Si5381E-E-EVB [SILICON]

Multi-DSPLL Wireless Jitter Attenuating Clocks;
Si5381E-E-EVB
型号: Si5381E-E-EVB
厂家: SILICON    SILICON
描述:

Multi-DSPLL Wireless Jitter Attenuating Clocks

无线
文件: 总51页 (文件大小:818K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Si5381/82 Data Sheet  
Multi-DSPLL Wireless Jitter Attenuating Clocks  
KEY FEATURES  
The Si5381/82 is a wireless multi-PLL, jitter-attenuating clock that leverages Silicon  
Labs’ latest fourth-generation DSPLL technology to address the form factor, power, and  
performance requirements demanded by radio area network equipment, such as small  
cells, baseband units, and distributed antenna systems (DAS). The Si538x is the indus-  
try’s first multi-PLL wireless clock generator family capable of replacing discrete, high-  
performance, VCXO-based clocks with a fully integrated CMOS IC solution. The  
Si5381/82 features a multi-PLL architecture that supports independent timing paths for  
JESD wireless clocks with less than 85 fs typical phase jitter as well as Ethernet and oth-  
er low-jitter, general-purpose clocks. DSPLL technology also supports free-run and hold-  
over operation as well as automatic and hitless input clock switching. This unparalleled  
integration reduces power and size without compromising the stringent performance and  
reliability demanded in wireless applications.  
• Supports simultaneous wireless and  
general-purpose clocking in a single  
device  
• Jitter performance: 85 fs RMS typ (12  
kHz–20 MHz)  
• Input frequency range:  
• Differential: 8 kHz – 750 MHz  
• LVCMOS: 8 kHz – 250 MHz  
• Output frequency range:  
• JESD204B: 480 kHz - 2.94912 GHz  
• Differential: 1 Hz – 712.5 MHz  
• LVCMOS: 480 kHz – 250 MHz  
Applications  
• Pico cells, small cells  
• Mobile backhaul  
• Multiservice Distributed Access Systems (MDAS)  
Si5381/82  
Integrated XO Circuit  
OSC  
÷INT  
OUT0A  
÷INT  
÷INT  
÷INT  
OUT0  
OUT1  
OUT2  
DSPLL  
C
IN0  
IN1  
IN2  
IN3  
÷INT  
÷INT  
÷INT  
÷INT  
DSPLL  
D
DSPLL  
A
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
÷INT  
OUT3  
OUT4  
OUT5  
OUT6  
OUT7  
OUT8  
OUT9  
OUT9A  
DSPLL  
B
Si5381  
Si5382  
NVM  
I2C/SPI  
Control/  
Status  
silabs.com | Building a more connected world.  
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.  
Preliminary Rev. 0.9  
Si5381/82 Data Sheet  
Feature List  
1. Feature List  
The Si5381/82 highlighted features are listed below.  
• Digital frequency synthesis eliminates external VCXO and an-  
alog loop filter components  
• Independent output supply pins: 3.3, 2.5, or 1.8 V  
• Core voltage:  
• DSPLL_B supports high-frequency, wireless clocking. Re-  
maining three DSPLLs support general-purposing clocking  
• VDD = 1.8 V ±5%  
• VDDA = 3.3 V ±5%  
• Integrated crystal option (Grade E)  
• Input frequency range:  
• Automatic free-run, lock, and holdover modes  
• Digitally selectable loop bandwidth: DSPLL_B: 1 Hz to 4 kHz  
• Hitless switching between input clocks  
• Status monitoring (LOS, OOF, LOL)  
• Differential: 7.68 MHz–750 MHz  
• LVCMOS: 10 MHz–250 MHz  
• Output frequency range (DSPLL_B):  
• Differential: up to 2.94912 GHz  
• LVCMOS: up to 250 MHz  
Serial interface: I2C or SPI in-circuit programmable with non-  
volatile OTP memory  
ClockBuilderTM Pro software tool simplifies device configura-  
tion  
• Output frequency range (DSPLL_A/C/D):  
• Differential: up to 735 MHz  
• 4 input, 12 output, 64QFN  
• LVCMOS: up to 250 MHz  
• Temperature range: –40 to +85 °C  
• Pb-free, RoHS-6 compliant  
• Excellent jitter performance:  
• DSPLL_B: 85 fs typ (12 kHz - 20 MHz)  
• DSPLL_A/C/D: 150 fs typ (12 kHz - 20 MHz)  
• Phase noise floor: –165 dBc/Hz  
• Spur performance: –95 dBc max (relative to a 122.88 MHz  
carrier)  
• Flexible crosspoints route any input to any output clock  
• Configurable outputs:  
• Compatible with LVDS, LVPECL, LVCMOS, CML, HCSL  
• Programmable signal amplitude  
• Adjustable output-output delay: 68 ps/step, ±128 steps  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 2  
Si5381/82 Data Sheet  
Ordering Guide  
2. Ordering Guide  
Table 2.1. Ordering Guide  
Maximum Output Frequency  
Number of  
Ordering Part  
Number  
Refer-  
ence  
#
Clock In-  
puts/  
Outputs  
RoHS-6,  
Pb-Free  
Temperature  
Range  
4G/LTE  
JESD204B  
Clocks  
General  
Purpose  
Clocks  
Package  
DSPLL  
Si5381A-E-GM  
Si5382A-E-GM  
External  
External  
4
2
4 / 12  
4 / 12  
2.94912 GHz  
2.94912 GHz  
735 MHz  
735 MHz  
64-Lead  
9x9 mm  
QFN  
Internal  
Crystal  
Yes  
–40 to +85 °C  
Si5381E-E-GM  
Si5382E-E-GM  
4
2
4 / 12  
4 / 12  
2.94912 GHz  
2.94912 GHz  
735 MHz  
735 MHz  
64-Lead  
9x9 mm  
LGA  
Internal  
Crystal  
Si5381E-E-EVB  
Si5382E-E-EVB  
Note:  
Evaluation Board  
Evaluation Board  
1. Add an “R” at the end of the device to denote tape and reel options.  
2. Custom, factory pre-programmed devices are available. Ordering part numbers are assigned by ClockBuilder Pro. Part number  
format is: Si5381E-Exxxxx-GM, where “xxxxx” is a unique numerical sequence representing the pre-programmed configuration.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 3  
Table of Contents  
1. Feature List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3. Functional Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1 Frequency Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1.1 Si5381/82 4G/LTE Frequency Configuration . . . . . . . . . . . . . . . . . 6  
3.1.2 Si5381/82 Configuration for Wireless Clock Generation . . . . . . . . . . . . . . 7  
3.1.3 DSPLL Loop Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1.4 Fastlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1.5 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1.6 Initialization and Reset . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1.7 Free-run Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1.8 Lock Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1.9 Locked Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1.10 Holdover Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.2 External Reference (XA/XB) (Grade A Only) . . . . . . . . . . . . . . . . . . .10  
3.3 Inputs (IN0, IN1, IN2, IN3). . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.3.1 Input Configuration and Terminations . . . . . . . . . . . . . . . . . . . .12  
3.3.2 Manual Input Selection (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . . .12  
3.3.3 Automatic Input Switching (IN0, IN1, IN2, IN3) . . . . . . . . . . . . . . . . .13  
3.3.4 Hitless Input Switching . . . . . . . . . . . . . . . . . . . . . . . . .13  
3.3.5 Glitchless Input Switching . . . . . . . . . . . . . . . . . . . . . . . .13  
3.3.6 Zero Delay Mode (ZDM) . . . . . . . . . . . . . . . . . . . . . . . .14  
3.4 Fault Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.4.1 Input LOS Detection. . . . . . . . . . . . . . . . . . . . . . . . . .15  
3.4.2 Reference LOS Detection . . . . . . . . . . . . . . . . . . . . . . . .15  
3.4.3 OOF Detection . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.4.4 Precision OOF Monitor . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.4.5 Fast OOF Monitor . . . . . . . . . . . . . . . . . . . . . . . . . .16  
3.4.6 LOL Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
3.4.7 Interrupt Pin INTRb . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.5 Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.5.1 Output Crosspoint . . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.5.2 Output Signal Format . . . . . . . . . . . . . . . . . . . . . . . . .18  
3.5.3 Output Terminations. . . . . . . . . . . . . . . . . . . . . . . . . .19  
3.5.4 Programmable Common Mode Voltage for Differential Outputs . . . . . . . . . . .19  
3.5.5 LVCMOS Output Terminations . . . . . . . . . . . . . . . . . . . . . .20  
3.5.6 LVCMOS Output Impedance and Drive Strength Selection. . . . . . . . . . . . .20  
3.5.7 LVCMOS Output Signal Swing . . . . . . . . . . . . . . . . . . . . . .20  
3.5.8 LVCMOS Output Polarity . . . . . . . . . . . . . . . . . . . . . . . .20  
3.5.9 Output Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.5.10 Output Disable During LOL . . . . . . . . . . . . . . . . . . . . . . .21  
3.5.11 Output Disable During Reference LOS (XAXB, Internal Crystal) . . . . . . . . . .21  
3.5.12 Output Driver State When Disabled . . . . . . . . . . . . . . . . . . . .21  
3.5.13 Synchronous Enable/Disable Feature . . . . . . . . . . . . . . . . . . .21  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 4  
3.5.14 Output Divider (R) Synchronization . . . . . . . . . . . . . . . . . . . .21  
3.6 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.6.1 Power Down Pin (PDNb) . . . . . . . . . . . . . . . . . . . . . . . .21  
3.7 In-Circuit Programming. . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.8 Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
3.9 Custom Factory Preprogrammed Devices . . . . . . . . . . . . . . . . . . . .22  
3.10 How to Enable Features and/or Configuration Settings Not Available in ClockBuilder Pro for Factory  
Pre-programmed Devices . . . . . . . . . . . . . . . . . . . . . . . . . .23  
4. Register Map  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
5. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6. Typical Application Diagram  
. . . . . . . . . . . . . . . . . . . . . . . .38  
. . . . . . . . . . . . . . . . . . . . . . . . . . 39  
7. Detailed Block Diagram  
8. Typical Operating Characteristics (Phase Noise and Jitter) . . . . . . . . . . . . . 40  
9. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
10. Packages  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
10.1 64-LGA Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
10.2 64-QFN Package . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
11. PCB Land Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
12. Top Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
13. Device Errata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
14. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
14.1 Revision 0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 5  
Si5381/82 Data Sheet  
Functional Description  
3. Functional Description  
The Si5381/82 integrates four/two independent any-frequency DSPLLs in a monolithic IC for applications that require a combination of  
4G/LTE and general-purpose clocking. Any clock input can be routed to any DSPLL. The output of any DSPLL can be routed to any of  
the device clock outputs. Based on 4th generation DSPLL technology, the Si5381/82 provides a clock-tree-on-a-chip solution for appli-  
cations that need a mix of 4G/LTE and general-purpose frequencies.  
3.1 Frequency Configuration  
The frequency configuration for each of the DSPLLs is programmable through the serial interface and can also be stored in non-volatile  
memory. DSPLL_B generates 4G/LTE frequencies. For DSPLL_A/C/D, fractional frequency multiplication (Mn/Md) allows each of the  
DSPLLs to lock to any input frequency and generate virtually any output frequency. All divider values for a specific frequency plan are  
easily determined using the ClockBuilder Pro utility.The Si5382 supports one general-purpose DSPLL (DSPLL_A).  
3.1.1 Si5381/82 4G/LTE Frequency Configuration  
The device’s frequency configuration is fully programmable through the serial interface and can also be stored in non-volatile memory.  
The combination of flexible integer dividers and a high frequency VCO allows the device to generate multiple output clock frequencies  
for applications that require ultra-low phase noise and spurious performance. The table below shows a list of possible output frequen-  
cies for LTE applications. Note that these 4G/LTE frequencies may be generated with an Ethernet input clock to DSPLL_B. These fre-  
quencies are distributed to the output dividers using a configurable crosspoint mux. The R dividers allow further division for up to 10  
unique integer-ratio related frequencies on the Si5381/82. The ClockBuilder Pro software utility provides a simple means of automati-  
cally calculating the optimum divider values (P, M, N and R) for the frequencies listed in the table below.  
Table 3.1. Example of Possible 4G/LTE Clock Frequencies  
4G/LTE Device Clock Frequencies Fout (MHz)  
15.36  
19.20  
30.72  
38.40  
61.44  
76.80  
122.88  
153.60  
184.32  
245.76  
307.20  
368.64  
491.52  
614.40  
737.28  
983.04  
1228.80  
1474.56  
2949.12  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 6  
Si5381/82 Data Sheet  
Functional Description  
3.1.2 Si5381/82 Configuration for Wireless Clock Generation  
The Si5381/82 can be used as a high performance, fully integrated wireless jitter cleaner while eliminating the need for discrete VCXO  
and loop filter components. The Si5381/82 supports JESD204B subclass 0 and subclass 1 clocking by providing both device clocks  
(DCLK) and system reference clocks (SYSREF). The clock outputs can be independently configured as device clocks or SYSREF  
clocks to drive JESD204B converters, FPGAs, or other logic devices. An example frequency configuration is shown in the figure below.  
In this case, the N dividers determine the device clock frequency and the R dividers provide the divided SYSREF clock which is used as  
the lower frequency frame clock. The SYSREF clock is always periodic and can be controlled (on/off) without glitches by enabling or  
disabling its output through register writes.  
Si5381  
VDDO3  
OUT3  
OUT3b  
÷R3  
VDDO4  
OUT4  
OUT4b  
÷R4  
Device  
Clocks  
&
SYSREF  
(Group 1)  
÷N1  
VDDO5  
OUT5  
OUT5b  
÷R5  
÷R6  
÷R7  
÷R8  
VDDO6  
OUT6  
OUT6b  
From  
DSPLL B  
VDDO7  
OUT7  
OUT7b  
VDDO8  
OUT8  
OUT8b  
Device  
Clocks  
&
÷N4  
SYSREF  
(Group 2)  
OUT9  
OUT9b  
÷R9  
OUT9A  
OUT9Ab  
÷R9A  
VDDO9  
VDDO1  
OUT1  
OUT1b  
÷R1  
÷R2  
VDDO2  
OUT2  
OUT2b  
From DSPLL  
A/C/D  
Ethernet,  
Processor  
Clocks  
VDDO0  
OUT0A  
OUT0Ab  
÷R0A  
÷R0  
OUT0  
OUT0b  
Figure 3.1. Example Divider Configuration for Generating JESD204B Subclass 1 Clocks  
3.1.3 DSPLL Loop Bandwidth  
The DSPLL loop bandwidth determines the amount of input clock jitter attenuation and support a digitally selectable loop bandwidth  
ranging from 1 Hz to 4000 Hz. DSPLL will always remain stable with less than 0.1 dB of peaking regardless of the DSPLL loop band-  
width selection.  
3.1.4 Fastlock  
Selecting a low DSPLL loop bandwidth (e.g., 1 Hz) will generally lengthen the lock acquisition time. The fastlock feature allows setting a  
temporary Fastlock Loop Bandwidth that is used during the lock acquisition process. Higher fastlock loop bandwidth settings will enable  
the DSPLLs to lock faster. Fastlock Loop Bandwidth settings in the range of 1 Hz to 4 kHz are available for selection. Once lock acquis-  
ition has completed, the DSPLL’s loop bandwidth will automatically revert to the DSPLL Loop Bandwidth setting as described in section  
3.1.3 DSPLL Loop Bandwidth. The fastlock feature can be enabled or disabled independently for each of the DSPLLs.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 7  
Si5381/82 Data Sheet  
Functional Description  
3.1.5 Modes of Operation  
Once initialization is complete, each of the DSPLLs operates independently in one of four modes: Free-run Mode, Lock Acquisition  
Mode, Locked Mode, or Holdover Mode. A state diagram showing the modes of operation is shown in the figure below. The following  
sections describe each of these modes in greater detail.  
Power-Up  
Reset and  
Initialization  
No valid  
input clocks  
selected  
Free-run  
Valid input clock  
selected  
An input is qualified  
and available for  
selection  
Lock Acquisition  
(Fast Lock)  
Phase lock on  
selected input  
clock is achieved  
Holdover  
Mode  
No  
Selected input  
clock fails  
Is holdover  
history valid?  
Locked  
Mode  
Figure 3.2. Modes of Operation  
3.1.6 Initialization and Reset  
When power is applied, the device begins an initialization period where it downloads default register values and configuration data from  
NVM and performs other initialization tasks. Communicating with the device through the serial interface is possible once this initializa-  
tion period is complete. No clocks will be generated until the initialization is complete. There are two types of resets available. A hard  
reset is functionally similar to a device power-up. All registers will be restored to the values stored in NVM, and all circuits will be re-  
stored to their initial state including the serial interface. A hard reset is initiated using the RST pin or by asserting the hard reset bit. A  
soft reset bypasses the NVM download. It is simply used to initiate register configuration changes. A hard reset affects all DSPLLs,  
while a soft reset can either affect all or each DSPLL individually.  
3.1.7 Free-run Mode  
Once power is applied to the Si5381/82 and initialization is complete, all DSPLLs will automatically enter Free-run Mode. The frequency  
accuracy of the reference clock (internal crystal or external reference on XA/XB pins). Any drift of the crystal frequency will be tracked  
at the output clock frequencies. A TCXO or OCXO is recommended for applications that require better frequency accuracy and stability  
while in Free-run Mode or Holdover Mode.  
3.1.8 Lock Acquisition  
Each of the DSPLLs independently monitors its configured inputs for a valid clock. If at least one valid clock is available for synchroni-  
zation, a DSPLL will automatically start the lock acquisition process. If the fastlock feature is enabled, a DSPLL will acquire lock using  
the Fastlock Loop Bandwidth setting and then transition to the DSPLL Loop Bandwidth setting when lock acquisition is complete. Dur-  
ing lock acquisition, the outputs will generate a clock that follows the VCO frequency change as it pulls-in to the input clock frequency.  
3.1.9 Locked Mode  
Once locked, a DSPLL will generate output clocks that are both frequency and phase locked to their selected input clocks. At this point,  
any XTAL frequency drift will not affect the output frequency. Each DSPLL has its own status bit to indicate when lock is achieved. See  
3.4.6 LOL Detection for more details on the operation of the loss of lock circuit.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 8  
Si5381/82 Data Sheet  
Functional Description  
3.1.10 Holdover Mode  
Any of the DSPLLs will automatically enter Holdover Mode when the selected input clock becomes invalid and no other valid input  
clocks are available for selection. Each DSPLL uses an averaged input clock frequency as its final holdover frequency to minimize the  
disturbance of the output clock phase and frequency when an input clock suddenly fails. The holdover circuit for each DSPLL stores up  
to 120 seconds of historical frequency data while locked to a valid clock input. The final averaged holdover frequency value is calcula-  
ted from a programmable window within the stored historical frequency data. Both the window size and delay are programmable as  
shown in the figure below. The window size determines the amount of holdover frequency averaging. The delay value allows ignoring  
frequency data that may be corrupt just before the input clock failure.  
Figure 3.3. Programmable Holdover Window  
Clock Failure  
and Entry into  
Holdover  
Historical Frequency Data Collected  
time  
Programmable historical data window  
Programmable delay  
used to determine the final holdover value  
120s  
0s  
30ms, 60ms, 1s,10s, 30s, 60s  
1s,10s, 30s, 60s  
When entering Holdover Mode, a DSPLL will pull its output clock frequency to the calculated averaged holdover frequency. While in  
Holdover Mode, the output frequency drift is entirely dependent on the external crystal or external reference clock connected to the  
XA/XB pins. If the clock input becomes valid, a DSPLL will automatically exit the Holdover Mode and reacquire lock to the new input  
clock. This process involves pulling the output clock frequencies to achieve frequency and phase lock with the input clock. This pull-in  
process is glitchless, and its rate is controlled by the DSPLL bandwidth or the fastlock bandwidth. These options are register program-  
mable.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 9  
Si5381/82 Data Sheet  
Functional Description  
3.2 External Reference (XA/XB) (Grade A Only)  
An external crystal (XTAL) can be used on Grade A parts in combination with the internal oscillator (OSC) to produce an ultra-low  
phase noise reference clock for the DSPLLs and for providing a stable reference for the free-run and holdover modes. A simplified dia-  
gram is shown in the figure below. The Si5381/82 includes internal XTAL loading capacitors which eliminates the need for external ca-  
pacitors and also has the benefit of reduced noise coupling from external sources. Refer to the Si5381/82 Datasheet for crystal specifi-  
cations. A crystal frequency of 54 MHz is required, with a total accuracy of ±100 ppm* recommended for best performance. The  
Si5381/82 includes built-in XTAL load capacitors (CL) of 8 pF, which are switched out of the circuit when using an external XO. The  
Si5381/82 Family Reference Manual provides additional information on PCB layout recommendations for the crystal to ensure optimum  
jitter performance. The Si5381/82 can also accommodate an external reference clock (REFCLK) instead of a crystal. Selection between  
the external XTAL or REFCLK is controlled by register configuration. The internal crystal loading capacitors (CL) are disabled in this  
mode. It is important to note that when using the REFCLK option the close-in phase noise of the outputs is directly affected by the  
phase noise of the external XO reference. Refer to the Si5381/82 Datasheet for REFCLK signal requirements when using this mode.  
Note: Including initial frequency tolerance and frequency variation over the full operating temperature range, voltage range, load condi-  
tions, and aging.  
Differential Connection  
Single-ended XO Connection  
X1  
nc  
X1  
nc  
X2  
nc  
X2  
nc  
0.1 uf  
Note: 2.0 Vpp_se max  
2xCL  
2xCL  
0.1 uf  
XA  
XA  
0.1 uf  
OSC  
OSC  
XB  
XO with Clipped Sine  
Wave Output  
XB  
0.1 uf  
2xCL  
2xCL  
Si5381/82  
Si5381/82  
0.1 uf  
Note: 2.5 Vpp diff max  
Crystal Connection  
Single-ended Connection  
X1  
nc  
X2  
nc  
Note: 2.0 Vpp_se max  
X1  
2xCL  
CMOS/XO  
Output  
2xCL  
XA  
0.1 uf  
XA  
R1  
XTAL  
OSC  
OSC  
R2  
0.1 uf  
XB  
0.1 uf  
XB  
X2  
2xCL  
2xCL  
Si5381/82  
Si5381/82  
Figure 3.4. XAXB Crystal Resonator and External Reference Clock Connection Options  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 10  
Si5381/82 Data Sheet  
Functional Description  
3.3 Inputs (IN0, IN1, IN2, IN3)  
There are four inputs that can be used to synchronize any of the DSPLLs. The inputs accept both differential and single-ended clocks.  
A crosspoint between the inputs and the DSPLLs allows any of the inputs to connect to any of the DSPLLs as shown in the figure  
below.  
Input Crosspoint  
IN0  
0
÷P0  
IN0b  
DSPLL  
1
2
A
3
0
IN1  
1
2
3
DSPLL  
B
÷P1  
÷P2  
÷P3  
IN1b  
0
1
2
3
DSPLL  
C
IN2  
IN2b  
0
1
2
3
DSPLL  
D
IN3/FB_IN  
IN3b/FB_INb  
Figure 3.5. DSPLL Input Selection Crosspoint  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 11  
Si5381/82 Data Sheet  
Functional Description  
3.3.1 Input Configuration and Terminations  
Each of the inputs can be configured as differential or single-ended LVCMOS. The recommended input termination schemes are shown  
in the figure below. Standard 50% duty cycle signals must be ac-coupled, while low duty cycle pulsed CMOS signals can be dc-cou-  
pled. Unused inputs can be disabled and left unconnected when not in use.  
Standard AC-coupled Differential LVDS  
Si5381/82  
Standard  
50  
INx  
100  
3.3 V, 2.5 V  
LVDS or  
CML  
INxb  
50  
Pulsed CMOS  
Standard AC-coupled Differential LVPECL  
Si5381/82  
Standard  
50  
INx  
100  
INxb  
50  
3.3 V, 2.5 V  
LVPECL  
Pulsed CMOS  
Standard AC-coupled Single-ended  
Si5381/82  
50  
Standard  
INx  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
INxb  
Pulsed CMOS  
Pulsed CMOS DC-coupled Single-ended  
Si5381/82  
R1  
Standard  
INx  
50  
R2  
INxb  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
R1  
R2  
Pulsed CMOS  
VDD  
1.8V  
2.5V  
3.3V  
(Ohms) (Ohms)  
Resistor values for  
fIN_PULSED < 1 MHz  
324  
511  
634  
665  
475  
365  
Figure 3.6. Termination of Differential and LVCMOS Input Signals  
3.3.2 Manual Input Selection (IN0, IN1, IN2, IN3)  
Input clock selection can be made manually using the IN_SEL[1:0] pins for DSPLL_B or through a register for all DSPLLs. A register bit  
determines input selection as pin selectable or register selectable. The IN_SEL pins are selected by default. If there is no clock signal  
on the selected input, the device will automatically enter free-run or holdover mode.  
Table 3.2. Manual Input Selection Using IN_SEL[1:0] Pins  
IN_SEL[1:0]  
Selected Input to DSPLL_B  
0
0
1
1
0
1
0
1
IN0  
IN1  
IN2  
IN3  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 12  
Si5381/82 Data Sheet  
Functional Description  
3.3.3 Automatic Input Switching (IN0, IN1, IN2, IN3)  
An automatic input selection state machine is available in addition to the manual switching option. In automatic mode, the selection  
criteria is based on reference qualification, input priority, and the revertive option. Only references which are valid can be selected by  
the automatic state machine. If there are no valid references available, the DSPLL will enter the Holdover Mode. With revertive switch-  
ing enabled, the highest priority input with a valid reference is always selected. If an input with a higher priority becomes valid, then an  
automatic switchover to that input will be initiated. With non-revertive switching, the active input will always remain selected while it is  
valid. If it becomes invalid, an automatic switchover to a valid input with the highest priority will be initiated.  
3.3.4 Hitless Input Switching  
Hitless switching is a feature that prevents a phase transient from propagating to the output when switching between two frequency  
locked clock inputs that have a fixed phase difference between them. A hitless switch can only occur when the two input frequencies  
are frequency locked meaning that they have to be exactly at the same frequency, or have an integer frequency relationship to each  
other. When this feature is enabled, the DSPLL simply absorbs the phase difference between the two input clocks during an input  
switch. When disabled (normal switching), the phase difference between the two inputs is propagated to the output at a rate determined  
by the DSPLL loop bandwidth.  
3.3.5 Glitchless Input Switching  
Each DSPLL has the ability of switching between two input clocks that are up to ±20 ppm apart in frequency. The DSPLL will pull-in to  
the new frequency using the DSPLL loop bandwidth or using the Fastlock loop bandwidth if it is enabled. The loss of lock (LOL) indica-  
tor will be asserted while the DSPLL is pulling-in to the new clock frequency. There will be no output runt pulses generated at the out-  
put. Glitchless input switching is available regardless of whether the hitless switching feature is enabled or disabled.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 13  
Si5381/82 Data Sheet  
Functional Description  
3.3.6 Zero Delay Mode (ZDM)  
Zero delay mode is configured for DSPLL B by opening the internal feedback loop through software configuration and closing the loop  
externally around as shown in the figure below. This helps to cancel out the internal delay introduced by the dividers, the crosspoint, the  
input, and the output drivers. Any output generated by DSPLL B can be fed back to the IN3/FB_IN pins, although using the output driver  
that achieves the shortest trace length will help to minimize the input-to-output delay. The OUT9A and IN3/FB_IN pins are recommen-  
ded for the external feedback connection. The FB_IN input pins must be terminated and ac-coupled when zero delay mode is used. A  
differential external feedback path connection is necessary for best performance. The order of the OUT9A and FB_IN polarities is such  
that they may be routed on the device side of the PCB without requiring vias or needing to cross each other. Zero delay mode is not  
available on Si5381/82 A, C, or D DSPLLs.  
IN0  
Si5381  
÷P0  
IN0b  
IN1  
DSPLL B  
÷P1  
IN1b  
PD LPF  
IN2  
÷P2  
IN2b  
÷M  
÷5  
IN3/FB_IN  
÷P3  
VDDO0  
IN3b/FB_INb  
OUT0A  
OUT0Ab  
÷R0A  
÷R0  
OUT0  
OUT0b  
VDDO2  
OUT2  
OUT2b  
t1  
÷N1  
÷R2  
VDDO8  
OUT8  
OUT8b  
÷R8  
t4  
÷N4  
OUT9  
OUT9b  
÷R9  
OUT9A  
÷R9A  
OUT9Ab  
VDDO9  
External Feedback Path  
Figure 3.7. Zero Delay Mode (ZDM) Setup  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 14  
Si5381/82 Data Sheet  
Functional Description  
3.4 Fault Monitoring  
All four input clocks (IN0, IN1, IN2, IN3) are monitored for loss of signal (LOS) and out-of-frequency (OOF) as shown in the figure be-  
low. The reference at the XA/XB pins is also monitored for LOS since it provides a critical clock for the DSPLLs (external XA/XB pins on  
grade A only). Each DSPLL also has a Loss Of Lock (LOL) indicator, which is asserted when the DSPLL has lost synchronization with  
the selected input clock.  
XA XB  
OSC  
LOS  
DSPLL A  
LOL  
PD  
LPF  
÷M  
IN0  
Precision  
Fast  
LOS  
LOS  
LOS  
LOS  
OOF  
OOF  
OOF  
OOF  
÷P0  
÷P1  
÷P2  
÷P3  
DSPLL B  
IN0b  
LOL  
PD  
LPF  
÷M  
IN1  
Precision  
Fast  
IN1b  
Precision  
Fast  
IN2  
DSPLL C  
LOL  
PD  
IN2b  
LPF  
÷M  
IN3  
Precision  
Fast  
IN3b  
DSPLL D  
LOL  
PD  
LPF  
÷M  
Figure 3.8. Si5381/82 Fault Monitors (Grade A Shown)  
3.4.1 Input LOS Detection  
The loss of signal monitor measures the period of each input clock cycle to detect phase irregularities or missing clock edges. Each of  
the input LOS circuits have their own programmable sensitivity which allows ignoring missing edges or intermittent errors. Loss of signal  
sensitivity is configurable using the ClockBuilder Pro utility. The LOS status for each of the monitors is accessible by reading a status  
register. The live LOS register always displays the current LOS state and a sticky register always stays asserted until cleared. An option  
to disable any of the LOS monitors is also available.  
Sticky  
Monitor  
LOS  
LOS  
en  
Live  
Figure 3.9. LOS Status Indicators  
3.4.2 Reference LOS Detection  
An LOS monitor is available to ensure that the reference clock (REFCLK) XA/XB external reference (grade A) or internal crystal (grade  
E) is valid. By default, the output clocks are disabled when reference LOS is detected. This feature can be disabled such that the device  
will continue to produce output clocks when reference LOS is detected. See the 3.5.11 Output Disable During Reference LOS (XAXB,  
Internal Crystal) section for details.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 15  
Si5381/82 Data Sheet  
Functional Description  
3.4.3 OOF Detection  
Each input clock is monitored for frequency accuracy with respect to an OOF reference which it considers as its “0_ppm” reference.  
This OOF reference can be selected as either: XA/XB/internal crystal, IN0, IN1, IN2 or IN3. The final OOF status is determined by the  
combination of both a precise OOF monitor and a fast OOF monitor as shown in the figure below. An option to disable either monitor is  
also available. The live OOF register always displays the current OOF state, and its sticky register bit stays asserted until cleared.  
Sticky  
Monitor  
Precision  
Fast  
en  
en  
OOF  
OOF  
Live  
Figure 3.10. OOF Status Indicator  
3.4.4 Precision OOF Monitor  
The Precision OOF monitor circuit measures the frequency of all input clocks to within ±1 ppm accuracy with respect to the reference  
clock (XA/XB on Grade A and internal crystal on Grade E). The OOF monitor considers the frequency at the reference pins as its 0 ppm  
OOF reference. A valid input frequency is one that remains within the OOF frequency range which is register configurable from ±2 ppm  
to ±500 ppm in steps of 1/16 ppm. A configurable amount of hysteresis is also available to prevent the OOF status from toggling at the  
failure boundary. An example is shown in the figure below. In this case the OOF monitor is configured with a valid frequency range of  
±6 ppm and with 2 ppm of hysteresis. An option to use one of the input pins (IN0–IN3) as the 0 ppm OOF reference instead of the  
XA/XB pins is available. This option is register configurable.  
OOF Declared  
OOF Cleared  
fIN  
Hysteresis  
Hysteresis  
-4 ppm  
(Clear)  
-6 ppm  
(Set)  
+4 ppm  
(Clear)  
+6 ppm  
(Set)  
0 ppm  
OOF  
Reference  
Figure 3.11. Example of Precise OOF Monitor Assertion and De-assertion Triggers  
3.4.5 Fast OOF Monitor  
Because the precision OOF monitor needs to provide 1 ppm of frequency measurement accuracy, it must measure the monitored input  
clock frequencies over a relatively long period of time. This may be too slow to detect an input clock that is quickly ramping in frequen-  
cy. An additional level of OOF monitoring called the Fast OOF monitor runs in parallel with the precision OOF monitors to quickly detect  
a ramping input frequency. The Fast OOF monitor asserts OOF on an input clock frequency that has changed by 1,000 to 16,000 ppm.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 16  
Si5381/82 Data Sheet  
Functional Description  
3.4.6 LOL Detection  
There is an LOL monitor for each of the DSPLLs. The LOL monitor asserts an LOL register bit when a DSPLL has lost synchronization  
with its selected input clock. The LOL monitor functions by measuring the frequency difference between the input and feedback clocks  
at the phase detector. There are two LOL frequency monitors, one that sets the LOL indicator (LOL Set) and another that clears the  
indicator (LOL Clear). An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to com-  
pletely lock to the input clock. The timer is also useful to prevent the LOL indicator from toggling or chattering as the DSPLL completes  
lock acquisition. A block diagram of the LOL monitor is shown in the figure below. The live LOL register always displays the current LOL  
state and a sticky register always stays asserted until cleared.  
Sticky  
Si5381/82  
LOL Status Registers  
Live  
DSPLL D  
DSPLL C  
DSPLL B  
DSPLL A  
LOL Monitor  
LOL  
Clear  
t
LOL  
Set  
DSPLL A  
fIN  
PD  
LPF  
÷M  
Figure 3.12. LOL Status Indicators  
Each of the frequency monitors have adjustable sensitivity which is register configurable from 0.1 ppm to 10000 ppm. Having two sepa-  
rate frequency monitors allows for hysteresis to help prevent chattering of LOL status. An example configuration where LOCK is indica-  
ted when there is less than 0.2 ppm frequency difference at the inputs of the phase detector and LOL is indicated when there is more  
than 2 ppm frequency difference is shown in the figure below.  
Clear LOL  
Threshold  
Set LOL  
Threshold  
Lock Acquisition  
LOL  
Hysteresis  
Lost Lock  
LOCKED  
0
0.2  
2
20000  
Phase Detector Frequency Difference (ppm)  
Figure 3.13. LOL Set and Clear Thresholds  
An optional timer is available to delay clearing of the LOL indicator to allow additional time for the DSPLL to completely phase lock to  
the input clock. The timer is also useful to prevent the LOL indicator from toggling or chattering as the DSPLL completes lock acquisi-  
tion. The configurable delay value depends on frequency configuration and loop bandwidth of the DSPLL and is automatically calcula-  
ted using the ClockBuilder Pro utility.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 17  
Si5381/82 Data Sheet  
Functional Description  
3.4.7 Interrupt Pin INTRb  
An interrupt pin (INTRb) indicates a change in state with any of the status indicators for any of the DSPLLs. All status indicators are  
maskable to prevent assertion of the interrupt pin. The state of the INTRb pin is reset by clearing the sticky status registers.  
mask  
IN0_LOS_FLG  
IN0  
mask  
IN0_OOF_FLG  
mask  
IN1_LOS_FLG  
IN1  
mask  
IN1_OOF_FLG  
mask  
IN2_LOS_FLG  
IN2  
mask  
IN2_OOF_FLG  
INTRb  
mask  
IN3_LOS_FLG  
IN3  
mask  
IN3_OOF_FLG  
mask  
XAXB_LOS_FLG  
mask  
LOLA_FLG  
mask  
LOLB_FLG  
mask  
LOL  
LOLC_FLG  
mask  
LOLD_FLG  
mask  
HOLDA_FLG  
mask  
HOLDB_FLG  
mask  
HOLD  
HOLDC_FLG  
mask  
HOLDD_FLG  
Figure 3.14. Interrupt Triggers and Masks  
3.5 Outputs  
The Si5381/82 supports up to twelve differential output drivers. Each driver has a configurable voltage amplitude and common mode  
voltage covering a wide variety of differential signal formats including LVPECL, LVDS, HCSL, and CML. In addition to supporting differ-  
ential signals, any of the outputs can be configured as single-ended LVCMOS (3.3 V, 2.5 V, or 1.8 V) providing up to 24 single-ended  
outputs, or any combination of differential and single-ended outputs.  
3.5.1 Output Crosspoint  
A crosspoint allows any of the output drivers to connect with any of the DSPLLs. The crosspoint configuration is programmable and can  
be stored in NVM so that the desired output configuration is ready at power-up.  
3.5.2 Output Signal Format  
The differential output amplitude and common mode voltage are both fully programmable covering a wide variety of signal formats in-  
cluding LVPECL, LVDS, HCSL, and CML. In addition to supporting differential signals, any of the outputs can be configured as  
LVCMOS (3.3 V, 2.5 V, or 1.8 V) drivers providing up to 24 single-ended outputs, or any combination of differential and single-ended  
outputs.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 18  
Si5381/82 Data Sheet  
Functional Description  
3.5.3 Output Terminations  
The output drivers support both ac-coupled and dc-coupled terminations as shown in the following figure.  
AC-coupled LVDS/LVPECL  
DC-coupled LVDS  
VDDO = 3.3 V, 2.5 V, 1.8 V  
VDDO = 3.3 V, 2.5 V  
50  
50  
50  
50  
OUTx  
OUTx  
100  
OUTxb  
100  
OUTxb  
Internally  
self-biased  
Si5381/82  
Si5381/82  
AC-coupled LVPECL / CML  
DC-coupled LVCMOS  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
VDD – 1.3 V  
VDDO = 3.3 V, 2.5 V, 1.8 V  
VDDO = 3.3 V, 2.5 V  
50  
50  
50  
50  
Rs  
Rs  
OUTx  
50  
50  
OUTx  
OUTxb  
OUTxb  
Si5381/82  
Si5381/82  
AC-coupled HCSL  
VDDRX  
VDDO = 3.3 V, 2.5 V, 1.8 V  
R1  
R1  
OUTx  
OUTxb  
50  
50  
Standard  
HCSL  
Receiver  
Si5381/82  
R2  
R2  
For VCM = 0.35 V  
VDDRX  
R1  
R2  
442 Ω  
56.2 Ω  
59 Ω  
3.3 V  
2.5 V  
1.8 V  
332 Ω  
243 Ω  
63.4 Ω  
Figure 3.15. Supported Output Terminations  
3.5.4 Programmable Common Mode Voltage for Differential Outputs  
The common mode voltage (VCM) for the differential normal and low power modes is programmable in 100 mV increments from 0.7 V  
to 2.3 V depending on the voltage available at the output’s VDDO pin. Setting the common mode voltage is useful when dc-coupling the  
output drivers.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 19  
Si5381/82 Data Sheet  
Functional Description  
3.5.5 LVCMOS Output Terminations  
LVCMOS outputs are dc-coupled with source-side series termination as shown in the figure below.  
DC-coupled LVCMOS  
3.3 V, 2.5 V, 1.8 V  
LVCMOS  
V
DDO = 3.3V, 2.5V, 1.8V  
50  
50  
Rs  
Rs  
OUTx  
OUTxb  
Figure 3.16. LVCMOS Output Terminations  
3.5.6 LVCMOS Output Impedance and Drive Strength Selection  
Each LVCMOS driver has a configurable output impedance to accommodate different trace impedances and drive strengths. A source  
termination resistor is recommended to help match the selected output impedance to the trace impedance. There are three programma-  
ble output impedance selections for each VDDO options as shown in the table below.  
Table 3.3. LVCMOS Output Impedance and Drive Strength Selections  
VDDO  
OUTx_CMOS_DRV  
Source Impedance (Zs)  
Drive Strength (Iol/Ioh)  
3.3 V  
0x01  
0x02  
0x03*  
0x01  
0x02  
0x03*  
0x03*  
38 Ω  
30 Ω  
22 Ω  
43 Ω  
35 Ω  
24 Ω  
31 Ω  
10 mA  
12 mA  
17 mA  
6 mA  
2.5 V  
1.8 V  
8 mA  
11 mA  
5 mA  
Note: Use of the lowest impedance setting is recommended for all supply voltages for best edge rates.  
3.5.7 LVCMOS Output Signal Swing  
The signal swing (VOL/VOH) of the LVCMOS output drivers is set by the voltage on the VDDO pins. Each output driver has its own  
VDDO pin allowing a unique output voltage swing for each of the LVCMOS drivers. OUT0 and OUT0A share the same VDDO pin.  
OUT9 and OUT9A also share the VDDO pin. All other outputs have their own individual VDDO pins. Each output driver automatically  
detects the voltage on the VDDO pin to properly determine the correct output voltage. By default, both output pins carry the output clock  
signal, generating two CMOS output signals for each output driver. It is possible to configure the device to have only one of the output  
pins active to reduce power consumption.  
3.5.8 LVCMOS Output Polarity  
When a driver is configured as an LVCMOS output it generates a clock signal on both pins (OUTx and OUTxb). By default the clock on  
the OUTxb pin is generated with the same polarity (in phase) with the clock on the OUTx pin. The polarity of these clocks is configura-  
ble enabling complimentary clock generation and/or inverted polarity with respect to other output drivers.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 20  
Si5381/82 Data Sheet  
Functional Description  
3.5.9 Output Enable/Disable  
The OEb pin provides a convenient method of disabling or enabling all of the output drivers at the same time. When the OEb pin is held  
high all outputs will be disabled. When held low, the outputs will all be enabled. Outputs in the enabled state can still be individually  
disabled through register control.  
3.5.10 Output Disable During LOL  
By default, a DSPLL that is out of lock will generate either free-running clocks or generate clocks in holdover mode. There is an option  
to disable the outputs when a DSPLL is LOL. This option can be useful to force a downstream PLL into holdover.  
3.5.11 Output Disable During Reference LOS (XAXB, Internal Crystal)  
The internal oscillator circuit (OSC) in combination with the external XA/XB reference (Grade A) internal crystal (Grade E) provides a  
critical function for the operation of the DSPLLs. In the event of a crystal failure, the device will assert an XAXB_LOS alarm. By default,  
all outputs will be disabled during assertion of the XAXB_LOS alarm. There is an option to leave the outputs enabled during an  
XAXB_LOS alarm, but the frequency accuracy and stability will be indeterminate during this fault condition. The internal oscillator circuit  
(OSC) in combination with the external crystal (XTAL) provides a critical function for the operation of the DSPLLs.  
3.5.12 Output Driver State When Disabled  
The disabled state of an output driver is configurable as either disable low or disable high.  
3.5.13 Synchronous Enable/Disable Feature  
The output drivers provide a selectable synchronous enable/disable feature. Output drivers with this feature active will wait until a clock  
period has completed before the driver is disabled or enabled. This prevents unwanted runt pulses from occurring when enabling or  
disabling an output. When this feature is turned off, the output clock will disable immediately without waiting for the period to complete.  
3.5.14 Output Divider (R) Synchronization  
All the output R dividers are reset to a known state during the power-up initialization period. This ensures consistent and repeatable  
phase alignment across all output drivers. Resetting the device using the RSTb pin or asserting the reset bit will have the same result.  
Asserting the sync register bit provides another method of realigning the R dividers without resetting the device.  
3.6 Power Management  
Unused inputs and output drivers can be powered down when unused. Consult the ClockBuilder Pro configuration utility for details.  
3.6.1 Power Down Pin (PDNb)  
A power down pin is provided to force the device in a low power mode. The device’s configuration will be maintained but no output  
clocks will be generated. Most of the internal blocks will be shut down but device communication via the serial interface will still be  
available. When the PDNb pin is pulled low the outputs will shut down without glitching (the clock’s complete period will be generated  
before shutting down). When PDNb is released the device will start generating clocks without glitches. The device will generate free-  
running clocks until each DSPLL has acquired lock to the selected input clock source.  
3.7 In-Circuit Programming  
The Si5381/82 is fully configurable using the serial interface (I2C or SPI). At power-up, the device downloads its default register values  
from internal non-volatile memory (NVM). Application specific default configurations can be written into NVM allowing the device to gen-  
erate specific clock frequencies at power-up. Writing default values to NVM is in-circuit programmable with normal operating power sup-  
ply voltages applied to its VDD and VDDA pins. The NVM is writable two times. Once a new configuration has been written to NVM, the  
old configuration is no longer accessible. Refer to the Si5381/82 Family Reference Manual for a detailed procedure for writing registers  
to NVM.  
3.8 Serial Interface  
Configuration and operation of the Si5381/82 is controlled by reading and writing registers using the I2C or SPI interface. The I2C_SEL  
pin selects I2C or SPI operation. The Si5381/82 supports communication with a 3.3 V or 1.8 V host by setting the IO_VDD_SEL config-  
uration bit. The SPI mode supports 4-wire or 3-wire by setting the SPI_3WIRE configuration bit.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 21  
Si5381/82 Data Sheet  
Functional Description  
3.9 Custom Factory Preprogrammed Devices  
For applications where a serial interface is not available for programming the device, custom pre-programmed parts can be ordered  
with a specific configuration written into NVM. A factory pre-programmed device will generate clocks at power-up. Custom, factory-pre-  
programmed devices are available. Use the ClockBuilder Pro custom part number wizard (www.silabs.com/clockbuilderpro) to quickly  
and easily request and generate a custom part number for your configuration.  
In less than three minutes, you will be able to generate a custom part number with a detailed data sheet addendum matching your  
design’s configuration. Once you receive the confirmation email with the data sheet addendum, simply place an order with your local  
Silicon Labs sales representative. Samples of your pre-programmed device will ship to you typically within two weeks.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 22  
Si5381/82 Data Sheet  
Functional Description  
3.10 How to Enable Features and/or Configuration Settings Not Available in ClockBuilder Pro for Factory Pre-programmed  
Devices  
As with essentially all software utilities, ClockBuilder Pro is continuously updated and enhanced. By registering at www.silabs.com and  
opting in for updates to software, you will be notified whenever changes are made and what the impact of those changes are. This  
update process will ultimately enable ClockBuilder Pro users to access all features and register setting values documented in this data  
sheet.  
However, if you must enable or access a feature or register setting value so that the device starts up with this feature or a register  
setting, but the feature or register setting is NOT yet available in CBPro, you must contact a Silicon Labs applications engineer for as-  
sistance. Examples of this type of feature or custom setting are the customizable output amplitude and common voltages for the clock  
outputs. After careful review of your project file and custom requirements, a Silicon Labs applications engineer will email back your  
CBPro project file with your specific features and register settings enabled, using what is referred to as the manual "settings override"  
feature of CBPro. "Override" settings to match your request(s) will be listed in your design report file. Examples of setting "overrides" in  
a CBPro design report are shown below:  
Table 3.4. Setting Overrides  
Location  
Customer Name  
FORCE_HOLD_PLLA  
OOF_DIV_CLK_DIS  
Engineering Name  
OLA_HO_FORCE  
OOF_DIV_CLK_DIS  
Type  
No NVM  
User  
Target  
N/A  
Dec Value  
Hex Value  
0x1  
0x0435[0]  
0x0B48[0:4]  
1
0
OPN and EVB  
0x00  
Once you receive the updated design file, simply open it in CBPro. After you create a custom OPN, the device will begin operation after  
startup with the values in the NVM file, including the Silicon Labs-supplied override settings.  
Place sample  
Start  
order  
Do I need a  
pre-programmed device  
with a feature or setting  
which is unavailable in  
ClockBuilder Pro?  
Generate  
Custom OPN  
in CBPro  
Configure device  
using CBPro  
No  
Yes  
Contact Silicon Labs  
Technical Support  
to submit & review  
your  
Yes  
non-standard  
configuration  
request & CBPro  
project file  
Receive  
updated CBPro  
project file  
from  
Silicon Labs  
with “Settings  
Override”  
Does the updated  
CBPro Project file  
match your  
Load project file  
into CBPro and test  
requirements?  
Figure 3.17. Flowchart to Order Custom Parts with Features not Available in CBPro  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 23  
Si5381/82 Data Sheet  
Register Map  
4. Register Map  
The register map is divided into multiple pages where each page has 256 addressable registers. Page 0 contains frequently accessed  
registers, such as alarm status, resets, device identification, etc. Other pages contain registers that need less frequent access such as  
frequency configuration and general device settings. Refer to the Si5381/82 Family Reference Manual for a complete list of register  
descriptions and settings.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 24  
Si5381/82 Data Sheet  
Electrical Specifications  
5. Electrical Specifications  
Table 5.1. Recommended Operating Conditions  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
TA  
Min  
–40  
Typ  
25  
Max  
85  
Unit  
°C  
°C  
V
Ambient Temperature  
Maximum Junction Temperature  
TJMAX  
VDD  
125  
1.89  
3.47  
3.47  
2.62  
1.89  
1.71  
3.14  
3.14  
2.38  
1.71  
1.80  
3.30  
3.30  
2.50  
1.80  
Core Supply Voltage  
VDDA  
V
V
VDDO  
Output Driver Supply Voltage  
V
V
Note:  
1. All minimum and maximum specifications are guaranteed and apply across the recommended operating conditions. Typical val-  
ues apply at nominal supply voltages and an operating temperature of 25 °C unless otherwise noted.  
Table 5.2. DC Characteristics  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
IDD  
Test Condition  
Si5381  
Min  
Typ  
175  
120  
Max  
Unit  
mA  
mA  
Core Supply Current  
IDDA  
Notes 1, 2  
LVPECL Output3  
@ 156.25 MHz  
LVDS Output3  
@ 156.25 MHz  
3.3 V LVCMOS4  
Output  
21  
15  
25  
18  
mA  
mA  
21  
16  
25  
18  
mA  
mA  
IDDO  
Output Buffer Supply Current  
@ 156.25 MHz  
2.5 V LVCMOS4  
Output  
@ 156.25 MHz  
1.8 V LVCMOS4  
Output  
12  
13  
mA  
@ 156.25 MHz  
Note 1,5  
Pd  
Total Power Dissipation  
1125  
mW  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 25  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Si5381 test configuration: 8 clock outputs enabled (2 x 983.04 MHz, 2 x 491.52 MHz, 1 x 245.76 MHz, 3 x 122.88 MHz; 2.5  
LVDS). Excludes power in termination resistors.  
2. VDDO0 supplies power to both OUT0 and OUT0A buffers. Similarly, VDDO9 supplies power to both OUT9 and OUT9A buffers.  
3. Differential outputs terminated into an AC coupled 100 Ω load.  
4. LVCMOS outputs measured into a 6-inch 50 Ω PCB trace with 5 pF load. The LVCMOS outputs were set to OUTx_CMOS_DRV  
= 3, which is the strongest driver setting.  
5. Detailed power consumption for any configuration can be estimated using ClockBuilder Pro when an evaluation board (EVB) is  
not available. All EVBs support detailed current measurements for any configuration.  
LVCMOS Output Test Configuration  
Differential Output Test Configuration  
Trace length 5  
inches  
IDDO  
0.1 uF  
0.1 uF  
56 Ω  
0.1 uF  
56 Ω  
499 Ω  
4.7 pF  
50  
IDDO  
50 Ω Scope Input  
50 Ω Scope Input  
50  
50  
OUT  
100  
OUT  
OUTb  
OUTb  
50  
499 Ω  
4.7 pF  
0.1 uF  
Table 5.3. Input Clock Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Standard Differential or Single-Ended/LVCMOS — AC-coupled (IN0, IN1, IN2, IN3)  
fIN_DIFF  
fIN_SE  
Differential  
0.008  
0.008  
100  
750  
250  
Input Frequency Range  
MHz  
Single-ended/  
LVCMOS  
fIN_DIFF < 250 MHz  
1800  
1800  
mVpp_se  
mVpp_se  
VIN_DIFF  
Input Voltage Amplitude  
Single-Ended Input Swing  
250 MHz < fIN_DIFF  
750 MHz  
<
225  
VIN_SE  
fIN_SE< 250 MHz  
100  
400  
40  
2
3600  
mVpp_se  
V/µs  
%
Slew Rate1, 2  
Duty Cycle  
SR  
DC  
CIN  
60  
Capacitance  
pF  
Pulsed CMOS — DC-coupled (IN0, IN1, IN2, IN3)3  
fIN_CMOS  
VIL  
Input Frequency  
0.008  
–0.2  
0.49  
400  
40  
250  
0.33  
MHz  
V
Input Voltage  
VIH  
V
Slew Rate1, 2  
SR  
DC  
PW  
V/µs  
%
Duty Cycle  
Clock Input  
Pulse Input  
60  
Minimum Pulse Width  
1.6  
ns  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 26  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
RIN  
Input Resistance  
8
kΩ  
REFCLK (Applied to XA/XB) (Grade A Only)  
fIN_REF  
fRANGE  
VIN_SE  
REFCLK  
4G/LTE  
54  
MHz  
ppm  
Total Frequency Tolerance  
-100  
365  
365  
+100  
2000  
2500  
mVpp_se  
mVpp_diff  
Input Voltage Swing  
Slew Rate1, 2  
VIN_DIFF  
Imposed for phase  
noise performance  
SR  
DC  
400  
40  
V/µs  
%
Input Duty Cycle  
60  
Integrated Crystal REFCLK (Grade E)  
Crystal Frequency  
fIN_XTAL  
fSTABLE  
fPERT  
48.0231  
TBD  
MHz  
ppm  
ppm  
10 years of aging  
at 70 °C  
Frequency Stability  
Frequency Perturbation  
TBD  
Note:  
1. Imposed for phase noise performance.  
2. Rise and fall times can be estimated using the following simplified equation: tr/tf80-20 = ((0.8 - 0.2) * VIN_Vpp_se) / SR.  
3. Pulsed CMOS mode is intended primarily for single-ended LVCMOS input clocks <1 MHz, which must be dc-coupled, having a  
duty cycle significantly less than 50%. A typical application example is a low frequency video frame sync pulse. Since the input  
thresholds (VIL, VIH) of this buffer are non-standard, refer to the input attenuator circuit for dc-coupled Pulsed LVCMOS in the  
Si5381/82 Family Reference Manual. Otherwise, for standard LVCMOS input clocks, use the “AC-coupled Singled-Ended” mode  
as shown in Figure 3.6 Termination of Differential and LVCMOS Input Signals on page 12.  
Table 5.4. Serial and Control Input Pin Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Serial and Control Input Pins (IN_SEL[1:0], RSTb, OEb, PDNb, I2C_SEL, A1/SDO, SCLK, A0/CSb, SDA/SDIO)  
1
VIL  
0.3 x VDDIO  
V
Input Voltage Thresholds  
1
VIH  
CIN  
IL  
0.7 x VDDIO  
2
V
Input Capacitance  
Input Resistance  
Minimum Pulse Width  
Note:  
pF  
kΩ  
ns  
20  
PW  
RSTb, PDNb  
100  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. See the Si5381/82 Family Reference Manual for  
more details on the register settings.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 27  
Si5381/82 Data Sheet  
Electrical Specifications  
Table 5.5. Differential Clock Output Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Outputs connected to DSPLL_B  
Outputs connected to DSPLL_A/C/D  
fOUT < 400 MHz  
Min  
0.48  
0.0001  
48  
Typ  
Max  
2949.12  
735  
52  
Unit  
MHz  
MHz  
%
fOUT  
Output Frequency  
400 MHz < fOUT < 800 MHz  
800 MHz < fOUT < 1474.56 MHz  
f > 1474.56 MHz  
45  
55  
%
Duty Cycle  
DC  
40  
60  
%
35  
65  
Differential Outputs  
20  
50  
ps  
TSK  
Output-Output Skew  
OUT-OUTb Skew  
Normal Mode  
Differential Outputs  
20  
0
100  
100  
ps  
ps  
Measured from the positive to negative  
output pins  
TSK_OUT  
VDDO = 3.3 V,  
LVDS  
350  
660  
470  
810  
550  
2.5 V, or 1.8 V  
Output Voltage Amplitude1  
Common Mode Voltage 1,2  
VOUT  
mVpp_se  
VDDO = 3.3 V,  
LVPECL  
2.5 V  
1000  
LVDS  
VDDO = 3.3 V  
1.10  
1.90  
1.15  
1.25  
2.05  
1.25  
1.35  
2.15  
1.35  
LVPECL  
VCM  
V
V
DDO = 2.5 V  
LVPECL, LVDS  
sub-LVDS  
VDDO = 1.8 V 5  
0.87  
0.93  
170  
1.00  
240  
Rise and Fall Times  
(20% to 80%)  
tR/tF  
Normal Mode  
ps  
Ω
Differential Output Impe-  
dance2  
ZO  
Normal Mode  
100  
10 kHz sinusoidal noise  
100 kHz sinusoidal noise  
500 kHz sinusoidal noise  
1 MHz sinusoidal noise  
–93  
–93  
–84  
–79  
–75  
Power Supply Noise Rejection  
Output-Output Crosstalk4  
PSRR  
dBc  
dB  
XTALK  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 28  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
1. Output amplitude and common mode voltage are programmable through register settings and can be stored in NVM. Each output  
driver can be programmed independently. The typical normal mode (or low power mode) LVDS maximum is 100 mV (or 80 mV)  
higher than the TIA/EIA-644 maximum. Refer to the Si5381/82 Family Reference Manual for recommended output settings.  
2. Not all combinations of voltage amplitude and common mode voltages settings are possible.  
3. Measured for 156.25 MHz carrier frequency. Sinewave noise added to VDDO (1.8 V = 50 mVpp, 2.5 V/3.3 V = 100 mVpp) and  
noise spur amplitude measured.  
4. Measured across two adjacent outputs, both in LVDS mode, with the victim running at 155.52 MHz and the aggressor at 156.25  
MHz. Refer to application note, http://www.silabs.com/Support%20Documents/TechnicalDocs/AN862.pdf, guidance on crosstalk  
minimization. Note that all active outputs must be terminated when measuring crosstalk.  
5. VDDO = 2.5 V or 3.3V required for fOUT > 1474.56 MHz.  
OUTx  
Vpp_se  
Vpp_se  
Vcm  
Vcm  
Vpp_diff = 2*Vpp_se  
OUTxb  
Table 5.6. LVCMOS Clock Output Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDO = 1.8 V ±5%, 2.5 V ±5%, or 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Outputs connected to DSPLL_B  
Outputs connected to DSPLL_A/C/D  
fOUT <100 MHz  
Min  
0.48  
0.0001  
47  
Typ  
Max  
250  
250  
53  
Unit  
MHz  
MHz  
fOUT  
Output Frequency  
Duty Cycle  
DC  
%
100 MHz < fOUT < 250 MHz  
44  
55  
LVCMOS, integer related from the same Multi-  
Synth  
TSK  
Output-to-Output  
100  
ps  
VDDO = 3.3 V  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –10 mA  
IOH = –12 mA  
IOH = –17 mA  
VDDO x  
0.75  
V
VDDO = 2.5 V  
Output Voltage High1, 2, 3  
VOH  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –6 mA  
IOH = –8 mA  
IOH = –11 mA  
VDDO x  
0.75  
V
V
VDDO = 1.8 V  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOH = –4 mA  
IOH = –5 mA  
VDDO x  
0.75  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 29  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
VDDO = 3.3 V  
IOL = 10 mA  
OUTx_CMOS_DRV=1  
VDDO x  
0.15  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 12 mA  
IOL = 17 mA  
V
VDDO = 2.5 V  
Output Voltage Low1, 2, 3  
VOL  
OUTx_CMOS_DRV=1  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 6 mA  
IOL = 8 mA  
IOL = 11 mA  
VDDO x  
0.15  
V
V
VDDO = 1.8 V  
OUTx_CMOS_DRV=2  
OUTx_CMOS_DRV=3  
IOL = 4 mA  
IOL = 5 mA  
VDDO x  
0.15  
VDDO = 3.3 V  
420  
475  
525  
550  
625  
705  
ps  
ps  
ps  
LVCMOS Rise and Fall  
Times3  
tr/tf  
VDDO = 2.5 V  
VDDO = 1.8 V  
(20% to 80%)  
Note:  
1. Driver strength is a register programmable setting and stored in NVM. Options are OUTx_CMOS_DRV = 1, 2, 3. Refer to the  
Si5381/82 Family Reference Manual for more details on register settings.  
2. IOL/IOH is measured at VOL/VOH as shown in the dc test configuration.  
3. A 5 pF capacitive load is assumed. The LVCMOS outputs were set to OUTx_CMOS_DRV = 3.  
AC Output Test Configuration  
DC Test Configuration  
Trace length 5 inches  
0.1 uF  
499 Ω  
4.7 pF  
IDDO  
50  
50  
IOL/IOH  
50 Ω Scope Input  
50 Ω Scope Input  
OUT  
56 Ω  
0.1 uF  
Zs  
OUTb  
VOL/VOH  
499 Ω  
4.7 pF  
56 Ω  
Table 5.7. Output Serial and Status Pin Specifications  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 30  
Si5381/82 Data Sheet  
Electrical Specifications  
(VDD = 1.8 V ±5%, VDDA = 3.3 V ±5%, VDDS = 3.3 V ±5%, 1.8 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Serial and Status Output Pins (INTRb, SDA/SDIO2, A1/SDO)  
VDDIO1 x 0.75  
V
V
VOH  
VOL  
IOH = –2 mA  
IOL = 2 mA  
Output Voltage  
VDDIO1 x 0.15  
Note:  
1. VDDIO is determined by the IO_VDD_SEL bit. It is selectable as VDDA or VDD. Users normally select this option in the Clock-  
Builder Pro GUI. Alternatively, refer to the Si5381/82 Family Reference Manual for more details on register settings.  
2. The VOH specification does not apply to the open-drain SDA/SDIO output when the serial interface is in I2C mode or is unused  
with I2C_SEL pulled high internally. VOL remains valid in all cases.  
Table 5.8. Performance Characteristics  
(VDD = 1.8 V ±5%, or 3.3 V ±5%, VDDA = 3.3 V ±5%, TA = –40 to 85 °C)  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
PLL Loop Bandwidth  
fBW  
1
4000  
Hz  
Programming Range1  
Time from power-up or de-as-  
sertion of PDNb to when the  
device generates free-running  
clocks  
tSTART  
Initial Start-Up Time  
385  
500  
ms  
ms  
Fastlock enabled,  
fIN = 19.44 MHz2  
tACQ  
PLL Lock Time  
600  
POR to Serial Interface Ready3  
Jitter Peaking  
tRDY  
JPK  
15  
ms  
dB  
25 MHz input, 25 MHz output,  
loop bandwidth of 4 Hz  
0.1  
Compliant with G.8262 Op-  
tions 1&2  
Carrier Frequency = 10.3125  
GHz  
JTOL  
Jitter Tolerance  
3180  
UI pk-pk  
Jitter Modulation Frequency =  
10 Hz  
Only valid for a single auto-  
matic switch between two in-  
put clocks at the same fre-  
quency.  
2.0  
1.3  
ns  
ns  
Maximum Phase Transient  
During a Hitless Switch  
tSWITCH  
Only valid for a single manual  
switch between two input  
clocks at the same frequency.  
ωP  
tIODELAY  
tZDELAY  
Pull-in Range  
–20  
+20  
1.8  
ppm  
ns  
Through a given DSPLL, for  
DSPLLs A/C/D only.  
4
Input-to-Output Delay Variation  
110  
ps  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 31  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
DSPLL_B, 12 kHz to 20 MHz  
85  
fs RMS  
5
RMS Jitter Generation6  
JGEN  
DSPLL_A/C/D,  
150  
fs RMS  
12 kHz to 20 MHz  
10 Hz  
100 Hz  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
-103  
-95  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
1 kHz  
Phase Noise Performance (122.88  
MHz Carrier Frequency)  
PN  
10 kHz  
100 kHz  
1 MHz  
10 MHz  
Up to 1 MHz offset  
From 1 MHz to 30 MHz offset  
Spur Performance (122.88 MHz Carri-  
er Frequency)  
SPUR  
dBc  
Note:  
1. Actual loop bandwidth may be lower; please refer to CBPro for actual value on your frequency plan.  
2. Lock Time can vary significantly depending on several parameters, such as bandwidths, LOL thresholds, etc. For this case, lock  
time was measured with nominal and fastlock bandwidths, both set to 100 Hz, LOL set/clear thresholds of 3/0.3 ppm respectively,  
using IN0 as clock reference by removing the reference and enabling it again, then measuring the delta time between the first  
rising edge of the clock reference and the LOL indicator de-assertion.  
3. Measured as time from valid VDD/VDDA rails (90% of their value) to when the serial interface is ready to respond to commands.  
4. Measured between a common 2 MHz input and 2 MHz output with different N-dividers on the same unit and a loop bandwidth of  
4 kHz. These output frequencies are generated using non-production engineering modes only for test.  
5. Delay between reference and feedback input both clocks at 10 MHz and same slew rate. Ref clock rise time must be <200 ps.  
These output frequencies are generated using non-production engineering modes only for test.  
6. Jitter generation test conditions: fIN = 30.72 MHz, 3.3V LVPECL, DSPLL LBW = 100 Hz. Jitter integrated from 12 kHz to 20 MHz  
offset. Does not include jitter from PLL input reference.  
Table 5.9. I2C Timing Specifications (SCL,SDA)  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Min  
Fast Mode  
400 kbps  
Max  
Unit  
Standard Mode  
100 kbps  
fSCL  
SCL Clock Frequency  
SMBus Timeout  
100  
400  
35  
kHz  
ms  
When Timeout is Enabled  
25  
35  
25  
Hold Time (Repeated)  
START Condition  
tHD:STA  
4.0  
4.7  
4.0  
4.7  
0.6  
µs  
µs  
µs  
µs  
Low Period of the SCL  
Clock  
tLOW  
1.3  
0.6  
0.6  
HIGH Period of the SCL  
Clock  
tHIGH  
Set-up Time for a Repea-  
ted START Condition  
tSU:STA  
tHD:DAT  
tSU:DAT  
Data Hold Time  
100  
250  
100  
100  
ns  
ns  
Data Set-up Time  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 32  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
Test Condition  
Min  
Max  
Min  
Max  
Unit  
Rise Time of Both SDA  
and SCL Signals  
tr  
1000  
20  
300  
ns  
Fall Time of Both SDA and  
SCL Signals  
tf  
300  
300  
ns  
µs  
Set-up Time for STOP  
Condition  
tSU:STO  
4.0  
0.6  
Bus Free Time between a  
STOP and START Condi-  
tion  
tBUF  
4.7  
1.3  
µs  
tVD:DAT  
tVD:ACK  
Data Valid Time  
3.45  
3.45  
0.9  
0.9  
µs  
µs  
Data Valid Acknowledge  
Time  
Figure 5.1. I2C Serial Port Timing Standard and Fast Modes  
Table 5.10. SPI Timing Specifications (4-Wire)  
Parameter  
Symbol  
fSPI  
Min  
Typ  
Max  
20  
Unit  
MHz  
%
SCLK Frequency  
SCLK Duty Cycle  
SCLK Period  
TDC  
40  
60  
TC  
50  
ns  
Delay Time, SCLK Fall to SDO  
Active  
TD1  
TD2  
TD3  
18  
15  
15  
ns  
ns  
ns  
Delay Time, SCLK Fall to SDO  
Delay Time, CSb Rise to SDO  
Tri-State  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 33  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Symbol  
TSU1  
TH1  
Min  
5
Typ  
Max  
Unit  
ns  
Setup Time, CSb to SCLK  
Hold Time, SCLK Fall to CSb  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
5
ns  
TSU2  
TH2  
5
ns  
5
ns  
Delay Time Between Chip Selects  
(CSb)  
TCS  
Tc  
2
TD1  
TC  
TSU1  
SCLK  
TH1  
CSb  
TSU2  
TH2  
TCS  
SDI  
TD2  
TD3  
SDO  
Figure 5.2. 4-Wire SPI Serial Interface Timing  
Table 5.11. SPI Timing Specifications (3-Wire)  
Parameter  
Symbol  
fSPI  
Min  
40  
50  
5
Typ  
Max  
20  
60  
Unit  
MHz  
%
SCLK Frequency  
TDC  
TC  
SCLK Duty Cycle  
SCLK Period  
ns  
TD1  
Delay Time, SCLK Fall to SDIO Turn-on  
Delay Time, SCLK Fall to SDIO Next-bit  
Delay Time, CSb Rise to SDIO Tri-State  
Setup Time, CSb to SCLK  
Hold Time, SCLK Fall to CSb  
Setup Time, SDI to SCLK Rise  
Hold Time, SDI to SCLK Rise  
Delay Time Between Chip Selects (CSb)  
20  
15  
15  
ns  
TD2  
ns  
TD3  
ns  
TSU1  
TH1  
TSU2  
TH2  
ns  
5
ns  
5
ns  
5
ns  
TCS  
Tc  
2
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 34  
Si5381/82 Data Sheet  
Electrical Specifications  
TSU1  
TC  
SCLK  
TH1  
TD1  
TD2  
CSb  
TSU2  
TH2  
TCS  
SDIO  
TD3  
Figure 5.3. 3-Wire SPI Serial Interface Timing  
Table 5.12. External Crystal Specifications (Grade A Only)  
Parameter  
Symbol  
fXTAL  
fRANGE  
CL  
Test Condition  
Min  
Typ  
54  
8
Max  
Unit  
MHz  
ppm  
pF  
Internal Crystal Frequency1  
Total Frequency Tolerance2  
Load Capacitance  
–100  
+100  
CO  
Crystal Output Capacitance  
Crystal Drive Level  
2
pF  
dL  
300  
23  
µW  
RESR  
Equivalent Series Resistance  
Note:  
1. The Si5381/82 is designed to work with crystals that meet the frequencies and specifications in Table 12.  
2. Includes initial tolerance, drift after reflow, change over temperature (–40 °C to +85 °C), VDD variation, load pulling and aging.  
Table 5.13. Thermal Characteristics (Grade A, QFN-64)  
Test Condition1  
Still Air  
Parameter  
Symbol  
Value  
22  
Unit  
Thermal Resistance  
Junction to Ambient  
θJA  
Air Flow 1 m/s  
Air Flow 2 m/s  
19.4  
18.3  
Thermal Resistance  
Junction to Case  
Thermal Resistance  
Junction to Board  
Thermal Resistance  
Junction to Top Center  
Note:  
θJC  
9.5  
°C/W  
θJB  
9.4  
9.3  
ΨJB  
ΨJT  
0.2  
1. Based on PCB Dimension: 3” x 4.5”, PCB Thickness: 1.6 mm, PCB Land/Via under GNP pad: 36, Number of Cu Layers: 4  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 35  
Si5381/82 Data Sheet  
Electrical Specifications  
Table 5.14. Thermal Characteristics (Grade E, LGA-64)  
Test Condition1  
Still Air  
Parameter  
Symbol  
Value  
TBD  
TBD  
TBD  
Unit  
Thermal Resistance  
Junction to Ambient  
θJA  
Air Flow 1 m/s  
Air Flow 2 m/s  
Thermal Resistance  
Junction to Case  
Thermal Resistance  
Junction to Board  
Thermal Resistance  
Junction to Top Center  
Note:  
θJC  
TBD  
°C/W  
θJB  
v
ΨJB  
TBD  
ΨJT  
TBD  
1. Based on PCB Dimension: 3” x 4.5”, PCB Thickness: 1.6 mm, PCB Land/Via under GNP pad: 36, Number of Cu Layers: 4  
Table 5.15. Absolute Maximum Ratings1, 2, 3  
Parameter  
Symbol  
VDD  
Test Condition  
Value  
Unit  
V
–0.5 to 3.8  
–0.5 to 3.8  
–0.5 to 3.8  
–0.85 to 3.8  
DC Supply Voltage  
VDDA  
VDDO  
VI1  
V
V
IN0 – IN3  
V
IN_SEL[1:0], RSTb, PDNb,  
OEb, I2C_SEL,  
Input Voltage Range  
VI2  
–0.5 to 3.8  
–0.5 to 2.7  
V
V
SDA/SDIO, A1/SDO, SCLK,  
A0/CSb  
VI3  
LU  
XA/XB (Grade A only)  
Latch-up Tolerance  
JESD78 Compliant  
ESD Tolerance  
HBM  
TJCT  
TSTG  
100 pF, 1.5 kΩ  
2.0  
kV  
°C  
°C  
Junction Temperature  
Storage Temperature Range  
Soldering Temperature  
–55 to 125  
–55 to 150  
TPEAK  
260  
°C  
(Pb-free profile)3  
Soldering Temperature Time at TPEAK(Pb-  
free profile)4  
TP  
20–40  
sec  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 36  
Si5381/82 Data Sheet  
Electrical Specifications  
Parameter  
Note:  
Symbol  
Test Condition  
Value  
Unit  
1. Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be restricted to  
the conditions as specified in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for ex-  
tended periods may affect device reliability.  
2. 64-QFN is RoHS-6 compliant.  
3. For detailed MSL and packaging information, go to www.silabs.com/support/quality/pages/RoHSInformation.aspx.  
4. The device is compliant with JEDEC J-STD-020.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 37  
Si5381/82 Data Sheet  
Typical Application Diagram  
6. Typical Application Diagram  
DCO control  
via SPI / I2C  
SysClk  
PHY1  
PHY2  
Si5381/  
Si5382  
RX1  
TX1  
PCIe  
SerDes  
RFFE  
RFFE  
RF  
JESD204B  
Transceiver  
RX2  
TX2  
DFE  
ASIC/  
FPGA  
Baseband  
Processor  
RX1  
TX1  
RFFE  
RFFE  
RF  
JESD204B  
Transceiver  
RX2  
TX2  
Figure 6.1. Si5381/82 Typical Application  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 38  
Si5381/82 Data Sheet  
Detailed Block Diagram  
7. Detailed Block Diagram  
3
XTAL  
Si5381/82  
OSC  
VDDO0  
Si5381  
IN_SEL[1:0]  
OUT0A  
OUT0Ab  
÷R0A  
÷R0  
Si5382  
OUT0  
OUT0b  
PD LPF  
Mn_A  
VDDO1  
OUT1  
OUT1b  
÷
Md_A  
÷R1  
÷R2  
÷R3  
÷R4  
÷R5  
÷R6  
÷R7  
÷R8  
DSPLL A  
VDDO2  
OUT2  
OUT2b  
IN0  
÷P0  
÷P1  
IN0b  
PD LPF  
÷N1  
÷N4  
VDDO3  
OUT3  
OUT3b  
Mn_B  
Md_B  
÷5  
IN1  
÷
DSPLL B  
IN1b  
VDDO4  
OUT4  
OUT4b  
IN2  
÷P2  
÷P3  
IN2b  
PD LPF  
Mn_C  
VDDO5  
OUT5  
OUT5b  
IN3/FB_IN  
÷
IN3b/FB_INb  
Md_C  
DSPLL C  
VDDO6  
OUT6  
OUT6b  
VDDO7  
OUT7  
OUT7b  
PD LPF  
Mn_D  
÷
Md_D  
VDDO8  
OUT8  
OUT8b  
DSPLL D  
I2C_SEL  
OUT9  
OUT9b  
SDA/SDIO  
÷R9  
SPI/  
NVM  
I2C  
OUT9A  
OUT9Ab  
SCLK  
÷R9A  
A0/CSb  
VDDO9  
Status  
Monitors  
INTRb  
Figure 7.1. Si5381/82 Block Diagram (Grade E Shown)  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 39  
Si5381/82 Data Sheet  
Typical Operating Characteristics (Phase Noise and Jitter)  
8. Typical Operating Characteristics (Phase Noise and Jitter)  
Figure 8.1. Typical Phase Noise (156.25 MHz)  
Figure 8.2. Typical Phase Noise (245.76 MHz)  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 40  
Si5381/82 Data Sheet  
Pin Descriptions  
9. Pin Descriptions  
Top View (Grade A)  
Top View (Grade E)  
48  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
IN1  
IN1b  
1
2
IN1  
IN1b  
SYNCb  
SYNCb  
LOLb  
47  
LOLb  
46  
3
3
IN_SEL0  
IN_SEL1  
PDNb  
VDD18  
IN_SEL0  
IN_SEL1  
PDNb  
RSTb  
X1  
VDD18  
OUT6  
45  
4
OUT6  
4
44  
5
OUT6b  
5
OUT6b  
VDDO6  
OUT5  
43  
6
RSTb  
VDDO6  
6
42  
7
RSVD  
RSVD  
RSVD  
RSVD  
OEb  
OUT5  
7
41  
40  
39  
38  
37  
36  
35  
34  
33  
8
OUT5b  
VDDO5  
I2C_SEL  
OUT4  
8
OUT5b  
VDDO5  
I2C_SEL  
OUT4  
GND  
Pad  
XA  
GND  
Pad  
9
9
XB  
10  
11  
10  
11  
X2  
OEb  
INTRb 12  
OUT4b  
VDDO4  
OUT3  
INTRb 12  
OUT4b  
VDDO4  
OUT3  
13  
14  
15  
16  
VDD33  
IN2  
13  
14  
15  
16  
VDD33  
IN2  
IN2b  
OUT3b  
VDDO3  
IN2b  
OUT3b  
VDDO3  
SCLK  
SCLK  
Figure 9.1. Si5381/82 64-QFN Top View  
Table 9.1. Pin Descriptions  
Pin Type1  
Pin Name  
Pin Number  
Function  
XA  
8
I
Crystal Input (Grade A Only)  
Input pin for external crystal (XTAL). Alternatively  
these pins can be driven with an external refer-  
ence clock (REFCLK). An internal register bit se-  
lects XTAL or REFCLK mode. Default is XTAL  
mode. Single-ended inputs must be connected to  
the XA pin, with the XB pin appropriately termina-  
ted. For Grade E (integrated crystal) these pins  
are reserved and should be left unconnected).  
XB  
9
I
X1  
X2  
7
I
I
XTAL Shield (Grade A Only)  
Connect these pins directly to the crystal ground  
pins. Both the X1/X2 pins and Crystal ground pins  
should be separated from the PCB ground plane.  
Refer to the Si5381/82 Family Reference Manual  
for layout guidelines. For Grade E (integrated  
crystal) these pins are reserved and should be  
left unconnected).  
10  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 41  
Si5381/82 Data Sheet  
Pin Descriptions  
Pin Type1  
Pin Name  
IN0  
Pin Number  
Function  
63  
64  
1
I
I
I
I
I
I
I
I
Clock Inputs.  
IN0b  
IN1  
These pins accept an input clock for synchronizing  
the device. They support both differential and sin-  
gle-ended clock signals. Refer to section 3.3.1 In-  
put Configuration and Terminations for input termi-  
nation options. These pins are high-impedance  
and must be terminated externally, when being  
used. The negative side of the differential input  
must be ac-grounded when accepting a single-  
ended clock. Unused inputs may be left unconnec-  
ted.  
IN1b  
IN2  
2
14  
15  
61  
62  
IN2b  
IN3  
IN3b  
Outputs  
OUT0A  
OUT0Ab  
OUT0  
21  
20  
24  
23  
28  
27  
31  
30  
35  
34  
38  
37  
42  
41  
45  
44  
51  
50  
54  
53  
56  
55  
59  
58  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
OUT0b  
OUT1  
OUT1b  
OUT2  
OUT2b  
OUT3  
OUT3b  
OUT4  
Output Clocks.  
These output clocks support programmable signal  
amplitude and common mode voltage. Desired  
output signal format is configurable using register  
control. Termination recommendations are provi-  
ded in the sections, and 3.5.5 LVCMOS Output  
Terminations. Unused outputs should be left un-  
connected.  
OUT4b  
OUT5  
OUT5b  
OUT6  
OUT6b  
OUT7  
OUT7b  
OUT8  
OUT8b  
OUT9  
OUT9b  
OUT9A  
OUT9Ab  
Serial Interface  
I2C Select.  
This pin selects the serial interface mode as I2C  
(I2C_SEL = 1) or SPI (I2C_SEL = 0). This pin is  
internally pulled high.  
I2C_SEL  
39  
I
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 42  
Si5381/82 Data Sheet  
Pin Descriptions  
Pin Type1  
Pin Name  
Pin Number  
Function  
Serial Data Interface.  
This is the bidirectional data pin (SDA) for the I2C  
mode, the bidirectional data pin (SDIO) in the 3-  
wire SPI mode, or the input data pin (SDI) in 4-  
wire SPI mode. When in I2C mode or unused, this  
pin must be pulled-up using an external resistor of  
at least 1 kΩ. No pull-up resistor is needed when  
in SPI mode. This pin is 3.3 V tolerant.  
SDA/SDIO  
18  
I/O  
Address Select 1/Serial Data Output.  
In I2C mode this pin functions as the A1 address  
input pin. In 4-wire SPI mode, this is the serial da-  
ta output (SDO) pin. This pin is 3.3 V tolerant. This  
pin must be pulled-up externally when unused.  
A1/SDO  
SCLK  
17  
16  
19  
I/O  
Serial Clock Input.  
This pin functions as the serial clock input for both  
I2C and SPI modes. When in I2C mode or unused,  
this pin must be pulled-up using an external resis-  
tor of at least 1 kΩ. No pull-up resistor is needed  
when in SPI mode. This pin is 3.3 V tolerant.  
I
I
Address Select 0/Chip Select.  
This pin functions as the hardware controlled ad-  
dress A0 in I2C mode. In SPI mode, this pin func-  
tions as the chip select input (active low). This pin  
is internally pulled-up. This pin is 3.3 V tolerant.  
A0/CSb  
Control/Status  
Interrupt. 2  
This pin is asserted low when a change in device  
status has occurred. This pin must be pulled-up  
externally using a resistor of at least 1 kΩ. It  
should be left unconnected when not in use.  
INTRb  
PDNb  
12  
5
O
Power Down. 2  
The device enters into a low power mode when  
this pin is pulled low. This pin is internally pulled-  
up. This pin is 3.3 V tolerant. It can be left uncon-  
nected when not in use.  
I
Device Reset. 2  
Active low input that performs power-on reset  
(POR) of the device. Resets all internal logic to a  
known state and forces the device registers to  
their default values. Clock outputs are disabled  
during reset. This pin is internally pulled-up. This  
pin is 3.3 V tolerant.  
RSTb  
6
I
I
Output Enable. 2  
This pin disables all outputs when held high. This  
pin is internally pulled low and can be left uncon-  
nected when not in use. This pin is 3.3 V tolerant.  
OEb  
11  
Reserved.  
Leave disconnected.  
RSVD  
47, 48  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 43  
Si5381/82 Data Sheet  
Pin Descriptions  
Pin Type1  
Pin Name  
Pin Number  
Function  
Input Reference Select. 2  
IN_SEL0  
3
I
The IN_SEL[1:0] pins are used in manual pin con-  
trolled mode to select the active clock input as  
shown in Table 3.2 Manual Input Selection Using  
IN_SEL[1:0] Pins on page 12. These pins are in-  
ternally pulled-down and may be left unconnected  
when unused.  
IN_SEL1  
RSVD  
4
I
Reserved.  
Leave disconnected.  
7, 8, 9, 10, 25  
Power  
VDD  
VDD  
VDD  
32  
46  
60  
P
P
P
Core Supply Voltage.  
The device operates from a 1.8 V supply. A 1 uF  
bypass capacitor should be placed very close to  
each pin.  
Core Supply Voltage 3.3 V.  
This core supply pin requires a 3.3 V power  
source. A 1 uF bypass capacitor should be placed  
very close to this pin.  
VDDA  
13  
P
VDDO0  
VDDO1  
VDDO2  
VDDO3  
VDDO4  
VDDO5  
VDDO6  
VDDO7  
VDDO8  
VDDO9  
22  
26  
29  
33  
36  
40  
43  
49  
52  
57  
P
P
P
P
P
P
P
P
P
P
Output Clock Supply Voltage. Supply voltage  
(3.3 V, 2.5 V, 1.8 V) for OUTx, OUTxb Outputs.  
Note that VDDO0 supplies power to OUT0 and  
OUT0A; VDDO9 supplies power to OUT9 and  
OUT9A. Leave VDDO pins of unused output driv-  
ers unconnected. An alternative option is to con-  
nect the VDDO pin to a power supply and disable  
the output driver to minimize current consumption.  
A 1 µF bypass capacitor should be placed very  
close to each connected VDDO pin.  
Ground Pad.  
GND PAD  
P
This pad provides connection to ground and must  
be connected for proper operation.  
Note:  
1. I = Input, O = Output, P = Power  
2. The IO_VDD_SEL control bit (0x0943 bit 0) selects 3.3 V or 1.8 V operation.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 44  
Si5381/82 Data Sheet  
Packages  
10. Packages  
10.1 64-LGA Package  
Figure 10.1. Si5381/82 9x9 mm 64-LGA Package Diagram  
Table 10.1. Package Dimensions  
Dimension  
Min  
Nom  
1.10  
Max  
A
1.00  
1.30  
A1  
0.26 REF  
0.25  
b
0.20  
5.40  
0.30  
5.60  
D
9.00 BSC  
5.50  
D2  
e
0.50 BSC  
9.00 BSC  
5.50  
E
E2  
5.40  
0.35  
0.03  
5.60  
0.45  
0.13  
0.10  
0.10  
0.15  
0.05  
0.10  
0.08  
L
0.363  
0.08  
L1  
aaa  
bbb  
ccc  
ddd  
ddd  
eee  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 45  
Si5381/82 Data Sheet  
Packages  
10.2 64-QFN Package  
Figure 10.2. Si5381/82 9x9 mm 64-QFN Package Diagram  
Table 10.2. Package Diagram Dimensions  
Dimension  
Min  
0.80  
0.00  
0.18  
Nom  
0.85  
Max  
0.90  
0.05  
0.30  
A
A1  
0.02  
b
0.25  
D
9.00 BSC  
5.20  
D2  
5.10  
5.30  
e
0.50 BSC  
9.00 BSC  
5.20  
E
E2  
5.10  
0.30  
5.30  
0.50  
0.15  
0.10  
0.08  
0.10  
L
0.40  
aaa  
bbb  
ccc  
ddd  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.  
3. This drawing conforms to the JEDEC Solid State Outline MO-220.  
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 46  
Si5381/82 Data Sheet  
PCB Land Pattern  
11. PCB Land Pattern  
Figure 11.1. 9x9 mm 64-QFN Land Pattern  
Table 11.1. PCB Land Pattern Dimensions  
Dimension  
Max  
8.60  
8.60  
0.50  
0.30  
0.50  
5.50  
5.50  
C1  
C2  
E
X1  
Y1  
X2  
Y2  
General  
Note:  
1. All dimensions shown are in millimeters (mm) unless otherwise noted.  
2. This Land Pattern Design is based on the IPC-7351 guidelines.  
3. All dimensions shown are at Maximum Material Condition (MMC). Least Material Condition is calculated based on a fabrication  
Allowance of 0.05 mm.  
Solder Mask Design  
1. All metal pads are to be non-solder mask defined (NSMD). Clearance between the solder mask and the metal pad is to be 60 μm  
minimum, all the way around the pad.  
Stencil Design  
1. A stainless steel, laser-cut and electro-polished stencil with trapezoidal walls should be used to assure good solder paste release.  
2. The stencil thickness should be 0.125 mm (5 mils).  
3. The ratio of stencil aperture to land pad size should be 1:1 for all perimeter pads.  
4. A 2x2 array of 0.65 mm square openings on a 0.90 mm pitch should be used for the center ground pad.  
Card Assembly  
1. A No-Clean, Type-3 solder paste is recommended.  
2. The recommended card reflow profile is per the JEDEC/IPC J-STD-020 specification for Small Body Components.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 47  
Si5381/82 Data Sheet  
Top Marking  
12. Top Marking  
Si5381g-  
Si5382g-  
Rxxxxx-GM  
Rxxxxx-GM  
YYWWTTTTTT  
YYWWTTTTTT  
e4  
e4  
TW  
TW  
Figure 12.1. Si5381/82 Top Marking  
Table 12.1. Top Marking Explanation  
Line  
Characters  
Si5381g  
Description  
Line 1  
g = Grade (internal versus external crystal oscillator option)  
Si5381A = Grade A, 4-DSPLL wireless clock with external XO/Crystal  
Si5381E = Grade E, 4-DSPLL wireless clock with internal crystal oscillator  
Si5382A = Grade A, 2-DSPLL wireless clock with external XO/Crystal  
Si5382E = Grade E, 2-DSPLL wireless clock with internal crystal oscillator  
R = Product revision. (See 2. Ordering Guide for current ordering revision).  
Si5382g  
Line 2  
Rxxxxx-GM  
xxxxx = Customer specific NVM sequence number. Optional NVM code as-  
signed for custom, factory pre-programmed devices.  
Characters are not included for standard, factory default configured devices.  
See Ordering Guide for more information.  
-GM = Package (QFN) type and temperature range (–40 to +85 °C).  
Line 3  
Line 4  
YYWWTTTTTT  
YYWW = Characters correspond to the year (YY) and work week (WW) of  
package assembly.  
TTTTTT = Manufacturing trace code.  
Circle w/ 1.6 mm diame- Pin 1 indicator; left-justified  
ter  
e4  
Pb-free symbol; Center-Justified  
TW  
TW = Taiwan; Country of Origin (ISO Abbreviation)  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 48  
Si5381/82 Data Sheet  
Device Errata  
13. Device Errata  
Please log in or register at www.silabs.com to access the device errata document.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 49  
Si5381/82 Data Sheet  
Revision History  
14. Revision History  
14.1 Revision 0.9  
September 25, 2017  
• Initial Public Release.  
silabs.com | Building a more connected world.  
Preliminary Rev. 0.9 | 50  
ClockBuilder Pro  
One-click access to Timing tools,  
documentation, software, source  
code libraries & more. Available for  
Windows and iOS (CBGo only).  
www.silabs.com/CBPro  
Timing Portfolio  
www.silabs.com/timing  
SW/HW  
www.silabs.com/CBPro  
Quality  
www.silabs.com/quality  
Support and Community  
community.silabs.com  
Disclaimer  
Silicon Labs intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or  
intending to use the Silicon Labs products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical"  
parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Labs reserves the right to make changes  
without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included  
information. Silicon Labs shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted  
hereunder to design or fabricate any integrated circuits. The products are not designed or authorized to be used within any Life Support System without the specific written consent of  
Silicon Labs. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant  
personal injury or death. Silicon Labs products are not designed or authorized for military applications. Silicon Labs products shall under no circumstances be used in weapons of mass  
destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.  
Trademark Information  
Silicon Laboratories Inc.® , Silicon Laboratories®, Silicon Labs®, SiLabs® and the Silicon Labs logo®, Bluegiga®, Bluegiga Logo®, Clockbuilder®, CMEMS®, DSPLL®, EFM®,  
EFM32®, EFR, Ember®, Energy Micro, Energy Micro logo and combinations thereof, "the world’s most energy friendly microcontrollers", Ember®, EZLink®, EZRadio®, EZRadioPRO®,  
Gecko®, ISOmodem®, Micrium, Precision32®, ProSLIC®, Simplicity Studio®, SiPHY®, Telegesis, the Telegesis Logo®, USBXpress®, Zentri and others are trademarks or registered  
trademarks of Silicon Labs. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other  
products or brand names mentioned herein are trademarks of their respective holders.  
Silicon Laboratories Inc.  
400 West Cesar Chavez  
Austin, TX 78701  
USA  
http://www.silabs.com  

相关型号:

Si5381E-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382A-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382E-E-EVB

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

Si5382E-E-GM

Multi-DSPLL Wireless Jitter Attenuating Clocks
SILICON

SI5383A-D07172-GMR

Telecom Circuit,
SILICON

SI5383A-D10188-GM

Telecom Circuit,
SILICON

SI5383A-D10188-GMR

Telecom Circuit,
SILICON

SI5383A-D10809-GM

Telecom Circuit,
SILICON

SI5383A-D10809-GMR

Telecom Circuit,
SILICON

SI5394B-A10605-GM

Processor Specific Clock Generator,
SILICON

SI5394B-A10663-GM

Processor Specific Clock Generator,
SILICON

SI5394P-A10073-GM

Processor Specific Clock Generator,
SILICON