation is achieved by configuring the  
technology ensures superior jitter performance while  
device to divide down the output of the VCO to the  
eliminating the need for external loop filter components  
desired data rate. The divide factor is configured by the  
found in traditional phase-locked loop (PLL)  
RATESEL pin. The RATESEL configuration and  
associated data rates are given in Table 7.  
implementations.  
The limiting amplifier includes a control input for  
Table 7. Multi-Rate Configuration  
RATESEL SONET/SDH  
adjusting the data slicing level and provides a loss-of-  
signal level alarm output. The CDR includes a bit error  
rate performance monitor which signals a high bit error  
rate condition (associated with excessive incoming  
jitter) relative to an externally adjustable bit error rate  
threshold.  
1
0
622.08 Mbps  
155.52 Mbps  
The optional reference clock minimizes the CDR  
acquisition time and provides a stable reference for  
maintaining the output clock when locking to a reference  
is desired.  
4.4. Operation Without an External Refer-  
ence  
The Si5013 can perform clock and data recovery  
without an external reference clock. Tying the  
REFCLK+ input to VDD and the REFCLK– input to  
GND configures the device to operate without an  
external reference clock. Clock recovery is achieved by  
monitoring the timing quality of the incoming data  
relative to the VCO frequency. Lock is maintained by  
continuously monitoring the incoming data timing quality  
and adjusting the VCO accordingly. Details of the lock  
detection and the lock-to-reference functions while in  
this mode are described in their respective sections  
below.  
4.1. Limiting Amplifier  
The limiting amplifier accepts the low-level signal output  
from a transimpedance amplifier (TIA). The low-level  
signal is amplified to a usable level for the CDR unit. The  
minimum input swing requirement is specified in Table 2  
on page 7. Larger input amplitudes (up to the maximum  
input swing specified in Table 2) are accommodated  
without degradation of performance. The limiting  
amplifier ensures optimal data slicing by using a digital  
dc offset cancellation technique to remove any dc bias  
introduced by the amplification stage.  
Note: Without an external reference the acquisition of data is  
dependent solely on the data itself and typically  
requires more time to acquire lock than when a refer-  
ence is applied.  
®
4.2. DSPLL  
The Si5013 PLL structure (shown in the "1.Detailed  
Block Diagram" on page 4) utilizes Silicon Laboratories'  
DSPLL technology to maintain superior jitter  
performance while eliminating the need for external loop  
4.5. Operation With an External Reference  
The Si5013 can also perform clock and data recovery  
with an external reference. The device’s optional  
external reference clock centers the DSPLL, minimizes  
the acquisition time, and maintains a stable output clock  
(CLKOUT) when lock-to-reference (LTR) is asserted.  
filter  
components  
found  
in  
traditional  
PLL  
implementations. This is achieved using a digital signal  
processing (DSP) algorithm to replace the loop filter  
commonly found in analog PLL designs. This algorithm  
processes the phase detector error term and generates  
a digital control value to adjust the frequency of the  
voltage-controlled oscillator (VCO). This technology  
enables CDR with far less jitter than is generated using  
When the reference clock is present, the Si5013 uses  
the reference clock to center the VCO output frequency  
so that clock and data is recovered from the input data  
stream. The device self configures for operation with  
one of three reference clock frequencies. This  
12  
Rev. 1.5  
Si5013  
eliminates the need to externally configure the device to  
operate with a particular reference clock. The REFCLK  
frequency should be 19.44, 77.76, or 155.52 MHz with a  
frequency accuracy of ±100 ppm.  
4.8. Loss-of-Signal (LOS)  
The Si5013 indicates a loss-of-signal condition on the  
LOS output pin when the input peak-to-peak signal level  
on DIN falls below an externally controlled threshold.  
The LOS threshold range is specified in Table 3 on  
page 8 and is set by applying a voltage on the LOS_LVL  
pin. The graph in Figure 6 illustrates the LOS_LVL  
mapping to the LOS threshold. The LOS output is  
asserted when the input signal drops below the  
programmed peak-to-peak value. If desired, the LOS  
function may be disabled by grounding LOS_LVL or by  
adjusting LOS_LVL to be less than 1 V.  
4.6. Lock Detect  
The Si5013 provides lock-detect circuitry that indicates  
whether the PLL has achieved frequency lock with the  
incoming data. The operation of the lock-detector  
depends on the reference clock option used.  
When an external reference clock is provided, the circuit  
compares the frequency of a divided-down version of  
the recovered clock with the frequency of the applied  
reference clock (REFCLK). If the recovered clock  
frequency deviates from that of the reference clock by  
the amount specified in Table 4 on page 9, the PLL is  
declared out of lock, and the loss-of-lock (LOL) pin is  
asserted. In this state, the PLL will periodically try to  
reacquire lock with the incoming data stream. During  
reacquisition, the recovered clock frequency (CLKOUT)  
drifts over a ±600 ppm range relative to the applied  
reference clock and the LOL output alarm may toggle  
until the PLL has reacquired frequency lock. Due to the  
low noise and stability of the DSPLL, there is the  
possibility that the PLL will not drift enough to render an  
out-of-lock condition, even if the data is removed from  
inputs.  
Note: The LOS circuit is designed to only work with pseudo-  
random, dc-balanced data.  
40 mV  
30 mV  
15 mV  
40mV/V  
LOS Limited by Device Noise  
0 mV  
0 V  
1.00 V  
1.50 V  
1.875 V  
2.25 V  
2.50 V  
LOS_LVL (V)  
In applications requiring a more stable output clock  
during out-of-lock conditions, the lock-to-reference  
(LTR) input can be used to force the PLL to lock to the  
externally supplied reference.  
Figure 6. LOS_LVL Mapping  
R1  
In the absence of an external reference, the lock detect  
circuitry uses a data quality measure to determine when  
frequency lock has been lost with the incoming data  
stream. During reacquisition, CLKOUT may vary by  
approximately ±10% from the nominal data rate.  
3
LOS_LVL  
Set LOS  
Level  
Si5013  
CDR  
R2  
10k  
4.7. Lock-to-Reference  
The LTR input can be used to force a stable output  
clock when an alarm condition, like LOS, exists. In  
typical applications, the LOS output is tied to the LTR  
input to force a stable output clock when the input data  
signal is lost. When LTR is asserted, the DSPLL is  
prevented from acquiring the data signal present on  
DIN. The operation of the LTR control input depends on  
which reference clocking mode is used.  
9
LOS  
LOS Alarm  
Figure 7. LOS Signal Hysteresis  
In many applications it is desirable to produce a fixed  
amount of signal hysteresis for an alarm indicator such  
as LOS, since a marginal data input signal could cause  
intermittent toggling, leading to false alarm status.  
When it is anticipated that very low-level DIN signals will  
be encountered, the introduction of an adequate  
amount of LOS hysteresis is recommended to minimize  
any undesirable LOS signal toggling. Figure 7 illustrates  
a simple circuit that may be used to set a fixed level of  
When an external reference clock is present, assertion  
of LTR forces the DSPLL to lock CLKOUT to the  
provided reference. If no external reference clock is  
used, LTR forces the DSPLL to hold the digital  
frequency control input to the VCO at the last value.  
This produces a stable output clock as long as supply  
and temperature are constant.  
Rev. 1.5  
13  
Si5013  
LOS signal hysteresis for the Si5013 CDR. The value of  
R1 may be chosen to provide a range of hysteresis from  
3 to 8 dB where a nominal value of 800 adjusts the  
hysteresis level to approximately 6 dB. Use a value of  
500 or 1000 for R1 to provide 3 dB or 8 dB of  
hysteresis, respectively.  
4.10. Data Slicing Level  
The Si5013 provides the ability to externally adjust the  
slicing level for applications that require bit error rate  
(BER) optimization. Adjustments in slicing level of  
±15 mV (typical, relative to the internally set input  
common mode voltage) are supported. The slicing level  
is set by applying a voltage between 0.75 and 2.25 V to  
the SLICE_LVL input. See Figure 8 for the operation  
levels of the slice circuit.  
Hysteresis is defined as the ratio of the LOS deassert  
level (LOSD) and the LOS assert level (LOSA). The  
hysteresis in decibels is calculated as 20log(LOSD/  
LOSA).  
When SLICE_LVL is driven below 500 mV, the slicing  
level adjustment is disabled, and the slicing level is set  
to the cross-point of the differential input signal.  
4.9. Bit Error Rate (BER) Detection  
The Si5013 uses a proprietary Silicon Laboratories  
algorithm to generate a bit-error-rate (BER) alarm on  
the BER_ALM pin if the observed BER is greater than a  
user programmable threshold. Bit error detection relies  
on the input data edge timing; edges occurring outside  
of the expected event window are counted as bit errors.  
The BER threshold is programmed by applying a  
voltage to the BER_LVL pin between 500 mV and  
2.25 V corresponding to a BER of approximately 10–10  
and 10–6, respectively. The voltage present on  
BER_LVL maps to the BER as follows: log10(BER) = (4  
x BER_LVL) – 13. (BER_LVL is in volts; BER is in bits  
per second.).  
Note: The slice circuit is designed to only work with pseudo-  
random, dc-balanced data.  
4.11. PLL Performance  
The PLL implementation used in the Si5013 is fully  
compliant with the jitter specifications proposed for  
SONET/SDH equipment by Bellcore GR-253-CORE,  
Issue 3, September 2000 and ITU-T G.958.  
4.11.1. Jitter Tolerance  
The Si5013’s tolerance to input jitter exceeds that of the  
Bellcore/ITU mask shown in Figure 8. This mask  
defines the level of peak-to-peak sinusoid jitter that  
must be tolerated when applied to the differential data  
input of the device.  
25  
20  
15  
10  
5
10 mV  
Upper Limit  
0
-5  
Typical  
-10  
10 mV  
-15  
-20  
Note: SLICE is a continuous curve. This chart shows  
the range of results from part-to-part.  
Lower Limit  
-25  
0.00  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
1.75  
2.00  
2.25  
Figure 8. OC-12 and OC-3 Slice Specification  
14  
Rev. 1.5  
Si5013  
4.11.2. Jitter Transfer  
positive and negative terminals of CLKOUT are tied to  
VDD through 100 on-chip resistors.  
The Si5013 exceeds all relevant Bellcore/ITU  
specifications related to SONET/SDH jitter transfer.  
Jitter transfer is defined as the ratio of output signal jitter  
to input signal jitter as a function of jitter frequency.  
These measurements are made with an input test signal  
that is degraded with sinusoidal jitter whose magnitude  
is defined by the mask in Figure 9.  
4.14. Data Squelch  
The Si5013 provides a data squelching pin (DSQLCH)  
that is used to set the recovered data output (DOUT) to  
binary zero. When the DSQLCH pin is asserted, the  
DOUT+ signal is held low and the DOUT– signal is held  
high. This pin can be is used to squelch corrupt data  
during LOS and LOL situations. Care must be taken  
when ac coupling these outputs; a long string of zeros  
or ones will not be held through ac coupling capacitors.  
Jitter  
Transfer  
4.15. Device Grounding  
0.1 dB  
20 dB/Decade  
Slope  
The Si5013 uses the GND pad on the bottom of the 28-  
pin micro leaded package (QFN) for device ground. This  
pad should be connected directly to the analog supply  
ground. See Figure 15 on page 19 and Figure 16 on  
page 23 for the ground (GND) pad location.  
Acceptable  
Range  
Fc  
4.16. Bias Generation Circuitry  
Frequency  
The Si5013 makes use of an external resistor to set  
internal bias currents. The external resistor allows  
precise generation of bias currents which significantly  
reduces power consumption versus traditional  
implementations that use an internal resistor. The bias  
generation circuitry requires a 10 k(1%) resistor  
connected between REXT and GND.  
SONET  
Data Rate  
OC-12  
OC-3  
Fc  
(kHz)  
500  
130  
Figure 9. Jitter Transfer Specification  
4.11.3. Jitter Generation  
The Si5013 exceeds all relevant specifications for jitter  
generation proposed for SONET/SDH equipment. The  
jitter generation specification defines the amount of jitter  
that may be present on the recovered clock and data  
outputs when a jitter free input signal is provided. The  
4.17. Voltage Regulator  
The Si5013 operates from a 3.3 V external supply  
voltage. Internally the device operates from a 2.5 V  
supply. The Si5013 regulates 2.5 V internally down from  
the external 3.3 V supply.  
Si5013 typically generates less than 3.0 mUI  
when presented with jitter-free input data.  
of jitter  
rms  
In addition to supporting 3.3 V systems, the on-chip  
linear regulator offers better power supply noise  
rejection versus a direct 2.5 V supply.  
4.12. RESET/DSPLL Calibration  
The Si5013 achieves optimal jitter performance by  
automatically calibrating the loop gain parameters within  
the DSPLL on powerup. Calibration may also be  
initiated by a high-to-low transition on the RESET/CAL  
pin. The RESET/CAL pin must be held high for at least  
1 µs. When RESET/CAL is released (set to low) the  
digital logic resets to a known initial condition,  
recalibrates the DSPLL, and begins to lock to the  
incoming data stream. For a valid reset to occur when  
using Reference mode, a proper, external reference  
clock frequency must be applied.  
4.18. Differential Input Circuitry  
The Si5013 provides differential inputs for both the high-  
speed data (DIN) and the reference clock (REFCLK)  
inputs. An example termination for these inputs is  
shown in Figures 10 and 11, respectively. In  
applications where direct dc coupling is possible, the  
0.1 µF capacitors may be omitted. (LOS operation is  
only guaranteed when ac coupled.) The data input  
limiting amplifier requires an input signal with a  
differential peak-to-peak voltage as specified in Table 2  
–12  
on page 7 to ensure a BER of at least 10 . The  
REFCLK input differential peak-to-peak voltage  
requirement is also specified in Table 2.  
4.13. Clock Disable  
The Si5013 provides a clock disable pin (CLK_DSBL)  
that is used to disable the recovered clock output  
(CLKOUT). When the CLK_DSBL pin is asserted, the  
Rev. 1.5  
15  
Si5013  
Si5013  
2.5 V (±5%)  
Clock source  
2.5 kΩ  
0.1 µF  
0.1 µF  
Zo = 50 Ω  
RFCLK+  
RFCLK–  
100 Ω  
Zo = 50 Ω  
10 kΩ  
2.5 kΩ  
10 kΩ  
GND  
Figure 10. Input Termination for REFCLK (ac coupled)  
Si5013  
TIA  
2.5 V (±5%)  
0.1 µF  
Zo = 50 Ω  
DIN+  
50 Ω  
50 Ω  
5 kΩ  
7.5 kΩ  
0.1 µF  
Zo = 50 Ω  
DIN–  
GND  
Figure 11. Input Termination for DIN (ac coupled)  
16  
Rev. 1.5  
Si5013  
Si5013  
2.5 V (±5%)  
Clock  
source  
2.5 kΩ  
0.1 µF  
Zo = 50 Ω  
RFCLK +  
RFCLK –  
10 kΩ  
2.5 kΩ  
50 Ω  
10 kΩ  
0.1 µF  
GND  
Figure 12. Single-Ended Input Termination for REFCLK (ac coupled)  
2.5 V  
Si5013  
Signal  
source  
(±5%)  
0.1 µF  
Zo = 50 Ω  
DIN+  
50 Ω  
5 kΩ  
100Ω  
50 Ω  
7.5 kΩ  
DIN–  
0.1 µF  
GND  
Figure 13. Single-Ended Input Termination for DIN (ac coupled)  
Rev. 1.5  
17  
Si5013  
4.19. Differential Output Circuitry  
The Si5013 utilizes a current-mode logic (CML) architecture to output both the recovered clock (CLKOUT) and  
data (DOUT). An example of output termination with ac coupling is shown in Figure 14. In applications in which  
direct dc coupling is possible, the 0.1 µF capacitors may be omitted. The differential peak-to-peak voltage swing of  
the CML architecture is specified in Table 2 on page 7.  
Si5013  
VDD  
50 Ω  
2.5 V (±5%)  
100 Ω  
DOUT+,  
CLKOUT+  
0.1 µF  
0.1 µF  
Zo = 50 Ω  
Zo = 50 Ω  
DOUT–,  
CLKOUT–  
100 Ω  
2.5 V (±5%)  
50 Ω  
VDD  
Figure 14. Output Termination for DOUT and CLKOUT (ac coupled)  
18  
Rev. 1.5  
Si5013  
5. Pin Descriptions: Si5013  
28 27 26 25 24 23 22  
RATESEL  
VDD  
21  
1
2
3
4
5
6
7
GND  
LOS_LVL  
SLICE_LVL  
REFCLK+  
REFCLK–  
LOL  
20 REXT  
19 RESET/CAL  
GND  
Pad  
18  
17  
16  
15  
VDD  
DOUT+  
DOUT–  
TDI  
8
9
10 11 12 13 14  
Figure 15. Si5013 Pin Configuration  
Table 8. Si5013 Pin Descriptions  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
1
RATESEL  
I
LVTTL  
Data Rate Select.  
This pin configures the onboard PLL for clock and  
data recovery at one of two user selectable data  
rates. See Table 7 for configuration settings.  
Notes:  
1. This input has a weak internal pullup.  
2. After any change in RATESEL, the device must be  
reset.  
3
4
LOS_LVL  
I
I
LOS Level Control.  
The LOS threshold is set by the input voltage level  
applied to this pin. Figure 6 on page 13 shows the  
input setting to output threshold mapping.  
LOS is disabled when the voltage applied is less  
than 1 V.  
SLICE_LVL  
Slicing Level Control.  
The slicing threshold level is set by applying a volt-  
age to this pin as described in the Slicing Level sec-  
tion of the data sheet. If this pin is tied to GND,  
slicing level adjustment is disabled, and the slicing  
level is set to the midpoint of the differential input  
signal on DIN. Slicing level becomes active when  
the voltage applied to the pin is greater than  
500 mV.  
Rev. 1.5  
19  
Si5013  
Table 8. Si5013 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
5
6
REFCLK+  
REFCLK–  
I
See Table 2 Differential Reference Clock (Optional).  
When present, the reference clock sets the center  
operating frequency of the DSPLL for clock and  
data recovery. Tie REFCLK+ to VDD and REFCLK–  
to GND to operate without an external reference  
clock.  
See Table 7 on page 12 for typical reference clock  
frequencies.  
7
8
O
LVTTL  
LVTTL  
Loss-of-Lock.  
LOL  
LTR  
This output is driven low when the recovered clock  
frequency deviates from the reference clock by the  
amount specified in Table 4 on page 9. If no exter-  
nal reference is supplied, this signal will be active  
when the internal PLL is no longer locked to the  
incoming data.  
I
Lock-to-Reference.  
When this pin is low, the DSPLL disregards the data  
inputs. If an external reference is supplied, the out-  
put clock locks to the supplied reference. If no  
external reference is used, the DSPLL locks the  
control loop until LTR is released.  
Note: This input has a weak internal pullup.  
9
O
LVTTL  
LVTTL  
Loss-of-Signal.  
LOS  
This output pin is driven low when the input signal is  
below the threshold set via LOS_LVL. (LOS opera-  
tion is guaranteed only when ac coupling is used on  
the DIN inputs.)  
10  
DSQLCH  
Data Squelch.  
When driven high, this pin forces the data present  
on DOUT+ to zero and DOUT– to one. For normal  
operation, this pin should be low. DSQLCH may be  
used during LOS/LOL conditions to prevent random  
data from being presented to the system.  
Note: This input has a weak internal pulldown.  
11,14,18,21,  
25  
VDD  
3.3 V  
Supply Voltage.  
Nominally 3.3 V.  
12  
13  
DIN+  
DIN–  
I
See Table 2 Differential Data Input.  
Clock and data are recovered from the differential  
signal present on these pins. AC coupling is recom-  
mended.  
15  
GND  
GND  
Production Test Input.  
This pin is used during production testing and must  
be tied to GND for normal operation.  
20  
Rev. 1.5  
Si5013  
Table 8. Si5013 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
Differential Data Output.  
16  
17  
DOUT–  
DOUT+  
O
CML  
The data output signal is a retimed version of the  
data recovered from the signal present on DIN.  
19  
RESET/CAL  
I
LVTTL  
Reset/Calibrate.  
Driving this input high for at least 1 µs will reset  
internal device circuitry. A high to low transition on  
this pin will force a DSPLL calibration. For normal  
operation, drive this pin low.  
Note: This input has a weak internal pulldown.  
20  
REXT  
External Bias Resistor.  
This resistor is used to establish internal bias cur-  
rents within the device. This pin must be connected  
to GND through a 10 kΩ (1%) resistor.  
22  
23  
CLKOUT–  
CLKOUT+  
O
I
CML  
Differential Clock Output.  
The output clock is recovered from the data signal  
present on DIN except when LTR is asserted or the  
LOL state has been entered.  
24  
26  
CLKDSBL  
BER_LVL  
LVTTL  
Clock Disable.  
When this input is high, the CLKOUT output drivers  
are disabled. For normal operation, this pin should  
be low.  
Note: This input has a weak internal pulldown.  
I
Bit Error Rate Level Control.  
The BER threshold level is set by applying a volt-  
age to this pin. When the BER exceeds the pro-  
grammed threshold, BER_ALM is driven low. If this  
pin is tied to GND, BER_ALM is disabled. There is  
no hysteresis.  
27  
O
LVTTL  
Bit Error Rate Alarm.  
BER_ALM  
This pin will be driven low to indicate that the BER  
threshold set by BER_LVL has been exceeded. The  
alarm will clear after the BER rate has improved by  
approximately a factor of 2.  
28  
NC  
No Connect.  
Leave this pin disconnected.  
Supply Ground.  
GND Pad, 2  
GND  
GND  
Nominally 0.0 V. The GND pad found on the bottom  
of the 28-lead QFN (see Figure 16 on page 23)  
must be connected directly to supply ground. Min-  
imize the ground path inductance for optimal perfor-  
mance.  
Rev. 1.5  
21  
Si5013  
6. Ordering Guide  
Part Number  
Si5013-X-GM  
Notes:  
Package  
Voltage  
Lead-Free  
Temperature  
28-lead QFN  
3.3  
Yes  
–40 to 85 °C  
1. “X” denotes product revision.  
2. Add an “R” at the end of the device to denote tape and reel option; 2500 quantity per reel.  
22  
Rev. 1.5  
Si5013  
7. Package Outline  
Figure 16 illustrates the package details for the Si5013. Table 9 lists the values for the dimensions shown in the  
illustration.  
2X  
0.10 C  
A
A
D
D/2  
0.05 C  
A
b
M
D1  
0.10  
N
C
A
B
A1  
D1/2  
D2  
2X  
N
C
B
0.10  
1
2
3
1
2
3
E1/2  
E1  
E/2  
E
B
(Ne–1) Xe  
REF.  
E2  
L
θ
C
SEATING  
PLANE  
e
TOP VIEW  
(Nd–1) Xe  
REF.  
C
C
C
L
b
A1  
BOTTOM VIEW  
SECTION "C–C"  
e
SCALE: NONE  
Approximate device weight is 62.2 mg.  
Figure 16. 28-Lead Quad Flat No-Lead (QFN)  
Table 9. Package Diagram Dimensions  
Controlling Dimension: mm  
Symbol  
Millimeters  
Nom  
Min  
Max  
0.90  
0.05  
0.30  
A
A1  
b
0.85  
0.00  
0.18  
0.01  
0.23  
D
5.00 BSC  
4.75 BSC  
3.10  
D1  
D2  
E
2.95  
2.95  
3.25  
3.25  
5.00 BSC  
4.75 BSC  
3.10  
E1  
E2  
N
28  
Nd  
Ne  
e
7
7
0.50 BSC  
0.60  
L
0.50  
0.75  
12°  
θ
Rev. 1.5  
23  
Si5013  
values.  
DOCUMENT CHANGE LIST  
Revision 0.2 to Revision 1.0  
Updated Table 8 on page 19.  
Changed “clock input” to “DIN inputs” for Loss Of Signal  
Updated Figure 16, “28-Lead Quad Flat No-Lead  
(QFN),” on page 23.  
Added Figure 4, “PLL Acquisition Time,” on page 6.  
Table 2 on page 7  
Updated Table 9, “Package Diagram Dimensions,”  
on page 23.  
Updated values: Supply Current  
Updated values: Power Dissipation  
Updated values: Common Mode Input Voltage  
(REFCLK)  
Changed dimension A.  
Changed dimension E2.  
Updated values: Output Common Mode Voltage  
Revision 1.2 to Revision 1.3  
Table 3 on page 8  
Updated Figure 16, “28-Lead Quad Flat No-Lead  
Updated values: Output Clock Rise Time  
Updated values: Output Clock Fall Time  
(QFN),” on page 23.  
Updated Table 9, “Package Diagram Dimensions,”  
Updated values: Clock to Data Delay t  
Cf-D  
on page 23.  
Table 4 on page 9  
Updated values: Jitter Tolerance (OC-12)  
Updated values: RMS Jitter Generation  
Updated values: Peak-to-Peak Jitter Generation  
Updated values: Acquisition Time (reference clock  
applied)  
Updated values: Acquisition Time  
(reference-less operation)  
Updated values: Freq Difference at which Receive PLL  
goes out of Lock  
Revision 1.3 to Revision 1.4  
Updated "Features" on page 1.  
Table 2 on page 7.  
Updated supply current values.  
Updated power dissipation values.  
Updated differential output voltage swing  
(DOUT and CLKOUT).  
Table 3 on page 8.  
Updated values: Freq Difference at which Receive PLL  
goes into Lock  
Added output clock rate values.  
Updated duty cycle values.  
Updated slice accuracy values.  
Table 4 on page 9.  
Updated jitter tolerance values (OC-12 mode).  
Updated acquisition time values.  
Updated reference clocks range.  
Updated reference clocks tolerance.  
"3.Typical Application Schematic" on page 11.  
Added 1% to Rext.  
Removed “Hysteresis Dependency” Figure.  
Added Figure 7, “LOS Signal Hysteresis,” on page  
13.  
Corrected error: Table 8 on page 19—changed  
description for LOS_LVL from “LOS is disabled when  
the voltage applied is less than 500 mV” to “LOS is  
disabled when the voltage applied is less than  
1.0 V.”  
"4.11.PLL Performance" on page 14.  
Removed OC-24 note.  
Revision 1.0 to Revision 1.1  
Corrected “Revision 0.2 to Revision 1.0” Change  
Table 8 on page 19.  
List.  
Added no-hysteresis text to BER_LVL.  
Updated "6.Ordering Guide" on page 22.  
Added “X” to part number.  
Table 4 on page 9  
Updated values: Jitter Tolerance (OC-3)  
Revision 1.1 to Revision 1.2  
Revision 1.4 to Revision 1.5  
Added Figure 5, “LOS Response,” on page 6.  
Updated Table 2 on page 7.  
Updated Table 2 on page 7.  
Added limits for V  
.
ICM  
Added “Output Common Mode Voltage (DOUT)” with  
updated values.  
Added “Output Common Mode Voltage (CLKOUT)” with  
updated values.  
Updated V  
.
OD  
Updated Table 3 on page 8.  
Updated T  
Updated T  
.
Cr-D  
.
Cf-D  
Updated Table 3 on page 8.  
Revised SLICE specification.  
Added “Output Clock Duty Cycle—OC-12/3.”  
Added “Loss-of-Signal Response Time” with updated  
Updated "4.8.Loss-of-Signal (LOS)" on page 13.  
24  
Rev. 1.5  
Si5013  
Added note describing valid signal.  
Revised Figure 6, “LOS_LVL Mapping,” on page 13.  
Updated "4.10.Data Slicing Level" on page 14.  
Added Figure 8 on page 14.  
Revised text.  
Rev. 1.5  
25  
Si5013  
CONTACT INFORMATION  
Silicon Laboratories Inc.  
4635 Boston Lane  
Austin, TX 78735  
Tel: 1+(512) 416-8500  
Fax: 1+(512) 416-9669  
Toll Free: 1+(877) 444-3032  
Email: HighSpeed@silabs.com  
Internet: www.silabs.com  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.  
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from  
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features  
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-  
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-  
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to  
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-  
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-  
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
Silicon Laboratories, Silicon Labs, and DSPLL are trademarks of Silicon Laboratories Inc.  
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.  
26  
Rev. 1.5  

相关型号:

SI5013-BM

Clock Recovery Circuit, 1-Func, 5 X 5 MM, QFN-28
SILICON

SI5013-D-GM

OC-12/3, STM-4/1 SONET/SDH CDR IC WITH LIMITING AMPLIFIER
SILICON

SI5013-X-GM

OC-12/3, STM-4/1 SONET/SDH CDR IC WITH LIMITING AMPLIFIER
SILICON

SI5017

OC-48/STM-16 SONET/SDH CDR IC WITH LIMITING AMPLIFIER
SILICON

SI5017-BM

Clock Recovery Circuit, 1-Func, 5 X 5 MM, QFN-28
SILICON

SI5017-D-GM

暂无描述
SILICON

SI5017-D-GMR

暂无描述
SILICON

SI5017-X-GM

OC-48/STM-16 SONET/SDH CDR IC WITH LIMITING AMPLIFIER
SILICON

SI5018

SiPHY⑩ OC-48/STM-16 CLOCK AND DATA RECOVERY IC WITH FEC
SILICON

SI5018-B-GM

Clock Recovery Circuit, 1-Func, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-1, QFN-20
SILICON

SI5018-B-GMR

Clock Recovery Circuit, 1-Func, 4 X 4 MM, ROHS COMPLIANT, MO-220VGGD-1, QFN-20
SILICON

SI5018-BM

SiPHY⑩ OC-48/STM-16 CLOCK AND DATA RECOVERY IC WITH FEC
SILICON