SI5380-EVB [SILICON]

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator;
SI5380-EVB
型号: SI5380-EVB
厂家: SILICON    SILICON
描述:

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator

文件: 总50页 (文件大小:1109K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra-Low Phase Noise, 12-output JESD204B  
Clock Generator  
Si5380 Data Sheet  
The Si5380 is a high performance, integer-based (M/N) clock generator for small cell ap-  
plications which demand the highest level of integration and phase noise performance.  
KEY FEATURES  
Based on Silicon Laboratories’ 4th generation DSPLL technology, the Si5380 combines  
• Digital frequency synthesis eliminates  
frequency synthesis and jitter attenuation in a highly integrated digital solution that elimi-  
external VCXO and analog loop filter  
nates the need for external VCXO and loop filter components. A low cost, fixed-frequen-  
components  
cy crystal provides frequency stability for free-run and holdover modes. This all-digital  
• Supports JESD204B clocking: DCLK and  
SYSREF  
solution provides superior performance that is highly immune to external board distur-  
bances such as power supply noise.  
• Input frequency range:  
Applications  
• Differential: 10 MHz – 750 MHz  
• LVCMOS: 10 MHz – 250 MHz  
• JESD204B clock generation  
• Output frequency range:  
• Differential: 480 kHz – 1.47456 GHz  
• Remote Radio Units (RRU), Remote Access Networks (RAN), picocells, small cells  
• Wireless base stations (3G, GSM, W-CDMA, 4G/LTE, LTE-A)  
• Remote Radio Head (RRH), wireless repeaters, wireless backhaul  
• Data conversion sampling clocks (ADC, DAC, DDC, DUC)  
• LVCMOS: 480 kHz – 250 MHz  
54MHz  
XTAL  
XA  
Si5380  
XB  
IN_SEL  
OSC  
÷R0A  
÷R0  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
OUT0A  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
IN0  
IN1  
IN2  
÷P0  
÷P1  
÷P2  
÷P3  
DSPLL  
IN3/  
FB_IN  
t0  
t1  
÷N0  
÷N1  
÷N2  
÷N3  
I2C_SEL  
SDA/SDI  
A1/SDO  
SCLK  
I2C/  
SPI  
t2  
t3  
t4  
A0/CSb  
NVM  
OUT7  
OUT8  
OUT9  
OUT9A  
÷N4  
÷R8  
÷R9  
INTRb  
LOLb  
Status  
Monitor  
÷R9A  
SYNCb  
OEb  
PDNb RSTb  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96  
Si5380 Data Sheet  
Feature List  
1. Feature List  
The Si5380 highlighted features are listed below.  
• Digital frequency synthesis eliminates external VCXO and an-  
alog loop filter components  
• Optional Zero Delay mode  
• Independent output supply pins: 3.3, 2.5, or 1.8 V  
• Core voltage:  
• Supports JESD204B clocking: DCLK and SYSREF  
• Input frequency range:  
• VDD = 1.8 V ±5%  
• Differential: 10 MHz – 750 MHz  
• LVCMOS: 10 MHz – 250 MHz  
• Output frequency range:  
• VDDA = 3.3 V ±5%  
• Automatic free-run, lock, and holdover modes  
• Digitally selectable loop bandwidth: 0.1 Hz to 4 kHz  
• Hitless input clock switching  
• Differential: up to 1.47456 GHz  
• LVCMOS: up to 250 MHz  
• Status monitoring (LOS, OOF, LOL)  
• Excellent jitter performance:  
• 70 fs typ (12 kHz – 20 MHz)  
• Phase noise floor: –159 dBc/Hz  
• Serial interface: I2C or SPI In-circuit programmable with non-  
volatile OTP memory  
ClockBuilderTM Pro software tool simplifies device configura-  
tion  
• Spur performance: –103 dBc max (relative to a 122.88 MHz  
carrier)  
• 4 input, 12 output, 64QFN  
• Configurable outputs:  
• Temperature range: –40 to +85 °C  
• Pb-free, RoHS-6 compliant  
• Signal swing: 200 to 3200 mVpp  
• Compatible with LVDS, LVPECL  
• LVCMOS 3.3, 2.5, or 1.8 V  
• Output-output skew: 20 ps (typical, same N-divider)  
• Adjustable output-output delay: 68 ps/step, ±128 steps  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 1  
Si5380 Data Sheet  
Ordering Guide  
2. Ordering Guide  
Table 2.1. Ordering Guide  
Ordering Part Number  
Number of  
Outputs  
Output Clock  
Frequency  
Range  
Package  
RoHS-6, Pb-Free  
Temperature  
Range  
Si5380A-B-GM  
12  
480 kHz—  
1.47456 GHz  
64-Lead 9x9 mm  
QFN  
Yes  
–40 to +85 °C  
Si5380-EVB  
Evaluation Board  
Note:  
1. Add an “R” at the end of the device to denote tape and reel options.  
2. Custom, factory pre-programmed devices are available. Ordering part numbers are assigned by ClockBuilder Pro. Part number  
format is: Si5380A-Bxxxxx-GM, where “xxxxx” is a unique numerical sequence representing the pre-programmed configuration.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 2  
Si5380 Data Sheet  
Functional Description  
3. Functional Description  
The Si5380 is a high performance clock generator that is capable of synthesizing up to 10 unique integer related frequencies at any of  
the device’s 12 outputs. The output clocks can be generated in free-run mode or synchronized to any one of the four external inputs.  
Clock generation is provided by Silicon Laboratories’ 4th generation DSPLL technology which combines frequency synthesis and jitter  
attenuation in a highly integrated digital solution that eliminates the need for external VCXO and loop filter components. The Si5380  
device is fully configurable using the I2C or SPI serial interface and has in-circuit programmable non-volatile memory.  
3.1 Frequency Configuration  
The DSPLL provides the synthesis for generating the output clock frequencies which are synchronous to the selected input clock fre-  
quency or free-running XTAL. It consists of a phase detector, a programmable digital loop filter, a high-performance ultra-low phase  
noise analog 15 GHz VCO, and a user configurable feedback divider. An internal oscillator (OSC) provides the DSPLL with a stable  
low-noise clock source for frequency synthesis and for maintaining frequency accuracy in the free-run or holdover modes. The oscillator  
simply requires an external, low cost 54 MHz fundamental mode crystal to operate. No other external components are required for fre-  
quency generation. A key feature of this DSPLL is that it provides immunity to external noise coupling from power supplies and other  
uncontrolled noise sources that normally exist on printed circuit boards.  
3.1.1 Si5380 LTE Frequency Configuration  
The device’s frequency configuration is fully programmable through the serial interface and can also be stored in non-volatile memory.  
The combination of flexible integer dividers and a high frequency VCO allows the device to generate multiple output clock frequencies  
for applications that require ultra-low phase noise and spurious performance. At the core of the device are the N dividers which deter-  
mine the number of unique frequencies that can be generated from the device. The table below shows a list of possible output frequen-  
cies for LTE applications. The Si5380’s DSPLL core can generate up to five unique frequencies. These frequencies are distributed to  
the output dividers using a configurable crosspoint mux. The R dividers allow further division for up to 10 unique integer-ratio related  
frequencies on the Si5380. The ClockBuilder Pro software utility provides a simple means of automatically calculating the optimum di-  
vider values (P, M, N and R) for the frequencies listed in the table below.  
Table 3.1. Example of Possible LTE Clock Frequencies  
Fin (MHz)1  
15.36  
19.20  
30.72  
38.40  
61.44  
76.80  
122.88  
153.60  
184.32  
245.76  
307.20  
368.64  
491.52  
614.40  
737.28  
LTE Device Clock Frequencies Fout (MHz)2  
15.36  
19.20  
30.72  
38.40  
61.44  
76.80  
122.88  
153.60  
184.32  
245.76  
307.20  
368.64  
491.52  
614.40  
737.28  
983.04  
1228.80  
1474.56  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 3  
Si5380 Data Sheet  
Functional Description  
Fin (MHz)1  
LTE Device Clock Frequencies Fout (MHz)2  
Note:  
1. The Si5380 locks to any one of the frequencies listed in the Fin column and generates LTE device clock frequencies.  
2. R output dividers allow other frequencies to be generated. These are useful for applications like JESD204B SYSREF clocks.  
3.1.2 Si5380 Configuration for JESD204B Clock Generation  
The Si5380 can be used as a high performance, fully integrated JEDEC JESD204B jitter cleaner while eliminating the need for discrete  
VCXO and loop filter components. The Si5380 supports JESD204B subclass 0 and subclass 1 clocking by providing both device clocks  
(DCLK) and system reference clocks (SYSREF). The 12 clock outputs can be independently configured as device clocks or SYSREF  
clocks to drive JESD204B converters, FPGAs, or other logic devices. The Si5380 will clock up to four JESD204B targets using four or  
more DCLKs and four SYSREF clocks with adjustable delay.Each DCLK is grouped with a SYSREF clock in this configuration.If SYS-  
REF clocking is implemented in external logic, then the Si5380 will clock up to 12 JESD204B targets.Not limited to JESD204B applica-  
tions, each of the 12 outputs is individually configurable as a high performance output for traditional clocking applications. An example  
of a JESD204B frequency configuration is shown in the figure below. In this case, the N dividers determine the device clock frequency  
and the R dividers provide the divided SYSREF clock which is used as the lower frequency frame clock. The N divider path also in-  
cludes a configurable delay path (∆t) for controlling deterministic latency. The example shows a configuration where all the device  
clocks are controlled by a single delay path (∆t0) while the SYSREF clocks each have their own independent delay paths (∆t1 – ∆t4),  
though other combinations are also possible. Delay is programmable in steps of 68 ps in the range of ±128 steps (±8.6 ns). See the  
3.5.15 Output Skew Control (Δt0 - Δt4) section for details on skew control. The SYSREF clock is always periodic and can be controlled  
(on/off) without glitches by enabling or disabling its output through register writes.  
IN_SEL[1:0]  
Si5380  
IN0  
÷P0  
IN0b  
IN1  
DSPLL  
÷P1  
IN1b  
PD LPF  
IN2  
÷P2  
IN2b  
IN3/FB_IN  
÷M  
÷5  
÷P3  
IN3b/FB_INb  
VDDO0  
OUT0A  
OUT0Ab  
÷R0A  
÷R0  
OUT0  
OUT0b  
VDDO5  
OUT5  
OUT5b  
÷R5  
÷R6  
÷R7  
÷R8  
VDDO6  
OUT6  
OUT6b  
Device  
Clocks  
t0  
÷N0  
VDDO7  
OUT7  
OUT7b  
VDDO8  
OUT8  
OUT8b  
OUT9  
OUT9b  
÷R9  
OUT9A  
OUT9Ab  
÷R9A  
VDDO9  
VDDO1  
OUT1  
OUT1b  
t1  
÷N1  
÷N2  
÷N3  
÷N4  
÷R1  
÷R2  
÷R3  
÷R4  
VDDO2  
OUT2  
OUT2b  
SYSREF  
Clocks  
t2  
t3  
t4  
VDDO3  
OUT3  
OUT3b  
VDDO4  
OUT4  
OUT4b  
Figure 3.1. Example Divider Configuration for Generating JESD204B Subclass 1 Clocks  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 4  
Si5380 Data Sheet  
Functional Description  
3.1.3 DSPLL Loop Bandwidth  
The DSPLL loop bandwidth determines the amount of input clock jitter attenuation. Register configurable DSPLL loop bandwidth set-  
tings in the range of 0.1 Hz to 100 Hz are available for selection. The DSPLL will always remain stable with less than 0.1 dB of peaking  
regardless of the DSPLL loop bandwidth selection.  
3.1.4 Fastlock Feature  
Selecting a low DSPLL loop bandwidth (e.g., 1 Hz) will generally lengthen the lock acquisition time. The fastlock feature allows setting a  
temporary fastlock loop bandwidth that is used during the lock acquisition process. Higher fastlock loop bandwidth settings will enable  
the DSPLL to lock faster. Once lock acquisition has completed, the DSPLL’s loop bandwidth will automatically revert to the DSPLL  
Loop Bandwidth setting. Fastlock loop bandwidth settings in the range of 100 Hz to 4 kHz are available for selection. The fastlock fea-  
ture can be enabled or disabled by register configuration.  
3.1.5 Modes of Operation  
Once initialization is complete, the Si5380 operates in one of four modes: Free-run Mode, Lock Acquisition Mode, Locked Mode, or  
Holdover Mode. A state diagram showing the modes of operation is shown in the figure below. The following sections describe each of  
these modes in greater detail.  
Power-Up  
Reset and  
Initialization  
No valid  
input clocks  
selected  
Free-run  
Valid input clock  
selected  
An input is qualified  
and available for  
selection  
Lock Acquisition  
(Fast Lock)  
Phase lock on  
selected input  
clock is achieved  
Holdover  
Mode  
No  
Selected input  
clock fails  
Is holdover  
history valid?  
Locked  
Mode  
Figure 3.2. Modes of Operation  
3.1.6 Initialization and Reset  
When power is applied, the device begins an initialization period where it downloads default register values and configuration data from  
NVM and performs other initialization tasks. Communicating with the device through the serial interface is possible once this initializa-  
tion period is complete. No clocks will be generated until the initialization is complete. There are two types of resets available. A hard  
reset is functionally similar to a device power-up. All registers will be restored to the values stored in NVM and all circuits, including the  
serial interface, will be restored to their initial state. A hard reset is initiated using the RSTb pin or by asserting the hard reset bit. A soft  
reset bypasses the NVM download. It is simply used to initiate register configuration changes.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 5  
Si5380 Data Sheet  
Functional Description  
3.1.7 Freerun Mode  
Once power is applied to the Si5380 and initialization is complete, the device will automatically enter freerun mode. Output clocks will  
be generated on the outputs with their configured frequencies. The frequency accuracy of the generated output clocks in freerun mode  
is dependent on the frequency accuracy of the external crystal or reference clock on the XA/XB pins. For example, if the crystal  
frequency is ±100 ppm, then all the output clocks will be generated at their configured frequency ±100 ppm in freerun mode. Any  
change or drift of the crystal frequency or external reference on the XA/XB pins will be tracked at the output clock frequencies.  
3.1.8 Lock Acquisition  
If a valid input clock is selected for synchronization, the DSPLL will automatically start the lock acquisition process. If the fast lock fea-  
ture is enabled, the DSPLL will acquire lock using the Fastlock Loop Bandwidth setting and then transition to the DSPLL Loop Band-  
width setting when lock acquisition is complete. During lock acquisition the outputs will generate a clock that follows the VCO frequency  
change as it pulls-in to the input clock frequency.  
3.1.9 Locked Mode  
Once lock is achieved, the Si5380 will generate output clocks that are both frequency and phase locked to the input clock. The DSPLL  
will provide jitter attenuation of the input clock using the selected DSPLL loop bandwidth. At this point, any XTAL frequency drift outside  
of the loop bandwidth will not affect the output frequencies. When lock is achieved, the LOLb pin will output a logic high level. The LOL  
status bit and LOLb status pin will also indicate that the DSPLL is locked. See the 3.4.6 LOL Detection section for more details on LOLb  
detection time.  
3.1.10 Holdover Mode  
The DSPLL will automatically enter holdover mode when the selected input clock becomes invalid and no other valid input clocks are  
available for selection. The DSPLL uses an averaged input clock frequency as its final holdover frequency to minimize the disturbance  
of the output clock phase and frequency when an input clock suddenly fails. The holdover circuit stores up to 120 seconds of historical  
frequency data while the DSPLL is locked to a valid clock input. The final averaged holdover frequency value is calculated from a pro-  
grammable window within the stored historical frequency data. Both the window size and the delay are programmable as shown in the  
figure below. The window size determines the amount of holdover frequency averaging. The delay value allows ignoring frequency data  
that may be corrupt just before the input clock failure.  
Figure 3.3. Programmable Holdover Window  
Clock Failure  
and Entry into  
Holdover  
Historical Frequency Data Collected  
time  
Programmable historical data window  
Programmable delay  
used to determine the final holdover value  
120s  
0s  
30ms, 60ms, 1s,10s, 30s, 60s  
1s,10s, 30s, 60s  
When entering holdover, the DSPLL will pull the output clock frequencies referred to the calculated averaged holdover frequency. While  
in holdover, the output frequency drift is entirely dependent on the external crystal or external reference clock connected to the XA/XB  
pins. If a new clock input becomes valid, the DSPLL will automatically exit the holdover mode and re-acquire lock to the new input  
clock. This process involves pulling the output clock frequencies to achieve frequency and phase lock with the new input clock. This  
pull-in process is glitchless and its rate is controlled by the DSPLL bandwidth and the Fastlock bandwidth. These options are register  
programmable.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 6  
Si5380 Data Sheet  
Functional Description  
3.2 External Reference (XA/XB)  
An external crystal (XTAL) is used in combination with the internal oscillator (OSC) to produce an ultra-low phase noise reference clock  
for the DSPLL and for providing a stable reference for the free-run and holdover modes. A simplified diagram is shown in the figure  
below. The Si5380 includes internal XTAL loading capacitors which eliminates the need for external capacitors and also has the benefit  
of reduced noise coupling from external sources. Refer to the Table 5.12 Crystal Specifications on page 32 for crystal specifications.  
A crystal frequency of 54 MHz is required, with a total accuracy of ±100 ppm* recommended for best performance. The Si5380 includes  
built-in XTAL load capacitors (CL) of 8 pF, which are switched out of the circuit when using an external XO. The Si5380 Reference  
Manual provides additional information on PCB layout recommendations for the crystal to ensure optimum jitter performance. The  
Si5380 can also accommodate an external reference clock (REFCLK) instead of a crystal. Selection between the external XTAL or  
REFCLK is controlled by register configuration. The internal crystal loading capacitors (CL) are disabled in this mode. It is important to  
note that when using the REFCLK option the close-in phase noise of the outputs is directly affected by the phase noise of the external  
XO reference. Refer to the Table 5.3 Input Clock Specifications on page 23 for REFCLK requirements when using this mode.  
Note: Including initial frequency tolerance and frequency variation over the full operating temperature range, voltage range, load condi-  
tions, and aging.  
Differential Connection  
Single-ended XO Connection  
X1  
nc  
X1  
nc  
X2  
nc  
X2  
nc  
0.1 uf  
Note: 2.0 Vpp_se max  
2xCL  
2xCL  
0.1 uf  
XA  
XA  
0.1 uf  
OSC  
OSC  
XB  
XO with Clipped Sine  
Wave Output  
XB  
0.1 uf  
2xCL  
2xCL  
Si5380  
Si5380  
0.1 uf  
Note: 2.5 Vpp diff max  
Crystal Connection  
Single-ended Connection  
X1  
nc  
X2  
nc  
Note: 2.0 Vpp_se max  
X1  
2xCL  
CMOS/XO  
Output  
2xCL  
XA  
0.1 uf  
XA  
R1  
XTAL  
OSC  
OSC  
R2  
0.1 uf  
XB  
0.1 uf  
XB  
X2  
2xCL  
2xCL  
Si5380  
Si5380  
Figure 3.4. XAXB Crystal Resonator and External Reference Clock Connection Options  
3.3 Inputs (IN0, IN1, IN2, IN3/FB_IN)  
Four clock inputs are available to synchronize the DSPLL. The inputs are compatible with both single-ended and differential signals.  
Input selection can be manual (pin or register controlled) or automatic with definable priorities.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 7  
Si5380 Data Sheet  
Functional Description  
3.3.1 Input Configuration and Terminations  
Each of the inputs can be configured as differential or single-ended LVCMOS. The recommended input termination schemes are shown  
in the figure below. Standard 50% duty cycle signals must be ac-coupled, while low duty cycle Pulsed CMOS signals can be DC-cou-  
pled. Unused inputs can be disabled and left unconnected when not in use.  
Standard AC-coupled Differential LVDS  
Si5380  
50  
Standard  
INx  
100  
3.3 V, 2.5 V  
LVDS or  
CML  
INxb  
50  
Pulsed CMOS  
Standard AC-coupled Differential LVPECL  
Si5380  
50  
Standard  
INx  
100  
INxb  
50  
3.3 V, 2.5 V  
LVPECL  
Pulsed CMOS  
Standard AC-coupled Single-ended  
Si5380  
50  
Standard  
INx  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
INxb  
Pulsed CMOS  
Pulsed CMOS DC-coupled Single-ended  
Si5380  
R1  
Standard  
INx  
50  
R2  
INxb  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
Pulsed CMOS  
Resistor values for  
fIN_PULSED < 1 MHz  
VDD  
1.8V  
2.5V  
3.3V  
R1 (Ω)  
549  
680  
R2 (Ω)  
442  
324  
750  
243  
Figure 3.5. Termination of Differential and LVCMOS Input Signals  
3.3.2 Manual Input Selection (IN0, IN1, IN2, IN3/FB_IN)  
Input clock selection can be made manually using the IN_SEL[1:0] pins or through a register. A register bit determines input selection  
as pin selectable or register selectable. The IN_SEL pins are selected by default. If there is no clock signal on the selected input, the  
device will automatically enter free-run or holdover mode. When the zero delay mode is enabled, IN3 becomes the feedback input  
(FB_IN) and is not available for selection as a clock input.  
Table 3.2. Manual Input Selection Using IN_SEL[1:0] Pins  
IN_SEL[1:0]  
Selected Input  
Zero Delay Mode Disabled  
Zero Delay Mode Enabled  
0
0
1
1
0
1
0
1
IN0  
IN1  
IN2  
IN3  
IN0  
IN1  
IN2  
Reserved  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 8  
Si5380 Data Sheet  
Functional Description  
3.3.3 Automatic Input Switching (IN0, IN1, IN2, IN3/FB_IN)  
An automatic input selection state machine is available in addition to the manual switching option. In automatic mode, the selection  
criteria is based on reference qualification, input priority, and the revertive option. Only references which are valid can be selected by  
the automatic state machine. If there are no valid references available, the DSPLL will enter the holdover mode. With revertive switch-  
ing enabled, the highest priority input with a valid reference is always selected. If an input with a higher priority becomes valid, then an  
automatic switchover to that input will be initiated. With non-revertive switching, the active input will always remain selected while it is  
valid. If it becomes invalid, an automatic switchover to a valid input with the highest priority will be initiated.  
3.3.4 Hitless Input Switching  
Hitless switching is a feature that prevents a phase transient from propagating to the output when switching between two frequency  
locked clock inputs that have a fixed phase difference between them. A hitless switch can only occur when the two input frequencies  
are frequency locked meaning that they have to be exactly at the same frequency, or have an integer frequency relationship to each  
other. When this feature is enabled, the DSPLL simply absorbs the phase difference between the two input clocks during an input  
switch. When disabled (normal switching), the phase difference between the two inputs is propagated to the output at a rate determined  
by the DSPLL loop bandwidth.  
3.3.5 Glitchless Input Switching  
The DSPLL has the ability of switching between two input clocks that are up to 200 ppm apart in frequency. The DSPLL will pull-in to  
the new frequency using the DSPLL loop bandwidth or using the Fastlock loop bandwidth if it is enabled. The loss of lock (LOL) indica-  
tor will be asserted while the DSPLL is pulling-in to the new clock frequency. There will be no output runt pulses generated at the out-  
put. Glitchless input switching is available regardless of whether the hitless switching feature is enabled or disabled.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 9  
Si5380 Data Sheet  
Functional Description  
3.3.6 Zero Delay Mode  
A zero delay mode is available for applications that require fixed and consistent minimum delay between the selected input and outputs.  
The zero delay mode is configured by opening the internal feedback loop through software configuration and closing the loop externally  
as shown in the figure below. This helps to cancel out the internal delay introduced by the dividers, the crosspoint, the input, and the  
output drivers. Any one of the outputs can be fed back to the IN3/FB_IN pins, although using the output driver that achieves the short-  
est trace length will help to minimize the input-to-output delay. The OUT9A and IN3/FB_IN pins are recommended for the external feed-  
back connection. The FB_IN input pins must be terminated and ac-coupled when zero delay mode is used. A differential external feed-  
back path connection is necessary for best performance. The order of the OUT9A and FB_IN polarities is such that they may be routed  
on the device side of the PCB without requiring vias or needing to cross each other.  
IN0  
IN0b  
IN1  
Si5380  
÷P0  
÷P1  
÷P2  
DSPLL  
IN1b  
PD  
LPF  
IN2  
IN2b  
÷M  
÷5  
IN3/FB_IN  
÷P3  
VDDO0  
IN3b/FB_INb  
OUT0A  
÷R0A  
÷R0  
OUT0Ab  
OUT0  
OUT0b  
t0  
t1  
t2  
t3  
t4  
÷N0  
÷N1  
÷N2  
÷N3  
÷N4  
VDDO2  
OUT2  
OUT2b  
÷R2  
VDDO8  
OUT8  
OUT8b  
÷R8  
OUT9  
OUT9b  
÷R9  
OUT9A  
÷R9A  
OUT9Ab  
VDDO9  
External Feedback Path  
Figure 3.6. Si5380 Zero Delay Mode Set-up  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 10  
Si5380 Data Sheet  
Functional Description  
3.4 Fault Monitoring  
All four input clocks (IN0, IN1, IN2, IN3/FB_IN) are monitored for loss of signal (LOS) and out-of-frequency (OOF) as shown in the fig-  
ure below. The reference at the XA/XB pins is also monitored for LOS since it provides a critical reference clock for the DSPLL. The  
DSPLL also has a Loss Of Lock (LOL) indicator, which is asserted when the DSPLL has lost synchronization with the selected input  
clock.  
XA XB  
Si5380  
OSC  
LOS  
XAXB  
IN0  
Precision  
Fast  
LOS  
LOS  
LOS  
LOS  
OOF  
OOF  
OOF  
OOF  
÷P0  
÷P1  
÷P2  
÷P3  
IN0b  
DSPLL  
IN1  
Precision  
Fast  
LOL  
IN1b  
PD LPF  
Precision  
Fast  
IN2  
Feedback  
Clock  
IN2b  
÷M  
÷5  
IN3/FB_IN  
Precision  
Fast  
IN3b/FB_INb  
Figure 3.7. Si5380 Fault Monitors  
3.4.1 Input LOS Detection  
The loss of signal monitor measures the period of each input clock cycle to detect phase irregularities or missing clock edges. Each of  
the input LOS circuits have their own programmable sensitivity which allows ignoring missing edges or intermittent errors. Loss of signal  
sensitivity is configurable using the ClockBuilder Pro utility. The LOS status for each of the monitors is accessible by reading a status  
register. The live LOS register always displays the current LOS state and a sticky register always stays asserted until cleared. An option  
to disable any of the LOS monitors is also available.  
Sticky  
Monitor  
LOS  
LOS  
en  
Live  
Figure 3.8. LOS Status Indicators  
3.4.2 XA/XB LOS Detection  
An LOS monitor is available to ensure that the external crystal or reference clock is valid. By default, the output clocks are disabled  
when XAXB LOS is detected. This feature can be disabled such that the device will continue to produce output clocks when XAXB LOS  
is detected. See the 3.5.15 Output Skew Control (Δt0 - Δt4) section for details.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 11  
Si5380 Data Sheet  
Functional Description  
3.4.3 OOF Detection  
Each input clock is monitored for frequency accuracy with respect to a OOF reference which it considers as its “0_ppm” reference. This  
OOF reference can be selected as either: XAXB, IN0, IN1, IN2 or IN3. IN3 is only available as the OOF reference when not in ZDM.  
The final OOF status is determined by the combination of both a precise OOF monitor and a fast OOF monitor as shown in the figure  
below. An option to disable either monitor is also available. The live OOF register always displays the current OOF state, and its sticky  
register bit stays asserted until cleared.  
Sticky  
Monitor  
Precision  
Fast  
en  
en  
OOF  
OOF  
Live  
Figure 3.9. OOF Status Indicator  
3.4.4 Precision OOF Monitor  
The Precision OOF monitor circuit measures the frequency of all input clocks to within ±1 ppm accuracy with respect to the frequency at  
the XA/XB pins. The OOF monitor considers the frequency at the XA/XB pins as its 0 ppm OOF reference. A valid input frequency is  
one that remains within the OOF frequency range which is register configurable from ±2 ppm to ±500 ppm in steps of 2 ppm. A configu-  
rable amount of hysteresis is also available to prevent the OOF status from toggling at the failure boundary. An example is shown in the  
figure below. In this case the OOF monitor is configured with a valid frequency range of ±6 ppm and with 2 ppm of hysteresis. An option  
to use one of the input pins (IN0–IN3) as the 0 ppm OOF reference instead of the XA/XB pins is available. This option is register config-  
urable.  
OOF Declared  
OOF Cleared  
fIN  
Hysteresis  
Hysteresis  
-4 ppm  
(Clear)  
-6 ppm  
(Set)  
+4 ppm  
(Clear)  
+6 ppm  
(Set)  
0 ppm  
OOF  
Reference  
Figure 3.10. Example of Precise OOF Monitor Assertion and De-assertion Triggers  
3.4.5 Fast OOF Monitor  
Because the precision OOF monitor needs to provide 1 ppm of frequency measurement accuracy, it must measure the monitored input  
clock frequencies over a relatively long period of time. This may be too slow to detect an input clock that is quickly ramping in frequen-  
cy. An additional level of OOF monitoring called the Fast OOF monitor runs in parallel with the precision OOF monitors to quickly detect  
a ramping input frequency. The Fast OOF monitor asserts OOF on an input clock frequency that has changed by 1,000 to 16,000 ppm.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 12  
Si5380 Data Sheet  
Functional Description  
3.4.6 LOL Detection  
A loss of lock (LOL) monitor asserts the LOL bit when the DSPLL has lost synchronization with the selected input clock. There is also a  
dedicated active-low LOLb pin which reflects the loss of lock condition. The LOL monitor measures the frequency difference between  
the input and feedback clocks at the phase detector. There are two LOL frequency monitors, one that sets the LOL indicator (LOL Set)  
and another that clears the indicator (LOL Clear). A block diagram of the LOL monitor is shown in the figure below. The live LOL regis-  
ter always displays the current LOL state and a sticky register always stays asserted until cleared. The LOLb pin reflects the current  
state of the LOL monitor.  
LOL Monitor  
RS Latch  
Sticky  
LOL  
Clear  
Timer  
Reset  
LOL  
LOL  
Q
Live  
LOL  
Set  
Set  
LOLb  
DSPLL  
LOL  
fIN  
PD LPF  
Feedback  
Clock  
÷M  
÷5  
Si5380  
Figure 3.11. LOL Status Indicators  
Each of the frequency monitors have adjustable sensitivity which is register configurable from 0.1 ppm to 10000 ppm. Having two sepa-  
rate frequency monitors allows for hysteresis to help prevent chattering of LOL status. An example configuration where LOCK is indica-  
ted when there is less than 0.2 ppm frequency difference at the inputs of the phase detector and LOL is indicated when there is more  
than 2 ppm frequency difference is shown in the figure below.  
Clear LOL  
Threshold  
Set LOL  
Threshold  
Lock Acquisition  
LOL  
Hysteresis  
Lost Lock  
LOCKED  
0
0.2  
2
20000  
Phase Detector Frequency Difference (ppm)  
Figure 3.12. LOL Set and Clear Thresholds  
An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to completely phase lock to  
the input clock. The timer is also useful to prevent the LOL indicator from toggling or chattering as the DSPLL completes lock acquisi-  
tion. The configurable delay value depends on frequency configuration and loop bandwidth of the DSPLL and is automatically calcula-  
ted using the ClockBuilder Pro utility.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 13  
Si5380 Data Sheet  
Functional Description  
3.4.7 Interrupt Pin INTRb  
An interrupt pin INTRb indicates a change in state of the status indicators shown in the figure below. Any of the status indicators are  
maskable to prevent assertion of the interrupt pin. The state of the INTRb pin is reset by clearing the status register that caused the  
interrupt. The sticky version of the fault monitors is used for this function to ensure that the fault condition is still available when re-  
sponding to the interrupt.  
LOS_INTR_MSK[3-0]  
LOS_FLG[3-0]  
OOF_INTR_MSK[3-0]  
OOF_FLG[3-0]  
LOL_INTR_MSK  
LOL_FLG  
INTRb  
HOLD_INTR_MSK  
HOLD_FLG  
CAL_INTR_MSK  
CAL_FLG  
SYSINCAL_INTR_MSK  
SYSINCAL_FLG  
LOSXAXB_INTR_MSK  
LOSXAXB_FLG  
LOSREF_INTR_MSK  
LOSREF_FLG  
XAXB_ERR_INTR_MSK  
XAXB_ERR_FLG  
SMB_TMOUT_INTR_MSK  
SMBUS_TIMEOUT_FLG  
Figure 3.13. Interrupt Triggers and Masks  
3.5 Outputs  
The Si5380 supports 12 differential output drivers which can be independently configured as differential or LVCMOS.  
3.5.1 Output Crosspoint  
The output crosspoint allows any of the N dividers to connect to any of the clock outputs.  
3.5.2 Output Signal Format  
The differential output amplitude and common mode voltage are both fully programmable covering a wide variety of signal formats in-  
cluding LVPECL, LVDS, HCSL, and CML. In addition to supporting differential signals, any of the outputs can be configured as  
LVCMOS (3.3 V, 2.5 V, or 1.8 V) drivers providing up to 24 single-ended outputs, or any combination of differential and single-ended  
outputs.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 14  
Si5380 Data Sheet  
Functional Description  
3.5.3 Output Terminations  
The output drivers support both ac-coupled and dc-coupled terminations as shown in the following figure.  
AC-coupled LVDS/LVPECL  
DC-coupled LVDS  
V
DDO = 3.3 V, 2.5 V, 1.8 V  
V
DDO = 3.3 V, 2.5 V  
50  
50  
50  
50  
OUTx  
OUTx  
100  
OUTxb  
100  
OUTxb  
Internally  
self-biased  
Si5380  
Si5380  
AC-coupled LVPECL / CML  
DC-coupled LVCMOS  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
VDD – 1.3 V  
V
DDO = 3.3 V, 2.5 V, 1.8 V  
V
DDO = 3.3 V, 2.5 V  
50  
50  
50  
50  
Rs  
Rs  
OUTx  
50  
50  
OUTx  
OUTxb  
OUTxb  
Si5380  
Si5380  
AC-coupled HCSL  
VDDRX  
V
DDO = 3.3 V, 2.5 V, 1.8 V  
R1  
R1  
R2  
OUTx  
OUTxb  
50  
50  
Standard  
HCSL  
Receiver  
Si5380  
R2  
For VCM = 0.35 V  
VDDRX  
R1  
R2  
442 Ω  
56.2 Ω  
59 Ω  
3.3 V  
2.5 V  
1.8 V  
332 Ω  
243 Ω  
63.4 Ω  
Figure 3.14. Supported Output Terminations  
3.5.4 Differential Output Modes  
There are two selectable differential output modes: Normal and Low Power. Each output can support a unique mode.  
Differential Normal Mode: When an output driver is configured in normal amplitude mode, its output amplitude is selectable as one  
of 8 settings ranging from 130 mVpp_se to 920 mVpp_se in increments of 100 mV. The output impedance in the normal mode is  
100 Ω differential. Any of the ac-coupled terminations shown in Figure 3.14 Supported Output Terminations on page 15 are suppor-  
ted in this mode.  
Differential Low Power Mode: When an output driver is configured in low power mode, its output amplitude is configurable as one  
of 8 settings ranging from 200 mVpp_se to 1600 mVpp_se in increments of 200 mV. The output driver is in high impedance mode  
and supports standard 50 Ω PCB traces. Any of the ac-coupling terminations shown in Figure 3.14 Supported Output Terminations  
on page 15 are supported in this mode.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 15  
Si5380 Data Sheet  
Functional Description  
3.5.5 Programmable Common Mode Voltage for Differential Outputs  
The common mode voltage (VCM) for the differential normal and low power modes is programmable in 100 mV increments from 0.7 V  
to 2.3 V depending on the voltage available at the output’s VDDO pin. Setting the common mode voltage is useful when dc-coupling the  
output drivers.  
3.5.6 LVCMOS Output Terminations  
LVCMOS outputs are dc-coupled with source-side series termination as shown in the figure below.  
DC-coupled LVCMOS  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
V
DDO = 3.3V, 2.5V, 1.8V  
50  
50  
Rs  
Rs  
OUTx  
OUTxb  
Figure 3.15. LVCMOS Output Terminations  
3.5.7 LVCMOS Output Impedance and Drive Strength Selection  
Each LVCMOS driver has a configurable output impedance to accommodate different trace impedances and drive strengths. A source  
termination resistor is recommended to help match the selected output impedance to the trace impedance. There are three programma-  
ble output impedance selections for each VDDO options as shown in the table below.  
Table 3.3. LVCMOS Output Impedance and Drive Strength Selections  
VDDO  
OUTx_CMOS_DRV  
Source Impedance (Zs)  
Drive Strength (Iol/Ioh)  
3.3 V  
0x01  
0x02  
0x03*  
0x01  
0x02  
0x03*  
0x03*  
38 Ω  
30 Ω  
22 Ω  
43 Ω  
35 Ω  
24 Ω  
31 Ω  
10 mA  
12 mA  
17 mA  
6 mA  
2.5 V  
1.8 V  
8 mA  
11 mA  
5 mA  
Note: Use of the lowest impedance setting is recommended for all supply voltages for best edge rates.  
3.5.8 LVCMOS Output Signal Swing  
The signal swing (VOL/VOH) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output driver has its own  
VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers. OUT0 and OUT0A share the same VDDO pin.  
OUT9 and OUT9A also share the VDDO pin. All other outputs have their own individual VDDO pins. Each output driver automatically  
detects the voltage on the VDDO pin to properly determine the correct output voltage.  
3.5.9 LVCMOS Output Polarity  
When a driver is configured as an LVCMOS output it generates a clock signal on both pins (OUTx and OUTxb). By default the clock on  
the OUTxb pin is generated with the same polarity (in phase) with the clock on the OUTx pin. The polarity of these clocks is configura-  
ble enabling complimentary clock generation and/or inverted polarity with respect to other output drivers.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 16  
Si5380 Data Sheet  
Functional Description  
3.5.10 Output Enable/Disable  
The OEb pin provides a convenient method of disabling or enabling all of the output drivers at the same time. When the OEb pin is held  
high all outputs will be disabled. When held low, the outputs will all be enabled. Outputs in the enabled state can still be individually  
disabled through register control.  
3.5.11 Output Disable During LOL  
By default, a DSPLL that is out of lock will generate either free-running clocks or generate clocks in holdover mode. There is an option  
to disable the outputs when a DSPLL is LOL. This option can be useful to force a downstream PLL into holdover.  
3.5.12 Output Disable During XAXB_LOS  
The internal oscillator circuit (OSC) in combination with the external crystal (XTAL) provides a critical function for the operation of the  
DSPLLs. In the event of a crystal failure, the device will assert an XAXB_LOS alarm. By default, all outputs will be disabled during  
assertion of the XAXB_LOS alarm. There is an option to leave the outputs enabled during an XAXB_LOS alarm, but the frequency  
accuracy and stability will be indeterminate during this fault condition.The internal oscillator circuit (OSC) in combination with the exter-  
nal crystal (XTAL) provides a critical function for the operation of the DSPLLs. In the event of a crystal failure, the device will assert an  
XAXB_LOS alarm. By default, all outputs will be disabled during assertion of the XAXB_LOS alarm. There is an option to leave the  
outputs enabled during an XAXB_LOS alarm, but the frequency accuracy and stability will be indeterminate during this fault condition.  
3.5.13 Output Driver State When Disabled  
The disabled state of an output driver is configurable as either disable low or disable high.  
3.5.14 Synchronous Enable/Disable Feature  
The output drivers provide a selectable synchronous enable/disable feature. Output drivers with this feature active will wait until a clock  
period has completed before the driver is disabled or enabled. This prevents unwanted runt pulses from occurring when enabling or  
disabling an output. When this feature is turned off, the output clock will disable immediately without waiting for the period to complete.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 17  
Si5380 Data Sheet  
Functional Description  
3.5.15 Output Skew Control (Δt0 - Δt4)  
The Si5380 uses independent dividers (N0 - N4) to generate up to 5 unique frequencies to its 12 outputs through a crosspoint switch. A  
delay path (Dt0 - Dt4) associated with each of these dividers is available for applications that need a specific output skew configuration.  
This is useful for compensating PCB trace delay differences or for applications that require quadrature clock generation. The resolution  
of the phase adjustment is approximately 68 ps per step up to 128 steps of added phase delay (+8.6 ns late), or 128 steps of negative  
delay (–8.6 ns early). Phase adjustments are register configurable. An example of generating two frequencies with unique configurable  
path delays is shown in the following figure.  
VDDO0  
OUT0A  
OUT0Ab  
÷R0A  
OUT0  
OUT0b  
÷R0  
t0  
t1  
t2  
t3  
t4  
÷N0  
÷N1  
÷N2  
÷N3  
÷N4  
VDDO1  
OUT1  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
OUT1b  
VDDO2  
OUT2  
OUT2b  
VDDO3  
OUT3  
OUT3b  
VDDO4  
OUT4  
OUT4b  
VDDO5  
OUT5  
OUT5b  
VDDO6  
OUT6  
OUT6b  
VDDO7  
OUT7  
OUT7b  
VDDO8  
OUT8  
OUT8b  
OUT9  
OUT9b  
÷R9  
OUT9A  
OUT9Ab  
÷R9A  
VDDO9  
Figure 3.16. Example of Independently Configurable Path Delays  
All phase delay values are restored to their default values after power-up, power-on reset, or hardware reset using the RSTb pin. Phase  
delay default values can be written to NVM allowing a custom phase offset configuration at power-up or after power-on reset, or after a  
hardware reset using the RSTb pin.  
3.5.16 Output Divider (R) Synchronization  
All the output R dividers are reset to a known state during the power-up initialization period. This ensures consistent and repeatable  
phase alignment across all output drivers. Resetting the device using the RSTb pin or asserting the reset bit will have the same result.  
Asserting the sync register bit provides another method of realigning the R dividers without resetting the device.  
3.6 Power Management  
Unused inputs and output drivers can be powered down when unused. Consult the Si5380 Reference Manual and ClockBuilder Pro  
configuration utility for details.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 18  
Si5380 Data Sheet  
Functional Description  
3.6.1 Power Down Pin (PDNb)  
A power down pin is provided to force the device in a low power mode. The device’s configuration will be maintained but no output  
clocks will be generated. Most of the internal blocks will be shut down but device communication via the serial interface will still be  
available. When the PDNb pin is pulled low the outputs will shut down without glitching (the clock’s complete period will be generated  
before shutting down). When PDNb is released the device will start generating clocks without glitches. The device will generate free-  
running clocks until the DSPLL has acquired lock to the selected input clock source.  
3.7 In-Circuit Programming  
The Si5380 is fully configurable using the serial interface (I2C or SPI). At power-up, the device downloads its default register values  
from internal non-volatile memory (NVM). Application specific default configurations can be written into NVM allowing the device to gen-  
erate specific clock frequencies at power-up. Writing default values to NVM is in-circuit programmable with normal operating power sup-  
ply voltages applied to its VDD and VDDA pins. The NVM is writable two times. Once a new configuration has been written to NVM, the  
old configuration is no longer accessible. Refer to the Si5380 Reference Manual for a detailed procedure for writing registers to NVM.  
3.8 Serial Interface  
Configuration and operation of the Si5380 is controlled by reading and writing registers using the I2C or SPI interface. The I2C_SEL pin  
selects I2C or SPI operation. The Si5380 supports communication with a 3.3 V or 1.8 V host by setting the IO_VDD_SEL configuration  
bit. The SPI mode supports 4-wire or 3-wire by setting the SPI_3WIRE configuration bit. See the Si5380 Reference Manual for details.  
3.9 Custom Factory Preprogrammed Devices  
For applications where a serial interface is not available for programming the device, custom pre-programmed parts can be ordered  
with a specific configuration written into NVM. A factory pre-programmed device will generate clocks at power-up. Custom, factory-pre-  
programmed devices are available. Use the ClockBuilder Pro custom part number wizard (www.silabs.com/clockbuilderpro) to quickly  
and easily request and generate a custom part number for your configuration.  
In less than three minutes, you will be able to generate a custom part number with a detailed data sheet addendum matching your  
design’s configuration. Once you receive the confirmation email with the data sheet addendum, simply place an order with your local  
Silicon Labs sales representative. Samples of your pre-programmed device will ship to you typically within two weeks.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 19  
Si5380 Data Sheet  
Functional Description  
3.10 How to Enable Features and/or Configuration Settings Not Available in ClockBuilder Pro for Factory Pre-programmed  
Devices  
As with essentially all software utilities, ClockBuilder Pro is continuously updated and enhanced. By registering at www.silabs.com and  
opting in for updates to software, you will be notified whenever changes are made and what the impact of those changes are. This  
update process will ultimately enable ClockBuilder Pro users to access all features and register setting values documented in this data  
sheet and the Si5380 Reference Manual .  
However, if you must enable or access a feature or register setting value so that the device starts up with this feature or a register  
setting, but the feature or register setting is NOT yet available in CBPro, you must contact a Silicon Labs applications engineer for as-  
sistance. Examples of this type of feature or custom setting are the customizable output amplitude and common voltages for the clock  
outputs. After careful review of your project file and custom requirements, all Silicon Labs applications engineer will email back your  
CBPro project file with your specific features and register settings enabled, using what is referred to as the manual "settings override"  
feature of CBPro. "Override" settings to match your request(s) will be listed in your design report file. Examples of setting "overrides" in  
a CBPro design report are shown below:  
Table 3.4. Setting Overrides  
Location  
Customer Name Engineering  
Name  
Type  
Target  
Dec Value  
Hex Value  
0x1  
0x0435[0]  
0x0B48[0:4]  
FORCE_HOLD_ OLA_HO_FORC No NVM  
PLLA  
N/A  
1
0
E
OOF_DIV_CLK_ OOF_DIV_CLK_ User  
DIS DIS  
OPN and EVB  
0x00  
Once you receive the updated design file, simply open it in CBPro. After you create a custom OPN, the device will begin operation after  
startup with the values in the NVM file, including the Silicon Labs-supplied override settings.  
Place sample  
Start  
order  
Do I need a  
pre-programmed device  
with a feature or setting  
which is unavailable in  
ClockBuilder Pro?  
Generate  
Custom OPN  
in CBPro  
Configure device  
using CBPro  
No  
Yes  
Contact Silicon Labs  
Technical Support  
to submit & review  
your  
Yes  
non-standard  
configuration  
request & CBPro  
project file  
Receive  
updated CBPro  
project file  
from  
Silicon Labs  
with “Settings  
Override”  
Does the updated  
CBPro Project file  
match your  
Load project file  
into CBPro and test  
requirements?  
Figure 3.17. Flowchart to Order Custom Parts with Features not Available in CBPro  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 20  
Si5380 Data Sheet  
Register Map  
4. Register Map  
This document provides a brief list of available registers. For a complete list of registers and settings, please refer to the Si5380 Refer-  
ence Manual .  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 21  
Si5380 Data Sheet  
Electrical Specifications  
5. Electrical Specifications  
Table 5.1. Recommended Operating Conditions1  
Parameter  
Symbol  
TA  
Test Condition  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
°C  
°C  
V
Ambient Temperature  
Maximum Junction Temperature  
Core Supply Voltage  
TJMAX  
VDD  
VDDA  
VDDO  
125  
1.89  
3.47  
3.47  
2.62  
1.89  
1.71  
3.14  
3.14  
2.38  
1.71  
1.80  
3.30  
3.30  
2.50  
1.80  
V
Output Driver Supply Voltage  
V
V
V
Note:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical val-  
ues apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Table 5.2. DC Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Core Supply Current1, 5  
See Note 1  
IDD  
170  
265  
mA  
IDDA  
IDDO  
125  
28  
135  
34  
mA  
mA  
Output Buffer Supply Current2, 5  
LVPECL Output3  
@ 1474.56 MHz  
LVPECL Output3  
@ 153.6 MHz  
21  
17  
25  
23  
mA  
mA  
mA  
mA  
mA  
mA  
mW  
LVDS Output3  
@ 1474.56 MHz  
LVDS Output3  
15  
17  
@ 153.6 MHz  
3.3 V LVCMOS Output 4  
@ 153.6 MHz  
21  
25  
2.5 V LVCMOS Output 4  
@ 153.6 MHz  
16  
18  
1.8 V LVCMOS Output 4  
@ 153.6 MHz  
12  
13  
Total Power Dissipation1,2  
Typical Outputs1  
Pd  
1250  
1450  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 22  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Si5380 test configuration 1: 4 x 3.3 V LVPECL outputs enabled @122.88 MHz, 2 x 3.3 V LVDS outputs enabled @122.88 MHz,  
one input enabled, locked to 30.72 MHz. Excludes power in termination resistors.  
2. Detailed power consumption for any configuration can be estimated using ClockBuilder Pro when an evaluation board (EVB) is  
not available. All EVBs support detailed current measurements for any configuration.  
3. Differential outputs terminated into an ac-coupled 100 Ω load.  
4. LVCMOS outputs measured into a 6-inch 50 Ω PCB trace with 5 pF load. The LVCMOS outputs were set to  
OUTx_CMOS_DRV=3, which is the strongest driver setting. Refer to the Si5380 Reference Manual for more details on register  
settings.  
5. VDDO0 supplies power to both OUT0 and OUT0A buffers. Similarly, VDDO9 supplies power to both OUT9 and OUT9A buffers.  
LVCMOS Output Test Configuration  
Differential Output Test Configuration  
Trace length 5  
inches  
IDDO  
0.1 uF  
0.1 mF  
499 Ω  
4.7 pF  
50  
IDDO  
50 Ω Scope Input  
50 Ω Scope Input  
50  
50  
OUT  
100  
OUT  
OUTb  
56 Ω  
0.1 mF  
56 Ω  
OUTb  
50  
499 Ω  
4.7 pF  
0.1 uF  
Table 5.3. Input Clock Specifications  
Test Condition  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Standard Differential or Single-Ended/LVCMOS—AC-coupled (IN0/IN0, IN1/IN1, IN2/IN2, IN3/IN3, FB_IN/FB_IN)  
Input Frequency Range  
Input Voltage Amplitude  
fIN_DIFF  
fIN_SE  
VIN  
Differential  
Single-ended/LVCMOS  
FIN < 400 MHz  
10  
10  
750  
250  
MHz  
MHz  
100  
3600  
mVpp_se,  
mVpp_dif  
400 MHz < FIN < 750 MHz  
225  
400  
3600  
mVpp_se,  
mVpp_dif  
Slew Rate1 , 2  
Duty Cycle  
SR  
V/µs  
DC  
CIN  
40  
2
60  
%
Capacitance  
pF  
Pulsed CMOS—DC-coupled (IN0, IN1, IN2, IN3/FB_IN) 3  
Input Frequency  
fIN_CMOS  
VIL  
10  
250  
0.33  
MHz  
V
Input Voltage Thresholds  
–0.2  
0.49  
400  
VIH  
V
Slew Rate1 , 2  
SR  
V/µs  
Duty Cycle  
DC  
PW  
RIN  
Clock Input  
Pulse Input  
40  
1.6  
8
60  
%
ns  
kΩ  
Minimum Pulse Width  
Input Resistance  
REFCLK (applied to XA/XB)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 23  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
REFCLK4  
fIN_REF  
LTE  
54  
MHz  
Total Frequency Tolerance5  
Input Voltage Swing  
frange  
VIN_SE  
VIN_DIFF  
SR  
–100  
365  
365  
400  
+100  
2000  
2500  
ppm  
mVpp_se  
mVpp_diff  
V/µs  
Slew Rate1 , 2  
Imposed for phase noise perform-  
ance  
Input Duty Cycle  
DC  
40  
60  
%
Note:  
1. Imposed for phase noise performance.  
2. Rise and fall times can be estimated using the following simplified equation: tr/tf80-20 = ((0.8 – 0.2) * VIN_Vpp_se) / SR.  
3. This mode is intended primarily for single-ended LVCMOS input clocks < 1 MHz, which must be dc-coupled, having a duty cycle  
significantly less than 50%. A typical application example is a low frequency video frame sync pulse. Since the input thresholds  
(VIL, VIH) of the input buffer are non-standard, refer to the input attenuator circuit for dc-coupled Pulsed LVCMOS in the in the  
Si5380 Reference Manual . Otherwise, for standard LVCMOS input clocks, use the "AC-coupled Single-Ended" mode as shown  
in Figure 6.14.  
4. The REFCLK frequency for the Si5380 is fixed at 54 MHz. Contact the applications group for more information.  
5. Includes initial tolerance, drift after reflow, change over temperature (–40 °C to +85 °C), VDD variation, load pulling, and aging.  
Table 5.4. Control Input Pin Specifications1  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5380 Control Input Pins (I2C_SEL, IN_SEL[1:0], RSTb, OEb, SYNCb, PDNb, A1/SDO, SDA/SDIO, SCLK, A0/CSb)  
Input Voltage Thresholds  
VIL  
VIH  
0.3xVDDIO  
*
V
V
0.7 x  
VDDIO  
*
Input Capacitance  
Input Resistance  
Minimum Pulse Width  
Note:  
CIN  
IL  
2
pF  
kΩ  
ns  
20  
PW  
RSTb, SYNCb, PDNb  
100  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Si5380 Reference Manual for more details  
on the register settings.  
Table 5.5. Differential Clock Output Specifications  
Parameter  
Symbol  
fOUT  
Test Condition  
Min  
0.48  
48  
Typ  
Max  
1474.56  
52  
Unit  
MHz  
%
Output Frequency  
Duty Cycle  
DC  
f < 400 MHz  
400 MHz < f < 800 MHz  
f >800 MHz  
45  
55  
%
40  
60  
%
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 24  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Differential Outputs  
Same N-divider  
Min  
Typ  
Max  
Unit  
Output-Output Skew  
TSK  
20  
50  
ps  
Differential Outputs  
Different N-dividers  
20  
0
100  
100  
ps  
ps  
OUT-OUTb Skew  
TSK_OUT  
Measured from the positive to  
negative output pins  
Output Voltage Ampli- Normal Mode  
tude1  
VOUT  
VDDO  
=
LVDS  
340  
530  
470  
810  
550  
950  
mVpp_se  
LVPECL  
3.3 V or  
2.5 V or  
1.8 V  
Low Power Mode  
VOUT  
VDDO  
=
LVDS  
300  
530  
420  
820  
530  
mVpp_se  
3.3 V or  
2.5 V or  
1.8 V  
VDDO = 3.3 V  
or 2.5 V  
LVPECL  
1060  
Common Mode Volt-  
age1, 2  
Normal or Low Power Modes  
VCM  
VDDO  
=
LVDS  
1.10  
1.90  
1.25  
2.05  
1.30  
2.10  
V
LVPECL  
3.3 V  
VDDO  
=
LVPECL  
LVDS  
1.15  
1.25  
1.30  
2.5 V  
VDDO  
=
LVDS  
0.87  
0.93  
0.98  
1.8 V  
Rise and Fall Times  
(20% to 80%)  
tR/tF  
Normal Mode  
170  
300  
100  
Hi-Z  
240  
430  
ps  
Ω
Low Power Mode  
Normal Power Mode  
Low Power Mode  
Differential Output Im-  
pedance3  
ZO  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 25  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Normal Mode  
Min  
Typ  
Max  
Unit  
Power Supply Noise  
Rejection4  
PSRR  
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
Low Power Mode  
-93  
-93  
-84  
-79  
dBc  
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
-98  
-95  
-84  
-76  
-75  
dB  
dB  
Output-Output Cross-  
talk  
XTALK  
Measured spur from adjacent  
output  
Note:  
1. Normal mode and low power mode amplitude and common mode voltage are programmable through register settings and can be  
stored in NVM. Each output driver can be programmed independently. The typical normal mode (or low power mode) LVDS maxi-  
mum is 100 mV (or 80 mV) higher than the TIA/EIA-644 maximum. Refer to the Si5380 Reference Manual for more details on  
register settings.  
2. Not all combinations of voltage amplitude and common mode voltages settings are possible. See the Si5380 Reference Manual  
for more information.  
3. Driver output impedance depends on selected output mode (Normal, Low Power).  
4. Measured for 122.88 MHz carrier frequency. Sinewave noise added to VDDO (1.8 V = 50 mVpp, 2.5 V/3.3 V = 100 mVpp) and  
noise spur amplitude measured.  
5. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 76.8 MHz and the aggressor at 92.08 MHz.  
Refer to application note, "AN862: Optimizing Si534x Jitter Performance in Next Generation Internet Infrastructure Systems", for  
guidance on crosstalk optimization. Note that all active outputs must be terminated when measuring crosstalk  
Table 5.6. LVCMOS Clock Output Specifications  
Parameter  
Symbol  
Test Condition  
Min  
0.48  
47  
Typ  
Max  
250  
53  
Unit  
MHz  
%
Output Frequency  
Duty Cycle  
DC  
fOUT < 100 MHz  
100 MHz < fOUT < 250 MHz  
44  
55  
Output-to-Output Skew  
TSK  
100  
ps  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 26  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Voltage High1, 2, 3  
VOH  
VDDO = 3.3 V  
IOH = –10 mA  
OUTx_CMOS_DRV=1  
VDDO  
0.75  
x
x
x
V
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –12 mA  
IOH = –17 mA  
VDDO = 2.5 V  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –6 mA  
IOH = –8 mA  
IOH = –11 mA  
VDDO  
0.75  
V
VDDO = 1.8 V  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –4 mA  
IOH = –5 mA  
VDDO  
0.75  
V
V
Output Voltage Low1, 2, 3  
VOL  
VDDO = 3.3 V  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 10 mA  
IOL = 12 mA  
IOL = 17 mA  
VDDO  
0.15  
x
x
x
VDDO = 2.5 V  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 6 mA  
IOL = 8 mA  
IOL = 11 mA  
VDDO  
0.15  
V
V
VDDO = 1.8 V  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 4 mA  
IOL = 5 mA  
VDDO  
0.15  
LVCMOS Rise and Fall  
Times2  
tr/tf  
VDDO = 3.3 V  
420  
475  
525  
550  
625  
705  
ps  
ps  
ps  
VDDO = 2.5 V  
VDDO = 1.8 V  
(20% to 80%)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 27  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer to the  
Si5380 Reference Manual for more details on register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the DC test configuration  
3. A 5 pF capacitive load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3.  
AC Output Test Configuration  
DC Test Configuration  
Trace length 5 inches  
0.1 mF  
499 Ω  
4.7 pF  
IDDO  
50  
50  
IOL/IOH  
50 Ω Scope Input  
50 Ω Scope Input  
OUT  
56 Ω  
0.1 mF  
Zs  
OUTb  
VOL/VOH  
499 Ω  
4.7 pF  
56 Ω  
Table 5.7. Output Status Pin Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Si5380 Status Output Pins (LOLb, INTRb)  
Output Voltage  
VDDIO1 x  
0.75  
VOH  
IOH = –2 mA  
IOL = 2 mA  
V
V
VDDIO1 x  
0.15  
VOL  
Note:  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Si5380 Reference Manual for more details  
on the register settings.  
Table 5.8. Performance Characteristics  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
PLL Loop Bandwidth Programming  
Range3  
fBW  
Loop bandwidth is register  
programmable  
0.1  
40  
100  
Hz  
Initial Start-Up Time  
tSTART  
Time from power-up or de-as-  
sertion of PDNb to when the  
device generates free-running  
clocks.  
30  
45  
ms  
Fastlock enabled4  
tDELAY= 1/fVCO  
PLL Lock Time  
tACQ  
500  
67.8  
±8.6  
600  
ms  
ps  
2
Output Delay Adjustment  
tDELAY  
2
+/-128 / fVCO  
ns  
tRANGE  
POR to Serial Interface Ready1  
Jitter Peaking  
tRDY  
JPK  
15  
ms  
dB  
When locked, any loop band-  
width  
0.1  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 28  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
tSWITCH  
ΩP  
Test Condition  
Min  
1
Typ  
Max  
2.8  
Unit  
ns  
Maximum Phase Transient  
Pull-in Range  
Automatic Hitless Switch  
500  
2
ppm  
ns  
Input-to-Output Delay Variation  
tIODELAY  
tZDELAY  
JGEN  
In Regular Mode  
In Zero Delay Mode2  
LVPECL Output  
@ 1474.56 MHz  
LVPECL Output  
@ 122.88 MHz  
10Hz  
110  
ps  
RMS Jitter Generation5  
0.070  
0.080  
ps RMS  
0.080  
0.125  
ps RMS  
Phase Noise Performance5  
PN  
–71  
–98  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
100 Hz  
(122.88 MHz Carrier Frequency)  
1 kHz  
–123  
–136  
–144  
–154  
–165  
–103  
–95  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
Spur Performance 5(122.88 MHz Carri-  
er Frequency)  
SPUR  
Up to 1 MHz offset  
From 1 MHz to 30 MHz offset  
dBc  
Note:  
1. Measured as time from valid VDD/VDDA rails (both >90% of settled voltage) to when the serial interface is ready to respond to  
commands.  
2. Measured from the INx input to the feedback input, with both clocks running at 15.36 MHz and having the same slew rate. The  
rise time of the reference input should not exceed 200 ps in order to guarantee this specification.  
3. Actual loop bandwidth might be lower; refer to ClockBuilder Pro for actual value on your frequency plan.  
4. Lock Time can vary significantly depending on several parameters, such as bandwidths, LOL thresholds, etc. For this case, lock  
time was measured with nominal and fastlock bandwidths both set to 100 Hz, LOL set/clear thresholds of 3/0.3 ppm respectively,  
using IN0 as clock reference by removing the reference and enabling it again, then measuring the delta time between the first  
rising edge of the clock reference and the LOL indicator de-assertion.  
5. Jitter generation test conditions: fIN = 30.72 MHz, fOUT = 122.88 MHz LVPECL, DSPLL LBW = 100 Hz. Does not include jitter  
from PLL input reference.  
Table 5.9. I2C Timing Specifications (SCL,SDA)  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Min  
Fast Mode  
400 kbps  
Max  
Unit  
Standard Mode  
100 kbps  
SCL Clock Frequency  
SMBus Timeout  
fSCL  
0
100  
0
400  
35  
kHz  
ms  
µs  
When Timeout is Enabled  
25  
4.0  
35  
25  
Hold Time (Repeated)  
START Condition  
tHD:STA  
0.6  
Low Period of the SCL  
Clock  
tLOW  
4.7  
1.3  
µs  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 29  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Min  
Max  
Unit  
HIGH Period of the SCL  
Clock  
tHIGH  
4.0  
0.6  
µs  
Set-up Time for a Repea-  
ted START Condition  
tSU:STA  
4.7  
0.6  
µs  
Data Hold Time  
tHD:DAT  
tSU:DAT  
tr  
100  
250  
100  
100  
20  
ns  
ns  
ns  
Data Set-up Time  
Rise Time of Both SDA  
and SCL Signals  
1000  
300  
Fall Time of Both SDA and  
SCL Signals  
tf  
300  
300  
ns  
µs  
µs  
Set-up Time for STOP  
Condition  
tSU:STO  
4.0  
4.7  
0.6  
1.3  
Bus Free Time between a  
STOP and START Condi-  
tion  
tBUF  
Data Valid Time  
tVD:DAT  
tVD:ACK  
3.45  
3.45  
0.9  
0.9  
µs  
µs  
Data Valid Acknowledge  
Time  
Figure 5.1. I2C Serial Prot Timing Standard and Fast Modes  
Table 5.10. SPI Timing Specifications (4-Wire)  
Parameter  
Symbol  
fSPI  
Min  
Typ  
Max  
20  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
TDC  
40  
60  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 30  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Tr/Tf  
TC  
Min  
Typ  
Max  
10  
Unit  
ns  
SCLK Rise and Fall Time  
SCLK Period  
50  
ns  
Delay Time, SCLK Fall to SDO  
Active  
TD1  
12.5  
ns  
Delay Time, SCLK Fall to SDO  
TD2  
TD3  
12.5  
12.5  
ns  
ns  
Delay Time, CSb Rise to SDO  
Tri-State  
Setup Time, CSb to SCLK  
TSU1  
TH1  
TSU2  
TH2  
25  
25  
ns  
ns  
ns  
ns  
Tc  
Hold Time, SCLK Fall to CSb  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
12.5  
12.5  
1.9  
Delay Time Between Chip Selects  
(CSb)  
TCS  
TSU1  
TD1  
TC  
SCLK  
TH1  
CSb  
TSU2  
TH2  
TCS  
SDI  
TD2  
TD3  
SDO  
Figure 5.2. 4-Wire SPI Serial Interface Timing  
Table 5.11. SPI Timing Specifications (3-Wire)  
Parameter  
Symbol  
fSPI  
Min  
Typ  
Max  
20  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
TDC  
Tr/Tf  
TC  
40  
60  
SCLK Rise and Fall Time  
SCLK Period  
10  
ns  
50  
ns  
Delay Time, SCLK Fall to SDIO Turn-on  
Delay Time, SCLK Fall to SDIO Next-bit  
Delay Time, CSb Rise to SDIO Tri-State  
Setup Time, CSb to SCLK  
Hold Time, SCLK Fall to CSb  
TD1  
12.5  
12.5  
12.5  
ns  
TD2  
ns  
TD3  
ns  
TSU1  
TH1  
25  
25  
ns  
ns  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 31  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
TSU2  
TH2  
Min  
12.5  
12.5  
1.9  
Typ  
Max  
Unit  
ns  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
Delay Time Between Chip Selects (CSb)  
ns  
TCS  
Tc  
TSU1  
TC  
SCLK  
TH1  
TD1  
TD2  
CSb  
TSU2  
TH2  
TCS  
SDIO  
TD3  
Figure 5.3. 3-Wire SPI Serial Interface Timing  
Table 5.12. Crystal Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Crystal Frequency1  
fXTAL  
fRANGE  
CL  
–100  
54  
MHz  
Total Frequency Tolerance2  
Load Capacitance  
8
+100  
ppm  
pF  
Crystal Output Capacitance  
Equivalent Series Resistance  
Crystal Drive Level  
CO  
2
pF  
rESR  
dL  
23  
Ω
The crystal resonator must be  
able to tolerate 200 µW of drive  
level  
200  
µW  
Note:  
1. Refer to the Si5380 Reference Manual for qualified crystals. The Si5380 is designed to operate with crystals that meet the specifi-  
cations in the Table 5.14 Absolute Maximum Ratings1,2,3, 4 on page 33. See the Si5380 Reference Manual for a list of qualified  
54 MHz crystals.  
2. Includes initial tolerance, drift after reflow, change over temperature (–40 °C to +85 °C), VDD variation, load pulling, and aging.  
Table 5.13. Thermal Characteristics1  
Parameter  
Symbol  
Test Condition  
Value  
Unit  
Si5380—64QFN  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 32  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Still Air  
Value  
22  
Unit  
Thermal Resistance Junction to  
Ambient  
ƟJA  
°C/W  
Air Flow 1 m/s  
Air Flow 2 m/s  
19.4  
18.3  
9.5  
Thermal Resistance Junction to  
Case  
ƟJC  
ƟJB  
ΨJB  
ΨJT  
Thermal Resistance Junction to  
Board  
9.4  
9.3  
0.2  
Thermal Resistance Junction to  
Board  
Thermal Resistance Junction to  
Top Center  
Note:  
1. Based on PCB Dimension: 3x4.5”, PCB Thickness: 1.6 mm, PCB Land/Via: 36, Number of Cu Layers: 4.  
Table 5.14. Absolute Maximum Ratings1,2,3, 4  
Parameter  
Symbol  
VDD  
Test Condition  
Value  
Unit  
V
DC Supply Voltage  
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–0.85 to 3.8  
–0.5 to 3.8  
VDDA  
VDDO  
VI1  
V
V
Input Voltage Range  
IN0-IN3/FB_IN  
IN_SEL[1:0],  
V
VI2  
RSTb, PDNb,OEb, SYNCb,  
I2C_SEL, SCLK,  
A0/CSb, A1/SDO,  
SDA/SDIO  
VI3  
LU  
XA/XB  
–0.5 to 2.7  
JESD78 Compliant  
2.0  
V
Latch-up Tolerance  
ESD Tolerance  
HBM  
TSTG  
TJCT  
TPEAK  
100 pF, 1.5 kΩ  
kV  
°C  
°C  
°C  
Storage Temperature Range  
Junction Temperature  
–55 to 150  
–55 to 150  
260  
Soldering Temperature (Pb-free  
profile)4  
Soldering Temperature Time at  
TPEAK (Pb-free profile)4  
TP  
20 to 40  
sec  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 33  
Si5380 Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Value  
Unit  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect device reliability.  
2. 64-QFN is RoHS-6 compliant.  
3. For MSL rating and additional packaging information, go to http://www.silabs.com/support/quality/pages/RoHSInformation.aspx.  
4. The device is compliant with JEDEC J-STD-020.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 34  
Si5380 Data Sheet  
Typical Application Diagrams  
6. Typical Application Diagrams  
IEEE  
1588  
GPS  
N
N
Rx  
ADC  
ADC  
LNA  
0
90  
CPRI  
Stratum 3/  
3E DPLL  
ASIC  
ASIC  
Tx  
PA  
N
N
DAC  
DAC  
0
90  
OCXO  
RF  
Synth  
Recovered Clock  
30.72MHz x N  
Base Band Unit  
LTE  
Sampling  
Clocks  
RF  
Synth  
Remote Radio  
Head  
Figure 6.1. LTE Base Station Remote Radio Head  
IEEE  
1588  
JESD  
204B  
GPS  
Rx  
A/D  
LNA  
0
90  
JESD  
204B  
A/D  
CPRI  
Stratum 3/  
3E DPLL  
Tx  
ASIC  
JESD  
204B  
ASIC  
PA  
D/A  
0
90  
JESD  
204B  
OCXO  
D/A  
RF  
Synth  
Base Band Unit  
RF  
Synth  
DCLK  
SYSREF  
DCLK  
SYSREF  
DCLK  
SYSREF  
Remote Radio  
Head  
Recovered Clock  
30.72MHz x N  
Figure 6.2. LTE Base Station Using JESD204B Data Converters  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 35  
Si5380 Data Sheet  
Detailed Block Diagram  
7. Detailed Block Diagram  
54MHz  
XTAL  
Si5380  
XA  
XB  
IN_SEL  
OSC  
÷R0A  
OUT0A  
OUT0  
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
÷P0  
÷P1  
÷P2  
IN0  
IN1  
IN2  
÷R0  
÷R1  
÷R2  
÷R3  
÷R4  
DSPLL  
IN3/  
FB_IN  
÷P3  
t0  
÷N0  
I2C_SEL  
SDA/SDI  
A1/SDO  
SCLK  
t1  
÷N1  
I2C/  
SPI  
÷R5  
÷R6  
÷R7  
÷N2  
÷N3  
t2  
A0/CSb  
NVM  
t3  
t4  
÷N4  
÷R8  
÷R9  
OUT8  
OUT9  
INTRb  
LOLb  
Status Monitor  
÷R9A  
OUT9A  
SYNCb  
OEb  
PDNb  
RSTb  
Figure 7.1. Si5380 Block Diagram  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 36  
Si5380 Data Sheet  
Typical Operating Characteristics (Phase Noise & Jitter)  
8. Typical Operating Characteristics (Phase Noise & Jitter)  
Figure 8.1. Typical Phase Noise and Jitter—1,474.56 MHz  
Figure 8.2. Typical Phase Noise and Jitter—245.76 MHz  
Figure 8.3. Typical Phase Noise and Jitter—122.88 MHz  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 37  
Si5380 Data Sheet  
Pin Description  
9. Pin Description  
48 SYNCb  
1
2
IN1  
IN1b  
47  
LOLb  
46  
3
VDD  
IN_SEL0  
IN_SEL1  
PDNb  
RSTb  
X1  
45  
4
OUT6  
44  
5
OUT6b  
43  
6
VDDO6  
42  
7
OUT5  
41  
40  
39  
38  
37  
36  
35  
34  
33  
8
OUT5b  
VDDO5  
I2C_SEL  
OUT4  
XA  
GND  
Pad  
9
XB  
10  
11  
12  
13  
14  
15  
16  
X2  
OEb  
OUT4b  
VDDO4  
OUT3  
INTRb  
VDDA  
IN2  
OUT3b  
VDDO3  
IN2b  
SCLK  
Figure 9.1. Si5380 64-QFN Top View  
Table 9.1. Pin Descriptions  
Pin Type1  
Pin Name  
Pin Number  
Function  
XA  
XB  
8
9
I
I
Crystal Input. Input pin for external crystal  
(XTAL). Alternatively these pins can be driven with  
an external reference clock (REFCLK). An internal  
register bit selects XTAL or REFCLK mode. De-  
fault is XTAL mode. Single-ended inputs must be  
connected to the XA pin, with the XB pin appropri-  
ately terminated.  
X1  
X2  
7
I
I
XTAL Shield. Connect these pins directly to the  
crystal ground pins. Both the X1/X2 pins and Crys-  
tal ground pins should be separated from the PCB  
ground plane. Refer to the Reference Manual for  
layout guidelines.  
10  
IN0  
IN0b  
IN1  
63  
64  
1
I
I
I
I
I
I
Clock Inputs. These pins accept an input clock  
for synchronizing the device. They support both  
differential and single-ended clock signals. Refer  
to section 3.3.1 Input Configuration and Termina-  
tions for input termination options. These pins are  
high-impedance and must be terminated external-  
ly, when being used. The negative side of the dif-  
ferential input must be ac-grounded when accept-  
ing a single-ended clock. Unused inputs may be  
left unconnected.  
IN1b  
IN2  
2
14  
15  
IN2b  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 38  
Si5380 Data Sheet  
Pin Description  
Pin Type1  
Pin Name  
Pin Number  
Function  
IN3/FB_IN  
61  
62  
I
I
Clock Input 3/External Feedback Input.  
IN3b/FB_INb  
By default, these pins are used as the 4th clock in-  
put (IN3/IN3b). They can also be used as the ex-  
ternal feedback input (FB_IN/FB_INb) for the op-  
tional zero delay mode. See section 5.3.6 for de-  
tails on the optional zero delay mode.  
Outputs  
OUT0A  
OUT0Ab  
OUT0  
21  
20  
24  
23  
28  
27  
31  
30  
35  
34  
38  
37  
42  
41  
45  
44  
51  
50  
54  
53  
56  
55  
59  
58  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
Output Clocks. These output clocks support pro-  
grammable signal amplitude and common mode  
voltage. Desired output signal format is configura-  
ble using register control. Termination recommen-  
dations are provided in the sections, 3.5.4 Differ-  
ential Output Modes and 3.5.6 LVCMOS Output  
Terminations. Unused outputs should be left un-  
connected.  
OUT0b  
OUT1  
OUT1b  
OUT2  
OUT2b  
OUT3  
OUT3b  
OUT4  
OUT4b  
OUT5  
OUT5b  
OUT6  
OUT6b  
OUT7  
OUT7b  
OUT8  
OUT8b  
OUT9  
OUT9b  
OUT9A  
OUT9Ab  
Serial Interface  
I2C_SEL  
39  
I
I2C Select. This pin selects the serial interface  
mode as I2C (I2C_SEL = 1) or SPI (I2C_SEL = 0).  
This pin is internally pulled high.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 39  
Si5380 Data Sheet  
Pin Description  
Pin Type1  
Pin Name  
Pin Number  
Function  
SDA/SDIO  
18  
I/O  
Serial Data Interface. This is the bidirectional da-  
ta pin (SDA) for the I2C mode, the bidirectional da-  
ta pin (SDIO) in the 3-wire SPI mode, or the input  
data pin (SDI) in 4-wire SPI mode. When in I2C  
mode or unused, this pin must be pulled-up using  
an external resistor of at least 1 kΩ. No pull-up re-  
sistor is needed when in SPI mode. This pin is 3.3  
V tolerant.  
Address Select 1/Serial Data Output. In I2C  
mode this pin functions as the A1 address input  
pin. In 4-wire SPI mode, this is the serial data out-  
put (SDO) pin. This pin is 3.3 V tolerant. This pin  
must be pulled-up externally when unused.  
A1/SDO  
SCLK  
17  
16  
I/O  
I
Serial Clock Input. This pin functions as the seri-  
al clock input for both I2C and SPI modes. When  
in I2C mode or unused, this pin must be pulled-up  
using an external resistor of at least 1 kΩ. No pull-  
up resistor is needed when in SPI mode. This pin  
is 3.3 V tolerant.  
A0/CSb  
19  
12  
I
Address Select 0/Chip Select. This pin functions  
as the hardware controlled address A0 in I2C  
mode. In SPI mode, this pin functions as the chip  
select input (active low). This pin is internally  
pulled-up. This pin is 3.3 V tolerant.  
Control/Status  
Interrupt. 2 This pin is asserted low when a  
change in device status has occurred. This pin  
must be pulled-up externally using a resistor of at  
least 1 kΩ. It should be left unconnected when not  
in use.  
INTRb  
O
Power Down. 2 The device enters into a low pow-  
er mode when this pin is pulled low. This pin is in-  
ternally pulled-up. This pin is 3.3 V tolerant. It can  
be left unconnected when not in use.  
PDNb  
RSTb  
5
6
I
I
Device Reset. 2 Active low input that performs  
power-on reset (POR) of the device. Resets all in-  
ternal logic to a known state and forces the device  
registers to their default values. Clock outputs are  
disabled during reset. This pin is internally pulled-  
up. This pin is 3.3 V tolerant.  
Output Enable. 2 This pin disables all outputs  
when held high. This pin is internally pulled low  
and can be left unconnected when not in use. This  
pin is 3.3 V tolerant.  
OEb  
11  
47  
I
Loss Of Lock. 2 This output pin indicates when  
the DSPLL is locked (high) or out-of-lock (low).  
When in use, this pin must be pulled-up using an  
external resistor of at least 1 kΩ. It can be left un-  
connected when not in use.  
LOLb  
O
Output Clock Synchronization. 2 An active low  
signal on this pin resets the output dividers for the  
purpose of re-aligning the output clocks. This pin  
is internally pulled-up and can be left unconnected  
when not in use.  
SYNCb  
48  
I
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 40  
Si5380 Data Sheet  
Pin Description  
Pin Type1  
Pin Name  
Pin Number  
Function  
Input Reference Select. 2 The IN_SEL[1:0] pins  
are used in manual pin controlled mode to select  
the active clock input as shown in Table 3.2 Table  
6.2 on page 8. These pins are internally pulled-  
down and may be left unconnected when unused.  
IN_SEL0  
IN_SEL1  
3
4
I
I
RSVD  
25  
Reserved. Leave disconnected.  
Power  
VDD  
VDD  
32  
46  
60  
13  
P
P
P
P
Core Supply Voltage. The device operates from  
a 1.8 V supply. A 1 uF bypass capacitor should be  
placed very close to each pin.  
VDD  
VDDA  
Core Supply Voltage 3.3 V. This core supply pin  
requires a 3.3 V power source. A 1 uF bypass ca-  
pacitor should be placed very close to this pin.  
VDDO0  
VDDO1  
VDDO2  
VDDO3  
VDDO4  
VDDO5  
VDDO6  
VDDO7  
VDDO8  
VDDO9  
GND PAD  
22  
26  
29  
33  
36  
40  
43  
49  
52  
57  
P
P
P
P
P
P
P
P
P
P
P
Output Clock Supply Voltage. Supply voltage  
(3.3 V, 2.5 V, 1.8 V) for OUTx, OUTxb Outputs.  
Note that VDDO0 supplies power to OUT0 and  
OUT0A; VDDO9 supplies power to OUT9 and  
OUT9A. Leave VDDO pins of unused output driv-  
ers unconnected. An alternative option is to con-  
nect the VDDO pin to a power supply and disable  
the output driver to minimize current consumption.  
A 1 µF bypass capacitor should be placed very  
close to each connected VDDO pin.  
Ground Pad. This pad provides connection to  
ground and must be connected for proper opera-  
tion.  
Note:  
1. I = Input, O = Output, P = Power  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 41  
Si5380 Data Sheet  
Package Outline  
10. Package Outline  
Figure 10.1. Si5380 9x9 mm 64-QFN Package Diagram  
Table 10.1. Package Diagram Dimensions  
NOM  
Dimension  
MIN  
MAX  
0.90  
0.05  
0.30  
A
0.80  
0.00  
0.18  
0.85  
0.02  
0.25  
A1  
b
D
9.00 BSC  
D2  
e
5.10  
5.20  
5.30  
0.50 BSC  
9.00 BSC  
E
E2  
L
5.10  
0.30  
5.20  
0.40  
5.30  
0.50  
0.10  
0.10  
0.08  
0.10  
aaa  
bbb  
ccc  
ddd  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 42  
Si5380 Data Sheet  
PCB Land Pattern  
11. PCB Land Pattern  
Figure 11.1. 9x9 mm 64-QFN Land Pattern  
Table 11.1. PCB Land Pattern Dimensions  
Dimension  
Max  
8.90  
8.90  
0.50  
0.30  
0.85  
5.30  
5.30  
C1  
C2  
E
X1  
Y1  
X2  
Y2  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 43  
Si5380 Data Sheet  
PCB Land Pattern  
Dimension  
Max  
General  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition is calculated based on a fabrication  
Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 3x3 array of 1.25 mm square openings on 1.80 mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 44  
Si5380 Data Sheet  
Top Marking  
12. Top Marking  
Si5380A-  
Rxxxxx-GM  
YYWWTTTTTT  
e4  
TW  
64-QFN  
Figure 12.1. Si5380 Top Marking  
Table 12.1. Top Marking Explanation  
Description  
Line  
Characters  
Line 1  
Si5380A-  
Base part number for Ultra Low Phase Noise, 12-output JESD204B Clock Gen-  
erator:  
Si5380A: 12-output clock generator in 64-QFN package.  
– = Dash character.  
Line 2  
Rxxxxx-GM  
R = Product revision. (See Ordering Guide for current ordering revision).  
xxxxx = Customer specific NVM sequence number. Optional NVM code as-  
signed for custom, factory pre-programmed devices.  
Characters are not included for standard, factory default configured devices.  
See Ordering Guide for more information.  
-GM = Package (QFN) type and temperature range (–40 to +85 °C).  
Line 3  
Line 4  
YYWWTTTTTT  
YYWW = Characters correspond to the year (YY) and work week (WW) of  
package assembly.  
TTTTTT = Manufacturing trace code.  
Circle w/ 1.6 mm diame- Pin 1 indicator; left-justified  
ter  
e4  
Pb-free symbol; Center-Justified  
TW  
TW = Taiwan; Country of Origin (ISO Abbreviation)  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 45  
Si5380 Data Sheet  
Device Errata  
13. Device Errata  
Please log in or register at www.silabs.com to access the device errata document.  
silabs.com | Smart. Connected. Energy-friendly.  
Rev. 0.96 | 46  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3.1 Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3.1.1 Si5380 LTE Frequency Configuration . . . . . . . . . . . . . . . . . . . . . 3  
3.1.2 Si5380 Configuration for JESD204B Clock Generation . . . . . . . . . . . . . . . 4  
3.1.3 DSPLL Loop Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1.4 Fastlock Feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1.5 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1.6 Initialization and Reset . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3.1.7 Freerun Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1.8 Lock Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1.9 Locked Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1.10 Holdover Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.2 External Reference (XA/XB) . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.3 Inputs (IN0, IN1, IN2, IN3/FB_IN) . . . . . . . . . . . . . . . . . . . . . . . 7  
3.3.1 Input Configuration and Terminations . . . . . . . . . . . . . . . . . . . . . 8  
3.3.2 Manual Input Selection (IN0, IN1, IN2, IN3/FB_IN) . . . . . . . . . . . . . . . . . 8  
3.3.3 Automatic Input Switching (IN0, IN1, IN2, IN3/FB_IN) . . . . . . . . . . . . . . . . 9  
3.3.4 Hitless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.5 Glitchless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.3.6 Zero Delay Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
3.4 Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.4.1 Input LOS Detection . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.4.2 XA/XB LOS Detection . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.4.3 OOF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.4.4 Precision OOF Monitor . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.4.5 Fast OOF Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
3.4.6 LOL Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.4.7 Interrupt Pin INTRb . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.5 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.5.1 Output Crosspoint . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.5.2 Output Signal Format. . . . . . . . . . . . . . . . . . . . . . . . . . .14  
3.5.3 Output Terminations . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.5.4 Differential Output Modes . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.5.5 Programmable Common Mode Voltage for Differential Outputs. . . . . . . . . . . . .16  
3.5.6 LVCMOS Output Terminations . . . . . . . . . . . . . . . . . . . . . . .16  
3.5.7 LVCMOS Output Impedance and Drive Strength Selection . . . . . . . . . . . . . .16  
3.5.8 LVCMOS Output Signal Swing . . . . . . . . . . . . . . . . . . . . . . .16  
3.5.9 LVCMOS Output Polarity . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.5.10 Output Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.5.11 Output Disable During LOL . . . . . . . . . . . . . . . . . . . . . . . .17  
3.5.12 Output Disable During XAXB_LOS. . . . . . . . . . . . . . . . . . . . . .17  
3.5.13 Output Driver State When Disabled . . . . . . . . . . . . . . . . . . . . .17  
3.5.14 Synchronous Enable/Disable Feature . . . . . . . . . . . . . . . . . . . . .17  
Table of Contents 47  
3.5.15 Output Skew Control (Δt - Δt ) . . . . . . . . . . . . . . . . . . . . . . .18  
0
4
3.5.16 Output Divider (R) Synchronization. . . . . . . . . . . . . . . . . . . . . .18  
3.6 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.6.1 Power Down Pin (PDNb) . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.7 In-Circuit Programming. . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.8 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.9 Custom Factory Preprogrammed Devices . . . . . . . . . . . . . . . . . . . .19  
3.10 How to Enable Features and/or Configuration Settings Not Available in ClockBuilder Pro for Factory  
Pre-programmed Devices . . . . . . . . . . . . . . . . . . . . . . . . . .20  
4. Register Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
6. Typical Application Diagrams . . . . . . . . . . . . . . . . . . . . . . . . 35  
7. Detailed Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8. Typical Operating Characteristics (Phase Noise & Jitter) . . . . . . . . . . . . . . 37  
9. Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
10. Package Outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
11. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
12. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
13. Device Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Table of Contents 48  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers  
using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific  
device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories  
reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy  
or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply  
or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific  
written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected  
to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no  
circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations  
thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®,  
USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of  
ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  
49  

相关型号:

SI5380A-B-GM

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

Si5380A-D-GM

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5380_16

Ultra-Low Phase Noise, 12-output JESD204B Clock Generator
SILICON

SI5381

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

SI5381A-D04991-GM

Processor Specific Clock Generator,
SILICON

Si5381A-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5381E-E-EVB

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5381E-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382A-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382E-E-EVB

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382E-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

SI5383A-D07172-GMR

Telecom Circuit,
SILICON