SI5380-D [SILICON]

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator;
SI5380-D
型号: SI5380-D
厂家: SILICON    SILICON
描述:

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator

文件: 总53页 (文件大小:1431K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5380 Rev D Data Sheet  
Ultra-Low Phase Noise, 12-output JESD204B Clock Generator  
KEY FEATURES  
The Si5380 is a high performance, integer-based (M/N) clock generator for small cell  
applications which demand the highest level of integration and phase noise perform-  
• DSPLL eliminates external VCXO and  
analog loop filter components  
ance. Based on Silicon Laboratories’ 4th generation DSPLLtechnology, the Si5380  
combines frequency synthesis and jitter attenuation in a highly integrated digital solu-  
tion that eliminates the need for external VCXO and loop filter components. A low-cost,  
fixed-frequency crystal provides frequency stability for free-run and holdover modes.  
This all-digital solution provides superior performance that is highly immune to external  
board disturbances such as power supply noise.  
• Supports JESD204B clocking: DCLK and  
SYSREF  
• Ultra-low jitter of 65 fs  
• Input frequency range:  
• External Crystal: 54 MHz  
• Differential: 11.52 MHz to 737.28 MHz  
• LVCMOS: 11.52 MHz to 245.76 MHz  
Applications:  
• Output frequency range:  
• Differential: 480 kHz to 1.47456 GHz  
• JESD204B clock generation  
• LVCMOS: 480 kHz to 245.76 MHz  
• Status monitoring  
• Remote Radio Units (RRU), Remote Access Networks (RAN), picocells, small cells  
• Wireless base stations (3G, GSM, W-CDMA, 4G/LTE, LTE-A)  
• Remote Radio Head (RRH), wireless repeaters, wireless backhaul  
• Data conversion sampling clocks (ADC, DAC, DDC, DUC)  
• Hitless switching  
• Si5380: 4 input, 12 output, 64-QFN 9×9 mm  
54 MHz XTAL  
XA  
XB  
÷INT  
OUT0A  
OUT0  
OUT1  
OUT2  
OSC  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
Delay  
Delay  
Delay  
Delay  
Delay  
IN0  
IN1  
IN2  
÷INT  
÷INT  
÷INT  
DSPLL  
4 Input  
Clocks  
OUT3  
OUT4  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
Device and  
System Clocks  
OUT5  
IN3/FB_IN  
OUT6  
OUT7  
OUT8  
OUT9  
OUT9A  
Status Flags  
I2C / SPI  
Status Monitor  
Control  
NVM  
Si5380  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0  
Si5380 Rev D Data Sheet  
Feature List  
1. Feature List  
The Si5380-D features are listed below:  
• Digital frequency synthesis eliminates external VCXO and an-  
alog loop filter components  
• Adjustable output-output delay: 68 ps/step, ±128 steps  
• Optional Zero Delay mode  
• Supports JESD204B clocking: DCLK and SYSREF  
• Ultra-low jitter:  
• Independent output clock supply pins: 3.3, 2.5, or 1.8 V  
• Core voltage:  
• 65 fs typ (12 kHz to 20 MHz)  
• Input frequency range:  
• VDD = 1.8 V ±5%  
• VDDA = 3.3 V ±5%  
• Differential: 11.52 MHz to 737.28 MHz  
• LVCMOS: 11.52 MHz to 245.76 MHz  
• Output frequency range:  
• Automatic free-run, lock, and holdover modes  
• Programmable jitter attenuation bandwidth: 0.1 Hz to 100 Hz  
• Hitless input clock switching  
• Differential: up to 1.47456 GHz  
• LVCMOS: up to 245.76 MHz  
• Phase noise floor: –159 dBc/Hz  
• Status monitoring (LOS, OOF, LOL)  
• Serial interface: I2C or SPI In-circuit programmable with non-  
volatile OTP memory  
• Spur performance: –103 dBc max (relative to a 122.88 MHz  
carrier)  
ClockBuilderTM Pro software tool simplifies device configura-  
tion  
• Configurable outputs:  
• Si5380: 4 input, 12 output, 64-QFN 9×9 mm  
• Temperature range: –40 to +85 °C  
• Pb-free, RoHS-6 compliant  
• Signal swing: 200 to 3200 mVpp  
• Compatible with LVDS, LVPECL  
• LVCMOS 3.3, 2.5, or 1.8 V  
• Output-output skew using same N-divider: 65 ps (Max)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 1  
Si5380 Rev D Data Sheet  
Ordering Guide  
2. Ordering Guide  
Table 2.1. Ordering Guide  
Ordering Part Number  
Number of  
Outputs  
Output Clock  
Frequency  
Range  
Package  
RoHS-6, Pb-Free  
Temperature  
Range  
Si5380A-D-GM  
12  
0.480 MHz to  
1464.56 MHz  
64-Lead 9x9 mm QFN  
Evaluation Board  
Yes  
–40 to +85 °C  
Si5380-D-EVB  
Note:  
1. Add an “R” at the end of the device to denote tape and reel options.  
2. Custom, factory pre-programmed devices are available. Ordering part numbers are assigned by ClockBuilder Pro. Part number  
format is: Si5380A-Dxxxxx-GM, where “xxxxx” is a unique numerical sequence representing the pre-programmed configuration.  
Figure 2.1. Ordering Part Number Fields  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 2  
Si5380 Rev D Data Sheet  
Functional Description  
3. Functional Description  
The Si5380 is a high performance clock generator that is capable of synthesizing up to 10 unique integer related frequencies at any of  
the device’s 12 outputs. The output clocks can be generated in free-run mode or synchronized to any one of the four external inputs.  
Clock generation is provided by Silicon Laboratories’ 4th generation DSPLL technology which combines frequency synthesis and jitter  
attenuation in a highly integrated digital solution that eliminates the need for external VCXO and loop filter components. The Si5380  
device is fully configurable using the I2C or SPI serial interface and has in-circuit programmable non-volatile memory.  
3.1 Frequency Configuration  
The DSPLL provides the synthesis for generating the output clock frequencies which are synchronous to the selected input clock fre-  
quency or free-running XTAL. It consists of a phase detector, a programmable digital loop filter, a high-performance ultra-low phase  
noise analog 15 GHz VCO, and a user configurable feedback divider. An internal oscillator (OSC) provides the DSPLL with a stable  
low-noise clock source for frequency synthesis and for maintaining frequency accuracy in the free-run or holdover modes. The oscillator  
simply requires an external, low cost 54 MHz fundamental mode crystal to operate. No other external components are required for fre-  
quency generation. A key feature of this DSPLL is that it provides immunity to external noise coupling from power supplies and other  
uncontrolled noise sources that normally exist on printed circuit boards.  
3.1.1 Si5380 LTE Frequency Configuration  
The device’s frequency configuration is fully programmable through the serial interface and can also be stored in non-volatile memory.  
The combination of flexible integer dividers and a high frequency VCO allows the device to generate multiple output clock frequencies  
for applications that require ultra-low phase noise and spurious performance. At the core of the device are the N dividers which deter-  
mine the number of unique frequencies that can be generated from the device. The table below shows a list of some possible output  
frequencies for LTE applications. The Si5380’s DSPLL core can generate up to five unique top frequencies. These frequencies are dis-  
tributed to the output dividers using a configurable crosspoint mux. The R dividers allow further division for up to 10 unique integer-ratio  
related frequencies on the Si5380. The ClockBuilder Pro software utility provides a simple means of automatically calculating the opti-  
mum divider values (P, M, N and R) for the frequencies listed in the table below.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 3  
Si5380 Rev D Data Sheet  
Functional Description  
Table 3.1. Example of Possible LTE Clock Frequencies  
FIN (MHz)1  
LTE Device Clock Frequencies Fout (MHz)2  
15.36  
19.20  
30.72  
38.40  
61.44  
76.80  
122.88  
153.60  
184.32  
245.76  
307.20  
368.64  
491.52  
614.40  
737.28  
15.36  
19.20  
30.72  
38.40  
61.44  
76.80  
122.88  
153.60  
184.32  
245.76  
307.20  
368.64  
491.52  
614.40  
737.28  
983.04  
1228.80  
1474.56  
Note:  
1. The Si5380 locks to any one of the frequencies listed in the FIN column and generates LTE device clock frequencies.  
2. R output dividers allow other frequencies to be generated. These are useful for applications like JESD204B SYSREF clocks.  
3.1.2 Si5380 Configuration for JESD204B Clock Generation  
The Si5380 can be used as a high performance, fully integrated JEDEC JESD204B jitter cleaner while eliminating the need for discrete  
VCXO and loop filter components. The Si5380 supports JESD204B subclass 0 and subclass 1 clocking by providing both device clocks  
(DCLK) and system reference clocks (SYSREF). The 12 clock outputs can be independently configured as device clocks or SYSREF  
clocks to drive JESD204B converters, FPGAs, or other logic devices. The Si5380 will clock up to four JESD204B targets using four or  
more DCLKs and four SYSREF clocks with adjustable delay.Each DCLK is grouped with a SYSREF clock in this configuration.If SYS-  
REF clocking is implemented in external logic, then the Si5380 will clock up to 12 JESD204B targets.Not limited to JESD204B applica-  
tions, each of the 12 outputs is individually configurable as a high performance output for traditional clocking applications. An example  
of a JESD204B frequency configuration is shown in the figure below. In this case, the N dividers determine the device clock frequency  
and the R dividers provide the divided SYSREF clock which is used as the lower frequency frame clock. The N divider path also in-  
cludes a configurable delay path (∆t) for controlling deterministic latency. The example shows a configuration where all the device  
clocks are controlled by a single delay path (∆t0) while the SYSREF clocks each have their own independent delay paths (∆t1 – ∆t4),  
though other combinations are also possible. Delay is programmable in steps of 68 ps in the range of ±128 steps (±8.6 ns). See the  
3.5.14 Output Skew Control (Δt0 - Δt4) section for details on skew control. The SYSREF clock is always periodic and can be controlled  
(on/off) without glitches by enabling or disabling its output through register writes.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 4  
Si5380 Rev D Data Sheet  
Functional Description  
IN_SEL[1:0]  
Si5380  
IN0  
IN0b  
IN1  
÷P0  
÷P1  
÷P2  
÷P3  
DSPLL  
IN1b  
PD LPF  
IN2  
IN2b  
IN3/FB_IN  
IN3b/FB_INb  
÷M  
÷5  
VDDO0  
OUT0A  
OUT0Ab  
÷R0A  
÷R0  
OUT0  
OUT0b  
VDDO5  
OUT5  
OUT5b  
÷R5  
÷R6  
÷R7  
÷R8  
VDDO6  
OUT6  
OUT6b  
Device  
Clocks  
t0  
÷N0  
VDDO7  
OUT7  
OUT7b  
VDDO8  
OUT8  
OUT8b  
OUT9  
OUT9b  
÷R9  
OUT9A  
OUT9Ab  
÷R9A  
VDDO9  
VDDO1  
OUT1  
OUT1b  
t1  
t2  
t3  
t4  
÷N1  
÷N2  
÷N3  
÷N4  
÷R1  
÷R2  
÷R3  
÷R4  
VDDO2  
OUT2  
OUT2b  
SYSREF  
Clocks  
VDDO3  
OUT3  
OUT3b  
VDDO4  
OUT4  
OUT4b  
Figure 3.1. Example Divider Configuration for Generating JESD204B Subclass 1 Clocks  
3.1.3 DSPLL Loop Bandwidth  
The DSPLL loop bandwidth determines the amount of input clock jitter attenuation. Register configurable DSPLL loop bandwidth set-  
tings in the range of 0.1 Hz to 100 Hz are available for selection. The DSPLL will always remain stable with less than 0.1 dB of peaking  
regardless of the DSPLL loop bandwidth selection.  
3.1.4 Fastlock  
Selecting a low DSPLL loop bandwidth (e.g., 1 Hz) will generally lengthen the lock acquisition time. The fastlock feature allows setting a  
temporary fastlock loop bandwidth that is used during the lock acquisition process. Higher fastlock loop bandwidth settings will enable  
the DSPLL to lock faster. Once lock acquisition has completed, the DSPLL’s loop bandwidth will automatically revert to the DSPLL  
Loop Bandwidth setting. Fastlock loop bandwidth settings in the range of 100 Hz to 4 kHz are available for selection. The fastlock fea-  
ture can be enabled or disabled by register configuration.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 5  
Si5380 Rev D Data Sheet  
Functional Description  
3.1.5 Modes of Operation  
Once initialization is complete, the Si5380 operates in one of four modes: Free-run Mode, Lock Acquisition Mode, Locked Mode, or  
Holdover Mode. A state diagram showing the modes of operation is shown in the figure below. The following sections describe each of  
these modes in greater detail.  
Power-Up  
Reset and  
Initialization  
No valid  
input clocks  
selected  
Free-run  
Valid input clock  
selected  
Lock Acquisition  
(Fast Lock)  
Phase lock on  
selected input  
clock is achieved  
An input is  
qualified and  
available for  
selection  
Locked  
Mode  
No valid input  
clocks available  
for selection  
Holdover  
Mode  
Input Clock  
Switch  
Selected input  
clock fails  
Yes  
No  
Other Valid  
Clock Inputs  
Available?  
Yes  
Holdover  
History  
Valid?  
No  
Figure 3.2. Modes of Operation  
3.1.6 Initialization and Reset  
When power is applied, the device begins an initialization period where it downloads default register values and configuration data from  
NVM and performs other initialization tasks. Communicating with the device through the serial interface is possible once this initializa-  
tion period is complete. No clocks will be generated until the initialization is complete. There are two types of resets available. A hard  
reset is functionally similar to a device power-up. All registers will be restored to the values stored in NVM and all circuits, including the  
serial interface, will be restored to their initial state. A hard reset is initiated using the RSTb pin or by asserting the hard reset bit. A soft  
reset bypasses the NVM download. It is simply used to initiate register configuration changes.  
3.1.7 Freerun Mode  
Once power is applied to the Si5380 and initialization is complete, the device will automatically enter freerun mode. Output clocks will  
be generated on the outputs with their configured frequencies. The frequency accuracy of the generated output clocks in freerun mode  
is dependent on the frequency accuracy of the external crystal or reference clock on the XA/XB pins. For example, if the crystal fre-  
quency is ±100 ppm, then all the output clocks will be generated at their configured frequency ±100 ppm in freerun mode. Any change  
or drift of the crystal frequency or external reference on the XA/XB pins will be tracked at the output clock frequencies.  
3.1.8 Lock Acquisition  
If a valid input clock is selected for synchronization, the DSPLL will automatically start the lock acquisition process. If the fast lock fea-  
ture is enabled, the DSPLL will acquire lock using the Fastlock Loop Bandwidth setting and then transition to the DSPLL Loop Band-  
width setting when lock acquisition is complete. During lock acquisition the outputs will generate a clock that follows the VCO frequency  
change as it pulls-in to the input clock frequency.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 6  
Si5380 Rev D Data Sheet  
Functional Description  
3.1.9 Locked Mode  
Once lock is achieved, the Si5380 will generate output clocks that are both frequency and phase locked to the input clock. The DSPLL  
will provide jitter attenuation of the input clock using the selected DSPLL loop bandwidth. At this point, any XTAL frequency drift inside  
of the loop bandwidth will not affect the output frequencies. When lock is achieved, the LOLb pin will output a logic high level. The LOL  
status bit and LOLb status pin will also indicate that the DSPLL is locked. See the 3.4.6 LOL Detection section for more details on LOLb  
detection time.  
3.1.10 Holdover Mode  
The DSPLL will automatically enter holdover mode when the selected input clock becomes invalid and no other valid input clocks are  
available for selection. The DSPLL uses an averaged input clock frequency as its final holdover frequency to minimize the disturbance  
of the output clock phase and frequency when an input clock suddenly fails. The holdover circuit stores up to 120 seconds of historical  
frequency data while the DSPLL is locked to a valid clock input. The final averaged holdover frequency value is calculated from a pro-  
grammable window within the stored historical frequency data. Both the window size and the delay are programmable as shown in the  
figure below. The window size determines the amount of holdover frequency averaging. The delay value allows ignoring frequency data  
that may be corrupt just before the input clock failure.  
Figure 3.3. Programmable Holdover Window  
Clock Failure  
and Entry into  
Holdover  
Historical Frequency Data Collected  
time  
Programmable historical data window  
Programmable delay  
used to determine the final holdover value  
120s  
0s  
30ms, 60ms, 1s,10s, 30s, 60s  
1s,10s, 30s, 60s  
When entering holdover, the DSPLL will pull the output clock frequencies referred to the calculated averaged holdover frequency. While  
in holdover, the output frequency drift is entirely dependent on the external crystal or external reference clock connected to the XA/XB  
pins. If a new clock input becomes valid, the DSPLL will automatically exit the holdover mode and re-acquire lock to the new input  
clock. This process involves pulling the output clock frequencies to achieve frequency and phase lock with the new input clock. This  
pull-in process is glitchless and its rate is controlled by the DSPLL bandwidth and the Fastlock bandwidth. These options are register  
programmable.  
The DSPLL output frequency when exiting holdover can be ramped (recommend). Just before the exit is initiated, the difference be-  
tween the current holdover frequency and the new desired frequency is measured. Using the calculated difference and a user-selecta-  
ble ramp rate, the output is linearly ramped to the new frequency. The ramp rate can be 0.2 ppm/s, 40,000 ppm/s, or any of about 40  
values in between. The DSPLL loop BW does not limit or affect ramp rate selections (and vice versa). CBPro defaults to ramped exit  
from holdover. The same ramp rate settings are used for both exit from holdover and ramped input switching. For more information on  
ramped input switching, see 3.3.5 Ramped Input Switching.  
Note: If ramped holdover exit is not selected, the holdover exit is governed either by (1) the DSPLL loop BW or (2) a user-selectable  
holdover exit BW.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 7  
Si5380 Rev D Data Sheet  
Functional Description  
3.2 External Reference (XA/XB)  
An external crystal (XTAL) is used in combination with the internal oscillator (OSC) to produce an ultra-low phase noise reference clock  
for the DSPLL and for providing a stable reference for the free-run and holdover modes. A simplified diagram is shown in the figure  
below. The Si5380 includes internal XTAL loading capacitors which eliminates the need for external capacitors and also has the benefit  
of reduced noise coupling from external sources. Refer to the Table 5.12 Crystal Specifications on page 34 for crystal specifications.  
A crystal frequency of 54 MHz is required, with a total accuracy of ±100 ppm* recommended for best performance. The Si5380 includes  
built-in XTAL load capacitors (CL) of 8 pF, which are switched out of the circuit when using an external XO. The Si5380 Reference  
Manual provides additional information on PCB layout recommendations for the crystal to ensure optimum jitter performance. To ach-  
ieve optimal jitter performance and minimize BOM cost, a crystal is recommended on the XA/XB reference input. A clock (e.g., XO) may  
be used in lieu of the crystal, but it may result in higher output jitter. See the Si5380 Reference Manual for more information. Selection  
between the external XTAL or REFCLK is controlled by register configuration. The internal crystal loading capacitors (CL) are disabled  
in this mode. It is important to note that when using the REFCLK option the phase noise of the outputs is directly affected by the phase  
noise of the external XO reference. Refer to the Table 5.3 Input Clock Specifications on page 24 for REFCLK requirements when  
using the REFCLK mode.  
Note: Including initial frequency tolerance and frequency variation over the full operating temperature range, voltage range, load condi-  
tions, and aging.  
54MHz  
XO  
54MHz  
XO  
54MHz  
XTAL  
100  
XA  
XB  
XA  
XB  
XA  
XB  
2xCL  
2xCL  
2xCL  
2xCL  
2xCL  
2xCL  
OSC  
OSC  
OSC  
PREF  
÷
PREF  
PREF  
÷
÷
Si5380  
Si5380  
Si5380  
Crystal Resonator Connection  
Differential XO Connection  
Single-Ended XO Connection  
Figure 3.4. XAXB Crystal Resonator and External Reference Clock Connection Options  
3.3 Inputs (IN0, IN1, IN2, IN3/FB_IN)  
Four clock inputs are available to synchronize the DSPLL. The inputs are compatible with both single-ended and differential signals.  
Input selection can be manual (pin or register controlled) or automatic with definable priorities.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 8  
Si5380 Rev D Data Sheet  
Functional Description  
3.3.1 Input Configuration and Terminations  
Each of the inputs can be configured as differential or single-ended LVCMOS. The recommended input termination schemes are shown  
in the figure below. Standard 50% duty cycle signals must be ac-coupled, while low duty cycle Pulsed CMOS signals can be DC-cou-  
pled. Unused inputs can be disabled and left unconnected when not in use.  
Standard AC-coupled Differential LVDS  
Si5380  
50  
Standard  
INx  
100  
3.3 V, 2.5 V  
LVDS or  
CML  
INxb  
50  
Pulsed CMOS  
Standard AC-coupled Differential LVPECL  
Si5380  
50  
Standard  
INx  
100  
INxb  
50  
3.3 V, 2.5 V  
LVPECL  
Pulsed CMOS  
Standard AC-coupled Single-ended  
Si5380  
50  
Standard  
INx  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
INxb  
Pulsed CMOS  
Pulsed CMOS DC-coupled Single-ended  
Si5380  
R1  
Standard  
INx  
50  
R2  
INxb  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
Pulsed CMOS  
Resistor values for  
fIN_PULSED < 1 MHz  
VDD R1 (Ohm) R2 (Ohm)  
1.8V  
2.5V  
3.3V  
324  
511  
634  
665  
475  
365  
Figure 3.5. Termination of Differential and LVCMOS Input Signals  
3.3.2 Manual Input Selection (IN0, IN1, IN2, IN3/FB_IN)  
Input clock selection can be made manually using the IN_SEL[1:0] pins or through a register. A register bit determines input selection  
as pin selectable or register selectable. The IN_SEL pins are selected by default. If there is no clock signal on the selected input, the  
device will automatically enter free-run or holdover mode.  
* NOTE: When the zero delay mode is enabled, IN3 becomes the feedback input (FB_IN) and is not available for selection as a clock  
input.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 9  
Si5380 Rev D Data Sheet  
Functional Description  
Table 3.2. Manual Input Selection Using IN_SEL[1:0] Pins  
IN_SEL[1:0]  
Selected Input  
0
0
1
1
0
1
0
1
IN0  
IN1  
IN2  
IN3*  
3.3.3 Automatic Input Switching (IN0, IN1, IN2, IN3/FB_IN)  
An automatic input selection state machine is available in addition to the manual switching option. In automatic mode, the selection  
criteria is based on reference qualification, input priority, and the revertive option. Only references which are valid can be selected by  
the automatic state machine. If there are no valid references available, the DSPLL will enter the holdover mode. With revertive switch-  
ing enabled, the highest priority input with a valid reference is always selected. If an input with a higher priority becomes valid, then an  
automatic switchover to that input will be initiated. With non-revertive switching, the active input will always remain selected while it is  
valid. If it becomes invalid, an automatic switchover to a valid input with the highest priority will be initiated.  
3.3.4 Hitless Input Switching  
Hitless switching is a feature that prevents a phase transient from propagating to the output when switching between two frequency  
locked clock inputs that have a fixed phase difference between them. A hitless switch can only occur when the two input frequencies  
are frequency locked meaning that they have to be exactly at the same frequency, or have an integer frequency relationship to each  
other. When this feature is enabled, the DSPLL simply absorbs the phase difference between the two input clocks during an input  
switch. When disabled (normal switching), the phase difference between the two inputs is propagated to the output at a rate determined  
by the DSPLL loop bandwidth.  
3.3.5 Ramped Input Switching  
When switching between two plesiochronous input clocks (i.e., the frequencies are "almost the same" but not quite), ramped input  
switching should be enabled to ensure a smooth transition between the two inputs. Ramped input switching avoids frequency transients  
and overshoot when switching between frequencies and so is the default switching mode in CBPro. The feature should be turned off  
when switching between input clocks that are always frequency locked (i.e., are always the same exact frequency). The same ramp  
rate settings are used for both holdover exit and clock switching. For more information on ramped exit from holdover, see 3.1.10 Hold-  
over Mode.  
3.3.6 Glitchless Input Switching  
The DSPLL has the ability of switching between two input clocks that are up to 40 ppm apart in frequency. The DSPLL will pull-in to the  
new frequency using the DSPLL loop bandwidth or using the Fastlock loop bandwidth if it is enabled. The loss of lock (LOL) indicator  
will be asserted while the DSPLL is pulling-in to the new clock frequency. There will be no output runt pulses generated at the output.  
Glitchless input switching is available regardless of whether the hitless switching feature is enabled or disabled.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 10  
Si5380 Rev D Data Sheet  
Functional Description  
3.3.7 Zero Delay Mode  
A zero delay mode is available for applications that require fixed and consistent minimum delay between the selected input and outputs.  
The zero delay mode is configured by opening the internal feedback loop through software configuration and closing the loop externally  
as shown in the figure below. This helps to cancel out the internal delay introduced by the dividers, the crosspoint, the input, and the  
output drivers. Any one of the outputs can be fed back to the IN3/FB_IN pins, although using the output driver that achieves the short-  
est trace length will help to minimize the input-to-output delay. The OUT9A and IN3/FB_IN pins are recommended for the external feed-  
back connection. The FB_IN input pins must be terminated and ac-coupled when zero delay mode is used. A differential external feed-  
back path connection is necessary for best performance. The order of the OUT9A and FB_IN polarities is such that they may be routed  
on the device side of the PCB without requiring vias or needing to cross each other.  
IN0  
IN0b  
IN1  
Si5380  
÷P0  
÷P1  
÷P2  
DSPLL  
IN1b  
PD  
LPF  
IN2  
IN2b  
÷M  
÷5  
IN3/FB_IN  
÷P3  
VDDO0  
IN3b/FB_INb  
OUT0A  
÷R0A  
÷R0  
OUT0Ab  
OUT0  
OUT0b  
t0  
t1  
t2  
t3  
t4  
÷N0  
÷N1  
÷N2  
÷N3  
÷N4  
VDDO2  
OUT2  
OUT2b  
÷R2  
VDDO8  
OUT8  
OUT8b  
÷R8  
OUT9  
OUT9b  
÷R9  
OUT9A  
÷R9A  
OUT9Ab  
VDDO9  
External Feedback Path  
Figure 3.6. Si5380 Zero Delay Mode Set-up  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 11  
Si5380 Rev D Data Sheet  
Functional Description  
3.4 Fault Monitoring  
All four input clocks (IN0, IN1, IN2, IN3/FB_IN) are monitored for loss of signal (LOS) and out-of-frequency (OOF) as shown in the fig-  
ure below. The reference at the XA/XB pins is also monitored for LOS since it provides a critical reference clock for the DSPLL. The  
DSPLL also has a Loss Of Lock (LOL) indicator, which is asserted when the DSPLL has lost synchronization with the selected input  
clock.  
XA XB  
Si5380  
OSC  
LOS  
XAXB  
IN0  
Precision  
Fast  
LOS  
LOS  
LOS  
LOS  
OOF  
OOF  
OOF  
OOF  
÷P0  
÷P1  
÷P2  
÷P3  
IN0b  
DSPLL  
IN1  
Precision  
Fast  
LOL  
IN1b  
PD LPF  
Precision  
Fast  
IN2  
Feedback  
Clock  
IN2b  
÷M  
÷5  
IN3/FB_IN  
Precision  
Fast  
IN3b/FB_INb  
Figure 3.7. Si5380 Fault Monitors  
3.4.1 Input LOS Detection  
The loss of signal monitor measures the period of each input clock cycle to detect phase irregularities or missing clock edges. Each of  
the input LOS circuits have their own programmable sensitivity which allows ignoring missing edges or intermittent errors. Loss of signal  
sensitivity is configurable using the ClockBuilder Pro utility. The LOS status for each of the monitors is accessible by reading a status  
register. The live LOS register always displays the current LOS state and a sticky register always stays asserted until cleared. An option  
to disable any of the LOS monitors is also available.  
Sticky  
Monitor  
LOS  
LOS  
en  
Live  
Figure 3.8. LOS Status Indicators  
3.4.2 XA/XB LOS Detection  
An LOS monitor is available to ensure that the external crystal or reference clock is valid. By default, the output clocks are disabled  
when XAXB LOS is detected. This feature can be disabled such that the device will continue to produce output clocks when XAXB LOS  
is detected. See the 3.5.11 Output Disable During XAXB_LOS section for details.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 12  
Si5380 Rev D Data Sheet  
Functional Description  
3.4.3 OOF Detection  
Each input clock is monitored for frequency accuracy with respect to a OOF reference which it considers as its “0_ppm” reference. This  
OOF reference can be selected as either: XAXB, IN0, IN1, IN2 or IN3. IN3 is only available as the OOF reference when not in ZDM.  
The final OOF status is determined by the combination of both a precise OOF monitor and a fast OOF monitor as shown in the figure  
below. An option to disable either monitor is also available. The live OOF register always displays the current OOF state, and its sticky  
register bit stays asserted until cleared.  
Sticky  
Monitor  
Precision  
Fast  
en  
en  
OOF  
OOF  
Live  
Figure 3.9. OOF Status Indicator  
3.4.4 Precision OOF Monitor  
The Precision OOF monitor circuit measures the frequency of all input clocks to within ±1 ppm accuracy with respect to the frequency at  
the XA/XB pins. The OOF monitor considers the frequency at the XA/XB pins as its 1/16 ppm OOF reference. A valid input frequency is  
one that remains within the OOF frequency range which is register configurable up to ±500 ppm in steps of 1/16 ppm. A configurable  
amount of hysteresis is also available to prevent the OOF status from toggling at the failure boundary. An example is shown in the  
figure below. In this case the OOF monitor is configured with a valid frequency range of ±6 ppm and with 2 ppm of hysteresis. An option  
to use one of the input pins (IN0–IN3) as the 0 ppm OOF reference instead of the XA/XB pins is available. This option is register config-  
urable.  
OOF Declared  
OOF Cleared  
fIN  
Hysteresis  
Hysteresis  
-4 ppm  
(Clear)  
-6 ppm  
(Set)  
+4 ppm  
(Clear)  
+6 ppm  
(Set)  
0 ppm  
OOF  
Reference  
Figure 3.10. Example of Precise OOF Monitor Assertion and De-assertion Triggers  
3.4.5 Fast OOF Monitor  
Because the precision OOF monitor needs to provide 1/16 ppm of frequency measurement accuracy, it must measure the monitored  
input clock frequencies over a relatively long period of time. This may be too slow to detect an input clock that is quickly ramping in  
frequency. An additional level of OOF monitoring called the Fast OOF monitor runs in parallel with the precision OOF monitors to quick-  
ly detect a ramping input frequency. The Fast OOF monitor asserts OOF on an input clock frequency that has changed by 1,000 to  
16,000 ppm.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 13  
Si5380 Rev D Data Sheet  
Functional Description  
3.4.6 LOL Detection  
A loss of lock (LOL) monitor asserts the LOL bit when the DSPLL has lost synchronization with the selected input clock. There is also a  
dedicated active-low LOLb pin which reflects the loss of lock condition. The LOL monitor measures the frequency difference between  
the input and feedback clocks at the phase detector. There are two LOL frequency monitors, one that sets the LOL indicator (LOL Set)  
and another that clears the indicator (LOL Clear). A block diagram of the LOL monitor is shown in the figure below. The live LOL regis-  
ter always displays the current LOL state and a sticky register always stays asserted until cleared. The LOLb pin reflects the current  
state of the LOL monitor.  
LOL Monitor  
RS Latch  
Sticky  
LOL  
Clear  
Timer  
Reset  
LOL  
LOL  
Q
Live  
LOL  
Set  
Set  
LOLb  
DSPLL  
fIN  
PD LPF  
Feedback  
Clock  
÷M  
÷5  
Si5380  
Figure 3.11. LOL Status Indicators  
Each of the frequency monitors have adjustable sensitivity which is register configurable from 0.1 ppm to 10,000 ppm. Having two sep-  
arate frequency monitors allows for hysteresis to help prevent chattering of LOL status. An example configuration where LOCK is indi-  
cated when there is less than 0.1 ppm frequency difference at the inputs of the phase detector and LOL is indicated when there is more  
than 1 ppm frequency difference is shown in the figure below.  
Clear LOL  
Threshold  
Set LOL  
Threshold  
Lock Acquisition  
LOL  
Hysteresis  
Lost Lock  
LOCKED  
0
0.1  
1
10,000  
Phase Detector Frequency Difference (ppm)  
Figure 3.12. LOL Set and Clear Thresholds  
An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to completely phase lock to  
the input clock. The timer is also useful to prevent the LOL indicator from toggling or chattering as the DSPLL completes lock acquisi-  
tion. The configurable delay value depends on frequency configuration and loop bandwidth of the DSPLL and is automatically calcula-  
ted using the ClockBuilder Pro utility.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 14  
Si5380 Rev D Data Sheet  
Functional Description  
3.4.7 Interrupt Pin INTRb  
An interrupt pin INTRb indicates a change in state of the status indicators shown in the figure below. All of the status indicators are  
maskable to prevent assertion of the interrupt pin. The state of the INTRb pin is reset by clearing the status register that caused the  
interrupt. The sticky version of the fault monitors is used for this function to ensure that the fault condition is still available when re-  
sponding to the interrupt.  
Si5380  
LOS_FLG 0x0012[0]  
IN0  
OOF_FLG 0x0012[4]  
LOS_FLG 0x0012[1]  
IN1  
OOF_FLG 0x0012[5]  
LOS_FLG 0x0012[2]  
IN2  
INTRb  
OOF_FLG 0x0012[6]  
LOS_FLG 0x0012[3]  
IN3  
OOF_FLG 0x0012[7]  
LOL_FLG 0x0013[1]  
HOLD_FLG 0x0013[5]  
PLL  
CAL_FLG 0x0014[5]  
SYSINCAL_FLG 0x0011[0]  
LOSXAXB_FLG 0x0011[1]  
LOSREF_FLG 0x0011[2]  
Device  
XAXB_ERR_FLG 0x0011[3]  
SMBUS_TIMEOUT_FLG 0x0011[5]  
Figure 3.13. Interrupt Triggers and Masks  
3.5 Outputs  
The Si5380 supports 12 differential output drivers which can be independently configured as differential or LVCMOS.  
3.5.1 Output Crosspoint  
The output crosspoint allows any of the N dividers to connect to any of the clock outputs.  
3.5.2 Output Signal Format  
The differential output amplitude and common mode voltage are both fully programmable covering a wide variety of signal formats in-  
cluding LVPECL, LVDS, HCSL, and CML. In addition to supporting differential signals, any of the outputs can be configured as  
LVCMOS (3.3 V, 2.5 V, or 1.8 V) drivers providing up to 24 single-ended outputs, or any combination of differential and single-ended  
outputs.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 15  
Si5380 Rev D Data Sheet  
Functional Description  
3.5.3 Output Terminations  
The output drivers support both ac-coupled and dc-coupled terminations as shown in the following figure.  
AC-coupled LVDS/LVPECL  
DC-coupled LVDS  
V
DDO = 3.3 V, 2.5 V, 1.8 V  
V
DDO = 3.3 V, 2.5 V  
50  
50  
50  
50  
OUTx  
OUTx  
100  
OUTxb  
100  
OUTxb  
Internally  
self-biased  
Si5380  
Si5380  
AC-coupled LVPECL / CML  
AC-coupled HCSL  
VDDRX  
VDD – 1.3 V  
VDDO = 3.3 V, 2.5 V, 1.8 V  
V
DDO = 3.3 V, 2.5 V  
R1  
R1  
R2  
50  
50  
OUTx  
50  
50  
50  
50  
OUTx  
Standard  
HCSL  
Receiver  
OUTxb  
OUTxb  
Si5380  
Si5380  
R2  
For VCM = 0.35 V  
VDDRX  
R1  
R2  
442 Ω  
56.2 Ω  
59 Ω  
3.3 V  
2.5 V  
1.8 V  
332 Ω  
243 Ω  
63.4 Ω  
Figure 3.14. Supported Output Terminations  
3.5.4 Programmable Common Mode Voltage For Differential Outputs  
The common mode voltage (VCM) for the differential modes is programmable in 100 mV increments from 0.7 V to 2.3 V depending on  
the voltage available at the output’s VDDO pin. Setting the common mode voltage is useful when dc-coupling the output drivers.  
3.5.5 LVCMOS Output Terminations  
LVCMOS outputs are dc-coupled with source-side series termination as shown in the figure below.  
DC-coupled LVCMOS  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
V
DDO = 3.3V, 2.5V, 1.8V  
50  
50  
Rs  
Rs  
OUTx  
OUTxb  
Figure 3.15. LVCMOS Output Terminations  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 16  
Si5380 Rev D Data Sheet  
Functional Description  
3.5.6 LVCMOS Output Impedance and Drive Strength Selection  
Each LVCMOS driver has a configurable output impedance to accommodate different trace impedances and drive strengths. A source  
termination resistor is recommended to help match the selected output impedance to the trace impedance. There are three programma-  
ble output impedance selections for each VDDO options as shown in the table below.  
Table 3.3. Typical Output Impedance (ZS)  
VDDO  
CMOS_DRIVE_Selection  
OUTx_CMOS_DRV = 1  
OUTx_CMOS_DRV = 2  
OUTx_CMOS_DRV = 3  
3.3 V  
2.5 V  
1.8 V  
38 Ω  
43 Ω  
30 Ω  
35 Ω  
46 Ω  
22 Ω  
24 Ω  
31 Ω  
3.5.7 LVCMOS Output Signal Swing  
The signal swing (VOL/VOH) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output driver has its own  
VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers. OUT0 and OUT0A share the same VDDO pin.  
OUT9 and OUT9A also share the VDDO pin. All other outputs have their own individual VDDO pins.  
3.5.8 LVCMOS Output Polarity  
When a driver is configured as an LVCMOS output it generates a clock signal on both pins (OUTx and OUTxb). By default the clock on  
the OUTxb pin is generated with the same polarity (in phase) with the clock on the OUTx pin. The polarity of these clocks is configura-  
ble enabling complimentary clock generation and/or inverted polarity with respect to other output drivers.  
3.5.9 Output Enable/Disable  
The OEb pin provides a convenient method of disabling or enabling all of the output drivers at the same time. When the OEb pin is held  
high all outputs will be disabled. When held low, the outputs will all be enabled. Outputs in the enabled state can still be individually  
disabled through register control.  
3.5.10 Output Disable During LOL  
By default, a DSPLL that is out of lock will generate either free-running clocks or generate clocks in holdover mode. There is an option  
to disable the outputs when a DSPLL is LOL. This option can be useful to force a downstream PLL into holdover.  
3.5.11 Output Disable During XAXB_LOS  
The internal oscillator circuit (OSC) in combination with the external crystal (XTAL) provides a critical function for the operation of the  
DSPLLs. In the event of a crystal failure, the device will assert an XAXB_LOS alarm. By default, all outputs will be disabled during  
assertion of the XAXB_LOS alarm. There is an option to leave the outputs enabled during an XAXB_LOS alarm, but the frequency  
accuracy and stability will be indeterminate during this fault condition.The internal oscillator circuit (OSC) in combination with the exter-  
nal crystal (XTAL) provides a critical function for the operation of the DSPLLs. In the event of a crystal failure, the device will assert an  
XAXB_LOS alarm. By default, all outputs will be disabled during assertion of the XAXB_LOS alarm. There is an option to leave the  
outputs enabled during an XAXB_LOS alarm, but the frequency accuracy and stability will be indeterminate during this fault condition.  
3.5.12 Output Driver State When Disabled  
The disabled state of an output driver is configurable as either disable low or disable high.  
3.5.13 Synchronous Enable/Disable Feature  
The output drivers provide a selectable synchronous enable/disable feature. Output drivers with synchronous disable active will wait  
until a clock period has completed before the driver is disabled or enabled. This prevents unwanted shortened pulses from occurring  
when enabling or disabling an output. When this feature is turned off, the output clock will disable immediately without waiting for the  
clock period to complete.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 17  
Si5380 Rev D Data Sheet  
Functional Description  
3.5.14 Output Skew Control (Δt0 - Δt4)  
The Si5380 uses independent dividers (N0 - N4) to generate up to 5 unique frequencies to its 12 outputs through a crosspoint switch. A  
delay path (Δt0 - Δt4) associated with each of these dividers is available for applications that need a specific output skew configuration.  
This is useful for compensating PCB trace delay differences or for applications that require quadrature clock generation. The resolution  
of the phase adjustment is approximately 68 ps per step up to 128 steps of added phase delay (+8.6 ns late), or 128 steps of negative  
delay (–8.6 ns early). Phase adjustments are register configurable. An example of generating two frequencies with unique configurable  
path delays is shown in the following figure.  
VDDO0  
OUT0A  
OUT0Ab  
÷R0A  
OUT0  
OUT0b  
÷R0  
t0  
t1  
t2  
t3  
t4  
÷N0  
÷N1  
÷N2  
÷N3  
÷N4  
VDDO1  
OUT1  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
OUT1b  
VDDO2  
OUT2  
OUT2b  
VDDO3  
OUT3  
OUT3b  
VDDO4  
OUT4  
OUT4b  
VDDO5  
OUT5  
OUT5b  
VDDO6  
OUT6  
OUT6b  
VDDO7  
OUT7  
OUT7b  
VDDO8  
OUT8  
OUT8b  
OUT9  
OUT9b  
÷R9  
OUT9A  
OUT9Ab  
÷R9A  
VDDO9  
Figure 3.16. Example of Independently Configurable Path Delays  
All phase delay values are restored to their default values after power-up, power-on reset, or hardware reset using the RSTb pin. Phase  
delay default values can be written to NVM allowing a custom phase offset configuration at power-up or after power-on reset, or after a  
hardware reset using the RSTb pin.  
3.5.15 Output Divider (R) Synchronization  
All the output R dividers are reset to a known state during the power-up initialization period. This ensures consistent and repeatable  
phase alignment across all output drivers. Resetting the device using the RSTb pin or asserting the reset bit will have the same result.  
Asserting the sync register bit provides another method of realigning the R dividers without resetting the device.  
3.6 Power Management  
Unused inputs and output drivers can be powered down when unused. Consult the Si5380 Reference Manual and ClockBuilder Pro  
configuration utility for details.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 18  
Si5380 Rev D Data Sheet  
Functional Description  
3.6.1 Power Down Pin (PDNb)  
A power down pin is provided to force the device in a low power mode. The device’s configuration will be maintained but no output  
clocks will be generated. Most of the internal blocks will be shut down but device communication via the serial interface will still be  
available. When the PDNb pin is pulled low the outputs will shut down without glitching (the clock’s complete period will be generated  
before shutting down). When PDNb is released the device will start generating clocks without glitches. The device will generate free-  
running clocks until the DSPLL has acquired lock to the selected input clock source.  
3.7 In-Circuit Programming  
The Si5380 is fully configurable using the serial interface (I2C or SPI). At power-up, the device downloads its default register values  
from internal non-volatile memory (NVM). Application specific default configurations can be written into NVM allowing the device to gen-  
erate specific clock frequencies at power-up. Writing default values to NVM is in-circuit programmable with normal operating power sup-  
ply voltages applied to its VDD and VDDA pins. The NVM is writable two times. Once a new configuration has been written to NVM, the  
old configuration is no longer accessible. Refer to the Si5380 Reference Manual for a detailed procedure for writing registers to NVM.  
3.8 Serial Interface  
Configuration and operation of the Si5380 is controlled by reading and writing registers using the I2C or SPI interface. The I2C_SEL pin  
selects I2C or SPI operation. The Si5380 supports communication with a 3.3 V or 1.8 V host by setting the IO_VDD_SEL configuration  
bit. The SPI mode supports 4-wire or 3-wire by setting the SPI_3WIRE configuration bit. See the Si5380 Reference Manual for details.  
3.9 Custom Factory Preprogrammed Devices  
For applications where a serial interface is not available for programming the device, custom pre-programmed parts can be ordered  
with a specific configuration written into NVM. A factory pre-programmed device will generate clocks at power-up. Custom, factory-pre-  
programmed devices are available. Use the ClockBuilder Pro custom part number wizard (www.silabs.com/clockbuilderpro) to quickly  
and easily request and generate a custom part number for your configuration.  
In less than three minutes, you will be able to generate a custom part number with a detailed data sheet addendum matching your  
design’s configuration. Once you receive the confirmation email with the data sheet addendum, simply place an order with your local  
Silicon Labs sales representative. Samples of your pre-programmed device will ship to you typically within two weeks.  
3.10 Enabling Features and/or Configuration Settings Not Available in ClockBuilder Pro for Factory Pre-programmed Devices  
As with essentially all software utilities, ClockBuilder Pro is continuously updated and enhanced. By registering at www.silabs.com and  
opting in for updates to software, you will be notified whenever changes are made and what the impact of those changes are. This  
update process will ultimately enable ClockBuilder Pro users to access all features and register setting values documented in this data  
sheet and the Si5380 Reference Manual .  
However, if you must enable or access a feature or register setting value so that the device starts up with this feature or a register  
setting, but the feature or register setting is NOT yet available in CBPro, you must contact a Silicon Labs applications engineer for as-  
sistance. Examples of this type of feature or custom setting are the customizable output amplitude and common voltages for the clock  
outputs. After careful review of your project file and custom requirements, all Silicon Labs applications engineer will email back your  
CBPro project file with your specific features and register settings enabled, using what is referred to as the manual "settings override"  
feature of CBPro. "Override" settings to match your request(s) will be listed in your design report file. Examples of setting "overrides" in  
a CBPro design report are shown below:  
Table 3.4. Setting Overrides  
Location  
0x0535[0]  
0128[6:4]  
Name  
Type  
No NVM  
User  
Target  
N/A  
Dec Value  
Hex Value  
0x1  
FORCE_HOLD  
OUT6_AMPL  
1
5
OPN and EVB  
0x5  
Once you receive the updated design file, simply open it in CBPro. After you create a custom OPN, the device will begin operation after  
startup with the values in the NVM file, including the Silicon Labs-supplied override settings.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 19  
Si5380 Rev D Data Sheet  
Functional Description  
Place sample  
Start  
order  
Do I need a  
pre-programmed device  
with a feature or setting  
which is unavailable in  
ClockBuilder Pro?  
Generate  
Custom OPN  
in CBPro  
Configure device  
using CBPro  
No  
Yes  
Contact Silicon Labs  
Technical Support  
to submit & review  
your  
Yes  
non-standard  
configuration  
request & CBPro  
project file  
Receive  
updated CBPro  
project file  
from  
Silicon Labs  
with “Settings  
Override”  
Does the updated  
CBPro Project file  
match your  
Load project file  
into CBPro and test  
requirements?  
Figure 3.17. Flowchart to Order Custom Parts with Features not Available in CBPro  
Note: Contact Silicon Labs Technical Support at www.silabs.com/support/Pages/default.aspx.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 20  
Si5380 Rev D Data Sheet  
Register Map  
4. Register Map  
This document provides a brief list of available registers. For a complete list of registers and settings, please refer to the Si5380 Refer-  
ence Manual .  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 21  
Si5380 Rev D Data Sheet  
Electrical Specifications  
5. Electrical Specifications  
Table 5.1. Recommended Operating Conditions 1  
Parameter  
Ambient Temperature  
Symbol  
TA  
Min  
–40  
Typ  
25  
Max  
Unit  
°C  
°C  
V
85  
Maximum Junction Temperature  
Core Supply Voltage  
TJMAX  
VDD  
VDDA  
VDDO  
125  
1.71  
3.14  
3.14  
2.37  
1.71  
1.80  
3.30  
3.30  
2.50  
1.80  
1.89  
3.47  
3.47  
2.62  
1.89  
V
Output Driver Supply Voltage  
V
V
V
Note:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical val-  
ues apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 22  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Table 5.2. DC Characteristics  
Test Condition  
Parameter  
Symbol  
IDD  
Min  
Typ  
190  
125  
36  
Max  
310  
135  
41  
Unit  
mA  
mA  
mA  
Core Supply Current 1,2  
IDDA  
Output Buffer Supply Current 2, 5  
LVPECL Output 3  
@ 1474.56 MHz  
LVPECL Output 3  
@ 153.6 MHz  
IDDO  
22  
25  
26  
29  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
LVDS Output 3  
@ 1474.56 MHz  
LVDS Output 3  
15  
18  
@ 153.6 MHz  
3.3 V LVCMOS Output 4  
@ 153.6 MHz  
22  
30  
2.5 V LVCMOS Output 4  
@ 153.6 MHz  
18  
23  
1.8 V LVCMOS Output 4  
@ 153.6 MHz  
12  
16  
Total Power Dissipation 1, 2  
Pd  
Typical Outputs  
1300  
1600  
Notes:  
1. Si5380 test configuration: 3 × 3.3 V LVPECL outputs enabled at 122.88 MHz, 2 × 3.3 V LVPECL outputs enabled at 491.52 MHz,  
1 × 3.3 V LVPECL output enabled at 983.04 MHz. Excludes power in termination resistors.  
2. Detailed power consumption for any configuration can be estimated using ClockBuilder Pro when an evaluation board (EVB) is  
not available. All EVBs support detailed current measurements for any configuration.  
3. Differential outputs terminated into an ac-coupled 100 Ω load.  
4. LVCMOS outputs measured into a 5-inch 50 Ω PCB trace with 5 pF load. The LVCMOS outputs were set to  
OUTx_CMOS_DRV=3, which is the strongest driver setting. Refer to the Si5380 Reference Manual for more details on register  
settings.  
5. VDDO0 supplies power to both OUT0 and OUT0A buffers. Similarly, VDDO9 supplies power to both OUT9 and OUT9A buffers.  
LVCMOS Output Test Configuration  
Differential Output Test Configuration  
Trace length 5  
inches  
IDDO  
0.1 uF  
0.1 uF  
56 Ω  
0.1 uF  
56 Ω  
499 Ω  
4.7 pF  
50  
IDDO  
50 Ω Scope Input  
50 Ω Scope Input  
50  
50  
OUT  
100  
OUT  
OUTb  
OUTb  
50  
499 Ω  
4.7 pF  
0.1 uF  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 23  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Table 5.3. Input Clock Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Standard Input Buffer with Differential or Single-Ended/LVCMOS—AC-coupled (IN0, IN1, IN2, IN3/FB_IN)  
Input Frequency Range  
Voltage Swing1  
fIN_DIFF  
fIN_SE  
Differential  
11.52  
11.52  
737.28  
245.76  
MHz  
MHz  
All Single-ended Signals  
(including LVCMOS)  
Differential AC-coupled  
FIN < 245.76 MHz  
VIN  
100  
225  
1800  
1800  
mVpp_se  
mVpp_se  
Differential AC-coupled  
245.76 MHz < FIN  
737.28 MHz  
<
Single-Ended AC-coupled  
FIN < 245.76 MHz  
100  
400  
3600  
mVpp_se  
V/µs  
Slew Rate 2, 3  
Duty Cycle  
SR  
DC  
CIN  
RIN  
40  
0.3  
16  
60  
%
pF  
kΩ  
Capacitance  
Input Resistance  
Pulsed CMOS Input Buffer—DC-coupled (IN0, IN1, IN2, IN3/FB_IN) 4  
Input Frequency  
fIN_PULSED_CM  
11.52  
245.76  
MHz  
OS  
Input Voltage Thresholds4  
VIL  
VIH  
SR  
–0.2  
0.8  
0.4  
V
V
Slew Rate 2, 3  
400  
V/µs  
Duty Cycle  
DC  
PW  
RIN  
Clock Input  
Pulse Input  
40  
1.6  
8
60  
%
ns  
kΩ  
Minimum Pulse Width  
Input Resistance  
REFCLK (applied to XA/XB)  
REFCLK Frequency 5  
fIN_REF  
Frequency required for op-  
timum performance  
54  
MHz  
Total Frequency Tolerance 6  
Input Voltage Swing  
fRANGE  
VIN_SE  
VIN_DIFF  
SR  
–100  
365  
365  
400  
+100  
2000  
2500  
ppm  
mVpp_se  
mVpp_diff  
V/µs  
Slew Rate 2 , 3  
Imposed for best phase  
noise performance  
Input Duty Cycle  
DC  
40  
60  
%
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 24  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Notes:  
1. Voltage swing is specified as single-ended mVpp.  
OUTx  
Vcm  
Vpp_se  
Vpp_se  
Vpp_diff = 2*Vpp_se  
Vcm  
OUTxb  
2. Imposed for phase noise performance.  
3. Rise and fall times can be estimated using the following simplified equation: tr/tf80-20 = ((0.8 – 0.2) * VIN_Vpp_se) / SR.  
4. Pulsed CMOS mode is intended primarily for single-end LVCMOS input clocks < 1 MHz, which must be dc-coupled, having a duty  
cycle significantly less than 50%. A common application example is a low frequency video frame sync pulse. Since the input  
thresholds (VIL, VIH) of the input buffer are non-standard (0.40 and 0.80 V, respectively), refer to the input attenuator circuit for  
dc-coupled Pulsed LVCMOS in the in the Si5380 Reference Manual . Otherwise, for standard LVCMOS input clocks, use the  
"AC-coupled Single-Ended" mode as shown in Figure 3.14 Supported Output Terminations on page 16.  
5. The REFCLK frequency for the Si5380 is fixed at 54 MHz. Contact Silicon Labs technical support for more information.  
6. Includes initial tolerance, drift after reflow, change over temperature (–40 °C to +85 °C), VDD variation, load pulling, and aging.  
Table 5.4. Serial and Control Input Pin Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5380 Serial and Control Input Pins (I2C_SEL, IN_SEL[1:0], RSTb, OEb, SYNCb, PDNb, A1/SDO, SDA/SDIO, SCLK, A0/CSb)  
Input Voltage Thresholds  
VIL  
VIH  
0.3xVDDIO  
1
V
V
0.7 x  
VDDIO  
1
Input Capacitance  
Input Resistance  
Minimum Pulse Width  
Note:  
CIN  
IL  
2
pF  
kΩ  
ns  
20  
PW  
RSTb, SYNCb, PDNb  
100  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Si5380 Reference Manual for more details  
on the register settings.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 25  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Table 5.5. Differential Clock Output Specifications  
Parameter  
Output Frequency  
Symbol  
fOUT  
Test Condition  
Min  
0.480  
48  
Typ  
Max  
1474.56  
52  
Unit  
MHz  
%
Duty Cycle  
DC  
f ≤ 400 MHz  
f > 400 MHz  
45  
55  
%
Output-Output Skew  
TSK  
Outputs at 737.28 MHz  
connected to the same  
"N-divider"  
65  
ps  
Outputs at 737.28 MHz  
connected to different "N-di-  
viders"  
90  
ps  
OUT-OUTb Skew  
TSK_OUT  
Measured from the positive  
to negative output pins  
0
50  
ps  
Output Voltage Amplitude 1  
VOUT  
VDDO  
=
LVDS  
350  
430  
510  
mVpp_se  
3.3 V or  
2.5 V or  
1.8 V  
VDDO = 3.3 V  
or 2.5 V  
LVPECL  
640  
750  
900  
Common Mode Voltage1  
VCM  
VDDO  
=
LVDS  
1.10  
1.90  
1.2  
2.0  
1.3  
2.1  
V
LVPECL  
3.3 V  
VDDO  
=
LVPECL  
LVDS  
1.1  
0.8  
1.2  
1.3  
1.00  
150  
2.5 V  
VDDO  
=
sub-LVDS  
0.9  
1.8 V  
Rise and Fall Times (20% to  
80%)  
tR/tF  
100  
ps  
Differential Output Impedance  
Power Supply Noise Rejection 2  
ZO  
100  
–101  
–96  
–99  
–97  
–72  
Ω
PSRR  
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
dBc  
dBc  
dBc  
dBc  
dB  
Output-Output Crosstalk3  
XTALK  
Measured spur from adja-  
cent output  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 26  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Notes:  
1. Output amplitude and common mode voltage are programmable through register settings and can be stored in NVM. Each output  
driver can be programmed independently. The maximum LVDS single-ended amplitude can be up to 110 mV higher than the TIA/  
EIA-644 maximum. Refer to the Si5380 Reference Manual for recommended output register settings. Not all combinations of volt-  
age amplitude and common mode voltages settings are possible.  
2. Measured for 153.6 MHz carrier frequency. 100 mVpp of sinewave noise added to VDDO when programmed at 3.3 V.  
3. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor at 156.25  
MHz. These output frequencies are generated using non-production engineering modes only for test. Refer to application note,  
"AN862: Optimizing Si534x Jitter Performance in Next Generation Internet Infrastructure Systems", for guidance on crosstalk opti-  
mization. Note that all active outputs must be terminated when measuring crosstalk  
Table 5.6. LVCMOS Clock Output Specifications  
Parameter  
Output Frequency  
Duty Cycle  
Symbol  
Test Condition  
Min  
Typ  
Max  
245.76  
52  
Unit  
MHz  
%
0.480  
DC  
fOUT < 100 MHz  
100 MHz < fOUT < 245.76 MHz  
Outputs at 153.6 MHz  
48  
45  
55  
Output-to-Output Skew  
TSK  
30  
140  
ps  
V
VDDO = 3.3 V  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –10 mA  
V
DDO x 0.85  
IOH = –12 mA  
IOH = –17 mA  
VDDO = 2.5 V  
VDDO x 0.85  
Output Voltage High 1, 2, 3  
VOH  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –6 mA  
IOH = –8 mA  
IOH = –11 mA  
V
V
VDDO = 1.8 V  
VDDO x 0.85  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –4 mA  
IOH = –5 mA  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 27  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VDDO = 3.3 V  
OUTx_CMOS_DRV=1  
IOL = 10 mA  
IOL = 12 mA  
IOL = 17 mA  
VDDO x 0.15  
V
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
VDDO = 2.5 V  
Output Voltage Low 1, 2, 3  
VOL  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 6 mA  
IOL = 8 mA  
IOL = 11 mA  
VDDO x 0.15  
V
VDDO = 1.8 V  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 4 mA  
IOL = 5 mA  
VDDO x 0.15  
V
LVCMOS Rise and Fall  
Times 3  
tr/tf  
VDDO = 3.3 V  
400  
450  
550  
600  
600  
750  
ps  
ps  
ps  
VDDO = 2.5 V  
VDDO = 1.8 V  
(20% to 80%)  
Notes:  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer to the  
Si5380 Reference Manual for recommended output register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the DC test configuration  
3. A 5 pF capacitive load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3.  
AC Output Test Configuration  
DC Test Configuration  
Trace length 5 inches  
0.1 uF  
499 Ω  
4.7 pF  
IDDO  
50  
50  
IOL/IOH  
50 Ω Scope Input  
50 Ω Scope Input  
OUT  
56 Ω  
0.1 uF  
Zs  
OUTb  
VOL/VOH  
499 Ω  
4.7 pF  
56 Ω  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 28  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Table 5.7. Output Serial and Status Pin Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5380 Output Serial and Status Pins (LOLb, INTRb, SDA/SDIO2, A1/SDO)  
Output Voltage 1, 2  
VOH  
IOH = –2 mA  
IOL = 2 mA  
VDDIO  
0.85  
x
V
V
VOL  
VDDIO  
0.15  
x
Notes:  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Si5380 Reference Manual for more details  
on the register settings.  
2. The VOH specification does not apply to the open-drain SDA/SDIO output when the serial interface is in I2C mode or is unused,  
with I2C_SEL pulled high internally. VOL remains valid in all cases.  
Table 5.8. Performance Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
PLL Bandwidth Programming  
Range 1  
fBW  
Bandwidth is register  
programmable  
0.1  
4000  
Hz  
Initial Start-Up Time  
tSTART  
Time from power-up to  
when the device gener-  
ates free-running clocks  
370  
280  
450  
300  
ms  
ms  
PLL Lock Time2  
tACQ  
Fastlock enabled  
FIN = 19.2 MHz  
POR to Serial Interface Ready 3  
Output Delay Adjustment  
tRDY  
tDELAY_int  
tRANGE  
JPK  
68  
8.6  
15  
ms  
ps  
fVCO = 14.7456 GHz  
±128 / fVCO  
ns  
Jitter Peaking  
Measured with a frequen-  
cy plan running a 24.576  
MHz input, 24.576 MHz  
output, and a Loop Band-  
width of 4 Hz  
0.1  
dB  
Jitter Tolerance  
JTOL  
Compliant with G.8262  
Options 1 and 2 Carrier  
Frequency = 2.103125  
GHz; Jitter Modulation  
Frequency = 10 Hz  
3180  
UI pk-pk  
Maximum Phase Transient Dur-  
ing a Hitless Switch  
tSWITCH  
Only valid for a single au-  
tomatic switch between  
two input clocks at same  
frequency  
2.0  
1.3  
20  
ns  
ns  
Only valid for a single  
manual switch between  
two input clocks at same  
frequency  
Pull-in Range  
ωP  
–20  
ppm  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 29  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
tIODELAY  
tZDELAY  
JGEN  
Test Condition  
Note 5  
Min  
Typ  
Max  
1.8  
Unit  
ns  
Input-to-Output Delay Variation  
Note 6  
110  
65  
ps  
RMS Phase Jitter 4  
12 kHz to 20 MHz  
80  
fs rms  
(measured @ 983.04  
MHz)  
Phase Noise Performance 4  
PN  
10Hz  
100 Hz  
–72  
–98  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
(122.88 MHz Carrier  
Frequency)  
1 kHz  
–126  
–140  
–148  
–154  
–165  
–103  
–95  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
Spur Performance 4 (122.88  
MHz Carrier Frequency)  
SPUR  
Up to 1 MHz offset  
From 1 MHz to 30 MHz  
offset  
dBc  
Notes:  
1. Actual loop bandwidth might be lower; refer to ClockBuilder Pro for actual value on your frequency plan.  
2. Lock Time can vary significantly depending on several parameters, such as bandwidths, LOL thresholds, etc. For this case, lock  
time was measured with nominal and fastlock bandwidths both set to 100 Hz, LOL set/clear thresholds of 3/0.3 ppm respectively,  
using IN0 as clock reference by removing the reference and enabling it again, then measuring the delta time between the first  
rising edge of the clock reference and the LOL indicator de-assertion.  
3. Measured as time from valid VDD/VDDA rails (both >90% of settled voltage) to when the serial interface is ready to respond to  
commands.  
4. Jitter generation test conditions: fIN = 30.72 MHz, 3.3V LVPECL, DSPLL LBW = 100 Hz. Jitter integrated from 12 kHz to 20 MHz  
offset. Does not include jitter from PLL input reference.  
5. Measured between a common 2 MHz input and 2 MHz output with different N-dividers on the same unit and a loop bandwidth of  
4 kHz. These output frequencies are generated using non-production engineering modes only for test.  
6. Delay between reference and feedback input both clocks at 10 MHz and same slew rate. Ref clock rise time must be <200 ps.  
These output frequencies are generated using non-production engineering modes only for test.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 30  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Table 5.9. I2C Timing Specifications (SCL, SDA)  
Parameter  
Symbol  
Test Condition  
Standard Mode  
100 kbps  
Fast Mode  
400 kbps  
Min  
Unit  
Min  
Max  
100  
35  
Max  
400  
35  
SCL Clock Frequency  
SMBus Timeout  
fSCL  
kHz  
ms  
When Timeout is Ena-  
bled  
25  
25  
Hold Time (Repeated)  
START Condition  
tHD:STA  
4.0  
0.6  
µs  
Low Period of the SCL Clock  
tLOW  
tHIGH  
4.7  
4.0  
1.3  
0.6  
µs  
µs  
HIGH Period of the SCL  
Clock  
Set-up Time for a Repeated  
START Condition  
tSU:STA  
4.7  
0.6  
µs  
Data Hold Time  
tHD:DAT  
tSU:DAT  
tr  
100  
250  
100  
100  
20  
ns  
ns  
ns  
Data Set-up Time  
Rise Time of Both SDA and  
SCL Signals  
1000  
300  
Fall Time of Both SDA and  
SCL Signals  
tf  
300  
300  
ns  
µs  
µs  
Set-up Time for STOP Con-  
dition  
tSU:STO  
4.0  
4.7  
0.6  
1.3  
Bus Free Time between a  
tBUF  
STOP and START Condition  
Data Valid Time  
tVD:DAT  
tVD:ACK  
3.45  
3.45  
0.9  
0.9  
µs  
µs  
Data Valid Acknowledge  
Time  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 31  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Figure 5.1. I2C Serial Prot Timing Standard and Fast Modes  
Table 5.10. SPI Timing Specifications (4-Wire)  
Parameter  
Symbol  
fSPI  
Min  
40  
50  
5
Typ  
Max  
20  
60  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
SCLK Period  
TDC  
TC  
ns  
Delay Time, SCLK Fall to SDO Active  
Delay Time, SCLK Fall to SDO  
Delay Time, CSb Rise to SDO Tri-State  
Setup Time, CSb to SCLK  
TD1  
18  
15  
15  
ns  
TD2  
ns  
TD3  
ns  
TSU1  
TH1  
TSU2  
TH2  
ns  
Hold Time, SCLK Fall to CSb  
5
ns  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
5
ns  
5
ns  
Delay Time Between Chip Selects (CSb)  
TCS  
2
Tc  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 32  
Si5380 Rev D Data Sheet  
Electrical Specifications  
TSU1  
TD1  
TC  
SCLK  
CSb  
TH1  
TSU2  
TH2  
TCS  
SDI  
TD2  
TD3  
SDO  
Figure 5.2. 4-Wire SPI Serial Interface Timing  
Table 5.11. SPI Timing Specifications (3-Wire)  
Parameter  
Symbol  
fSPI  
Min  
40  
50  
5
Typ  
Max  
20  
60  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
SCLK Period  
TDC  
TC  
ns  
Delay Time, SCLK Fall to SDIO Turn-on  
Delay Time, SCLK Fall to SDIO Next-bit  
Delay Time, CSb Rise to SDIO Tri-State  
Setup Time, CSb to SCLK  
TD1  
20  
15  
15  
ns  
TD2  
ns  
TD3  
ns  
TSU1  
TH1  
TSU2  
TH2  
ns  
Hold Time, SCLK Fall to CSb  
5
ns  
Setup Time, SDI to SCLK Rise  
5
ns  
Hold Time, SDI to SCLK Rise  
5
ns  
Delay Time Between Chip Selects (CSb)  
TCS  
2
Tc  
TSU1  
TC  
SCLK  
TH1  
TD1  
TD2  
CSb  
TSU2  
TH2  
TCS  
SDIO  
TD3  
Figure 5.3. 3-Wire SPI Serial Interface Timing  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 33  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Table 5.12. Crystal Specifications  
Parameter  
Crystal Frequency 1  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
fXTAL  
–100  
54  
MHz  
Total Frequency Tolerance 2  
Load Capacitance  
fRANGE  
CL  
rESR  
CO  
8
+100  
ppm  
pF  
Equivalent Series Resistance  
Shunt Capacitance  
Refer to the Family Reference Manual to determine ESR and shunt capacitance.  
Crystal Drive Level  
dL  
The crystal resonator  
must be able to tolerate  
350 µW of drive level  
350  
µW  
Notes:  
1. See the Si5380 Reference Manual for a list of qualified 54 MHz crystals. The Si5380 is designed to work with crystals that meet  
these specifications.  
2. Includes initial tolerance, drift after reflow, change over temperature (–40 °C to +85 °C), VDD variation, load pulling, and aging.  
Table 5.13. Thermal Characteristics 1  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Si5380–64QFN  
Thermal Resistance  
Junction to Ambient  
ƟJA  
Still Air  
22  
°C/W  
Air Flow 1 m/s  
Air Flow 2 m/s  
19.4  
18.3  
9.5  
Thermal Resistance  
Junction to Case  
Thermal Resistance  
Junction to Board  
Thermal Resistance  
Junction to Board  
Thermal Resistance  
Junction to Top Center  
Note:  
ƟJC  
ƟJB  
ΨJB  
ΨJT  
9.4  
9.3  
0.2  
1. Based on PCB Dimension: 3x4.5”, PCB Thickness: 1.6 mm, PCB Land/Via: 36, Number of Cu Layers: 4.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 34  
Si5380 Rev D Data Sheet  
Electrical Specifications  
Table 5.14. Absolute Maximum Ratings 1, 2, 3, 4  
Parameter  
DC Supply Voltage  
Symbol  
VDD  
Test Condition  
Value  
Unit  
V
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–0.85 to 3.8  
–0.5 to 3.8  
VDDA  
VDDO  
V
V
5
Input Voltage Range  
VI1  
IN0-IN3/FB_IN  
IN_SEL[1:0],  
V
VI2  
RSTb, PDNb,OEb, SYNCb,  
I2C_SEL, SCLK,  
A0/CSb, A1/SDO,  
SDA/SDIO  
VI3  
LU  
XA/XB  
–0.5 to 2.7  
V
Latch-up Tolerance  
JESD78 Compliant  
ESD Tolerance  
HBM  
TSTG  
TJCT  
TPEAK  
100 pF, 1.5 kΩ  
2.0  
–55 to 150  
125  
kV  
°C  
°C  
°C  
Storage Temperature Range  
Max Junction Temperature in Operation  
Soldering Temperature (Pb-free profile) 4  
260  
Soldering Temperature Time at TPEAK (Pb-  
free profile) 4  
TP  
20 to 40  
sec  
Notes:  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect device reliability.  
2. 64-QFN is RoHS-6 compliant.  
3. For MSL rating and additional packaging information, go to http://www.silabs.com/support/quality/pages/RoHSInformation.aspx.  
4. The device is compliant with JEDEC J-STD-020.  
5. The minimum voltage at these pins can be as low as -1.0 V when an AC input signal is applied. See Table 5.3 Input Clock Speci-  
fications on page 24 spec for Single-ended AC-coupled fIN < 245.76 MHz.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 35  
Si5380 Rev D Data Sheet  
Typical Application Diagrams  
6. Typical Application Diagrams  
IEEE  
1588  
GPS  
N
N
Rx  
ADC  
ADC  
LNA  
0
90  
CPRI  
Stratum 3/  
3E DPLL  
ASIC  
ASIC  
Tx  
PA  
N
N
DAC  
DAC  
0
90  
OCXO  
RF  
Synth  
Recovered Clock  
30.72MHz x N  
Base Band Unit  
LTE  
Sampling  
Clocks  
RF  
Synth  
Remote Radio  
Head  
Figure 6.1. LTE Base Station Remote Radio Head  
IEEE  
1588  
JESD  
204B  
GPS  
Rx  
A/D  
LNA  
0
90  
JESD  
204B  
A/D  
CPRI  
Stratum 3/  
3E DPLL  
Tx  
ASIC  
JESD  
204B  
ASIC  
PA  
D/A  
0
90  
JESD  
204B  
OCXO  
D/A  
RF  
Synth  
Base Band Unit  
RF  
Synth  
DCLK  
SYSREF  
DCLK  
SYSREF  
DCLK  
SYSREF  
Remote Radio  
Head  
Recovered Clock  
30.72MHz x N  
Figure 6.2. LTE Base Station Using JESD204B Data Converters  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 36  
Si5380 Rev D Data Sheet  
Detailed Block Diagram  
7. Detailed Block Diagram  
54MHz  
XTAL  
Si5380  
XA  
XB  
IN_SEL  
OSC  
÷R0A  
OUT0A  
÷P0  
÷P1  
÷P2  
IN0  
IN1  
IN2  
÷R0  
÷R1  
÷R2  
÷R3  
÷R4  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
DSPLL  
IN3/  
FB_IN  
÷P3  
t0  
÷N0  
I2C_SEL  
SDA/SDI  
A1/SDO  
SCLK  
t1  
÷N1  
I2C/  
SPI  
÷R5  
÷R6  
÷R7  
÷N2  
÷N3  
t2  
A0/CSb  
NVM  
t3  
t4  
÷N4  
÷R8  
÷R9  
OUT8  
OUT9  
INTRb  
LOLb  
Status Monitor  
÷R9A  
OUT9A  
SYNCb  
OEb  
PDNb  
RSTb  
Figure 7.1. Si5380 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 37  
Si5380 Rev D Data Sheet  
Typical Operating Characteristics (Phase Noise & Jitter)  
8. Typical Operating Characteristics (Phase Noise & Jitter)  
Figure 8.1. Input = 61.44 MHz; Output = 983.04 MHz, 3.3 V LVPECL  
Figure 8.2. Input = 61.44 MHz; Output = 1,474.56 MHz, 3.3 V LVPECL  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 38  
Si5380 Rev D Data Sheet  
Typical Operating Characteristics (Phase Noise & Jitter)  
Figure 8.3. Input = 61.44 MHz; Output = 245.76 MHz, 3.3 V LVPECL  
Figure 8.4. Input = 61.44 MHz; Output = 122.88 MHz, 3.3 V LVPECL  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 39  
Si5380 Rev D Data Sheet  
Pin Description  
9. Pin Description  
48 SYNCb  
1
2
IN1  
IN1b  
47  
LOLb  
46  
3
VDD  
IN_SEL0  
IN_SEL1  
PDNb  
RSTb  
X1  
45  
4
OUT6  
44  
5
OUT6b  
43  
6
VDDO6  
42  
7
OUT5  
41  
40  
39  
38  
37  
36  
35  
34  
33  
8
OUT5b  
VDDO5  
I2C_SEL  
OUT4  
XA  
GND  
Pad  
9
XB  
10  
11  
12  
13  
14  
15  
16  
X2  
OEb  
OUT4b  
VDDO4  
OUT3  
INTRb  
VDDA  
IN2  
OUT3b  
VDDO3  
IN2b  
SCLK  
Figure 9.1. Si5380 64-QFN Top View  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 40  
Si5380 Rev D Data Sheet  
Pin Description  
Table 9.1. Pin Descriptions  
Pin Type1  
Pin Name  
Pin Number  
Function  
XA  
XB  
8
9
I
I
Crystal Input. Input pin for external crystal (XTAL). Alterna-  
tively these pins can be driven with an external reference  
clock (REFCLK). An internal register bit selects XTAL or  
REFCLK mode. Default is XTAL mode. Single-ended inputs  
must be connected to the XA pin, with the XB pin appropri-  
ately terminated.  
X1  
X2  
7
I
I
XTAL Shield. Connect these pins directly to the crystal  
ground pins. Both the X1/X2 pins and Crystal ground pins  
should be separated from the PCB ground plane. Refer to  
the Reference Manual for layout guidelines.  
10  
IN0  
IN0b  
63  
64  
1
I
I
I
I
I
I
I
I
Clock Inputs. These pins accept an input clock for syn-  
chronizing the device. They support both differential and  
single-ended clock signals. Refer to 3.3.1 Input Configura-  
tion and Terminations for input termination options. These  
pins are high-impedance and must be terminated externally,  
when being used. The negative side of the differential input  
must be ac-grounded when accepting a single-ended clock.  
Unused inputs may be left unconnected.  
IN1  
IN1b  
2
IN2  
14  
15  
61  
62  
IN2b  
IN3/FB_IN  
IN3b/FB_INb  
Clock Input 3/External Feedback Input.  
By default, these pins are used as the 4th clock input (IN3/  
IN3b). They can also be used as the external feedback in-  
put (FB_IN/FB_INb) for the optional zero delay mode. See  
section 5.3.6 for details on the optional zero delay mode.  
Outputs  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 41  
Si5380 Rev D Data Sheet  
Pin Description  
Pin Type1  
Pin Name  
Pin Number  
Function  
OUT0A  
OUT0Ab  
OUT0  
21  
20  
24  
23  
28  
27  
31  
30  
35  
34  
38  
37  
42  
41  
45  
44  
51  
50  
54  
53  
56  
55  
59  
58  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Output Clocks. These output clocks support programma-  
ble signal amplitude and common mode voltage. Desired  
output signal format is configurable using register control.  
Termination recommendations are provided in  
3.5.5 LVCMOS Output Terminations. Unused outputs  
should be left unconnected.  
OUT0b  
OUT1  
OUT1b  
OUT2  
OUT2b  
OUT3  
OUT3b  
OUT4  
OUT4b  
OUT5  
OUT5b  
OUT6  
OUT6b  
OUT7  
OUT7b  
OUT8  
OUT8b  
OUT9  
OUT9b  
OUT9A  
OUT9Ab  
Serial Interface  
I2C_SEL  
I2C Select. This pin selects the serial interface mode as I2C  
(I2C_SEL = 1) or SPI (I2C_SEL = 0). This pin is internally  
pulled high.  
39  
18  
I
SDA/SDIO  
I/O  
Serial Data Interface. This is the bidirectional data pin  
(SDA) for the I2C mode, the bidirectional data pin (SDIO) in  
the 3-wire SPI mode, or the input data pin (SDI) in 4-wire  
SPI mode. When in I2C mode or unused, this pin must be  
pulled-up using an external resistor of >= 1 kΩ. No pull-up  
resistor is needed when in SPI mode.  
Address Select 1/Serial Data Output. In I2C mode this pin  
functions as the A1 address input pin. In 4-wire SPI mode,  
this is the serial data output (SDO) pin. This pin should be  
externally pulled up or down when unused.  
A1/SDO  
SCLK  
17  
16  
I/O  
I
Serial Clock Input. This pin functions as the serial clock in-  
put for both I2C and SPI modes. When in I2C mode or un-  
used, this pin must be pulled-up using an external resistor  
of >= 1 kΩ. No pull-up resistor is needed when in SPI mode.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 42  
Si5380 Rev D Data Sheet  
Pin Description  
Pin Type1  
Pin Name  
Pin Number  
Function  
A0/CSb  
19  
I
Address Select 0/Chip Select. This pin functions as the  
hardware controlled address A0 in I2C mode. In SPI mode,  
this pin functions as the chip select input (active low). This  
pin is internally pulled-up.  
Control/Status  
Interrupt. 2 This pin is asserted low when a change in de-  
vice status has occurred. This pin must be pulled-up exter-  
nally using a resistor of >= 1 kΩ. It should be left unconnec-  
ted when not in use.  
INTRb  
12  
O
Power Down. 2 The device enters into a low power mode  
when this pin is pulled low. This pin is internally pulled-up. It  
can be left unconnected when not in use.  
PDNb  
RSTb  
5
6
I
I
Device Reset. 2 Active low input that performs power-on re-  
set (POR) of the device. Resets all internal logic to a known  
state and forces the device registers to their default values.  
Clock outputs are disabled during reset. This pin is internal-  
ly pulled-up.  
Output Enable. 2 This pin disables all outputs when held  
high. This pin is internally pulled low and can be left uncon-  
nected when not in use.  
OEb  
11  
47  
I
Loss Of Lock. 2 This output pin indicates when the DSPLL  
is locked (high) or out-of-lock (low). When in use, this pin  
must be pulled-up using an external resistor of >= 1 kΩ. It  
can be left unconnected when not in use.  
LOLb  
O
Output Clock Synchronization. 2 An active low signal on  
this pin resets the output dividers for the purpose of re-  
aligning the output clocks. This pin is internally pulled-up  
and can be left unconnected when not in use.  
SYNCb  
48  
I
Input Reference Select. 2 The IN_SEL[1:0] pins are used  
in manual pin controlled mode to select the active clock in-  
put as shown in Table 3.2 Table 6.2 on page 10. These pins  
are internally pulled-down and may be left unconnected  
when unused.  
IN_SEL0  
IN_SEL1  
3
4
I
I
RSVD  
Power  
VDD  
25  
Reserved. Leave disconnected.  
32  
46  
60  
13  
P
P
P
P
Core Supply Voltage. The device operates from a 1.8 V  
supply. A 1 µF bypass capacitor should be placed very  
close to each pin.  
VDD  
VDD  
VDDA  
Core Supply Voltage 3.3 V. This core supply pin requires a  
3.3 V power source. A 1 µF bypass capacitor should be  
placed very close to this pin.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 43  
Si5380 Rev D Data Sheet  
Pin Description  
Pin Type1  
Pin Name  
Pin Number  
Function  
VDDO0  
VDDO1  
VDDO2  
VDDO3  
VDDO4  
VDDO5  
VDDO6  
VDDO7  
VDDO8  
VDDO9  
GND PAD  
22  
26  
29  
33  
36  
40  
43  
49  
52  
57  
P
P
P
P
P
P
P
P
P
P
P
Output Clock Supply Voltage. Supply voltage (3.3 V, 2.5  
V, 1.8 V) for OUTx, OUTxb Outputs. Note that VDDO0  
supplies power to OUT0 and OUT0A; VDDO9 supplies  
power to OUT9 and OUT9A. Leave VDDO pins of unused  
output drivers unconnected. An alternative option is to con-  
nect the VDDO pin to a power supply and disable the output  
driver to minimize current consumption. A 1 µF bypass ca-  
pacitor should be placed very close to each connected  
VDDO pin.  
Ground Pad. This pad provides connection to ground and  
must be connected for proper operation.  
Note:  
1. I = Input, O = Output, P = Power  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
3. All status pins except I2C and SPI are push-pull.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 44  
Si5380 Rev D Data Sheet  
Package Outline  
10. Package Outline  
Figure 10.1. Si5380 9x9 mm 64-QFN Package Diagram  
Table 10.1. Package Diagram Dimensions  
Dimension  
MIN  
0.80  
0.00  
0.18  
NOM  
0.85  
MAX  
0.90  
0.05  
0.30  
A
A1  
0.02  
b
0.25  
D
9.00 BSC  
5.20  
D2  
5.10  
5.30  
e
0.50 BSC  
9.00 BSC  
5.20  
E
E2  
5.10  
0.30  
5.30  
0.50  
0.15  
0.10  
0.08  
0.10  
L
0.40  
aaa  
bbb  
ccc  
ddd  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 45  
Si5380 Rev D Data Sheet  
PCB Land Pattern  
11. PCB Land Pattern  
Figure 11.1. 9x9 mm 64-QFN Land Pattern  
Table 11.1. PCB Land Pattern Dimensions  
Dimension  
Max  
8.90  
8.90  
0.50  
0.30  
0.85  
5.30  
5.30  
C1  
C2  
E
X1  
Y1  
X2  
Y2  
Notes:  
General  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition is calculated based on a fabrication  
Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 3x3 array of 1.25 mm square openings on 1.80 mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 46  
Si5380 Rev D Data Sheet  
Top Marking  
12. Top Marking  
Si5380A-  
Rxxxxx-GM  
YYWWTTTTTT  
e4  
TW  
64-QFN  
Figure 12.1. Si5380 Top Marking  
Table 12.1. Top Marking Explanation  
Line  
Characters  
Description  
1
Si5380A-  
Base part number for Ultra Low Phase Noise, 12-output JESD204B Clock Generator:  
Si5380A: 12-output clock generator; 64-QFN  
– = Dash character.  
2
Rxxxxx-GM  
R = Product revision. (See Ordering Guide for current ordering revision).  
xxxxx = Customer specific NVM sequence number. Optional NVM code assigned for  
custom, factory pre-programmed devices.  
Characters are not included for standard, factory default configured devices. See Or-  
dering Guide for more information.  
-GM = Package (QFN) type and temperature range (–40 to +85 °C).  
3
YYWWTTTTTT  
YYWW = Characters correspond to the year (YY) and work week (WW) of package  
assembly.  
TTTTTT = Manufacturing trace code.  
Pin 1 indicator; left-justified  
4
Circle w/ 1.6 mm diameter  
e4  
Pb-free symbol; Center-Justified  
TW  
TW = Taiwan; Country of Origin (ISO Abbreviation)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 47  
Si5380 Rev D Data Sheet  
Device Errata  
13. Device Errata  
Log in or register at www.silabs.com to access the device errata document.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 48  
Si5380 Rev D Data Sheet  
Document Change List  
14. Document Change List  
14.1 Revision 1.0  
July 19, 2016  
• Initial release.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 1.0 | 49  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3.1 Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3.1.1 Si5380 LTE Frequency Configuration . . . . . . . . . . . . . . . . . . . . . 3  
3.1.2 Si5380 Configuration for JESD204B Clock Generation . . . . . . . . . . . . . . . 4  
3.1.3 DSPLL Loop Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1.4 Fastlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1.5 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1.6 Initialization and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1.7 Freerun Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1.8 Lock Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1.9 Locked Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1.10 Holdover Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2 External Reference (XA/XB) . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.3 Inputs (IN0, IN1, IN2, IN3/FB_IN) . . . . . . . . . . . . . . . . . . . . . . . 8  
3.3.1 Input Configuration and Terminations . . . . . . . . . . . . . . . . . . . . . 9  
3.3.2 Manual Input Selection (IN0, IN1, IN2, IN3/FB_IN) . . . . . . . . . . . . . . . . . 9  
3.3.3 Automatic Input Switching (IN0, IN1, IN2, IN3/FB_IN) . . . . . . . . . . . . . . . .10  
3.3.4 Hitless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.3.5 Ramped Input Switching. . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.3.6 Glitchless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.3.7 Zero Delay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.4 Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.4.1 Input LOS Detection . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.4.2 XA/XB LOS Detection . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.4.3 OOF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.4.4 Precision OOF Monitor . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.4.5 Fast OOF Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.4.6 LOL Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.4.7 Interrupt Pin INTRb . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.5 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.5.1 Output Crosspoint . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.5.2 Output Signal Format. . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.5.3 Output Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.5.4 Programmable Common Mode Voltage For Differential Outputs . . . . . . . . . . . .16  
3.5.5 LVCMOS Output Terminations . . . . . . . . . . . . . . . . . . . . . . .16  
3.5.6 LVCMOS Output Impedance and Drive Strength Selection . . . . . . . . . . . . . .17  
3.5.7 LVCMOS Output Signal Swing . . . . . . . . . . . . . . . . . . . . . . .17  
3.5.8 LVCMOS Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.5.9 Output Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.5.10 Output Disable During LOL . . . . . . . . . . . . . . . . . . . . . . . .17  
3.5.11 Output Disable During XAXB_LOS. . . . . . . . . . . . . . . . . . . . . .17  
3.5.12 Output Driver State When Disabled . . . . . . . . . . . . . . . . . . . . .17  
Table of Contents 50  
3.5.13 Synchronous Enable/Disable Feature . . . . . . . . . . . . . . . . . . . . .17  
3.5.14 Output Skew Control (Δt - Δt ) . . . . . . . . . . . . . . . . . . . . . . .18  
0
4
3.5.15 Output Divider (R) Synchronization. . . . . . . . . . . . . . . . . . . . . .18  
3.6 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.6.1 Power Down Pin (PDNb) . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.7 In-Circuit Programming. . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.8 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.9 Custom Factory Preprogrammed Devices . . . . . . . . . . . . . . . . . . . .19  
3.10 Enabling Features and/or Configuration Settings Not Available in ClockBuilder Pro for Factory Pre-  
programmed Devices  
. . . . . . . . . . . . . . . . . . . . . . . . . . 1.9  
4. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6. Typical Application Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 36  
7. Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
8. Typical Operating Characteristics (Phase Noise & Jitter) . . . . . . . . . . . . . . 38  
9. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
10. Package Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
11. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
12. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
13. Device Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
14. Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
14.1 Revision 1.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49  
Table of Contents 51  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using  
or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and  
"Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to  
make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the  
included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses  
granted hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent  
of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Laboratories products are not designed or authorized for military applications. Silicon Laboratories products shall under no circumstances be used in  
weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®, EFM32®,  
EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®, Gecko®,  
ISOmodem®, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress® and others are trademarks or registered trademarks of Silicon Laborato-  
ries Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand  
names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

Si5380-D-EVB

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380-EVB

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380A-B-GM

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

Si5380A-D-GM

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380_16

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5381

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

SI5381A-D04991-GM

Processor Specific Clock Generator,
SILICON

Si5381A-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5381E-E-EVB

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5381E-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382A-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382E-E-EVB

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON