SI53019-A01AGMR [SILICON]

PLL Based Clock Driver, 53019 Series, 38 True Output(s), 0 Inverted Output(s), QFN-72;
SI53019-A01AGMR
型号: SI53019-A01AGMR
厂家: SILICON    SILICON
描述:

PLL Based Clock Driver, 53019 Series, 38 True Output(s), 0 Inverted Output(s), QFN-72

驱动 逻辑集成电路
文件: 总36页 (文件大小:983K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si53019-A01A  
19-OUTPUT PCIE GEN 3 BUFFER  
Features  
Nineteen 0.7 V current-mode,  
Spread spectrum tolerable  
HCSL PCIe Gen 3 outputs  
50 ps output-to-output skew  
100 MHz /133 MHz PLL  
operation, supports PCIe and  
QPI  
Fixed 0 ps input to output delay  
Low phase jitter (Intel QPI, PCIe  
Gen 1/Gen 2/Gen 3/Gen 4  
common clock compliant  
PLL bandwidth SW SMBUS  
programming overrides the latch  
value from HW pin  
Gen 3 SRNS Compliant  
100 ps input-to-output delay  
9 selectable SMBus addresses  
Fixed external feedback path  
8 dedicated OE pin  
Extended Temperature:  
–40 to 85 °C  
Ordering Information:  
Package: 72-pin QFN  
See page 32.  
PLL or bypass mode  
Applications  
Pin Assignments  
Server  
Data Center  
Storage  
Network Security  
Description  
The Si53019-A01A is a 19-output, current mode HCSL differential clock  
buffer that meets all of the performance requirements of the Intel  
DB1900Z specification. The device is optimized for distributing reference  
®
clocks for Intel QuickPath Interconnect (Intel QPI), PCIe Gen 1/Gen 2/  
Gen 3/Gen 4, SAS, SATA, and Intel Scalable Memory Interconnect (Intel  
SMI) applications. The VCO of the device is optimized to support  
100 MHz and 133 MHz operation. Each differential output can be enabled  
2
through I C for maximum flexibility and power savings. Measuring PCIe  
clock jitter is quick and easy with the Silicon Labs PCIe Clock Jitter Tool.  
Download it for free at www.silabs.com/pcie-learningcenter.  
Patents pending  
Rev. 1.5 7/17  
Copyright © 2017 by Silicon Laboratories  
Si53019-A01A  
Si53019-A01A  
Functional Block Diagram  
2
Rev. 1.5  
Si53019-A01A  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.1. CLK_IN, CLK_IN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.2. 100M_133M—Frequency Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.3. SA_0, SA_1—Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
2.4. CKPWRGD/PWRDN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
2.5. HBW_BYPASS_LBW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
2.6. Miscellaneous Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3. Test and Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.1. Input Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.2. Termination of Differential Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.1. Byte Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
4.2. Block Read/Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
4.3. Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
5. Pin Descriptions: 72-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
6. Power Filtering Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
6.1. Ferrite Bead Power Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
7. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32  
8. Package Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
9. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
9.1. 10x10 mm 72-QFN Package Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Rev. 1.5  
3
Si53019-A01A  
1. Electrical Specifications  
1
Table 1. DC Operating Characteristics  
VDD_A = 3.3 V±5%, VDD = 3.3 V±5%  
Parameter  
Symbol  
VDD/VDD_A  
Test Condition  
Min  
3.135  
2.0  
Max  
Unit  
V
3.3 V Core Supply Voltage  
3.3 V Input High Voltage  
3.3 V Input Low Voltage  
3.3 V ±5%  
3.465  
V
V
V
+0.3  
DD  
V
IH  
DD  
V
VSS–0.3  
–5  
0.8  
+5  
+0.3  
V
IL  
2
Input Leakage Current  
I
0 < VIN < V  
μA  
V
IL  
DD  
3
3.3 V Input High Voltage  
V
V
0.7  
V
IH_FS  
DD  
DD  
3
3.3 V Input Low Voltage  
V
VSS–0.3  
0
0.35  
0.9  
V
IL_FS  
3.3 V Input Low Voltage  
3.3 V Input Med Voltage  
3.3 V Input High Voltage  
V
V
IL_Tri  
V
1.3  
1.8  
V
IM_Tri  
V
2.4  
V
V
IH_Tri  
DD  
4
3.3 V Output High Voltage  
V
I
= –1 mA  
= 1 mA  
OL  
2.4  
V
OH  
OH  
4
3.3 V Output Low Voltage  
V
I
0.4  
4.5  
4.5  
7
V
OL  
5
Input Capacitance  
C
2.5  
pF  
pF  
nH  
°C  
IN  
5
Output Capacitance  
C
2.5  
OUT  
Pin Inductance  
Ambient Temperature  
Notes:  
L
PIN  
T
No Airflow  
–40  
85  
A
1. VDD_IO applies to the low-power NMOS push-pull HCSL compatible outputs.  
2. Input Leakage Current does not include inputs with pull-up or pull-down resistors. Inputs with resistors should state  
current requirements.  
3. Internal voltage reference is to be used to guarantee VIH_FS and VIL_FS thresholds levels over full operating range.  
4. Signal edge is required to be monotonic when transitioning through this region.  
5. Ccomp capacitance based on pad metallization and silicon device capacitance. Not including pin capacitance.  
4
Rev. 1.5  
 
 
 
 
 
 
Si53019-A01A  
1
Table 2. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode)  
Parameter  
Symbol  
CLK 100 MHz, 133 MHz  
Unit  
Min  
Typ  
1.5  
Max  
2
Clock Stabilization Time  
T
1.8  
100  
ms  
ppm  
ns  
STAB  
3,4,5  
Long Term Accuracy  
L
ACC  
3,4,6  
3,4,6  
Absolute Host CLK Period (100 MHz)  
Absolute Host CLK Period (133 MHz)  
T
9.94900  
7.44925  
1.0  
10.05100  
7.55075  
4.0  
ABS  
T
ns  
ABS  
3,4,7  
Slew Rate  
Edge_rate  
3.0  
7
V/ns  
%
3,8,10,11  
Slew Rate Matching  
T
/
20  
RISE_MAT  
T
FALL_MAT  
3,8,9  
Rise Time Variation  
Trise  
Tfall  
125  
125  
850  
150  
ps  
ps  
3,8,9  
Fall Time Variation  
3,8,12  
Voltage High (typ 0.7 V)  
V
660  
–150  
750  
15  
mV  
mV  
HIGH  
3,8,13  
Voltage Low (typ 0.7 V)  
V
LOW  
Notes:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. This is the time from the valid CLK_IN input clocks and the assertion of the PWRGD signal level at 1.8–2.0 V to the  
time that stable clocks are output from the buffer chip (PLL locked).  
3. Test configuration is Rs = 33.2 , Rp = 49.9, 2 pF for 100 transmission line; Rs = 27 , Rp = 42.2, 2 pF for 85   
transmission line.  
4. Measurement taken from differential waveform.  
5. Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are  
99,750,00 Hz, 133,000,000 Hz.  
6. The average period over any 1 μs period of time must be greater than the minimum and less than the maximum  
specified period.  
7. Measure taken from differential waveform on a component test board. The edge (slew) rate is measured from –150 mV  
to +150 mV on the differential waveform. Scope is set to average because the scope sample clock is making most of  
the dynamic wiggles along the clock edge Only valid for Rising CLOCK and Falling CLOCK. Signal must be monotonic  
through the Vol to Voh region for Trise and Tfall.  
8. Measurement taken from single-ended waveform.  
9. Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.  
10. Measured with oscilloscope, averaging on, The difference between the rising edge rate (average) of clock verses the  
falling edge rate (average) of CLOCK.  
11. Rise/Fall matching is derived using the following, 2*(Trise - Tfall) / (Trise + Tfall).  
12. VHigh is defined as the statistical average High value as obtained by using the Oscilloscope VHigh Math function.  
13. VLow is defined as the statistical average Low value as obtained by using the Oscilloscope VLow Math function.  
14. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of  
CLK.  
15. This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge is  
crossing.  
16. The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
17. Vcross(rel) Min and Max are derived using the following, Vcross(rel) Min = 0.250 + 0.5 (Vhavg – 0.700), Vcross(rel)  
Max = 0.550 – 0.5 (0.700 – Vhavg), (see Figure 4–5 for further clarification).  
18. Vcross is defined as the total variation of all crossing voltages of Rising CLOCK and Falling CLOCK. This is the  
maximum allowed variance in Vcross for any particular system.  
19. Overshoot is defined as the absolute value of the maximum voltage.  
20. Undershoot is defined as the absolute value of the minimum voltage.  
Rev. 1.5  
5
 
 
 
 
 
 
Si53019-A01A  
1
Table 2. DIF 0.7 V AC Timing Characteristics (Non-Spread Spectrum Mode) (Continued)  
Parameter  
Symbol  
CLK 100 MHz, 133 MHz  
Unit  
Min  
Typ  
850  
Max  
8
Maximum Voltage  
V
–300  
250  
1150  
mV  
mV  
mV  
mV  
MAX  
3,8,14,15,16  
Minimum Voltage  
V
MIN  
Absolute Crossing Point Voltages  
Total Variation of Vcross Over All  
Vox  
450  
14  
550  
140  
ABS  
Total Vox  
3,8,18  
Edges  
4
Vswing  
Vswing  
DC  
300  
45  
mV  
%
V
3,4  
Duty Cycle  
55  
3,8,19  
Maximum Voltage (Overshoot)  
Maximum Voltage (Undershoot)  
V
V
+ 0.3  
ovs  
High  
3,8,20  
V
V
– 0.3  
Low  
V
uds  
3,8  
Ringback Voltage  
V
0.2  
N/A  
V
rb  
Notes:  
1. Unless otherwise noted, all specifications in this table apply to all processor frequencies.  
2. This is the time from the valid CLK_IN input clocks and the assertion of the PWRGD signal level at 1.8–2.0 V to the  
time that stable clocks are output from the buffer chip (PLL locked).  
3. Test configuration is Rs = 33.2 , Rp = 49.9, 2 pF for 100 transmission line; Rs = 27 , Rp = 42.2, 2 pF for 85   
transmission line.  
4. Measurement taken from differential waveform.  
5. Using frequency counter with the measurement interval equal or greater than 0.15 s, target frequencies are  
99,750,00 Hz, 133,000,000 Hz.  
6. The average period over any 1 μs period of time must be greater than the minimum and less than the maximum  
specified period.  
7. Measure taken from differential waveform on a component test board. The edge (slew) rate is measured from –150 mV  
to +150 mV on the differential waveform. Scope is set to average because the scope sample clock is making most of  
the dynamic wiggles along the clock edge Only valid for Rising CLOCK and Falling CLOCK. Signal must be monotonic  
through the Vol to Voh region for Trise and Tfall.  
8. Measurement taken from single-ended waveform.  
9. Measured with oscilloscope, averaging off, using min max statistics. Variation is the delta between min and max.  
10. Measured with oscilloscope, averaging on, The difference between the rising edge rate (average) of clock verses the  
falling edge rate (average) of CLOCK.  
11. Rise/Fall matching is derived using the following, 2*(Trise - Tfall) / (Trise + Tfall).  
12. VHigh is defined as the statistical average High value as obtained by using the Oscilloscope VHigh Math function.  
13. VLow is defined as the statistical average Low value as obtained by using the Oscilloscope VLow Math function.  
14. Measured at crossing point where the instantaneous voltage value of the rising edge of CLK equals the falling edge of  
CLK.  
15. This measurement refers to the total variation from the lowest crossing point to the highest, regardless of which edge is  
crossing.  
16. The crossing point must meet the absolute and relative crossing point specifications simultaneously.  
17. Vcross(rel) Min and Max are derived using the following, Vcross(rel) Min = 0.250 + 0.5 (Vhavg – 0.700), Vcross(rel)  
Max = 0.550 – 0.5 (0.700 – Vhavg), (see Figure 4–5 for further clarification).  
18. Vcross is defined as the total variation of all crossing voltages of Rising CLOCK and Falling CLOCK. This is the  
maximum allowed variance in Vcross for any particular system.  
19. Overshoot is defined as the absolute value of the maximum voltage.  
20. Undershoot is defined as the absolute value of the minimum voltage.  
6
Rev. 1.5  
Si53019-A01A  
Table 3. SMBus Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Unit  
V
1
SMBus Input Low Voltage  
V
0.8  
ILSMB  
IHSMB  
1
SMBus Input High Voltage  
V
2.1  
V
V
DDSMB  
1
SMBus Output Low Voltage  
V
@ I  
0.4  
V
OLSMB  
DDSMB  
PULLUP  
PULLUP  
1
Nominal Bus Voltage  
V
@ V  
2.7  
4
5.5  
V
OL  
1
SMBus sink Current  
I
3 V to 5 V +/–10%  
(Max V – 0.15) to (Min V + 0.15)  
mA  
ns  
ns  
kHz  
1
SCLK/SDAT Rise Time  
t
1000  
300  
100  
RSMB  
IL  
IH  
1
SCLK/SDAT Fall Time  
t
(Min V + 0.15) to (Max V – 0.15)  
FSMB  
IH  
IL  
1,2  
SMBus Operating Frequency  
f
Minimum Operating Frequency  
MINSMB  
Notes:  
1. Guaranteed by design and characterization.  
2. The differential input clock must be running for the SMBus to be active.  
Table 4. Current Consumption  
TA = -40–85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
350  
15  
Unit  
mA  
mA  
Operating Current  
IDD  
100 MHz, CL = Full Load, Rs=33  
All differential pairs tri-stated  
310  
6
VDD  
Power Down Current IDD  
VDDPD  
Rev. 1.5  
7
 
 
Si53019-A01A  
Table 5. Clock Input Parameters  
TA = -40–85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Symbol  
Test Condition  
Differential Inputs  
Min  
Typ  
Max  
Unit  
Input High Voltage  
V
600  
800  
1150  
mV  
IHDIF  
(singled-ended measurement)  
Input Low Voltage  
V
Differential Inputs  
(singled-ended measurement)  
Vss-300  
300  
0
300  
mV  
mV  
IHDIF  
Input Common Mode  
Voltage  
V
Common mode input voltage  
1000  
com  
Input Amplitude  
Input Slew Rate  
Input Duty Cycle  
V
Peak to Peak Value  
300  
0.4  
45  
50  
1900  
8
mV  
V/ns  
%
swing  
dv/dt  
Measured differentially  
Measurement from differential wave  
form  
55  
Input Jitter—Cycle to  
Cycle  
J
Differential measurement  
125  
ps  
DFin  
Input Frequency  
F
V
V
V
= 3.3 V, bypass mode  
33  
90  
100  
150  
110  
147  
33  
MHz  
MHz  
MHz  
kHz  
ibyp  
DD  
DD  
DD  
F
= 3.3 V, 100 MHz PLL Mode  
= 3.3 V, 133.33 MHz PLL Mode  
iPLL  
FiPLL  
120  
30  
133.33  
31.5  
Input SS Modulation  
Rate  
f
Triangle Wave modulation  
MODIN  
8
Rev. 1.5  
 
Si53019-A01A  
Table 6. Output Skew, PLL Bandwidth and Peaking  
TA = -40–85 °C; supply voltage VDD = 3.3 V ±5%  
Parameter  
Test Condition  
Min  
TYP  
Max  
Unit  
CLK_IN, DIF[x:0]  
Input-to-Output Delay in PLL Mode  
Nominal Value  
–100  
20  
100  
ps  
1,2,3,4  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
CLK_IN, DIF[x:0]  
Input-to-Output Delay in Bypass Mode  
Nominal Value  
2.5  
–50  
–250  
3.4  
0
4.5  
50  
250  
75  
5
ns  
ps  
ps  
ps  
2,4,5  
Input-to-Output Delay Variation in PLL Mode  
2,4,5  
Over voltage and temperature  
Input-to-Output Delay Variation in Bypass Mode  
15  
3
2,4,5  
Over voltage and temperature  
Random differential spread spectrum tracking  
error between 2 DB1900Z devices in Hi BW Mode  
Random differential tracking error between 2  
DB1900Z devices in Hi BW Mode  
ps  
(rms)  
DIF[18:0]  
Output-to-Output Skew across all Outputs  
(Common to Bypass and PLL Mode)  
0
20  
50  
ps  
1,2,3,4,5  
6
PLL Jitter Peaking  
PLL Jitter Peaking  
PLL Bandwidth  
(HBW_BYPASS_LBW = 0)  
0.4  
0.1  
0.7  
2
2.0  
2.5  
1.4  
4
dB  
dB  
6
(HBW_BYPASS_LBW = 1)  
7
(HBW_BYPASS_LBW = 0)  
MHz  
MHz  
7
PLL Bandwidth  
(HBW_BYPASS_LBW = 1)  
Notes:  
1. Measured into fixed 2 pF load cap. Input-to-output skew is measured at the first output edge following the  
corresponding input.  
2. Measured from differential cross-point to differential cross-point.  
3. This parameter is deterministic for a given device.  
4. Measured with scope averaging on to find mean value.  
5. All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge  
created by it.  
6. Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called  
PLL jitter peaking.  
7. Measured at 3 db down or half power point.  
Rev. 1.5  
9
 
 
 
 
 
Si53019-A01A  
Table 7. Phase Jitter  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
1,2,3  
Phase Jitter  
PLL Mode  
PCIe Gen 1, Common Clock  
30  
86  
ps  
PCIe Gen 2 Low Band, Common Clock  
1.0  
2.6  
3.0  
3.1  
1.0  
0.71  
1.0  
0.5  
0.3  
0.2  
ps  
(RMS)  
1,3,4,5  
F < 1.5 MHz  
PCIe Gen2 High Band, Common Clock  
ps  
(RMS)  
1,3,4,5  
1.5 MHz < F < Nyquist  
PCIe Gen 3, Common Clock  
(PLL BW 2–4 MHz, CDR = 10 MHz)  
0.6  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 3 Separate Reference No Spread, SRNS  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
0.42  
0.6  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 4, Common Clock  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,4,5,8  
®
Intel QPI & Intel SMI  
0.25  
0.17  
0.15  
ps  
(RMS)  
1,6,7  
(4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI)  
Intel QPI & Intel SMI  
(8 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Intel QPI & Intel SMI  
(9.6 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Notes:  
1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a  
smaller sample size have to be extrapolated to this BER target.  
2. ζ = 0.54 implies a jitter peaking of 3 dB.  
3. PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest  
specification.  
4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be  
extrapolated to this BER target.  
8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
9. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
10  
Rev. 1.5  
 
 
Si53019-A01A  
Table 7. Phase Jitter (Continued)  
1,2,3  
Additive Phase Jitter  
Bypass Mode  
PCIe Gen 1  
4
ps  
PCIe Gen 2 Low Band  
0.08  
ps  
(RMS)  
1,3,4,5  
F < 1.5 MHz  
PCIe Gen 2 High Band  
1.5 MHz < F < Nyquist  
1
ps  
(RMS)  
1,3,4,5  
PCIe Gen 3  
(PLL BW 2–4 MHz, CDR = 10 MHz)  
0.27  
0.27  
0.25  
0.08  
0.07  
ps  
(RMS)  
1,3,4,5  
PCIe Gen 4, Common Clock  
(PLL BW of 2–4 or 2–5 MHz, CDR = 10 MHz)  
ps  
(RMS)  
1,4,5,8  
1,6,7  
Intel QPI & Intel® SMI  
(4.8 Gbps or 6.4 Gb/s, 100 or 133 MHz, 12 UI)  
ps  
(RMS)  
Intel QPI & Intel® SMI  
(8 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Intel QPI & Intel® SMI  
(9.6 Gb/s, 100 MHz, 12 UI)  
ps  
(RMS)  
1,6  
Notes:  
1. Post processed evaluation through Intel supplied Matlab* scripts. Defined for a BER of 1E-12. Measured values at a  
smaller sample size have to be extrapolated to this BER target.  
2. ζ = 0.54 implies a jitter peaking of 3 dB.  
3. PCIe* Gen3 filter characteristics are subject to final ratification by PCISIG. Check the PCI-SIG for the latest  
specification.  
4. Measured on 100 MHz PCIe output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
5. Measured on 100 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
6. Measured on 100 MHz, 133 MHz output using the template file in the Intel-supplied Clock Jitter Tool V1.6.3.  
7. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be  
extrapolated to this BER target.  
8. Gen 4 specifications based on the PCI-Express Base Specification 4.0 rev. 0.5.  
9. Download the Silicon Labs PCIe Clock Jitter Tool at www.silabs.com/pcie-learningcenter.  
Rev. 1.5  
11  
Si53019-A01A  
Table 8. Clock Periods Differential Clock Outputs with SSC Disabled  
SSC OFF  
Center  
Freq, MHz  
Measurement Window  
Unit  
1 Clock  
1 μs  
0.1 s  
0.1 s  
0.1 s  
1 μs  
1 Clock  
-C-C Jitter  
AbsPer  
Min  
-SSC  
Short  
-ppm  
Long  
0 ppm  
Period  
+ppm  
Long  
+SSC  
Short  
+C-C  
Jitter  
AbsPer  
Max  
Term AVG Term AVG Nominal Term AVG Term AVG  
Min  
Min  
Max  
Max  
100.00  
133.33  
9.94900  
7.44925  
9.99900  
7.49925  
10.00000 10.00100  
10.05100  
7.55075  
ns  
ns  
7.50000  
7.50075  
Table 9. Clock Periods Differential Clock Outputs with SSC Enabled  
SSC ON  
Center  
Freq, MHz  
Measurement Window  
Unit  
1 Clock  
1 μs  
0.1 s  
0.1 s  
0.1 s  
1 μs  
1 Clock  
-C-C  
Jitter  
AbsPer  
Min  
-SSC  
Short  
-ppm  
Long  
0 ppm  
Period  
+ppm  
Long  
+SSC  
Short  
+C-C  
Jitter  
AbsPer  
Max  
Term AVG Term AVG Nominal Term AVG Term AVG  
Min  
Min  
Max  
Max  
99.75  
9.94906  
7.44930  
9.99906  
7.49930  
10.02406 10.02506 10.02607 10.05107 10.10107  
ns  
ns  
133.00  
7.51805  
7.51880  
7.51955  
7.53830  
7.58830  
Table 10. Absolute Maximum Ratings  
Parameter  
Symbol  
Min  
Max  
Unit  
1
3.3 V Core Supply Voltage  
VDD/VDD_A  
4.6  
V
V
1,2  
3.3 V Input High Voltage  
VIH  
VIL  
V
+0.5 V  
DD  
1
3.3 V Input Low Voltage  
–0.5  
–65  
2000  
V
1
Storage Temperature  
t
150  
°C  
V
s
3
Input ESD protection  
ESD  
Notes:  
1. Consult manufacturer regarding extended operation in excess of normal dc operating parameters.  
2. Maximum VIH is not to exceed maximum VDD  
3. Human body model.  
.
12  
Rev. 1.5  
 
 
Si53019-A01A  
2. Functional Description  
Figure 1. Si53019-A01A Functional Block Diagram  
Table 11. Functionality at Power Up (PLL Mode)  
100M_133M  
CLK_IN  
(MHz)  
Conditions  
1
0
100  
CLK_IN  
CLK_IN  
133.33  
Table 12. PLL Operating Mode Readback Table  
HBW_BYPASS_LBW Byte 0, Bit 7 Byte 0, Bit 6  
Mode  
Low  
Mid (Bypass)  
High  
0
0
1
0
1
1
PLL Low BW  
Bypass  
PLL High BW  
Rev. 1.5  
13  
Si53019-A01A  
Table 13. Tri-Level Input Thresholds  
Parameter  
Low  
Voltage  
<0.8 V  
Mid  
1.2<Vin<1.8 V  
Vin>2.2 V  
High  
Table 14. Power Connections  
Description  
Pin Number  
V
GND  
DD  
1
2
7
Analog PLL  
Analog Input  
DIF Outputs  
8
21,31,45,58,68  
26,44,63  
Note: TA = -40–85 °C; supply voltage VDD = 3.3 V ±5%  
Table 15. SMBus Addressing  
Pin  
SMBus Address  
SMB_A1  
SMB_A0  
0
0
0
M
1
D8  
DA  
DE  
C2  
C4  
C6  
CA  
CC  
CE  
0
M
M
M
1
0
M
1
0
1
M
1
1
14  
Rev. 1.5  
 
Si53019-A01A  
2.1. CLK_IN, CLK_IN  
The differential input clock is expected to be sourced from a clock synthesizer or PCH.  
2.2. 100M_133M—Frequency Selection  
The Si53019-A01A is optimized for lowest phase jitter performance at operating frequencies of 100 and 133 MHz.  
100M_133M is a hardware input pin, which programs the appropriate output frequency of the differential outputs.  
Note that the CLK_IN frequency must be equal to the CLK_OUT frequency, meaning Si53019-A01A is operated in  
1:1 mode only. Frequency selection can be enabled by the 100M_133M hardware pin. An external pull-up or pull-  
down resistor is attached to this pin to select the input/output frequency. The functionality is summarized in  
Table 16.  
Table 16. Frequency Program Table  
100M_133M  
Optimized Frequency (DIF_IN = DIF_x)  
133.33 MHz  
0
1
100.00 MHz  
Note: All differential outputs transition from 100 to 133 MHz or from 133 to 100 MHz in a glitch free manner.  
2.3. SA_0, SA_1—Address Selection  
SA_0 and SA_1 are tri-level hardware pins, which program the appropriate address for the Si53019-A01A. The two  
tri-level input pins can configure the device to nine different addresses.  
Table 17. SMBus Address Table  
SA_1  
L
SA_0  
L
SMBus Address  
D8  
DA  
DE  
C2  
C4  
C6  
CA  
CC  
CE  
L
M
H
L
M
M
M
H
L
M
H
L
H
M
H
H
Rev. 1.5  
15  
 
Si53019-A01A  
2.4. CKPWRGD/PWRDN  
CKPWRGD is asserted high and deasserted low. Deassertion of PWRGD (pulling the signal low) is equivalent to  
indicating a power-down condition. CKPWRGD (assertion) is used by the Si53019-A01A to sample initial  
configurations, such as frequency select condition and SA selections. After CKPWRGD has been asserted high for  
the first time, the pin becomes a PWRDN (Power Down) pin that can be used to shut off all clocks cleanly and  
instruct the device to invoke power-saving mode. PWRDN is a completely asynchronous active low input. When  
entering power-saving mode, PWRDN should be asserted low prior to shutting off the input clock or power to  
ensure all clocks shut down in a glitch free manner. When PWRDN is asserted low, all clocks will be disabled prior  
to turning off the VCO. When PWRDN is deasserted high, all clocks will start and stop without any abnormal  
behavior and will meet all AC and DC parameters.  
Note: The assertion and deassertion of PWRDN is absolutely asynchronous.  
Warning: Disabling of the CLK_IN input clock prior to assertion of PWRDN is an undefined mode and not recommended.  
Operation in this mode may result in glitches, excessive frequency shifting, etc.  
Table 18. CKPWRGD/PWRDN Functionality  
CKPWRGD/  
PWRDN  
DIF_IN/  
DINF_IN#  
SMBus  
EN bit  
OE# Pin  
DIF(5:12) Other DIF/  
FBOUT_NC/ PLL State  
FBOUT_NC#  
DIF(5:12)#  
DIF#  
0
1
X
X
0
1
1
X
X
0
Hi-Z*  
Hi-Z*  
Hi-Z*  
OFF  
ON  
ON  
ON  
Running  
Hi-Z*  
Hi-Z*  
Running  
Running  
Running  
Running  
Hi-Z*  
Running  
Running  
1
*Note: Due to external pull down resistors, Hi-Z results in Low/Low on the True/Complement outputs.  
16  
Rev. 1.5  
Si53019-A01A  
2.4.1. PWRDN Assertion  
When PWRDN is sampled low by two consecutive rising edges of DIF, all differential outputs must be held Tri-  
state/Tri-state on the next DIF high-to-low transition. The device will put all outputs in high impedance mode, and  
all outputs will be pulled low by the external terminating resistors.  
Figure 2. PWRDN Assertion  
2.4.2. CKPWRGD Assertion  
The power-up latency is to be less than 1.8 ms. This is the time from a valid CLK_IN input clock and the assertion  
of the PWRGD signal to the time that stable clocks are output from the device (PLL locked). All differential outputs  
stopped in a Tri-state/Tri-state condition resulting from power down must be driven high in less than 300 μs of  
PWRDN deassertion to a voltage greater than 200 mV.  
Figure 3. PWRDG Assertion (Pwrdown—Deassertion)  
Rev. 1.5  
17  
Si53019-A01A  
2.5. HBW_BYPASS_LBW  
The HBW_BYPASS_LBW pin is a tri-level function input pin (refer to Table 1 for VIL_Tri, VIM_Tri, and VIH_Tri  
signal levels). It is used to select between PLL high-bandwidth, PLL bypass mode, or PLL low-bandwidth mode. In  
PLL bypass mode, the input clock is passed directly to the output stage, which may result in up to 50 ps of additive  
cycle-to-cycle jitter (50 ps + input jitter) on the differential outputs. In the case of PLL mode, the input clock is  
passed through a PLL to reduce high-frequency jitter. The PLL HBW, BYPASS, and PLL LBW modes may be  
selected by asserting the HBW_BYPASS_LBW input pin to the appropriate level described in Table 19.  
Table 19. PLL Bandwidth and Readback Table  
HBW_BYPASS_LBW Pin  
Mode  
LBW  
Byte 0, Bit 7  
Byte 0, Bit 6  
L
M
H
0
0
1
0
1
1
BYPASS  
HBW  
The Si53019-A01A has the ability to override the latch value of the PLL operating mode from hardware strap Pin 5  
via the use of Byte 0 and Bits 2 and 1. Byte 0 Bit 3 must be set to 1 to allow the user to change Bits 2 and 1,  
affecting the PLL. Bits 7 and 6 will always read back the original latched value. A warm reset of the system will  
have to be accomplished if the user changes these bits.  
2.6. Miscellaneous Requirements  
Data Transfer Rate: 100 kbps (standard mode) is the base functionality required. Fast mode (400 kbps)  
functionality is optional.  
Logic Levels: SMBus logic levels are based on a percentage of V for the controller and other devices on the  
DD  
bus. Assume all devices are based on a 3.3 V supply.  
Clock Stretching: The clock buffer must not hold/stretch the SCL or SDA lines low for more than 10 ms. Clock  
stretching is discouraged and should only be used as a last resort. Stretching the clock/data lines for longer than  
this time puts the device in an error/time-out mode and may not be supported in all platforms. It is assumed that all  
data transfers can be completed as specified without the use of clock/data stretching.  
General Call: It is assumed that the clock buffer will not have to respond to the “general call.”  
Electrical Characteristics: All electrical characteristics must meet the standard mode specifications found in  
Section 3 of the SMBus 2.0 specification.  
Pull-Up Resistors: Any internal resistor pull-ups on the SDATA and SCLK inputs must be stated in the individual  
data sheet. The use of internal pull-ups on these pins of below 100 K is discouraged. Assume that the board  
designer will use a single external pull-up resistor for each line and that these values are in the 5–6 krange.  
Assume one SMBus device per DIMM (serial presence detect), one SMBus controller, one clock buffer, one clock  
driver plus one/two more SMBus devices on the platform for capacitive loading purposes.  
Input Glitch Filters: Only fast mode SMBus devices require input glitch filters to suppress bus noise. The clock  
buffer is specified as a standard mode device and is not required to support this feature. However, it is considered  
a good design practice to include the filters.  
PWRDN: If a clock buffer is placed in PWRDN mode, the SDATA and SCLK inputs must be Tri-stated and the  
device must retain all programming information. I current due to the SMBus circuitry must be characterized and  
DD  
in the data sheet.  
18  
Rev. 1.5  
 
Si53019-A01A  
3. Test and Measurement Setup  
3.1. Input Edge  
Input edge rate is based on single-ended measurement. This is the minimum input edge rate at which the Si53019-  
A01A is guaranteed to meet all performance specifications.  
Table 20. Input Edge Rate  
Frequency  
100 MHz  
133 MHz  
Min  
0.35  
0.35  
Max  
N/A  
N/A  
Unit  
V/ns  
V/ns  
3.1.1. Measurement Points for Differential  
Figure 4. Measurement Points for Rise Time and Fall Time  
Figure 5. Single-ended Measurement Points for V , V , V  
ovs uds rb  
Rev. 1.5  
19  
Si53019-A01A  
Figure 6. Differential (CLOCK–CLOCK) Measurement Points (T  
3.2. Termination of Differential Outputs  
, Duty Cycle, Jitter)  
period  
All differential outputs are to be tested into a 100 or 85 differential impedance transmission line. Source  
terminated clocks have some inherent limitations as to the maximum trace length and frequencies that can be  
supported. For CPU outputs, a maximum trace length of 10” and a maximum of 200 MHz are assumed. For SRC  
clocks, a maximum trace length of 16” and maximum frequency of 100 MHz is assumed. For frequencies beyond  
200 MHz, trace lengths must be restricted to avoid signal integrity problems.  
Table 21. Differential Output Termination  
Clock  
IREF ()  
475  
Board Trace Impedance  
Rs  
Rp  
Unit  
DIFF Clocks—50 configuration  
DIFF Clocks—43 configuration  
100  
85  
33+5%  
50  
412  
27+5% 42.2 or 43.2  
3.2.1. Termination of Differential Current Mode HCSL Outputs  
Figure 7. 0.7 V Configuration Test Load Board Termination  
20  
Rev. 1.5  
Si53019-A01A  
4. Control Registers  
4.1. Byte Read/Write  
Reading or writing a register in an SMBus slave device in byte mode always involves specifying the register  
number.  
4.1.1. Byte Read  
The standard byte read is as shown in Figure 8. It is an extension of the byte write. The write start condition is  
repeated; then the slave device starts sending data, and the master acknowledges it until the last byte is sent. The  
master terminates the transfer with a NAK, then a stop condition. For byte operation, the 2 x 7th bit of the  
command byte must be set. For block operations, the 2 x 7th bit must be reset. If the bit is not set, the next byte  
must be the byte transfer count.  
Figure 8. Byte Read Protocol  
4.1.2. Byte Write  
Figure 9 illustrates a simple, typical byte write. For byte operation, the 2 x 7th bit of the command byte must be set.  
For block operations, the 2 x 7th bit must be reset. If the bit is not set, the next byte must be the byte transfer count.  
The count can be between 1 and 32. It is not allowed to be zero or to exceed 32.  
Figure 9. Byte Write Protocol  
Rev. 1.5  
21  
 
 
Si53019-A01A  
4.2. Block Read/Write  
4.2.1. Block Read  
After the slave address is sent with the R/W condition bit set, the command byte is sent with the MSB = 0. The  
slave acknowledges the register index in the command byte. The master sends a repeat start function. After the  
slave acknowledges this, the slave sends the number of bytes it wants to transfer (>0 and <33). The master  
acknowledges each byte except the last and sends a stop function.  
Figure 10. Block Read Protocol  
4.2.2. Block Write  
After the slave address is sent with the R/W condition bit not set, the command byte is sent with the MSB = 0. The  
lower seven bits indicate the register at which to start the transfer. If the command byte is 00h, the slave device will  
be compatible with existing block mode slave devices. The next byte of a write must be the count of bytes that the  
master will transfer to the slave device. The byte count must be greater than zero and less than 33. Following this  
byte are the data bytes to be transferred to the slave device. The slave device always acknowledges each byte  
received. The transfer is terminated after the slave sends the ACK and the master sends a stop function.  
Figure 11. Block Write Protocol  
22  
Rev. 1.5  
Si53019-A01A  
4.3. Control Registers  
Table 22. Byte 0: PLL Mode and Frequency Select Register  
Bit Pin #  
Name  
Control Function  
0
1
Type  
Default  
0
4
100M_133M#  
Frequency Select  
Readback  
133 MHz  
100 MHz  
R
Latch  
1
2
3
reserved  
reserved  
0
0
1
67/66 Output Enable DIF 16  
70/69 Output Enable DIF 17  
72/71 Output Enable DIF 18  
Output control,  
overrides OE# pin  
4
5
6
7
Output control,  
overrides OE# pin  
1
Output control,  
overrides OE# pin  
1
5
5
PLL Mode 0  
PLL Mode1  
PLL operating mode  
readback 0  
See PLL operating  
mode readback table  
R
R
Latch  
Latch  
PLL operating mode  
readback 1  
Table 23. Byte 1: Output Enable Control Register  
Bit  
Pin #  
Description  
If Bit = 0  
If Bit = 1  
Enabled  
Type  
Default  
0
19/20  
Output Enable DIF 0  
Output Enable DIF 1  
Output Enable DIF 2  
Output Enable DIF 3  
Output Enable DIF 4  
Output Enable DIF 5  
Output Enable DIF 6  
Output Enable DIF 7  
Output control,  
Hi-Z  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
1
1
1
1
overrides OE# pin  
1
2
3
4
5
6
7
22/23  
24/25  
27/28  
29/30  
32/33  
35/36  
39/38  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Rev. 1.5  
23  
Si53019-A01A  
Table 24. Byte 2: Output Enable Control Register  
Bit  
Pin #  
Description  
Control Function  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
42/41  
Output Enable DIF 8  
Output control,  
Hi-Z  
Enabled  
RW  
1
overrides OE# pin  
1
2
3
4
5
6
7
47/46  
50/49  
53/52  
56/55  
60/59  
62/61  
65/64  
Output Enable DIF 9  
Output Enable DIF 10  
Output Enable DIF 11  
Output Enable DIF 12  
Output Enable DIF 13  
Output Enable DIF 14  
Output Enable DIF 15  
Output control,  
overrides OE# pin  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
1
1
1
1
1
1
1
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Output control,  
overrides OE# pin  
Table 25. Byte 3: Output Enable Pin Status Readback Register  
Bit  
Pin #  
Description  
Control Function  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
34  
OE_RB5  
Real time readback OE# pin Low  
of OE5  
OE# pin  
High  
R
Real  
Time  
1
2
3
4
5
6
7
37  
40  
43  
48  
51  
54  
57  
OE_RB6  
OE_RB7  
OE_RB8  
OE_RB9  
OE_RB10  
OE_RB11  
OE_RB12  
Real time readback  
of OE6  
R
R
R
R
R
R
R
Real  
Time  
Real time readback  
of OE7  
Real  
Time  
Real time readback  
of OE8  
Real  
Time  
Real time readback  
of OE9  
Real  
Time  
Real time readback  
of OE10  
Real  
Time  
Real time readback  
of OE11  
Real  
Time  
Real time readback  
of OE12  
Real  
Time  
24  
Rev. 1.5  
Si53019-A01A  
Table 26. Byte 4: Reserved Control Register  
Bit  
0
Pin #  
Description  
Control Function  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
If Bit = 0  
If Bit = 1  
Type  
Default  
0
0
0
0
0
0
0
0
1
2
3
4
5
6
7
Table 27. Byte 5: Vendor/Revision Identification Control Register  
Bit  
0
Pin #  
Description  
Vendor ID Bit 0  
Control Function  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Vendor ID  
1
0
1
Vendor ID Bit 1  
R
2
Vendor ID Bit 2  
R
0
3
Vendor ID Bit 3  
R
0
4
Revision Code Bit 0  
Revision Code Bit 1  
Revision Code Bit 2  
Revision Code Bit 3  
Revision ID  
–A01A = 0001  
–A02A = 0010  
R
X
X
X
X
5
R
6
R
7
R
Table 28. Byte 6: Device ID Control Register  
Bit  
0
Pin #  
Description  
Control Function  
If Bit = 0  
If Bit = 1  
Type  
R
Default  
Device ID 0  
1
1
0
1
1
0
1
1
1
Device ID 1  
Device ID 2  
R
2
R
3
Device ID 3  
R
4
Device ID 4  
R
5
Device ID 5  
R
6
Device ID 6  
R
7
Device ID 7 (MSB)  
R
Rev. 1.5  
25  
Si53019-A01A  
Table 29. Byte 7: Byte Count Register  
Bit  
0
Pin #  
Description  
BC0  
Control Functions  
If Bit = 0  
If Bit = 1  
Type  
RW  
Default  
Writing to this register  
configures how many  
bytes will be read back. be read back by default.  
Default value is 8 hex,  
so 9 bytes (0 to 8) will  
0
0
1
BC1  
RW  
2
3
4
BC2  
BC3  
BC4  
RW  
RW  
RW  
0
1
0
5
6
7
Reserved  
Reserved  
Reserved  
0
0
0
26  
Rev. 1.5  
Si53019-A01A  
5. Pin Descriptions: 72-Pin QFN  
Rev. 1.5  
27  
Si53019-A01A  
Table 30. Si53019-A01A 72-Pin QFN Descriptions  
Pin #  
Name  
VDDA  
GNDA  
IREF  
Type  
Description  
3.3 V 3.3 V power supply for PLL.  
1
2
3
GND Ground for PLL.  
OUT This pin establishes the reference for the differential current mode output  
pairs. It requires a fixed precision resistor to ground. 475 is the  
standard value for 100 differential impedance. Other impedances  
require different values.  
I,SE 3.3 V tolerant inputs for input/output frequency selection.An external pull-  
4
5
100M_133M  
up or pull-down resistor is attached to this pin to select the input/output  
frequency.  
High = 100 MHz output  
Low = 133 MHz output  
I, SE Tri-Level input for selecting the PLL bandwidth or bypass mode.  
High = High BW mode  
HBW_BYPASS_LBW  
Med = Bypass mode  
Low = Low BW mode  
I
3.3 V LVTTL input to power up or power down the device.  
6
7
8
PWRGD/PWRDN  
GND  
GND Ground for outputs.  
VDD 3.3 V power supply for differential input receiver. This VDDR should be  
treated as an analog power rail and filtered appropriately.  
VDDR  
I, DIF 0.7 V Differential TRUE input.  
9
CLK_IN  
CLK_IN  
SA_0  
SDA  
I, DIF 0.7 V Differential input.  
10  
11  
12  
13  
14  
15  
I,PU 3.3 V LVTTL input selecting the address. Tri-level input.  
I/O Open collector SMBus data.  
I/O SMBus slave clock input.  
SCL  
I,PU 3.3 V LVTTL input selecting the address. Tri-level input.  
SA_1  
FB_IN  
I/O True differential feedback input. Provides feedback signal to the PLL for  
synchronization with the input clock to eliminate phase error.  
I/O Complementary differential feedback input. Provides feedback signal to  
the PLL for synchronization with the input clock to eliminate phase error.  
16  
17  
18  
FB_IN  
I/O Complementary differential feedback output, provides feedback signal to  
the PLL for synchronization with input clock to eliminate phase error.  
FB_OUT  
FB_OUT  
I/O True differential feedback output, provides feedback signal to the PLL for  
synchronization with the input clock to eliminate phase error.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
VDD Power supply for differential outputs.  
O, DIF 0.7 V Differential TRUE clock output.  
19  
20  
21  
22  
DIF_0  
DIF_0  
VDD  
DIF_1  
28  
Rev. 1.5  
 
Si53019-A01A  
Table 30. Si53019-A01A 72-Pin QFN Descriptions  
Pin #  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
Name  
DIF_1  
DIF_2  
DIF_2  
GND  
Type  
Description  
O, DIF 0.7 V Differential Complimentary clock output.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
GND Ground for outputs.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
3.3 V 3.3 V power supply  
DIF_3  
DIF_3  
DIF_4  
DIF_4  
VDD  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
DIF_5  
DIF_5  
OE5  
IN  
Active low input for enabling DIF pair 5  
1 = disable outputs, 0 = enable outputs  
O, DIF 0.7 V Differential TRUE clock output.  
35  
36  
37  
DIF_6  
DIF_6  
OE6  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 6  
1 = disable outputs, 0 = enable outputs  
O, DIF 0.7 V Differential TRUE clock output.  
38  
39  
40  
DIF_7  
DIF_7  
OE7  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 7  
1 = disable outputs, 0 = enable outputs  
O, DIF 0.7 V Differential TRUE clock output.  
41  
42  
43  
DIF_8  
DIF_8  
OE8  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 8  
1 = disable outputs, 0 = enable outputs  
GND Ground for outputs.  
44  
45  
46  
47  
48  
GND  
VDD  
3.3 V 3.3 V power supply  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
DIF_9  
DIF_9  
OE9  
IN  
Active low input for enabling DIF pair 9  
1 = disable outputs, 0 = enable outputs  
O, DIF 0.7 V Differential TRUE clock output.  
49  
DIF_10  
Rev. 1.5  
29  
Si53019-A01A  
Table 30. Si53019-A01A 72-Pin QFN Descriptions  
Pin #  
50  
Name  
DIF_10  
OE10  
Type  
Description  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 10  
1 = disable outputs, 0 = enable outputs  
51  
O, DIF 0.7 V Differential TRUE clock output.  
52  
53  
54  
DIF_11  
DIF_11  
OE11  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 11  
1 = disable outputs, 0 = enable outputs  
O, DIF 0.7 V Differential TRUE clock output.  
55  
56  
57  
DIF_12  
DIF_12  
OE12  
O, DIF 0.7 V Differential Complimentary clock output.  
IN  
Active low input for enabling DIF pair 12  
1 = disable outputs, 0 = enable outputs  
3.3 V 3.3 V power supply  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
VDD  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
GND Ground for outputs.  
DIF_13  
DIF_13  
DIF_14  
DIF_14  
GND  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
3.3 V 3.3 V power supply  
DIF_15  
DIF_15  
DIF_16  
DIF_16  
VDD  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
O, DIF 0.7 V Differential TRUE clock output.  
O, DIF 0.7 V Differential Complimentary clock output.  
GND Ground for outputs.  
DIF_17  
DIF_17  
DIF_18  
DIF_18  
GND  
30  
Rev. 1.5  
Si53019-A01A  
6. Power Filtering Example  
6.1. Ferrite Bead Power Filtering  
Recommended ferrite bead filtering equivalent to the following:  
Figure 12. Schematic Example of the Si53019-A01A Power Filtering  
Rev. 1.5  
31  
Si53019-A01A  
7. Ordering Guide  
Part Number  
Lead-free  
Package Type  
Temperature  
Si53019-A01AGM  
Si53019-A01AGMR  
72-pin QFN  
Extended, –40 to 85 C  
Extended, –40 to 85 C  
72-pin QFN—Tape and Reel  
32  
Rev. 1.5  
Si53019-A01A  
8. Package Outline  
Figure 13 illustrates the package details for the Si53019-A01A. Table 31 lists the values for the dimensions shown  
in the illustration.  
Figure 13. 72-Pin Quad Flat No Lead (QFN) Package  
1,2,3,4  
Table 31. Package Diagram Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
Dimension  
Min  
5.90  
0.30  
Nom  
6.00  
0.40  
0.10  
0.10  
0.08  
0.10  
0.05  
Max  
6.10  
0.50  
A
E2  
L
A1  
0.02  
b
0.25  
aaa  
bbb  
ccc  
ddd  
eee  
D
10.00 BSC.  
6.00  
D2  
5.90  
6.10  
e
E
0.50 BSC.  
10.00 BSC.  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
Rev. 1.5  
33  
 
 
 
Si53019-A01A  
9. PCB Land Pattern  
9.1. 10x10 mm 72-QFN Package Land Pattern  
34  
Rev. 1.5  
Si53019-A01A  
Table 32. PCB Land Pattern  
Dimension  
mm  
9.90  
9.90  
0.50  
0.30  
0.85  
6.10  
6.10  
C1  
C2  
E
X1  
Y1  
X2  
Y2  
Notes:  
General  
1. All dimensions shown are in millimeters (mm).  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05mm.  
Solder Mask Design  
4. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder  
mask and the metal pad is to be 60 m minimum, all the way around the pad.  
Stencil Design  
5. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be  
used to assure good solder paste release.  
6. The stencil thickness should be 0.125 mm (5 mils).  
7. The ratio of stencil aperture to land pad size should be 1:1 for all pads.  
8. A 3x3 array of 1.45 mm square openings on 2.00 mm pitch should be used for the center  
ground pad.  
Card Assembly  
9. A No-Clean, Type-3 solder paste is recommended.  
10. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for  
Small Body Components.  
Rev. 1.5  
35  
Si53019-A01A  
DOCUMENT CHANGE LIST  
Revision 1.0 to Revision 1.1  
Updated descriptions for pin15, pin16, pin17, and  
pin18 in Table 30.  
Revision 1.1 to Revision 1.2  
Updated Features on page 1.  
Updated Description on page 1.  
Updated specs in Table 7, “Phase Jitter,” on  
page 10.  
Updated the package drawing and table.  
Revision 1.2 to Revision 1.3  
January 20, 2016  
Updated the package drawing and table.  
Updated the land pattern drawing and table.  
Correct specs in Table 1 on page 4.  
Revision 1.3 to Revision 1.4  
February 22, 2016  
Updated operating characteristics in Table 4,  
Table 5, Table 6, and Table 14.  
Revision 1.4 to Revision 1.5  
July 20, 2017  
Updated Input Amplitude max spec in Table 5 to  
1900 mV.  
36  
Rev. 1.5  

相关型号:

SI53019-A02AGM

PLL Based Clock Driver, 53019 Series, 38 True Output(s), 0 Inverted Output(s), QFN-72
SILICON

SI53019-A02AGMR

PLL Based Clock Driver, 53019 Series, 38 True Output(s), 0 Inverted Output(s), QFN-72
SILICON

SI531

CRYSTAL OSCILLATOR (XO) (10 MHZ TO 1.4 GHZ)
SILICON

SI5310

PRECISION CLOCK MULTIPLIER/REGENERATOR IC
SILICON

SI5310-BM

PRECISION CLOCK MULTIPLIER/REGENERATOR IC
SILICON

SI5310-GM

PRECISION CLOCK MULTIPLIER/REGENERATOR IC
SILICON

SI5310-GMR

Clock Recovery Circuit, 1-Func, 4 X 4 MM, ROHS COMPLIANT, MLP-20
SILICON

SI53102-A1

PCI-EXPRESS GEN 1, GEN 2, GEN 3, AND GEN 4 1:2 FAN-OUT CLOCK BUFFER
SILICON

SI53102-A1-GMR

Low Skew Clock Driver, 53102 Series, 4 True Output(s), 0 Inverted Output(s), PDSO8, TDFN-8
SILICON

SI53102-A2

PCI-EXPRESS GEN 1, GEN 2, GEN 3, AND GEN 4 1:2 FAN-OUT CLOCK BUFFER
SILICON

SI53102-A2-GM

Low Skew Clock Driver, 53102 Series, 4 True Output(s), 0 Inverted Output(s), PDSO8, TDFN-8
SILICON

SI53102-A2-GMR

Low Skew Clock Driver, 53102 Series, 4 True Output(s), 0 Inverted Output(s), PDSO8, TDFN-8
SILICON