SI5323-C-GMR [SILICON]

Support Circuit, 1-Func, QFN-36;
SI5323-C-GMR
型号: SI5323-C-GMR
厂家: SILICON    SILICON
描述:

Support Circuit, 1-Func, QFN-36

ATM 异步传输模式 电信 电信集成电路
文件: 总40页 (文件大小:1508K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5323  
PIN-PROGRAMMABLE PRECISION CLOCK  
MULTIPLIER/JITTER ATTENUATOR  
Features  
Pin-selectable output frequencies  
ranging from 8 kHz–708 MHz  
Ultra-low jitter clock outputs as low  
as 250 fs rms (12 kHz–20 MHz)  
270 fs rms (50 kHz–80 MHz)  
Integrated loop filter with selectable  
loop bandwidth (60 Hz–8.4 kHz)  
Meets ITU-T G.8251 and Telcordia  
OC-192 GR-253-CORE jitter  
specifications  
Dual clock outputs with selectable  
signal format (LVPECL, LVDS, CML,  
CMOS)  
Support for ITU G.709 FEC ratios  
(255/238, 255/237, 255/236)  
LOL, LOS alarm outputs  
Pin-controlled output phase adjust  
Single supply 1.8 ±5%, 2.5 or 3.3 V  
±10% operation with high PSRR  
On-chip voltage regulator  
Ordering Information:  
See page 33.  
Hitless input clock switching with  
phase build-out and digital hold  
Small size: 6 x 6 mm 36-lead QFN  
Applications  
Pin Assignments  
SONET/SDH OC-48/STM-16 and  
OC-192/STM-64 line cards  
GbE/10GbE, 1/2/4/8/10GFC line cards  
ITU G.709 line cards  
Optical modules  
Test and measurement  
Synchronous Ethernet  
36 35 34 33 32 31 30 29 28  
RST  
FRQTBL  
C1B  
1
2
3
4
5
6
7
8
9
27 FRQSEL3  
26  
Description  
FRQSEL2  
25 FRQSEL1  
C2B  
24  
23  
FRQSEL0  
BWSEL1  
The Si5323 is a jitter-attenuating precision clock multiplier for high-speed  
communication systems, including SONET OC-48/OC-192, Ethernet, and Fibre  
Channel. The Si5323 accepts dual clock inputs ranging from 8 kHz to 707 MHz  
and generates two equal frequency-multiplied clock outputs ranging from 8 kHz to  
1050 MHz. The input clock frequency and clock multiplication ratio are selectable  
from a table of popular SONET, Ethernet, and Fibre Channel rates. The Si5323 is  
based on Silicon Laboratories' 3rd-generation DSPLL® technology, which  
provides any-frequency synthesis and jitter attenuation in a highly integrated PLL  
solution that eliminates the need for external VCXO and loop filter components.  
The DSPLL loop bandwidth is digitally programmable, providing jitter performance  
optimization at the application level. Operating from a single 1.8, 2.5, or 3.3 V  
supply, the Si5323 is ideal for providing clock multiplication and jitter attenuation in  
high performance timing applications.  
GND  
Pad  
VDD  
XA  
22 BWSEL0  
XB  
21  
20  
19  
CS_CA  
INC  
GND  
DEC  
AUTOSEL  
10 11 12 13 14 15 16 17 18  
Functional Block Diagram  
Xtal or Refclock  
CKOUT1  
CKIN1  
®
Signal Format  
DSPLL  
CKOUT2  
CKIN2  
Disable/BYPASS  
Loss of Signal  
Loss of Lock  
Control  
Signal Detect  
VDD (1.8, 2.5, or 3.3 V)  
GND  
Frequency Select  
Bandwidth Select  
Rate Select  
Manual//Auto Switch  
Clock Select  
Skew Control  
Rev. 1.0 1/11  
Copyright © 2011 by Silicon Laboratories  
Si5323  
Si5323  
2
Rev. 1.0  
Si5323  
TABLE OF CONTENTS  
Section  
Page  
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
1.1. Three-Level (3L) Input Pins (No External Resistors) . . . . . . . . . . . . . . . . . . . . . . . . .9  
1.2. Three-Level Input Pins (Example with External Resistors) . . . . . . . . . . . . . . . . . . . . .9  
2. Typical Phase Noise Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
2.1. Example: SONET OC-192 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.1. External Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.2. Further Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.3. Frequency Plan Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
4. Pin Descriptions: Si5323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
5. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
6. Package Outline: 36-Pin QFN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
7. Recommended PCB Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
8. Si5323 Device Top Mark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37  
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Rev. 1.0  
3
Si5323  
1. Electrical Specifications  
Table 1. Recommended Operating Conditions  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Temperature Range  
Supply Voltage  
Symbol  
Test Condition  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
ºC  
V
T
A
V
3.3 V nominal  
2.5 V nominal  
1.8 V nominal  
2.97  
2.25  
1.71  
3.3  
2.5  
1.8  
3.63  
2.75  
1.89  
DD  
V
V
Note: All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions.  
Typical values apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Table 2. DC Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Supply Current  
(Supply current is indepen-  
dent of V  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
I
LVPECL Format  
622.08 MHz Out  
All CKOUTs Enabled  
LVPECL Format  
622.08 MHz Out  
Only 1 CKOUT Enabled  
CMOS Format  
19.44 MHz Out  
All CKOUTs Enabled  
CMOS Format  
251  
279  
mA  
DD  
1
)
DD  
217  
204  
194  
243  
234  
220  
mA  
mA  
mA  
1
19.44 MHz Out  
Only CKOUT1 Enabled  
CKIN Input Pins  
Input Common Mode  
Voltage  
(Input Threshold Voltage)  
V
1.8 V ±5%  
2.5 V ±10%  
3.3 V ±10%  
Single-ended  
0.9  
1.0  
1.1  
20  
0
40  
1.4  
1.7  
1.95  
60  
V
V
ICM  
V
Input Resistance  
CKN  
CKN  
k  
V
RIN  
2
Input Voltage Level Limits  
See note  
V
DD  
VIN  
Single-ended Input Voltage  
Swing  
V
f
f
< 212.5 MHz  
0.2  
V
ISE  
CKIN  
PP  
See Figure 2.  
> 212.5 MHz  
0.25  
V
CKIN  
PP  
See Figure 2.  
Notes:  
1. LVPECL outputs require nominal VDD > 2.5 V.  
2. No overshoot or undershoot.  
3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most  
designs, an external resistor voltage divider is recommended.  
4
Rev. 1.0  
 
 
 
Si5323  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Differential Input  
Symbol  
Test Condition  
< 212.5 MHz  
Min  
Typ  
Max  
Units  
V
f
f
0.2  
V
ID  
CKIN  
PP  
Voltage Swing  
See Figure 2.  
> 212.5 MHz  
0.25  
V
CKIN  
PP  
See Figure 2.  
1
Output Clocks (CKOUTn)  
Common Mode  
CKO  
LVPECL 100 load  
V
1.42  
V
1.25  
V
VCM  
DD  
DD  
line-to-line  
Differential Output Swing  
CKO  
CKO  
LVPECL 100 load  
1.1  
0.5  
1.9  
V
VD  
PP  
PP  
line-to-line  
Single-ended Output Swing  
Differential Output Voltage  
LVPECL 100 load  
0.93  
500  
V
VSE  
line-to-line  
CKO  
CML 100 load  
350  
425  
mV  
PP  
VD  
line-to-line  
Common Mode  
Output Voltage  
CKO  
CML 100 load  
V
V
VCM  
DD  
0.36  
line-to-line  
Differential  
Output Voltage  
CKO  
LVDS 100 load  
500  
350  
1.125  
700  
425  
1.2  
900  
500  
1.275  
mV  
VD  
PP  
line-to-line  
Low swing LVDS 100 load  
mV  
PP  
line-to-line  
Common Mode  
Output Voltage  
CKO  
LVDS 100 load  
V
VCM  
line-to-line  
Differential Output  
Resistance  
CKO  
CML, LVDS, LVPECL  
200  
RD  
Output Voltage Low  
Output Voltage High  
CKO  
CKO  
CMOS  
0.4  
V
V
VOLLH  
V
= 1.71 V  
0.8 x V  
VOHLH  
DD  
DD  
CMOS  
Output Drive Current  
CKO  
IO  
CMOS  
Driving into CKO  
for out-  
VOL  
put low or CKO  
for output  
VOH  
high. CKOUT+ and CKOUT–  
shorted externally.  
V
V
= 1.8 V  
= 3.3 V  
7.5  
32  
mA  
mA  
DD  
DD  
Notes:  
1. LVPECL outputs require nominal VDD > 2.5 V.  
2. No overshoot or undershoot.  
3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most  
designs, an external resistor voltage divider is recommended.  
Rev. 1.0  
5
Si5323  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
2-Level LVCMOS Input Pins  
Input Voltage Low  
V
V
V
V
V
V
V
= 1.71 V  
= 2.25 V  
= 2.97 V  
= 1.89 V  
= 2.25 V  
= 3.63 V  
75  
0.5  
0.7  
0.8  
V
V
IL  
DD  
DD  
DD  
DD  
DD  
DD  
V
Input Voltage High  
V
1.4  
1.8  
2.5  
V
IH  
V
V
Input Low Current  
Input High Current  
I
50  
50  
µA  
µA  
k  
IL  
I
IH  
Weak Internal Input Pull-up  
Resistor  
R
PUP  
Weak Internal Input  
Pull-down Resistor  
R
75  
k  
PDN  
3-Level Input Pins  
Input Voltage Low  
Input Voltage Mid  
Input Voltage High  
Input Low Current  
Input Mid Current  
Input High Current  
Notes:  
0.15 x VDD  
V
0.45 x VDD  
0.85 x VDD  
–20  
V
V
ILL  
0.55 x VDD  
V
IMM  
V
2
V
IHH  
3
I
µA  
µA  
µA  
ILL  
3
I
–2  
IMM  
3
I
20  
IHH  
1. LVPECL outputs require nominal VDD > 2.5 V.  
2. No overshoot or undershoot.  
3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most  
designs, an external resistor voltage divider is recommended.  
6
Rev. 1.0  
Si5323  
Table 2. DC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
LVCMOS Output Pins  
Output Voltage Low  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
V
I = 2 mA  
0.4  
0.4  
V
V
OL  
OH  
OZ  
O
V
V
= 1.71 V  
DD  
I = 2 mA  
O
= 2.97 V  
DD  
Output Voltage High  
V
I = –2 mA  
V
V
– 0.4  
V
O
DD  
DD  
V
= 1.71 V  
DD  
I = –2 mA  
– 0.4  
V
O
V
= 2.97 V  
DD  
Disabled Leakage Current  
I
RST = 0  
–100  
100  
µA  
Single-Ended Reference Clock Input Pin XA (XB with cap to gnd)  
Input Resistance  
XA  
XA  
XTAL/RefCLK  
RATE[1:0] = LM, ML, MH, or  
HM  
0
12  
k  
RIN  
VIN  
Input Voltage Level Limits  
Input Voltage Swing  
1.2  
1.2  
V
XA  
0.5  
V
PP  
VPP  
Differential Reference Clock Input Pins (XA/XB)  
Input Resistance  
XA/XB  
XTAL/RefCLK  
RATE[1:0] = LM, ML, MH, or  
HM  
0
12  
k  
RIN  
VIN  
Differential Input Voltage  
Level Limits  
XA/XB  
1.2  
V
Input Voltage Swing  
XA  
/XB  
0.5  
1.2  
V
PP, each  
VPP  
VPP  
Notes:  
1. LVPECL outputs require nominal VDD > 2.5 V.  
2. No overshoot or undershoot.  
3. This is the amount of leakage that the 3L inputs can tolerate from an external driver. See Figure 3 on page 9. In most  
designs, an external resistor voltage divider is recommended.  
V
SIGNAL +  
Single-Ended  
Peak-to-Peak Voltage  
Differential I/Os  
V
ICM , V  
VISE,VOSE  
SIGNAL – OCM  
(SIGNAL +) – (SIGNAL –)  
ICM, VOCM  
Differential Peak-to-Peak Voltage  
V ,VOD  
ID  
V
t
SIGNAL +  
SIGNAL –  
VID = (SIGNAL+) – (SIGNAL–)  
Figure 1. Voltage Characteristics  
Rev. 1.0  
7
Si5323  
80%  
20%  
CKIN, CKOUT  
tF  
tR  
Figure 2. Rise/Fall Time Characteristics  
8
Rev. 1.0  
 
Si5323  
1.1. Three-Level (3L) Input Pins (No External Resistors)  
VDD  
Si5323  
75 k  
Iimm  
75 k  
External Driver  
Figure 3. Three-Level Input Pins  
1.2. Three-Level Input Pins (Example with External Resistors)  
VDD  
18 k  
VDD  
Si5323  
75 k  
3L input current  
18 k  
75 k  
External Driver  
One of eight resistors from a Panasonic EXB-D10C183J  
(or similar) resistor pack  
Figure 4. Three-Level Input Pins  
Table 3. Three-Level Input Pins1,2,3,4  
Parameter  
Input Low Current  
Min  
–30 µA  
–11 µA  
Max  
Input Mid Current  
Input High Current  
Notes:  
–11 µA  
–30 µA  
1. The current parameters are the amount of leakage that the 3L inputs can tolerate from an external driver using the  
external resistor values indicated in this example. In most designs, an external resistor voltage divider is  
recommended.  
2. Resistor packs are only needed if the leakage current of the external driver exceeds the current specified in  
Table 2, Iimm. Any resistor pack may be used (e.g., Panasonic EXB-D10C183J). PCB layout is not critical.  
3. If a pin is tied to ground or V , no resistors are needed.  
DD  
4. If a pin is left open (no connect), no resistors are needed.  
Rev. 1.0  
9
Si5323  
Table 4. AC Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
CKIN Input Pins  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Input Frequency  
CKN  
.008  
40  
2
710  
60  
MHz  
%
F
Input Duty Cycle (Minimum Pulse  
Width)  
Whichever is smaller  
(i.e., the 40%/60% limitation  
applies only to high clock  
frequencies)  
ns  
CKN  
DC  
Input Capacitance  
CKN  
3
pF  
ns  
CIN  
Input Rise/Fall Time  
CKN  
20–80%  
11  
TRF  
See Figure 2  
CKOUTn Output Pins  
Output Frequency (Output not  
configured for CMOS or disable)  
.008  
710  
212.5  
8
MHz  
MHz  
ns  
CK  
OF  
Maximum Output Frequency in  
CMOS Format  
CKO  
FMC  
CMOS Output  
Single-ended Output Rise/Fall  
(20–80%)  
V
= 1.71  
DD  
Cload = 5 pF  
CKO  
TRF  
CMOS Output  
2
ns  
V
= 2.97  
DD  
Cload = 5 pF  
20 to 80 %, f  
= 622.08  
230  
350  
±40  
ps  
ps  
Differential Output Rise/Fall Time  
CKO  
OUT  
TRF  
Output Duty Cycle Differential  
Uncertainty  
CKO  
100 Load  
Line to Line  
DC  
Measured at 50% Point  
(not for CMOS)  
LVCMOS Input Pins  
Minimum Reset Pulse Width  
Input Capacitance  
t
1
3
µs  
pF  
RSTMIN  
C
IN  
LVCMOS Output Pins  
Rise/Fall Times  
t
C
= 20 pf  
LOAD  
25  
ns  
RF  
See Figure 2  
LOS  
From last CKINto LOS  
750  
µs  
LOSn Trigger Window  
TRIG  
Time to Clear LOL after LOS Cleared t  
f unchanged and XA/XB  
10  
ms  
CLRLOL  
in  
stable.  
LOS to LOL  
10  
Rev. 1.0  
Si5323  
Table 4. AC Characteristics (Continued)  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
PLL Performance  
Symbol  
Test Condition  
Min  
Typ  
Max  
Units  
Lock Time  
t
1.2  
sec  
Whenever RST, FRQTBL,  
RATE, BWSEL, or FRQSEL  
are changed, with valid CKIN  
to LOL; BW = 100 Hz  
LOCKHW  
Output Clock Phase Change  
t
After clock switch  
200  
ps  
P_STEP  
f3 128 kHz  
Closed Loop Jitter Peaking  
Jitter Tolerance  
J
0.05  
0.1  
dB  
PK  
5000/  
BW  
ns pk-  
pk  
BW determined by  
BWSEL[1:0]  
J
TOL  
Spurious Noise  
Max spur @ n x f3  
(n > 1, n x f3 < 100 MHz)  
–93  
300  
–70  
500  
dBc  
SP  
SPUR  
TEMP  
Phase Change due to Temperature  
Variation  
Max phase changes from –  
40 to +85 ºC  
ps  
t
Table 5. Performance Specifications1, 2, 3, 4, 5  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
50 kHz–80 MHz  
12 kHz–20 MHz  
800 Hz–80 MHz  
Min  
Typ  
Max  
0.42  
0.41  
0.45  
Unit  
Jitter Generation  
J
0.27  
0.25  
0.28  
ps rms  
ps rms  
ps rms  
GEN  
f
= f  
= 622.08 MHz,  
IN  
OUT  
LVPECL Output Format  
BW = 120 Hz  
Phase Noise  
CKO  
1 kHz offset  
10 kHz offset  
100 kHz offset  
1 MHz offset  
–106  
–121  
–122  
–132  
–87  
–100  
–104  
–119  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
PN  
f
= f  
= 622.08 MHz  
IN  
OUT  
LVPECL Output Format  
Notes:  
1. BWSEL [1:0] loop bandwidth settings provided in Table 11 on page 27.  
2. 114.285 MHz 3rd OT crystal used as XA/XB input.  
3. VDD = 2.5 V  
4. TA = 85 °C  
5. Test condition: fIN = 622.08 MHz, fOUT = 622.08 MHz, LVPECL clock input: 1.19 Vppd with 0.5 ns rise/fall time  
(20-80%), LVPECL clock output.  
Rev. 1.0  
11  
Si5323  
Table 6. Thermal Characteristics  
(VDD = 1.8 ±5%, 2.5 ±10%, or 3.3 V ±10%, TA = –40 to 85 ºC)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Thermal Resistance  
Junction to Ambient  
Still Air  
32  
ºC/W  
JA  
Thermal Resistance  
Junction to Case  
Still Air  
14  
ºC/W  
JC  
Table 7. Absolute Maximum Ratings  
Parameter  
DC Supply Voltage  
Symbol  
Value  
Unit  
V
–0.5 to 3.8  
V
V
DD  
LVCMOS Input Voltage  
V
–0.3 to (V + 0.3)  
DD  
DIG  
CKINn Voltage Level Limits  
XA/XB Voltage Level Limits  
Operating Junction Temperature  
Storage Temperature Range  
CKN  
0 to V  
V
VIN  
DD  
XA  
0 to 1.2  
–55 to 150  
–55 to 150  
2
V
VIN  
T
C
C
kV  
JCT  
T
STG  
ESD HBM Tolerance (100 pF, 1.5 k); All pins except  
CKIN+/CKIN–  
ESD MM Tolerance; All pins except CKIN+/CKIN–  
ESD HBM Tolerance (100 pF, 1.5 k); CKIN+/CKIN–  
ESD MM Tolerance; CKIN+/CKIN–  
150  
V
V
V
750  
100  
Latch-Up Tolerance  
JESD78 Compliant  
Note: Permanent device damage may occur if the Absolute Maximum Ratings are exceeded. Functional operation should be  
restricted to the conditions as specified in the operation sections of this data sheet. Exposure to absolute maximum  
rating conditions for extended periods of time may affect device reliability.  
12  
Rev. 1.0  
 
Si5323  
2. Typical Phase Noise Plots  
The following is the typical phase noise performance of the Si5323. The clock input source was a Rohde and  
Schwarz model SML03 RF Generator. The phase noise analyzer was an Agilent model E5052B. The Si5323  
operates at 3.3 V with an ac coupled differential PECL output and an ac coupled differential sine wave input from  
the RF generator at 0 dBm. Note that, as with any PLL, the output jitter that is below the loop BW is caused by the  
jitter at the input clock. The loop BW was 120 Hz.  
2.1. Example: SONET OC-192  
Figure 5. Typical Phase Noise Plot  
Jitter Band  
Jitter, RMS  
SONET_OC48, 12 kHz to 20 MHz  
250 fs  
SONET_OC192_A, 20 kHz to 80 MHz  
SONET_OC192_B, 4 to 80 MHz  
SONET_OC192_C, 50 kHz to 80 MHz  
Brick Wall, 800 Hz to 80 MHz  
274 fs  
166 fs  
267 fs  
274 fs  
Note: SONET jitter bands include the SONET skirts. The phase noise plot is brick wall integration.  
Rev. 1.0  
13  
 
Si5323  
C4  
C3  
1 µF  
System  
Power  
Supply  
0.1 µF  
Ferrite  
Bead  
C2  
C1  
0.1 µF  
0.1 µF  
VDD = 3.3 V  
130  
82   
130   
82   
0.1 µF  
CKOUT1+  
CKOUT1–  
CKIN1+  
+
100   
CKIN1–  
0.1 µF  
0.1 µF  
Clock Outputs  
CKOUT2+  
CKOUT2–  
+
Input  
100   
Clock  
VDD = 3.3 V  
Sources1  
0.1 µF  
130   
82   
130   
82   
CKIN2+  
CKIN2–  
LOS1  
LOS2  
LOL  
CKIN_1 Loss of Signal  
CKIN_2 Loss of Signal  
PLL Loss of Lock Indicator  
XA  
XB  
Option 1:  
114.285 MHz Crystal  
0.1 µF  
Si5323  
Option 2:  
Ext. Refclk+  
Ext. Refclk–  
XA  
XB  
0.1 µF  
VDD  
15 k  
RATE2  
Crystal/Ref Clk Rate  
VDD  
VDD  
VDD  
15 k  
VDD  
Manual/Automatic Clock15 k  
Selection (L)15 k  
AUTOSEL2  
CKSEL3  
FRQTBL2  
15 k  
Input Clock Select  
15 k  
15 k  
Frequency Table Select  
VDD  
15 k  
G
N
D
15 k  
Frequency Select  
FRQSEL[3:0]2  
BWSEL[1:0]2  
INC  
15 k  
15 k  
Bandwidth Select  
GND  
15 k  
Skew Increment  
P
A
Skew Decrement  
DEC  
VDD  
D 4  
15 k  
SFOUT[1:0]2  
DBL2_BY2  
RST  
Signal Format Select  
VDD  
15 k  
Clock Output 2 Disable/ 15 k  
Bypass Mode Control 15 k  
Reset  
Notes:  
1. Assumes differential LVPECL termination (3.3 V) on clock inputs.  
2. Denotes tri-level input pins with states designated as L (ground), M (VDD/2), and H (VDD).  
3. Assumes manual input clock selection.  
4. GND pad must be connected for normal operation.  
Figure 6. Si5323 Typical Application Circuit  
14  
Rev. 1.0  
 
Si5323  
electrical format of the clock outputs is programmable to  
support LVPECL, LVDS, CML, or CMOS loads. If not  
3. Functional Description  
The Si5323 is a jitter-attenuating precision clock required, the second clock output can be powered down  
multiplier for high-speed communication systems, to minimize power consumption. The phase difference  
including SONET OC-48/OC-192, Ethernet, and Fibre between the selected input clock and the output clocks  
Channel. The Si5323 accepts dual clock inputs ranging is adjustable in 200 ps increments for system skew  
from 8 kHz to 707 MHz and generates two frequency- control. For system-level debugging, a bypass mode is  
multiplied clock outputs ranging from 8 kHz to available which drives the output clock directly from the  
1050 MHz. The two input clocks are at the same input clock, bypassing the internal DSPLL. The device is  
frequency and the two output clocks are at the same powered by a single 1.8, 2.5, or 3.3 V supply.  
frequency. The input clock frequency and clock  
3.1. External Reference  
multiplication ratio are selectable from a table of popular  
SONET, Ethernet, and Fibre Channel rates. In addition An external, 38.88 MHz clock or  
a
low-cost  
to providing clock multiplication in SONET and datacom 114.285 MHz 3rd overtone crystal is used as part of a  
applications, the Si5323 supports SONET-to-datacom fixed-frequency oscillator within the DSPLL. This  
frequency translations. Silicon Laboratories offers a PC- external reference is required for the device to perform  
based software utility, DSPLLsim, that can be used to jitter attenuation. Silicon Laboratories recommends  
look up valid Si5323 frequency translations. This utility using a high-quality crystal. Specific recommendations  
can be downloaded from http://www.silabs.com/timing may be found in the Any-Frequency Precision Clock  
(click on Documentation).  
Family Reference Manual. An external clock from a high  
quality OCXO or TCXO can also be used as a reference  
for the device.  
The Si5323 is based on Silicon Laboratories' 3rd-  
®
generation DSPLL technology, which provides any-  
frequency synthesis and jitter attenuation in a highly In digital hold, the DSPLL remains locked to this  
integrated PLL solution that eliminates the need for external reference. Any changes in the frequency of this  
external VCXO and loop filter components. The Si5323 reference when the DSPLL is in digital hold will be  
PLL loop bandwidth is selectable via the BWSEL[1:0] tracked by the output of the device. Note that crystals  
pins and supports a range from 60 Hz to 8.4 kHz. The can have temperature sensitivities.  
DSPLLsim software utility can be used to calculate valid  
3.2. Further Documentation  
loop bandwidth settings for a given input clock  
frequency/clock multiplication ratio.  
Consult the Silicon Laboratories Any-Frequency  
Precision Clock Family Reference Manual (FRM) for  
detailed information about the Si5323. Additional design  
support is available from Silicon Laboratories through  
your distributor.  
The Si5323 supports hitless switching between the two  
input clocks in compliance with GR-253-CORE and GR-  
1244-CORE that greatly minimizes the propagation of  
phase transients to the clock outputs during an input  
clock transition (<200 ps typ). Manual and automatic Silicon Laboratories has developed  
a PC-based  
revertive and non-revertive input clock switching options software utility called DSPLLsim to simplify device  
are available via the AUTOSEL input pin. The Si5323 configuration, including frequency planning and loop  
monitors both input clocks for loss-of-signal and bandwidth selection. The FRM and this utility can be  
provides a LOS alarm when it detects missing pulses on downloaded from http://www.silabs.com/timing (click on  
either input clock. The device monitors the lock status of Documentation).  
the PLL. The lock detect algorithm works by  
continuously monitoring the phase of the input clock in  
relation to the phase of the feedback clock.  
The Si5323 provides a digital hold capability that allows  
the device to continue generation of a stable output  
clock when the selected input reference is lost. During  
digital hold, the DSPLL generates an output frequency  
based on a historical average that existed a fixed  
amount of time before the error event occurred,  
eliminating the effects of phase and frequency  
transients that may occur immediately preceding digital  
hold.  
The Si5323 has two differential clock outputs. The  
Rev. 1.0  
15  
 
Si5323  
3.3. Frequency Plan Tables  
The Si5323 provides flexible frequency plans for SONET, Datacom, and interworking between the two (Table 8,  
Table 9, and Table 10 respectively). Both CKINn inputs must be the same Fin frequency and CKOUTn outputs as  
specified in the tables.  
The following notes apply to Tables 8, 9, and 10:  
1. All multiplication ratios are exact, but the frequency values are rounded.  
2. For loop bandwidth settings, BWSEL[1:0], f3 values, and frequency operating ranges, consult the DSPLLsim  
software configuration utility.  
Table 8. SONET Clock Multiplication Settings (FRQTBL=L)  
Plan #  
FRQSEL  
[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
0
1
LLLL  
LLLM  
LLLH  
0.008  
1
0.008  
19.44  
2430  
2
4860  
38.88  
3
LLML  
LLMM  
LLMH  
LLHL  
9720  
77.76  
4
19440  
155.52  
311.04  
622.08  
19.44  
5
38880  
6
77760  
7
LLHM  
LLHH  
LMLL  
LMLM  
LMLH  
LMML  
LMMM  
LMMH  
LMHL  
LMHM  
LMHH  
LHLL  
19.44  
1
8
2
38.88  
9
4
77.76  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
8
155.52  
166.63  
167.33  
168.04  
311.04  
622.08  
666.51  
669.33  
672.16  
933.12  
1049.76  
8 x (255/238)  
8 x (255/237)  
8 x (255/236)  
16  
32  
32 x (255/238)  
32 x (255/237)  
32 x (255/236)  
48  
LHLM  
LHLH  
54  
16  
Rev. 1.0  
 
 
Si5323  
Table 8. SONET Clock Multiplication Settings (FRQTBL=L) (Continued)  
Plan #  
FRQSEL  
[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
LHML  
LHMM  
LHMH  
LHHL  
38.88  
1
38.88  
77.76  
2
4
155.52  
622.08  
666.51  
669.33  
672.16  
19.44  
16  
LHHM  
LHHH  
MLLL  
16 x (255/238)  
16 x (255/237)  
16 x (255/236)  
MLLM  
MLLH  
MLML  
MLMM  
MLMH  
MLHL  
MLHM  
MLHH  
MMLL  
MMLM  
MMLH  
MMML  
MMMM  
MMMH  
MMHL  
MMHM  
MMHH  
MHLL  
MHLM  
MHLH  
MHML  
MHMM  
MHMH  
MHHL  
77.76  
1/4  
1/2  
38.88  
1
77.76  
2
2 x (255/238)  
2 x (255/237)  
2 x (255/236)  
4
155.52  
166.63  
167.33  
168.04  
311.04  
622.08  
666.51  
669.33  
672.16  
19.44  
8
8 x (255/238)  
8 x (255/237)  
8 x (255/236)  
1/8  
155.52  
1/4  
38.88  
1/2  
77.76  
1
155.52  
166.63  
167.33  
168.04  
311.04  
622.08  
666.51  
669.33  
672.16  
255/238  
255/237  
255/236  
2
4
4 x (255/238)  
4 x (255/237)  
4 x (255/236)  
Rev. 1.0  
17  
Si5323  
Table 8. SONET Clock Multiplication Settings (FRQTBL=L) (Continued)  
Plan #  
FRQSEL  
[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
MHHM  
MMHM  
MHHH  
MHML  
HLLL  
166.63  
167.33  
168.04  
311.04  
238/255  
155.52  
1
166.63  
622.08  
666.51  
155.52  
167.33  
622.08  
669.33  
155.52  
168.04  
622.08  
672.16  
311.04  
622.08  
666.51  
669.33  
672.16  
19.44  
4 x (238/255)  
4
237/255  
MMHM  
HLLM  
MHML  
HLLH  
1
4 x (237/255)  
4
236/255  
MMHM  
HLML  
MHML  
HLMM  
HLMH  
HLHL  
1
4 x (236/255)  
4
1
2
2 x (255/238)  
2 x (255/237)  
2 x (255/236)  
1/32  
HLHM  
HLHH  
HMLL  
HMLM  
HMLH  
HMML  
HMMM  
HMMH  
HMHL  
HMHM  
HMHH  
HHLL  
622.08  
1/16  
38.88  
1/8  
77.76  
1/4  
155.52  
311.04  
622.08  
666.51  
669.33  
672.16  
155.52  
166.63  
622.08  
666.51  
1/2  
1
255/238  
255/237  
255/236  
1/4 x 238/255  
1/4  
666.51  
HMML  
HHLM  
HMMH  
238/255  
1
18  
Rev. 1.0  
Si5323  
Table 8. SONET Clock Multiplication Settings (FRQTBL=L) (Continued)  
Plan #  
FRQSEL  
[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
82  
83  
84  
85  
86  
87  
88  
89  
HHLH  
HMML  
HHML  
HMMH  
HHMM  
HMML  
HHMH  
HMMH  
669.33  
1/4 x 237/255  
155.52  
1/4  
167.33  
622.08  
669.33  
155.52  
168.04  
622.08  
672.16  
237/255  
1
1/4 x 236/255  
1/4  
672.16  
236/255  
1
Table 9. Datacom Clock Multiplication Settings (FRQTBL = M)  
Plan # FRQSEL[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
0
1
LLLL  
LLLM  
LLLH  
15.625  
2
31.25  
62.5  
4
2
8
125  
3
LLML  
LLMM  
LLMH  
LLHL  
16  
250  
4
25  
17/4  
106.25  
125  
5
5
6
25/4 x 66/64  
161.13  
164.36  
172.64  
173.37  
176.1  
176.84  
212.5  
425  
7
LLHM  
LLHH  
LMLL  
LMLM  
LMLH  
LMML  
LMMM  
LMMH  
LMHL  
LMHM  
LMHH  
LHLL  
51/8 x 66/64  
8
25/4 x 66/64 x 255/238  
25/4 x 66/64 x 255/237  
51/8 x 66/64 x 255/238  
51/8 x 66/64 x 255/237  
17/2  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
17  
25 x 66/64  
644.53  
657.42  
690.57  
693.48  
704.38  
707.35  
62.5  
51/2 x 66/64  
25 x 66/64 x 255/238  
25 x 66/64 x 255/237  
51/2 x 66/64 x 255/238  
51/2 x 66/64 x 255/237  
2
LHLM  
LHLH  
LHML  
LHMM  
31.25  
4
125  
8
250  
Rev. 1.0  
19  
Si5323  
Table 9. Datacom Clock Multiplication Settings (FRQTBL = M) (Continued)  
Plan # FRQSEL[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
LHMH  
LHHL  
53.125  
2
4
106.25  
212.5  
425  
LHHM  
LHHH  
MLLL  
8
106.25  
3/2 x 66/64  
164.36  
176.1  
3/2 x 66/64 x 255/238  
3/2 x 66/64 x 255/237  
2
MLLM  
MLLH  
176.84  
212.5  
MLML  
MLMM  
MLMH  
MLHL  
4
425  
6 x 66/64  
657.42  
704.38  
707.35  
161.13  
172.64  
173.37  
644.53  
690.57  
693.48  
161.13  
172.64  
173.37  
644.53  
690.57  
693.48  
164.36  
176.1  
6 x 66/64 x 255/238  
6 x 66/64 x 255/237  
10/8 x 66/64  
10/8 x 66/64 x 255/238  
10/8 x 66/64 x 255/237  
5 x 66/64  
MLHM  
MLHH  
MMLL  
MMLM  
MMLH  
MMML  
MMMM  
MMMH  
MMHL  
MMHM  
MMHH  
MHLL  
125  
5 x 66/64 x 255/238  
5 x 66/64 x 255/237  
66/64  
156.25  
66/64 x 255/238  
66/64 x 255/237  
4 x 66/64  
4 x 66/64 x 255/238  
4 x 66/64 x 255/237  
66/64  
MMMM  
MMMH  
MMHL  
MMHM  
MMHH  
MHLL  
159.375  
66/64 x 255/238  
66/64 x 255/237  
4 x 66/64  
176.84  
657.4  
4 x 66/64 x 255/238  
4 x 66/64 x 255/237  
4/5 x 64/66  
704.38  
707.35  
125  
MHLM  
MHLH  
MHML  
MHMM  
MHMH  
MHHL  
161.13  
255/238  
172.64  
173.37  
644.53  
690.57  
693.48  
255/237  
4
4 x 255/238  
4 x 255/237  
20  
Rev. 1.0  
Si5323  
Table 9. Datacom Clock Multiplication Settings (FRQTBL = M) (Continued)  
Plan # FRQSEL[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
MHHM  
MHLH  
MHML  
MHMM  
MHMH  
MHHL  
MHHH  
HLLL  
164.36  
2/3 x 64/66  
106.25  
255/238  
176.1  
176.84  
657.42  
704.38  
707.35  
125  
255/237  
4
4 x 255/238  
4 x 255/237  
172.64  
173.37  
176.1  
4/5 x 64/66 x 238/255  
64/66 x 238/255  
156.25  
161.13  
644.53  
690.57  
125  
HLLM  
HLLH  
238/255  
4 x 238/255  
MHMM  
HLML  
HLMM  
HLMH  
HLHL  
4
4/5 x 64/66 x 237/255  
64/66 x 237/255  
156.25  
161.13  
644.53  
693.48  
106.25  
159.375  
164.36  
657.42  
704.38  
106.25  
159.375  
164.36  
657.42  
707.35  
425  
237/255  
4 x 237/255  
MHMM  
HLHM  
HLLL  
4
2/3 x 64/66 x 238/255  
64/66 x 238/255  
HLLM  
HLLH  
238/255  
4 x 238/255  
MHMM  
HLHH  
HLMM  
HLMH  
HLHL  
4
176.84  
2/3 x 64/66 x 237/255  
64/66 x 237/255  
237/255  
4 x 237/255  
MHMM  
HMLL  
HMLM  
HMLH  
HMML  
HMMM  
HMMH  
HMHL  
HMHM  
HMML  
HMMM  
HMMH  
HMHL  
4
212.5  
425  
2
1
425  
644.53  
1/5 x 64/66  
1/4  
125  
161.13  
644.53  
690.57  
693.48  
106.25  
164.36  
657.42  
704.38  
707.35  
1
255/238  
255/237  
1/6 x 64/66  
1/4  
657.42  
1
255/238  
255/237  
Rev. 1.0  
21  
Si5323  
Table 9. Datacom Clock Multiplication Settings (FRQTBL = M) (Continued)  
Plan # FRQSEL[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
96  
HMHH  
HHLL  
690.57  
693.48  
704.38  
707.35  
1/5 x 64/66 x 238/255  
125  
97  
1/4 x 64/66 x 238/255  
156.25  
161.13  
172.64  
644.53  
690.57  
125  
98  
HHLM  
HMML  
HHLH  
HMMM  
HHML  
HHMM  
HHMH  
HMML  
HHHL  
HMMM  
HHHM  
HHLL  
1/4 x 238/255  
99  
1/4  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
238/255  
1
1/5 x 64/66 x 237/255  
1/4 x 64/66 x 237/255  
156.25  
161.13  
173.37  
644.53  
693.48  
106.25  
159.375  
164.36  
176.1  
1/4 x 237/255  
1/4  
237/255  
1
1/6 x 64/66 x 238/255  
1/4 x 64/66 x 238/255  
HHLM  
HMML  
HHLH  
HMMM  
HHHH  
HHMM  
HHMH  
HMML  
HHHL  
HMMM  
1/4 x (238/255)  
1/4  
238/255  
657.42  
704.38  
106.25  
159.375  
164.36  
176.84  
657.42  
707.35  
1
1/6 x 64/66 x 237/255  
1/4 x 64/66 x 237/255  
1/4 x (237/255)  
1/4  
237/255  
1
22  
Rev. 1.0  
Si5323  
Table 10. SONET to Datacom Clock Multiplication Settings  
Plan #  
FRQSEL[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
0
1
2
3
4
5
6
7
8
9
LLLL  
LLLM  
LLLH  
LLML  
LLMM  
LLMH  
LLHL  
LLHM  
LLHH  
LMLL  
0.008  
3125  
6480  
25  
51.84  
53.125  
62.5  
53125/8  
15625/2  
53125/4  
15625  
106.25  
125  
78125/4  
159375/8  
53125/2  
53125  
156.25  
159.375  
212.5  
425  
Rev. 1.0  
23  
Si5323  
Table 10. SONET to Datacom Clock Multiplication Settings (Continued)  
Plan #  
FRQSEL[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
10  
11  
12  
13  
14  
15  
16  
17  
LMLM  
LMLH  
LMML  
LMMM  
LMMH  
LMHL  
LMHM  
LMHH  
19.440  
625/486  
10625/3888  
3125/972  
25  
53.125  
62.5  
106.25  
125  
10625/1944  
3125/486  
15625/1944  
31875/3888  
156.25  
159.375  
161.13  
15625/1944 x  
66/64  
18  
19  
LHLL  
31875/3888 x  
66/64  
164.36  
172.64  
LHLM  
15625/1944 x  
66/64 x 255/23  
8
20  
LHLH  
31875/3888 x  
66/64 x 255/23  
8
176.1  
21  
22  
23  
LHML  
LHMM  
LHMH  
10625/972  
10625/486  
212.5  
425  
15625/486 x 6  
6/64  
644.53  
24  
25  
26  
LHHL  
LHHM  
LHHH  
31875/972 x 6  
6/64  
657.42  
690.57  
704.38  
15625/486 x 6  
6/64 x 255/238  
31875/972 x 6  
6/64 x 255/238  
27  
28  
29  
30  
31  
32  
33  
34  
MLLL  
MLLM  
MLLH  
MLML  
MLMM  
MLMH  
MLHL  
MLHM  
27.000  
1
250/91  
11/4  
2
27  
74.17582  
74.25  
125  
62.500  
74.176  
4
250  
91/250  
1
27  
74.17582  
74.25  
91 x 11/250 x  
4
24  
Rev. 1.0  
Si5323  
Table 10. SONET to Datacom Clock Multiplication Settings (Continued)  
Plan #  
FRQSEL[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
35  
36  
MLHH  
MMLL  
74.250  
4/11  
27  
4 x 250/11 x 9  
1
74.17582  
37  
38  
39  
40  
41  
42  
MMLM  
MMLH  
MMML  
MMMM  
MMMH  
MMHL  
1
74.25  
106.25  
125  
77.760  
10625/7776  
3125/1944  
15625/7776  
31875/15552  
156.25  
159.375  
161.13  
15625/7776 x  
66/64  
43  
44  
MMHM  
MMHH  
31875/15552 x  
66/64  
164.36  
172.64  
15625/7776 x  
66/64 x 255/23  
8
45  
MHLL  
31875/15552 x  
66/64 x 255/2  
38  
176.1  
46  
47  
48  
MHLM  
MHLH  
MHML  
10625/3888  
10625/1944  
212.5  
425  
15625/1944 x  
66/64  
644.53  
49  
50  
MHMM  
MHMH  
31875/3888 x  
66/64  
657.42  
690.57  
15625/1944 x  
66/64 x 255/23  
8
51  
MHHL  
31875/3888 x  
66/64 x 255/23  
8
704.38  
Rev. 1.0  
25  
Si5323  
Table 10. SONET to Datacom Clock Multiplication Settings (Continued)  
Plan #  
FRQSEL[3:0]  
f
(MHz)  
Mult Factor  
f
* (MHz)  
OUT  
IN  
52  
53  
54  
MHHM  
MHHH  
HLLL  
155.520  
15625/15552  
31875/31104  
156.25  
159.375  
161.13  
15625/15552 x  
66/64  
55  
56  
HLLM  
HLLH  
31875/31104 x  
66/64  
164.36  
172.64  
15625/15552 x  
66/64 x 255/2  
38  
57  
HLML  
31875/31104 x  
66/64 x 255/2  
38  
176.1  
58  
59  
60  
HLMM  
HLMH  
HLHL  
10625/7776  
10625/3888  
212.5  
425  
15625/3888 x  
66/64  
644.53  
61  
62  
HLHM  
HLHH  
31875/7776 x  
66/64  
657.42  
690.57  
15625/3888 x  
66/64 x 255/23  
8
63  
HMLL  
31875/7776 x  
66/64 x 255/23  
8
704.38  
64  
65  
66  
HMLM  
HMLH  
HMML  
622.080  
15625/15552 x  
66/64  
644.53  
657.42  
690.57  
31875/31104 x  
66/64  
15625/15552 x  
66/64 x 255/2  
38  
67  
HMMM  
31875/31104 x  
66/64 x 255/2  
38  
704.38  
26  
Rev. 1.0  
Si5323  
3.3.1. Recommended Reset Guidelines  
Follow the recommended RESET guidelines in Table 11 when reset should be applied to the device.  
Table 11. Si5323 Pins and Reset  
Pin #  
Si5323 Pin  
Name  
Must Reset after Changing  
2
FRQTBL  
RATE0  
Yes  
11  
14  
15  
19  
20  
22  
23  
24  
25  
26  
27  
30  
33  
Yes  
DBL2_BY  
RATE1  
No  
Yes  
DEC  
No  
INC  
No  
BWSEL0  
BWSEL1  
FRQSEL0  
FRQSEL1  
FRQSEL2  
FRQSEL3  
SFOUT1  
SFOUT0  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No, but skew not guaranteed without Reset  
No, but skew not guaranteed without Reset  
Rev. 1.0  
27  
 
Si5323  
4. Pin Descriptions: Si5323  
36 35 34 33 32 31 30 29 28  
RST  
FRQTBL  
C1B  
1
27 FRQSEL3  
26  
2
3
4
5
6
7
8
9
FRQSEL2  
25 FRQSEL1  
C2B  
24  
23  
FRQSEL0  
BWSEL1  
GND  
Pad  
VDD  
XA  
22 BWSEL0  
XB  
21  
20  
19  
CS_CA  
INC  
GND  
DEC  
AUTOSEL  
10 11 12 13 14 15 16 17 18  
Pin assignments are preliminary and subject to change.  
Table 12. Si5323 Pin Descriptions  
Signal Level Description  
Pin #  
Pin Name  
I/O  
1
RST  
I
LVCMOS  
External Reset.  
Active low input that performs external hardware reset of  
device. Resets all internal logic to a known state. Clock  
outputs are tristated during reset. After rising edge of RST  
signal, the Si5323 will perform an internal self-calibration  
when a valid input signal is present.  
This pin has a weak pull-up.  
2
FRQTBL  
I
3-Level  
Frequency Table Select.  
Selects SONET/SDH, datacom, or SONET/SDH to datacom  
frequency table.  
L = SONET/SDH  
M = Datacom  
H = SONET/SDH to Datacom  
This pin has a weak pull-up and weak pull-down and defaults  
to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tristate.  
3
C1B  
O
LVCMOS  
CKIN1 Loss of Signal.  
Active high loss-of-signal indicator for CKIN1. Once  
triggered, the alarm will remain active until CKIN1 is  
validated.  
0 = CKIN1 present  
1 = LOS on CKIN1  
28  
Rev. 1.0  
 
Si5323  
Table 12. Si5323 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
4
C2B  
O
LVCMOS  
CKIN2 Loss of Signal.  
Active high loss-of-signal indicator for CKIN2. Once  
triggered, the alarm will remain active until CKIN2 is  
validated.  
0 = CKIN2 present  
1 = LOS on CKIN2  
5, 10,  
32  
V
V
Supply  
Supply.  
DD  
DD  
The device operates from a 1.8, 2.5, or 3.3 V supply. Bypass  
capacitors should be associated with the following V pins:  
DD  
5
10  
32  
0.1 µF  
0.1 µF  
0.1 µF  
A 1.0 µF should also be placed as close to device as is  
practical.  
7
6
XB  
XA  
I
Analog  
External Crystal or Reference Clock.  
External crystal should be connected to these pins to use  
internal oscillator based reference. Refer to Family  
Reference Manual for interfacing to an external reference.  
External reference must be from a high-quality clock source  
(TCXO, OCXO). Frequency of crystal or external clock is set  
by the RATE pins.  
8, 31  
9
GND  
GND  
I
Supply  
3-Level  
Ground.  
Must be connected to system ground. Minimize the ground  
path impedance for optimal performance of this device.  
AUTOSEL  
Manual/Automatic Clock Selection.  
Three level input that selects the method of input clock  
selection to be used.  
L = Manual  
M = Automatic non-revertive  
H = Automatic revertive  
This pin has a weak pull-up and weak pull-down and defaults  
to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
11  
15  
RATE0  
RATE1  
I
3-Level  
External Crystal or Reference Clock Rate.  
Three level inputs that select the type and rate of external  
crystal or reference clock to be applied to the XA/XB port.  
Refer to the Family Reference Manual for settings. These  
pins have both a weak pull-up and a weak pull-down and  
default to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
12  
13  
CKIN2+  
CKIN2–  
I
Clock Input 2.  
Differential input clock. This input can also be driven with a  
single-ended signal. Input frequency selected from a table of  
values. The same frequency must be applied to CKIN1 and  
CKIN2.  
Rev. 1.0  
29  
Si5323  
Table 12. Si5323 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
14  
DBL2_BY  
I
3-Level  
Output 2 Disable/Bypass Mode Control.  
Controls enable of CKOUT2 divider/output buffer path and  
PLL bypass mode.  
L = CKOUT2 enabled  
M = CKOUT2 disabled  
H = Bypass mode with CKOUT2 enabled  
This pin has a weak pull-up and weak pull-down and defaults  
to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
16  
17  
CKIN1+  
CKIN1–  
I
Multi  
Clock Input 1.  
Differential input clock. This input can also be driven with a  
single-ended signal. Input frequency selected from a table of  
values. The same frequency must be applied to CKIN1 and  
CKIN2.  
18  
19  
LOL  
O
LVCMOS  
PLL Loss of Lock Indicator.  
This pin functions as the active high PLL loss of lock  
indicator.  
0 = PLL locked  
1 = PLL unlocked  
DEC  
I
LVCMOS  
Skew Decrement.  
A pulse on this pin decreases the input to output device skew  
by 1/f  
(approximately 200 ps). There is no limit on the  
OSC  
range of skew adjustment by this method. If both INC and  
DEC are tied high, phase buildout is disabled and the device  
maintains a fixed-phase relationship between the selected  
input clock and the output clock during an input clock  
transition. Detailed operations and timing characteristics for  
this pin may be found in the Any-Frequency Precision Clock  
Family Reference Manual.  
This pin has a weak pull-down.  
20  
INC  
I
LVCMOS  
Skew Increment.  
A pulse on this pin increases the input to output device skew  
by 1/f  
(approximately 200 ps). There is no limit on the  
OSC  
range of skew adjustment by this method. If both INC and  
DEC are tied high, phase buildout is disabled and the device  
maintains a fixed-phase relationship between the selected  
input clock and the output clock during an input clock  
transition. Detailed operations and timing characteristics for  
this pin may be found in the Any-Frequency Precision Clock  
Family Reference Manual.  
Note: If NI_HS = 4, increment is not available.  
This pin has a weak pull-down.  
30  
Rev. 1.0  
Si5323  
Table 12. Si5323 Pin Descriptions (Continued)  
Pin #  
Pin Name  
I/O  
Signal Level  
Description  
21  
CS_CA  
I/O  
LVCMOS  
Input Clock Select/Active Clock Indicator.  
Input: If manual clock selection mode is chosen  
(AUTOSEL = L), this pin functions as the manual input  
clock selector. This input is internally deglitched to  
prevent inadvertent clock switching during changes in  
the CS input state.  
0 = Select CKIN1  
1 = Select CKIN2  
If configured as an input, this pin must be set high or  
low.  
Output: If automatic clock selection mode is chosen  
(AUTOSEL = M or H), this pin indicates which of the  
two input clocks is currently the active clock. If alarms  
exist on both CKIN1 and CKIN2, indicating that the  
digital hold state has been entered, CA will indicate  
the last active clock that was used before entering the  
hold state.  
0 = CKIN1 active input clock  
1 = CKIN2 active input clock  
23  
22  
BWSEL1  
BWSEL0  
I
3-Level  
Bandwidth Select.  
Three level inputs that select the DSPLL closed loop  
bandwidth. Detailed operations and timing characteristics for  
these pins may be found in the Any-Frequency Precision  
Clock Family Reference Manual.  
These pins have both weak pull-ups and weak pull-downs  
and default to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
27  
26  
25  
24  
FRQSEL3  
FRQSEL2  
FRQSEL1  
FRQSEL0  
I
3-Level  
Multiplier Select.  
Three level inputs that select the input clock and clock  
multiplication ratio, depending on the FRQTBL setting.  
Consult the Any-Frequency Precision Clock Family  
Reference Manual or DSPLLsim configuration software for  
settings, both available for download at  
www.silabs.com/timing (click on Documentation).  
These pins have both weak pull-ups and weak pull-downs  
and default to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
29  
28  
CKOUT1–  
CKOUT1+  
O
Multi  
Clock Output 1.  
Differential output clock with a frequency selected from a  
table of values. Output signal format is selected by SFOUT  
pins. Output is differential for LVPECL, LVDS, and CML  
compatible modes. For CMOS format, both output pins drive  
identical single-ended clock outputs.  
Rev. 1.0  
31  
Si5323  
Table 12. Si5323 Pin Descriptions (Continued)  
Pin #  
33  
30  
Pin Name  
I/O  
Signal Level  
Description  
SFOUT0  
SFOUT1  
I
3-Level  
Signal Format Select.  
Three level inputs that select the output signal format  
(common mode voltage and differential swing) for both  
CKOUT1 and CKOUT2.  
SFOUT[1:0]  
Signal Format  
Reserved  
HH  
HM  
HL  
LVDS  
CML  
MH  
MM  
ML  
LH  
LVPECL  
Reserved  
LVDS—Low Swing  
CMOS  
LM  
LL  
Disable  
Reserved  
These pins have both weak pull-ups and weak pull-downs  
and default to M.  
Some designs may require an external resistor voltage  
divider when driven by an active device that will tri-state.  
CMOS outputs do not support bypass mode. LVPECL  
outputs are not available when V = 1.8 V.  
DD  
34  
35  
CKOUT2–  
CKOUT2+  
O
Multi  
Clock Output 2.  
Differential output clock with a frequency selected from a  
table of values. Output signal format is selected by SFOUT  
pins. Output is differential for LVPECL, LVDS, and CML  
compatible modes. For CMOS format, both output pins drive  
identical single-ended clock outputs.  
36  
NC  
No Connect.  
These pins must be left unconnected for normal operation.  
GND  
PAD  
GND  
GND  
Supply  
Ground Pad.  
The ground pad must provide a low thermal and electrical  
impedance to a ground plane.  
32  
Rev. 1.0  
Si5323  
5. Ordering Guide  
Ordering Part Number  
Package  
ROHS6, Pb-Free  
Temperature Range  
Si5323-C-GM  
36-Lead 6 x 6 mm QFN  
Evaluation Board  
Yes  
–40 to 85 °C  
Si5322/23-EVB  
Note: Add an “R” at the end of the device to denote tape and reel option (i.e., Si5323-C-GMR).  
Package Outline: 36-Pin QFN  
Rev. 1.0  
33  
 
Si5323  
6. Package Outline: 36-Pin QFN  
Figure 7 illustrates the package details for the Si5323. Table 13 lists the values for the dimensions shown in the  
illustration.  
Figure 7. 36-Pin Quad Flat No-Lead (QFN)  
Table 13. Package Dimensions  
Symbol  
Millimeters  
Symbol  
Millimeters  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
Min  
0.50  
Nom  
0.60  
Max  
0.70  
12º  
A
A1  
b
L
0.02  
0.25  
aaa  
bbb  
ccc  
ddd  
eee  
0.10  
0.10  
0.08  
0.10  
0.05  
D
6.00 BSC  
4.10  
D2  
e
3.95  
4.25  
0.50 BSC  
6.00 BSC  
4.10  
E
E2  
3.95  
4.25  
Notes:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to JEDEC outline MO-220, variation VJJD.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body  
Components.  
34  
Rev. 1.0  
 
 
Si5323  
7. Recommended PCB Layout  
Figure 8. PCB Land Pattern Diagram  
Figure 9. Ground Pad Recommended Layout  
Rev. 1.0  
35  
 
Si5323  
Table 14. PCB Land Pattern Dimensions  
Dimension  
MIN  
MAX  
e
E
0.50 BSC.  
5.42 REF.  
5.42 REF.  
D
E2  
D2  
GE  
GD  
X
4.00  
4.00  
4.53  
4.53  
4.20  
4.20  
0.28  
Y
0.89 REF.  
ZE  
ZD  
6.31  
6.31  
Notes (General):  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing is per the ANSI Y14.5M-1994 specification.  
3. This Land Pattern Design is based on IPC-SM-782 guidelines.  
4. All dimensions shown are at Maximum Material Condition (MMC). Least Material  
Condition (LMC) is calculated based on a Fabrication Allowance of 0.05 mm.  
Notes (Solder Mask Design):  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the  
solder mask and the metal pad is to be 60 µm minimum, all the way around the pad.  
Notes (Stencil Design):  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be  
used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for the perimeter pads.  
4. A 4 x 4 array of 0.80 mm square openings on 1.05 mm pitch should be used for the  
center ground pad.  
Notes (Card Assembly):  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for  
Small Body Components.  
36  
Rev. 1.0  
Si5323  
8. Si5323 Device Top Mark  
Mark Method:  
Font Size:  
Laser  
0.80 mm  
Right-Justified  
Line 1 Marking:  
Line 2 Marking:  
Si5323  
C-GM  
Customer Part Number  
See Ordering Guide for options  
C = Product Revision  
G = Temperature Range –40 to 85 °C (RoHS6)  
M = QFN Package  
Line 3 Marking:  
YYWWRF  
YY = Year  
WW = Work Week  
R = Die Revision  
F = Internal code  
Assigned by the Assembly House. Corresponds to the year  
and work week of the mold date.  
Line 4 Marking:  
Pin 1 Identifier  
XXXX  
Circle = 0.75 mm Diameter  
Lower-Left Justified  
Internal Code  
Rev. 1.0  
37  
Si5323  
NOTES:  
38  
Rev. 1.0  
Si5323  
DOCUMENT CHANGE LIST  
Revision 0.1 to Revision 0.2  
Changed LVTTL to LVCMOS in Table 7, “Absolute  
Maximum Ratings,” on page 12.  
Added Figure 5, “Typical Phase Noise Plot,” on page  
13.  
Updated Figure 6, “Si5323 Typical Application  
Circuit,” on page 14 to show external reference  
interface.  
Added RATE0 and expanded the RATE[1:0]  
description in 4. "Pin Descriptions: Si5323”.  
Updated 5. "Ordering Guide" on page 33.  
Added 7. "Recommended PCB Layout”.  
Revision 0.2 to Revision 0.3  
Changed 1.8 V operating range to ±5%.  
Updated Table 1 on page 4.  
Updated Table 7 on page 12.  
Added table under Figure 5 on page 13.  
Updated 3. "Functional Description" on page 15.  
Clarified 4. "Pin Descriptions: Si5323" on page 28  
including pull-up/pull-down.  
Updated SFOUT values.  
Revision 0.3 to Rev 1.0  
Updated feature list on page 1.  
Updated all Electrical Specification tables.  
Updated Typical phase noise performance plot and  
table values.  
Added Section 3.3. "Frequency Plan Tables" on  
page 16.  
Updated package outline drawing.  
Added ground pad layout drawing.  
Added Top Device Mark section.  
Updated Section 5. "Ordering Guide” table  
Added product selection guide  
Rev. 1.0  
39  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

SI5323-RM

Mux/Demux, 1-Func, QFN-36
SILICON

SI5324

Pin-Controlled 1_710 MHz Jitter Cleaning Clock
SILICON

Si5324A-C-GM

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
SILICON

Si5324B-C-GM

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
SILICON

SI5324C-C-GM

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
SILICON

Si5324D-C-GM

ANY-FREQUENCY PRECISION CLOCK MULTIPLIER/ JITTER ATTENUATOR
SILICON

SI5324D-C-GMR

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5324E-C-GM

Support Circuit, 1-Func, 6 X 6 MM, ROHS COMPLIANT, MO-220VJJD, QFN-36
SILICON

SI5324E-C-GMR

Support Circuit, 1-Func, QFN-36
SILICON

SI5325

UP-PROGRAMMABLE PRECISION CLOCK MULTIPLIER
SILICON

Si5325/26-EVB

ANY FREQUENCY PRECISION CLOCK MULTIPLIER/JITTER ATTENUATOR
SILICON

SI53254A-D01AMR

Processor Specific Clock Generator,
SILICON