SL28442AZC-2T [SILICON]

Processor Specific Clock Generator, CMOS, PDSO56, 6 X 12 MM, LEAD FREE, MO-153, TSSOP-56;
SL28442AZC-2T
型号: SL28442AZC-2T
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator, CMOS, PDSO56, 6 X 12 MM, LEAD FREE, MO-153, TSSOP-56

光电二极管 外围集成电路
文件: 总21页 (文件大小:197K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL28442-2  
Clock Generator for Intel® Alviso Chipset  
• 96 /100 MHz Spreadable differential clock.  
• 33 MHz PCI clock  
Features  
• Compliant to Intel® CK410M  
• Supports Intel Pentium-M CPU  
• Selectable CPU frequencies  
• Differential CPU clock pairs  
• 100 MHz differential SRC clocks  
• 96 MHz differential dot clock  
• 48 MHz USB clocks  
• Low-voltage frequency select input  
• I2C support with readback capabilities  
• Ideal Lexmark Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• 3.3V power supply  
• 56-pin TSSOP package  
CPU  
SRC DOT96  
x1  
PCI  
x 6  
REF SSCG USB_48  
x 2 x 1 x 1  
• SRC clocks independently stoppable through  
CLKREQ#[A:B]  
x2 / x3 x5/6/7  
Block Diagram  
Pin Configuration  
VDD_REF  
XIN  
14.318MHz  
Crystal  
PCI2/SEL_CLKREQ**  
PCI_STP#*  
CPU_STP#*  
FS_C_TEST_SE/REF0  
1
2
3
4
5
6
7
8
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VDD_REF  
VSS_REF  
PCI3  
PCI4  
PCI5  
VSS_PCI  
VDD_PCI  
ITP_EN/PCIF0  
REF  
XOUT  
PLL Reference  
Divider  
IREF  
VDD_CPU  
CPUT  
PCI_STP#  
PLL1  
CPU  
REF1  
VSSA2  
XIN  
XOUT  
VDDA2  
SDATA  
SCLK  
VSS_CPU  
CPUT0  
CPUC0  
VDD_CPU  
CPUT1  
CPUC1  
IREF  
CPUC  
CPU_STP#  
CLKREQ[A:B]#  
FS_[C:A]  
VDD_CPU  
CPUT_ITP/SRCT7  
CPUC_ITP/SRCC7  
**96_100_SEL/PCIF1  
9
VDD_SRC  
SRCT[1:5]  
CPUC[1:5]  
VDD_PCI  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
*VTTPWRGD#/PD  
VDD_48  
FS_A/48M_0  
VSS_48  
DOT96T  
PCI  
VDD_PCI  
PCIF  
DOT96C  
FS_B/TESTMODE  
96_100_SSCT  
96_100_SSCC  
VDD_48MHz  
96_100_SSCT  
96_100_SSCC  
PLL2  
96MSS  
Divider  
Divider  
SRCT1  
SRCC1  
VDD_SRC  
SRCT2  
SRCC2  
VSSA  
VDDA  
CPU2T_ITP/SRCT7  
CPU2C_ITP/SRCC7  
VDD_SRC_ITP  
SRCT6/CLKREQA#*  
SRCC6/CLKREQB#*  
SRCT5  
VDD_48MHz  
DOT96T  
DOT96C  
PLL3  
FIXED  
SRCT3  
VDD_48  
USB  
SRCC3  
SRCT4_SATA  
SRCC4_SATA  
VDD_SRC  
VTTPWR_GD#/PD  
SRCC5  
VSS_SRC  
56 pin TSSOP  
I2C  
Logic  
SDATA  
SCLK  
* Internal pull-up  
** Internal pull-down  
Rev 1.2, July 3 , 2007  
Page 1 of 21  
2200 Laurelwood Road, Santa Clara, CA 95054  
Tel:(408) 855-0555 Fax:(408) 855-0550  
www.SpectraLinear.com  
SL28442-2  
Pin Definitions  
Pin No.  
Name  
VDD_REF  
VSS_REF  
Type  
Description  
1
PWR 3.3V power supply for output  
GND Ground for outputs.  
2
33,32  
CLKREQA#/SRCT6, I/O, PU 3.3V LVTTL input for enabling assigned SRC clock (active low) /100MHz  
CLKREQB#/SRCC6  
Serial Reference Clock.  
Selectable through CLKREQA# defaults to enable/disable SRCT/C4,  
CLKREQB# defaults to enable/disable SRCT/C5. Assignment can be changed  
via SMBUS register Byte 8.  
7
VDD_PCI  
VSS_PCI  
PCI  
PWR 3.3V power supply for outputs.  
GND Ground for outputs.  
O, SE 33-MHz clock  
6
3,4,5  
8
ITP_EN/PCIF0  
I/O, SE 3.3V LVTTL input to enable SRC7 or CPU2_ITP/33MHz clock output.  
(sampled on the VTT_PWRGD# assertion).  
1 = CPU2_ITP, 0 = SRC7  
9
PCIF1/96_100_SEL  
VTT_PWRGD#/PD  
I/O, 33-MHz clock/3.3V-tolerant input for 96_100M frequency selection  
PD,SE (sampled on the VTT_PWRGD# assertion).  
1 = 100 MHz, 0 = 96 MHz  
10  
I, PU 3.3V LVTTL input. This pin is a level sensitive strobe used to latch the FS_A,  
FS_B, FS_C and ITP_EN, 96MSS_SRC_SEL inputs, SEL_CLKREQ. After  
VTT_PWRGD# (active LOW) assertion, this pin becomes a real-time input for  
asserting power down (active HIGH).  
11  
12  
VDD_48  
PWR 3.3V power supply for outputs.  
FS_A/48_M0  
I/O 3.3V-tolerant input for CPU frequency selection/fixed 48-MHz clock output.  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
13  
VSS_48  
GND Ground for outputs.  
14,15  
16  
DOT96T, DOT96C  
FS_B/TEST_MODE  
O, DIF Fixed 96-MHz clock output.  
I
3.3V-tolerant input for CPU frequency selection. Selects Ref/N or Tri-state  
when in test mode  
0 = Tri-state, 1 = Ref/N  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
17,18  
96_100_SSC  
O,DIF Differential 96-/100-MHz SS clock for flat-panel display  
O, DIF 100-MHz Differential serial reference clocks.  
19,20,22,23, SRCT/C  
24,25,30,31  
21,28  
34  
VDD_SRC  
PWR 3.3V power supply for outputs.  
VDD_SRC_ITP  
PWR 3.3V power supply for outputs.  
26,27  
SRC4_SATAT,  
SRC4_SATAC  
O, DIF Differential serial reference clock. Recommended output for SATA.  
29  
VSS_SRC  
GND Ground for outputs.  
36,35  
CPUT2_ITP/SRCT7, O, DIF Selectable differential CPU or SRC clock output.  
CPUC2_ITP/SRCC7  
ITP_EN = 0 @ VTT_PWRGD# assertion = SRC7  
ITP_EN = 1 @ VTT_PWRGD# assertion = CPU2  
37  
38  
39  
VDDA  
VSSA  
IREF  
PWR 3.3V power supply for PLL.  
GND Ground for PLL.  
I
A precision resistor is attached to this pin, which is connected to the internal  
current reference.  
42  
VDD_CPU  
PWR 3.3V power supply for outputs.  
O, DIF Differential CPU clock outputs.  
GND Ground for outputs.  
40, 41,43,44 CPUT/C  
45  
46  
47  
48  
VSS_CPU  
SCLK  
I
SMBus-compatible SCLOCK.  
SMBus-compatible SDATA.  
SDATA  
VDDA2  
I/O  
PWR 3.3V power supply for PLL2  
Rev 1.2,July 3 , 2007  
Page 2 of 21  
SL28442-2  
Pin Definitions (continued)  
Pin No.  
Name  
Type  
Description  
49  
50  
51  
52  
53  
XOUT  
XIN  
O, SE 14.318-MHz crystal output.  
I
14.318-MHz crystal input.  
VSSA2  
REF1  
GND Ground for PLL2.  
O
Fixed 14.318 MHz clock output.  
FS_C_TEST_SEL/  
REF0  
I/O  
3.3V-tolerant input for CPU frequency selection/fixed 14.318 clock output.  
Selects test mode if pulled to greater than 1.8V when VTT_PWRGD# is asserted  
LOW.  
Refer to DC Electrical Specifications table for VIL_FS,VIH_FS specifications.  
54  
55  
56  
CPU_STP#  
PCI_STP#  
I, PU 3.3V LVTTL input for CPU_STP# active low.  
I, PU 3.3V LVTTL input for PCI_STP# active low.  
PCI2/SEL_CLKREQ I/O, PD 3.3V-tolerant input for CLKREQ pin selection/fixed 33-MHz clock output.  
(sampled on the VTT_PWRGD# assertion).  
1 = pins 32,33 function as clk request pins, 0 = pins 32,33 function as SRC outputs.  
Table 1. Frequency Select Table FS_A, FS_B and FS_C  
FS_C  
FS_B  
FS_A  
CPU  
SRC  
PCIF/PCI  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
REF0  
DOT96  
96 MHz  
96 MHz  
96 MHz  
96 MHz  
USB  
1
0
0
0
0
0
1
1
1
1
1
0
100 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
66.6667 MHz  
83.3333 MHz  
71.4286 MHz  
initialize to their default setting upon power-up, and therefore  
use of this interface is optional. Clock device register changes  
are normally made upon system initialization, if any are  
required. The interface cannot be used during system  
operation for power management functions.  
Frequency Select Pins (FS_A, FS_B, and FS_C)  
Host clock frequency selection is achieved by applying the  
appropriate logic levels to FS_A, FS_B, FS_C inputs prior to  
VTT_PWRGD# assertion (as seen by the clock synthesizer).  
Upon VTT_PWRGD# being sampled LOW by the clock chip  
(indicating processor VTT voltage is stable), the clock chip  
samples the FS_A, FS_B, and FS_C input values. For all logic  
levels of FS_A, FS_B, and FS_C, VTT_PWRGD# employs a  
Data Protocol  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, the bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
bit first) with the ability to stop after any complete byte has  
been transferred. For byte write and byte read operations, the  
system controller can access individually indexed bytes. The  
offset of the indexed byte is encoded in the command code,  
as described in Table 2.  
one-shot functionality in that once  
a valid LOW on  
VTT_PWRGD# has been sampled, all further VTT_PWRGD#,  
FS_A, FS_B, and FS_C transitions will be ignored, except in  
test mode.  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
The block write and block read protocol is outlined in Table 3  
while Table 4 outlines the corresponding byte write and byte  
read protocol. The slave receiver address is 11010010 (D2h).  
Table 2. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0) Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'  
Table 3. Block Read and Block Write Protocol  
Block Write Protocol  
Description  
Block Read Protocol  
Description  
Bit  
1
Bit  
1
Start  
Slave address – 7 bits  
Start  
Slave address – 7 bits  
8:2  
8:2  
Rev 1.2,July 3 , 2007  
Page 3 of 21  
SL28442-2  
Table 3. Block Read and Block Write Protocol (continued)  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
9
Description  
Bit  
9
Write  
Write  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
Byte Count – 8 bits  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Data byte 1 – 8 bits  
27:21  
28  
Slave address – 7 bits  
Read = 1  
36:29  
37  
Acknowledge from slave  
Data byte 2 – 8 bits  
29  
Acknowledge from slave  
Byte Count from slave – 8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte /Slave Acknowledges  
Data Byte N – 8 bits  
Acknowledge from slave  
Stop  
....  
46:39  
47  
Data byte 1 from slave – 8 bits  
Acknowledge  
....  
....  
55:48  
56  
Data byte 2 from slave – 8 bits  
Acknowledge  
....  
....  
Data bytes from slave / Acknowledge  
Data Byte N from slave – 8 bits  
NOT Acknowledge  
....  
....  
....  
Stop  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address – 7 bits  
Write  
8:2  
9
Slave address – 7 bits  
Write  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
Data byte – 8 bits  
Acknowledge from slave  
Stop  
10  
Acknowledge from slave  
Command Code – 8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
27:21  
28  
Slave address – 7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave – 8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
Control Registers  
Byte 0: Control Register 0  
Bit  
@Pup  
Name  
Description  
7
1
CPUT2_ITP/SRCT7  
CPUC2_ITP/SRCC7  
CPU[T/C]2_ITP/SRC[T/C]7 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
6
1
SRC[T/C]6  
SRC[T/C]6 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
Rev 1.2,July 3 , 2007  
Page 4 of 21  
SL28442-2  
Byte 0: Control Register 0 (continued)  
Bit  
@Pup  
Name  
Description  
5
1
SRC[T/C]5  
SRC[T/C]5 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
4
3
2
1
0
1
1
1
1
1
SRC[T/C]4  
SRC[T/C]3  
SRC[T/C]2  
SRC[T/C]1  
RESERVED  
SRC[T/C]4 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
SRC[T/C]3 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
SRC[T/C]2 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
SRC[T/C]1 Output Enable  
0 = Disable (Tri-state), 1 = Enable  
RESERVED  
Byte 1: Control Register 1  
Bit  
@Pup  
Name  
Description  
7
1
PCIF0  
PCIF0 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
0
DOT_96T/C  
USB_48  
REF0  
DOT_96 MHz Output Enable  
0 = Disable (Tri-state), 1 = Enabled  
USB_48 MHz Output Enable  
0 = Disabled, 1 = Enabled  
REF0 Output Enable  
0 = Disabled, 1 = Enabled  
REF1  
REF1 Output Enable  
0 = Disabled, 1 = Enabled  
CPU[T/C]1  
CPU[T/C]0  
CPU  
CPU[T/C]1 Output Enable  
0 = Disable (Tri-state), 1 = Enabled  
CPU[T/C]0 Output Enable  
0 = Disable (Tri-state), 1 = Enabled  
PLL1 (CPU PLL) Spread Spectrum Enable  
0 = Spread off, 1 = Spread on  
Byte 2: Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
PCI5  
PCI5 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
1
1
1
PCI4  
PCI3  
PCI2  
PCI4 Output Enable  
0 = Disabled, 1 = Enabled  
PCI3 Output Enable  
0 = Disabled, 1 = Enabled  
PCI2 Output Enable  
0 = Disabled, 1 = Enabled  
3
2
1
0
1
1
1
1
Reserved  
Reserved  
Reserved  
PCIF1  
Reserved, Set = 1  
Reserved, Set = 1  
Reserved, Set = 1  
PCIF1 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 3: Control Register 3  
Bit  
@Pup  
Name  
Description  
7
0
SRC7  
Allow control of SRC[T/C]7 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
6
0
SRC6  
Allow control of SRC[T/C]6 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Rev 1.2,July 3 , 2007  
Page 5 of 21  
SL28442-2  
Byte 3: Control Register 3 (continued)  
Bit  
@Pup  
Name  
Description  
5
0
SRC5  
Allow control of SRC[T/C]5 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
4
3
2
1
0
0
0
0
0
0
SRC4  
SRC3  
Allow control of SRC[T/C]4 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]3 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
SRC2  
Allow control of SRC[T/C]2 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
SRC1  
Allow control of SRC[T/C]1 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
RESERVED  
RESERVED  
Byte 4: Control Register 4  
Bit  
@Pup  
Name  
Description  
7
0
96_100_SSC  
96_100_SSC Drive Mode  
0 = Driven in PWRDWN, 1 = Tri-state  
6
0
DOT96T/C  
DOT_PWRDWN Drive Mode  
0 = Driven in PWRDWN, 1 = Tri-state  
5
4
0
0
RESERVED  
PCIF1  
RESERVED  
Allow control of PCIF1 with assertion of SW and HW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
3
2
1
0
0
1
1
1
PCIF0  
Allow control of PCIF0 with assertion of SW and HW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
CPU[T/C]2  
CPU[T/C]1  
CPU[T/C]0  
Allow control of CPU[T/C]2 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Allow control of CPU[T/C]1 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Allow control of CPU[T/C]0 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Byte 5: Control Register 5  
Bit  
@Pup  
Name  
Description  
7
0
SRC[T/C]  
SRC[T/C] Stop Drive Mode  
0 = Driven when PCI_STP# asserted,1 = Tri-state when PCI_STP#  
asserted  
6
5
4
0
0
0
CPU[T/C]2  
CPU[T/C]1  
CPU[T/C]0  
CPU[T/C]2 Stop Drive Mode  
0 = Driven when CPU_STP# asserted,1 = Tri-state when CPU_STP#  
asserted  
CPU[T/C]1 Stop Drive Mode  
0 = Driven when CPU_STP# asserted,1 = Tri-state when CPU_STP#  
asserted  
CPU[T/C]0 Stop Drive Mode  
0 = Driven when CPU_STP# asserted,1 = Tri-state when CPU_STP#  
asserted  
3
2
1
0
0
0
0
0
SRC[T/C][7:1]  
CPU[T/C]2  
CPU[T/C]1  
CPU[T/C]0  
SRC[T/C] PWRDWN Drive Mode  
0 = Driven when PD asserted,1 = Tri-state when PD asserted  
CPU[T/C]2 PWRDWN Drive Mode  
0 = Driven when PD asserted,1 = Tri-state when PD asserted  
CPU[T/C]1 PWRDWN Drive Mode  
0 = Driven when PD asserted,1 = Tri-state when PD asserted  
CPU[T/C]0 PWRDWN Drive Mode  
0 = Driven when PD asserted,1 = Tri-state when PD asserted  
Rev 1.2,July 3 , 2007  
Page 6 of 21  
SL28442-2  
Byte 6: Control Register 6  
Bit  
@Pup  
Name  
Description  
7
0
TEST_SEL  
REF/N or Tri-state Select  
0 = Tri-state, 1 = REF/N Clock  
6
0
TEST_MODE  
Test Clock Mode Entry Control  
0 = Normal operation, 1 = REF/N or Tri-state mode,  
5
4
0
1
RESERVED  
REF  
RESERVED  
REF Output Drive Strength  
0 = Low, 1 = High  
3
1
PCI, PCIF and SRC clock SW PCI_STP Function  
outputs except those set 0=SW PCI_STP assert, 1= SW PCI_STP deassert  
to free running  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will  
be stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will  
resume in a synchronous manner with no short pulses.  
2
1
0
HW  
HW  
HW  
FS_C  
FS_B  
FS_A  
FS_C Reflects the value of the FS_C pin sampled on power up  
0 = FS_C was low during VTT_PWRGD# assertion  
FS_B Reflects the value of the FS_B pin sampled on power up  
0 = FS_B was low during VTT_PWRGD# assertion  
FS_A Reflects the value of the FS_A pin sampled on power up  
0 = FS_A was low during VTT_PWRGD# assertion  
Byte 7: Vendor ID  
Bit @Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
7
6
5
4
3
2
1
0
0
0
0
0
1
0
0
0
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
Vendor ID Bit 2  
Vendor ID Bit 2  
Vendor ID Bit 1  
Vendor ID Bit 1  
Vendor ID Bit 0  
Vendor ID Bit 0  
Byte 8: Control Register 8  
Bit  
@Pup  
Name  
Description  
7
6
5
4
0
CLKREQ#B  
SRC[T/C]7CLKREQ#B control  
1 = SRC[T/C]7 stoppable by CLKREQ#B pin  
0 = SRC[T/C]7 not controlled by CLKREQ#B pin  
1
0
0
CLKREQ#B  
CLKREQ#B  
CLKREQ#B  
SRC[T/C]5 CLKREQ#B control  
1 = SRC[T/C]5 stoppable by CLKREQ#B pin  
0 = SRC[T/C]5 not controlled by CLKREQ#B pin  
SRC[T/C]3 CLKREQ#B control  
1 = SRC[T/C]3 stoppable by CLKREQ#B pin  
0 = SRC[T/C]3 not controlled by CLKREQ#B pin  
SRC[T/C]1 CLKREQ#B control  
1 = SRC[T/C]1 stoppable by CLKREQ#B pin  
0 = SRC[T/C]1 not controlled by CLKREQ#B pin  
3
2
0
1
RESERVED  
CLKREQ#A  
RESERVED  
SRC[T/C]4 CLKREQ#A control  
1 = SRC[T/C]4 stoppable by CLKREQ#A pin  
0 = SRC[T/C]4 not controlled by CLKREQ#A pin  
1
0
CLKREQ#A  
SRC[T/C]2 CLKREQ#A control  
1 = SRC[T/C]2 stoppable by CLKREQ#A pin  
0 = SRC[T/C]2 not controlled by CLKREQ#A pin  
Rev 1.2,July 3 , 2007  
Page 7 of 21  
SL28442-2  
Byte 8: Control Register 8 (continued)  
Bit  
@Pup  
Name  
Description  
Description  
0
0
RESERVED  
RESERVED  
Byte 9: Control Register 9  
Bit  
@Pup  
Name  
S3  
7
6
5
4
0
0
0
0
96_100_SSC Spread Spectrum Selection table:  
S[3:0] SS%  
S2  
‘0000’ = –0.8%(Default value)  
‘0001’ = –1.0%  
‘0010’ = –1.25%  
‘0011’ = –1.5%  
S1  
S0  
‘0100’ = –1.75%  
‘0101’ = –2.0%  
‘0110’ = –2.5%  
‘0111’ = –0.5%  
‘1000’ = ±0.25%  
‘1001’ = ±0.4%  
‘1010’ = ±0.5%  
‘1011’ = ±0.6%  
‘1100’ = ±0.8%  
‘1101’ = ±1.0%  
‘1110’ = ±1.25%  
‘1111’ = ±1.5%  
3
2
1
0
1
1
1
0
96_100 SEL  
96_100 Enable  
96_100 SS Enable  
96_100 SW HW  
Software select 96_100_SSC output frequency, 0 = 96 MHz, 1 = 100 MHz.  
96_100_SSC Enable, 0 = Disable, 1 = Enable.  
96_100_SSC Spread spectrum enable. 0 = Disable, 1 = Enable.  
Select output frequency of 96_100_SSC via software or hardware  
0 = Hardware, 1 = Software.  
Byte 10: Control Register 10  
Bit  
@Pup  
Name  
Description  
7
6
0
0
RESERVED  
CLKREQ#B  
RESERVED  
SRC[T/C]4 CLKREQ#B control  
1 = SRC[T/C]4 stoppable by CLKREQ#B pin  
0 = SRC[T/C]4not controlled by CLKREQ#B pin  
5
0
CLKREQ#B  
SRC[T/C]2 CLKREQ#B control  
1 = SRC[T/C]2 stoppable by CLKREQ#B pin  
0 = SRC[T/C]2 not controlled by CLKREQ#B pin  
4
3
0
0
RESERVED  
CLKREQ#A  
RESERVED  
SRC[T/C]7CLKREQ#A control  
1 = SRC[T/C]7 stoppable by CLKREQ#A pin  
0 = SRC[T/C]7 not controlled by CLKREQ#A pin  
2
1
0
0
0
0
CLKREQ#A  
CLKREQ#A  
CLKREQ#A  
SRC[T/C]5 CLKREQ#A control  
1 = SRC[T/C]5 stoppable by CLKREQ#A pin  
0 = SRC[T/C]5 not controlled by CLKREQ#A pin  
SRC[T/C]3 CLKREQ#A control  
1 = SRC[T/C]3 stoppable by CLKREQ#A pin  
0 = SRC[T/C]3 not controlled by CLKREQ#A pin  
SRC[T/C]1 CLKREQ#A control  
1 = SRC[T/C]1 stoppable by CLKREQ#A pin  
0 = SRC[T/C]1 not controlled by CLKREQ#A pin  
Rev 1.2,July 3 , 2007  
Page 8 of 21  
SL28442-2  
Table 5. Crystal Recommendations  
Frequency  
Drive  
(max.)  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
(Fund)  
Cut  
Loading Load Cap  
(max.)  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
.
The SL28442-2 requires a Parallel Resonance Crystal. Substi-  
tuting a series resonance crystal will cause the SL28442-2 to  
operate at the wrong frequency and violate the ppm specifi-  
cation. For most applications there is a 300-ppm frequency  
shift between series and parallel crystals due to incorrect  
loading.  
Clock Chip  
Ci2  
Ci1  
Pin  
3 to 6p  
Crystal Loading  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, the total capacitance  
the crystal will see must be considered to calculate the appro-  
priate capacitive loading (CL).  
X2  
X1  
Cs2  
Cs1  
Trace  
2.8pF  
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. An important clarification for the following  
discussion is that the trim capacitors are in series with the  
crystal not parallel. It’s a common misconception that load  
capacitors are in parallel with the crystal and should be  
approximately equal to the load capacitance of the crystal.  
This is not true.  
XTAL  
Ce1  
Ce2  
Trim  
33pF  
Figure 2. Crystal Loading Example  
As mentioned previously, the capacitance on each side of the  
crystal is in series with the crystal. This mean the total capac-  
itance on each side of the crystal must be twice the specified  
load capacitance (CL). While the capacitance on each side of  
the crystal is in series with the crystal, trim capacitors  
(Ce1,Ce2) should be calculated to provide equal capacitance  
loading on both sides.  
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Figure 1. Crystal Capacitive Clarification  
Load Capacitance (each side)  
Calculating Load Capacitors  
Ce = 2 * CL – (Cs + Ci)  
In addition to the standard external trim capacitors, trace  
capacitance and pin capacitance must also be considered to  
correctly calculate crystal loading. As mentioned previously,  
the capacitance on each side of the crystal is in series with the  
crystal. This means the total capacitance on each side of the  
crystal must be twice the specified crystal load capacitance  
(CL). While the capacitance on each side of the crystal is in  
series with the crystal, trim capacitors (Ce1,Ce2) should be  
calculated to provide equal capacitive loading on both sides.  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
1
1
(
)
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
CL....................................................Crystal load capacitance  
CLe......................................... Actual loading seen by crystal  
using standard value trim capacitors  
Ce..................................................... External trim capacitors  
Cs..............................................Stray capacitance (terraced)  
Ci ...........................................................Internal capacitance  
(lead frame, bond wires etc.)  
Rev 1.2,July 3 , 2007  
Page 9 of 21  
SL28442-2  
CLK_REQ[0:1]# Description  
VTT_PWRGD# has been sampled LOW by the clock chip, the  
pin assumes PD functionality. The PD pin is an asynchronous  
active HIGH input used to shut off all clocks cleanly prior to  
shutting off power to the device. This signal is synchronized  
internal to the device prior to powering down the clock synthe-  
sizer. PD is also an asynchronous input for powering up the  
system. When PD is asserted high, all clocks need to be driven  
to a low value and held prior to turning off the VCOs and the  
crystal oscillator.  
The CLKREQ#[A:B] signals are active LOW inputs used for  
clean enabling and disabling selected SRC outputs. The  
outputs controlled by CLKREQ#[A:B] are determined by the  
settings in register byte 8. The CLKREQ# signal is a  
debounced signal in that its state must remain unchanged  
during two consecutive rising edges of SRCC to be recognized  
as a valid assertion or deassertion. (The assertion and  
deassertion of this signal is absolutely asynchronous.)  
PD (Power-down)—Assertion  
CLK_REQ[A:B]# Assertion (CLKREQ# -> LOW)  
When PD is sampled HIGH by two consecutive rising edges  
of CPUC, all single-ended outputs will be held LOW on their  
next HIGH-to-LOW transition and differential clocks must held  
HIGH or tri-stated (depending on the state of the control  
register drive mode bit) on the next diff clock# HIGH-to-LOW  
transition within 4 clock periods. When the SMBus PD drive  
mode bit corresponding to the differential (CPU, SRC, and  
DOT) clock output of interest is programmed to ‘0’, the clock  
output are held with “Diff clock” pin driven HIGH at 2 x Iref, and  
“Diff clock#” tri-state. If the control register PD drive mode bit  
corresponding to the output of interest is programmed to “1”,  
then both the “Diff clock” and the “Diff clock#” are tri-state. Note  
Figure 4 shows CPUT = 133 MHz and PD drive mode = ‘1’ for  
all differential outputs. This diagram and description is appli-  
cable to valid CPU frequencies 100, 133, 166, 200, 266, 333,  
and 400 MHz. In the event that PD mode is desired as the  
initial power-on state, PD must be asserted HIGH in less than  
10 µs after asserting Vtt_PwrGd#.  
All differential outputs that were stopped are to resume normal  
operation in a glitch-free manner. The maximum latency from  
the assertion to active outputs is between 2–6 SRC clock  
periods (2 clocks are shown) with all SRC outputs resuming  
simultaneously. All stopped SRC outputs must be driven high  
within 10 ns of CLKREQ#[1:0] de-assertion to a voltage  
greater than 200 mV.  
CLK_REQ[A:B]# Deassertion (CLKREQ# -> HIGH)  
The impact of deasserting the CLKREQ#[A:B] pins is all SRC  
outputs that are set in the control registers to stoppable via  
deassertion of CLKREQ#[A:B] are to be stopped after their  
next transition. The final state of all stopped DIF signals is  
LOW, both SRCT clock and SRCC clock outputs will not be  
driven.  
PD (Power-down) Clarification  
The VTT_PWRGD# /PD pin is a dual-function pin. During  
initial power-up, the pin functions as VTT_PWRGD#. Once  
CLKREQ#X  
SRCT(free running)  
SRCC(free running)  
SRCT(stoppable)  
SRCT(stoppable)  
Figure 3. CLK_REQ#[A:B] Deassertion/Assertion Waveform  
PD  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33 MHz  
REF  
Figure 4. Power-down Assertion Timing Waveform  
Rev 1.2,July 3 , 2007  
Page 10 of 21  
SL28442-2  
PD Deassertion  
When the CPU_STP# pin is asserted, all CPU outputs that are  
set with the SMBus configuration to be stoppable via assertion  
of CPU_STP# will be stopped within two–six CPU clock  
periods after being sampled by two rising edges of the internal  
CPUC clock. The final states of the stopped CPU signals are  
CPUT = HIGH and CPUC = LOW. There is no change to the  
output drive current values during the stopped state. The  
CPUT is driven HIGH with a current value equal to 6 x (Iref),  
and the CPUC signal will be tri-stated.  
The power-up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD pin or the ramping of the power  
supply until the time that stable clocks are output from the  
clock chip. All differential outputs stopped in a three-state  
condition resulting from power down will be driven high in less  
than 300 µs of PD deassertion to a voltage greater than 200  
mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs will be enabled within a few clock cycles of  
each other. Figure 5 is an example showing the relationship of  
clocks coming up.  
CPU_STP# Deassertion  
The deassertion of the CPU_STP# signal will cause all CPU  
outputs that were stopped to resume normal operation in a  
synchronous manner. Synchronous manner meaning that no  
short or stretched clock pulses will be produce when the clock  
resumes. The maximum latency from the deassertion to active  
outputs is no more than two CPU clock cycles.  
CPU_STP# Assertion  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
Tstable  
<1.8nS  
PD  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33MHz  
Tdrive_PWRDN#  
<300µS, >200mV  
REF  
Figure 5. Power-down Deassertion Timing Waveform  
CPU_STP#  
CPUT  
CPUC  
Figure 6. CPU_STP# Assertion Waveform  
CPU_STP#  
CPUT  
CPUC  
CPUT Internal  
CPUC Internal  
Tdrive_CPU_STP#,10nS>200mV  
Figure 7. CPU_STP# Deassertion Waveform  
Rev 1.2,July 3 , 2007  
Page 11 of 21  
SL28442-2  
1.8mS  
CPU_STOP#  
PD  
CPUT(Free Running  
CPUC(Free Running  
CPUT(Stoppable)  
CPUC(Stoppable)  
DOT96T  
DOT96C  
Figure 8. CPU_STP#= Driven, CPU_PD = Driven, DOT_PD = Driven  
1.8mS  
CPU_STOP#  
PD  
CPUT(Free Running)  
CPUC(Free Running)  
CPUT(Stoppable)  
CPUC(Stoppable)  
DOT96T  
DOT96C  
Figure 9. CPU_STP# = Tri-state, CPU_PD = Tri-state, DOT_PD = Tri-state  
PCI_STP# Assertion  
PCI_STP# Deassertion  
The PCI_STP# signal is an active LOW input used for  
synchronous stopping and starting the PCI outputs while the  
rest of the clock generator continues to function. The set-up  
time for capturing PCI_STP# going LOW is 10 ns (tSU). (See  
Figure 10.) The PCIF clocks will not be affected by this pin if  
their corresponding control bit in the SMBus register is set to  
allow them to be free running.  
The deassertion of the PCI_STP# signal will cause all PCI and  
stoppable PCIF clocks to resume running in a synchronous  
manner within two PCI clock periods after PCI_STP# transi-  
tions to a HIGH level.  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 10. PCI_STP# Assertion Waveform  
Rev 1.2,July 3 , 2007  
Page 12 of 21  
SL28442-2  
Tdrive_SRC  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 11. PCI_STP# Deassertion Waveform  
FS_A, FS_B,FS_C  
VTT_PWRGD#  
PWRGD_VRM  
0.2-0.3mS  
Delay  
Wait for  
VTT_PWRGD#  
Device is not affected,  
VTT_PWRGD# is ignored  
Sample Sels  
State 2  
VDD Clock Gen  
Clock State  
State 0  
Off  
State 1  
State 3  
On  
Clock Outputs  
Clock VCO  
On  
Off  
Figure 12. VTT_PWRGD# Timing Diagram  
S2  
S1  
VTT_PWRGD# = Low  
Delay  
Sample  
>0.25mS  
Inputs straps  
VDD_A = 2.0V  
Wait for <1.8ms  
S0  
S3  
VDD_A = off  
Normal  
Operation  
Enable Outputs  
Power Off  
VTT_PWRGD# = toggle  
Figure 13. Clock Generator Power-up/Run State Diagram  
Rev 1.2,July 3 , 2007  
Page 13 of 21  
SL28442-2  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
Max.  
4.6  
Unit  
V
VDD_A  
VIN  
Analog Supply Voltage  
4.6  
V
Input Voltage  
Relative to VSS  
–0.5 VDD + 0.5 VDC  
TS  
Temperature, Storage  
Non-functional  
–65  
150  
85  
150  
20  
60  
°C  
°C  
TA  
Temperature, Operating Ambient  
Temperature, Junction  
Functional  
0
TJ  
Functional  
°C  
ØJC  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
ESD Protection (Human Body Model)  
Flammability Rating  
Mil-STD-883E Method 1012.1  
JEDEC (JESD 51)  
MIL-STD-883, Method 3015  
At 1/8 in.  
°C/W  
°C/W  
V
ØJA  
ESDHBM  
UL-94  
MSL  
2000  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
All VDDs  
Description  
Condition  
Min.  
3.135  
Max.  
Unit  
V
3.3V Operating Voltage  
Input Low Voltage  
3.3 ± 5%  
3.465  
VILI2C  
VIHI2C  
VIL_FS  
VIH_FS  
VILFS_C  
VIMFS_C  
VIHFS_C  
VIL  
SDATA, SCLK  
SDATA, SCLK  
1.0  
V
Input High Voltage  
2.2  
V
FS_[A,B] Input Low Voltage  
FS_[A,B] Input High Voltage  
FS_C Input Low Voltage  
FS_C Input Middle Voltage  
FS_C Input High Voltage  
3.3V Input Low Voltage  
3.3V Input High Voltage  
Input Low Leakage Current  
Input High Leakage Current  
3.3V Output Low Voltage  
3.3V Output High Voltage  
VSS – 0.3  
0.7  
0.35  
V
VDD + 0.5  
V
VSS – 0.3  
0.7  
0.35  
V
1.8  
V
1.8  
VDD + 0.5  
V
VSS – 0.3  
2.0  
0.8  
V
VIH  
VDD + 0.3  
V
IIL  
Except internal pull-up resistors, 0 < VIN < VDD  
Except internal pull-down resistors, 0 < VIN < VDD  
IOL = 1 mA  
–5  
5
5
µA  
µA  
V
IIH  
VOL  
0.4  
VOH  
IOH = –1 mA  
2.4  
V
IOZ  
High-impedance Output  
Current  
–10  
10  
µA  
CIN  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
3
5
5
pF  
pF  
nH  
V
COUT  
LIN  
3
7
VXIH  
Xin High Voltage  
0.7VDD  
VDD  
0.3VDD  
400  
70  
VXIL  
Xin Low Voltage  
0
V
IDD3.3V  
IPD3.3V  
IPD3.3V  
ITRI  
Dynamic Supply Current  
Power-down Supply Current  
Power-down Supply Current  
Tri-state Current  
At max. load and freq. per Figure 15  
PD asserted, Outputs Driven  
PD asserted, Outputs Tri-state  
Current in tri-state mode  
mA  
mA  
mA  
mA  
2
100  
Rev 1.2,July 3 , 2007  
Page 14 of 21  
SL28442-2  
AC Electrical Specifications  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
Crystal  
TDC  
XIN Duty Cycle  
The device will operate reliably with  
input duty cycles up to 30/70 but the  
REF clock duty cycle will not be within  
specification  
47.5  
52.5  
%
TPERIOD  
TR / TF  
TCCJ  
XIN Period  
When XIN is driven from an external  
clock source  
69.841  
71.0  
10.0  
500  
ns  
ns  
ps  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Measured between 0.3VDD and  
0.7VDD  
As an average over 1-µs duration  
CPU at 0.7V  
TDC  
CPUT and CPUC Duty Cycle  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIODSS  
100-MHz CPUT and CPUC Period  
66-MHz CPUT and CPUC Period  
83-MHz CPUT and CPUC Period  
71-MHz CPUT and CPUC Period  
9.997001 10.00300 ns  
14.99554 15.00449 ns  
11.99640 12.00360 ns  
13.9958 14.00419 ns  
9.997001 10.05327 ns  
100-MHz CPUT and CPUC Period,  
SSC  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODAbs  
66-MHz CPUT and CPUC Period, SSC Measured at crossing point VOX  
83-MHz CPUT and CPUC Period, SSC Measured at crossing point VOX  
71-MHz CPUT and CPUC Period, SSC Measured at crossing point VOX  
14.99554 15.07989 ns  
11.99640 12.06392 ns  
13.9958 14.07457 ns  
9.912001 10.08800 ns  
100-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period  
TPERIODAbs  
66-MHz CPUT and CPUC Absolute  
period  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
14.91054 15.08949 ns  
11.91140 12.08860 ns  
13.9108 14.08919 ns  
9.912001 10.13827 ns  
14.91054 15.16489 ns  
11.91140 12.14892 ns  
13.9108 14.15957 ns  
TPERIODAbs  
83-MHz CPUT and CPUC Absolute  
period  
TPERIODAbs  
71-MHz CPUT and CPUC Absolute  
period  
TPERIODSSAbs  
TPERIODSSAbs  
TPERIODSSAbs  
TPERIODSSAbs  
100-MHz CPUT and CPUC Absolute Measured at crossing point VOX  
period, SSC  
66-MHz CPUT and CPUC Absolute  
period, SSC  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
83-MHz CPUT and CPUC Absolute  
period, SSC  
71-MHz CPUT and CPUC Absolute  
period, SSC  
TCCJ  
CPUT/C Cycle to Cycle Jitter  
CPU2_ITP Cycle to Cycle Jitter  
CPU Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
85  
ps  
ps  
TCCJ2  
LACC  
125  
300  
100  
150  
700  
ppm  
ps  
TSKEW  
TSKEW2  
TR / TF  
CPU1 to CPU0 Clock Skew  
CPU2_ITP to CPU0 Clock Skew  
ps  
CPUT and CPUC Rise and Fall Time Measured from VOL = 0.175 to  
OH = 0.525V  
175  
ps  
V
TRFM  
Rise/Fall Matching  
Determined as a fraction of  
2*(TR – TF)/(TR + TF)  
20  
%
TR  
Rise Time Variation  
Fall Time Variation  
Voltage High  
125  
125  
850  
ps  
ps  
TF  
VHIGH  
Math averages Figure 15  
660  
mV  
Rev 1.2,July 3 , 2007  
Page 15 of 21  
SL28442-2  
AC Electrical Specifications (continued)  
Parameter  
VLOW  
Description  
Condition  
Min.  
–150  
250  
Max.  
Unit  
mV  
mV  
V
Voltage Low  
Math averages Figure 15  
VOX  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
550  
VOVS  
VHIGH  
0.3  
+
VUDS  
VRB  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
V
V
See Figure 15. Measure SE  
0.2  
SRC at 0.7V  
TDC  
SRCT and SRCC Duty Cycle  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
TPERIOD  
100-MHz SRCT and SRCC Period  
9.997001 10.00300 ns  
9.997001 10.05327 ns  
TPERIODSS  
100-MHz SRCT and SRCC Period,  
SSC  
TPERIODAbs  
100-MHz SRCT and SRCC Absolute Measured at crossing point VOX  
Period  
9.872001 10.12800 ns  
9.872001 10.17827 ns  
TPERIODSSAbs  
100-MHz SRCT and SRCC Absolute Measured at crossing point VOX  
Period, SSC  
TSKEW  
TCCJ  
Any SRCT/C to SRCT/C Clock Skew Measured at crossing point VOX  
250  
125  
300  
700  
ps  
ps  
SRCT/C Cycle to Cycle Jitter  
SRCT/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
LACC  
ppm  
ps  
TR / TF  
SRCT and SRCC Rise and Fall Time Measured from VOL = 0.175 to  
VOH = 0.525V  
175  
TRFM  
Rise/Fall Matching  
Determined as a fraction of  
2*(TR – TF)/(TR + TF)  
20  
%
TR  
Rise TimeVariation  
125  
125  
850  
ps  
ps  
TF  
Fall Time Variation  
VHIGH  
VLOW  
VOX  
Voltage High  
Math averages Figure 15  
Math averages Figure 15  
660  
–150  
250  
mV  
mV  
mV  
V
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
550  
VOVS  
VHIGH  
0.3  
+
VUDS  
VRB  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
V
V
See Figure 15. Measure SE  
0.2  
DOT at 0.7V  
TDC  
DOT96T and DOT96C Duty Cycle  
DOT96T and DOT96C Period  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
TPERIOD  
TPERIODAbs  
TCCJ  
10.41354 10.41979 ns  
10.16354 10.66979 ns  
DOT96T and DOT96C Absolute Period Measured at crossing point VOX  
DOT96T/C Cycle to Cycle Jitter  
DOT96T/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
250  
100  
700  
ps  
ppm  
ps  
LACC  
TR / TF  
DOT96T and DOT96C Rise and Fall  
Time  
Measured from VOL = 0.175 to  
VOH = 0.525V  
175  
TRFM  
Rise/Fall Matching  
Determined as a fraction of  
2*(TR – TF)/(TR + TF)  
20  
%
TR  
Rise Time Variation  
Fall Time Variation  
Voltage High  
125  
125  
850  
ps  
ps  
TF  
VHIGH  
VLOW  
VOX  
Math averages Figure 15  
Math averages Figure 15  
660  
–150  
250  
mV  
mV  
mV  
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
550  
Rev 1.2,July 3 , 2007  
Page 16 of 21  
SL28442-2  
AC Electrical Specifications (continued)  
Parameter  
VOVS  
Description  
Condition  
Min.  
Max.  
Unit  
Maximum Overshoot Voltage  
VHIGH  
0.3  
+
V
VUDS  
VRB  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
V
V
See Figure 15. Measure SE  
0.2  
96_100SSCG at 0.7V  
TDC  
DOT96T and DOT96C Duty Cycle  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
TPERIOD_100  
TPERIODSS_100  
100-MHz SSCG Period  
9.997001 10.00300 ns  
9.997001 10.05327 ns  
9.872001 10.12800 ns  
9.872001 10.17827 ns  
100-MHz SSCG Period, -0.5% SSC  
TPERIODAbs_100 100-MHz SSCG Absolute Period  
TPERIODSSAbs-100 100-MHz SSCG Absolute Period,  
-0.5% SSC  
TPERIOD_96  
TPERIODAbs_96  
TCCJ  
96-MHz SSCG Period  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured from VOL = 0.175 to  
10.41354 10.41979 ns  
10.16354 10.66979 ns  
96-MHz SSCG Absolute Period  
SSCG Cycle to Cycle Jitter  
SSCG Long Term Accuracy  
SSCG Rise and Fall Time  
250  
300  
700  
ps  
ppm  
ps  
LACC  
TR / TF  
175  
VOH = 0.525V  
TRFM  
Rise/Fall Matching  
Determined as a fraction of  
2*(TR – TF)/(TR + TF)  
20  
%
TR  
Rise Time Variation  
125  
125  
850  
ps  
ps  
TF  
Fall Time Variation  
VHIGH  
VLOW  
VOX  
Voltage High  
Math averages Figure 15  
Math averages Figure 15  
660  
–150  
250  
mV  
mV  
mV  
V
Voltage Low  
Crossing Point Voltage at 0.7V Swing  
Maximum Overshoot Voltage  
550  
VOVS  
VHIGH  
0.3  
+
VUDS  
VRB  
Minimum Undershoot Voltage  
Ring Back Voltage  
–0.3  
V
V
See Figure 15. Measure SE  
0.2  
PCI/PCIF  
TDC  
PCI Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
TPERIODSS  
TPERIODAbs  
TPERIODSSAbs  
THIGH  
Spread Disabled PCIF/PCI Period  
29.99100 30.00900 ns  
29.9910 30.15980 ns  
29.49100 30.50900 ns  
29.49100 30.65980 ns  
Spread Enabled PCIF/PCI Period, SSC Measurement at 1.5V  
Spread Disabled PCIF/PCI Period Measurement at 1.5V  
Spread Enabled PCIF/PCI Period, SSC Measurement at 1.5V  
PCIF and PCI high time  
PCIF and PCI low time  
Measurement at 2.4V  
Measurement at 0.4V  
12.0  
12.0  
1.0  
ns  
ns  
TLOW  
TR / TF  
PCIF/PCI rising and falling Edge Rate Measured between 0.8V and 2.0V  
Any PCI clock to Any PCI clock Skew Measurement at 1.5V  
4.0  
500  
500  
V/ns  
ps  
TSKEW  
TCCJ  
PCIF and PCI Cycle to Cycle Jitter  
Measurement at 1.5V  
ps  
USB  
TDC  
USB Duty Cycle  
USB Period  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.4V  
Measurement at 0.4V  
Measured between 0.8V and 2.0V  
45  
55  
%
TPERIOD  
TPERIODAbs  
THIGH  
20.83125 20.83542 ns  
20.48125 21.18542 ns  
USB Absolute Period  
USB high time  
8.094  
7.694  
1.0  
10.036  
9.836  
2.0  
ns  
ns  
TLOW  
USB low time  
TR / TF  
Rising and Falling Edge Rate  
V/ns  
Rev 1.2,July 3 , 2007  
Page 17 of 21  
SL28442-2  
AC Electrical Specifications (continued)  
Parameter  
TCCJ  
Description  
Cycle to Cycle Jitter  
Condition  
Min.  
Max.  
Unit  
Measurement at 1.5V  
350  
ps  
REF  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
TPERIODAbs  
TR / TF  
REF Period  
Measurement at 1.5V  
69.8203  
69.8622  
ns  
REF Absolute Period  
REF Rising and Falling Edge Rate  
REF Cycle to Cycle Jitter  
Measurement at 1.5V  
68.82033 70.86224 ns  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
1.0  
4.0  
V/ns  
ps  
TCCJ  
1000  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS  
10.0  
0
1.8  
ms  
ns  
ns  
Stopclock Set-up Time  
Stopclock Hold Time  
TSH  
Test and Measurement Set-up  
For PCI Single-ended Signals and Reference  
The following diagram shows the single-ended PCI outputs.  
Output under Test  
tDC  
Probe  
3.3V  
2.4V  
30  
pF  
Load  
1.5V  
Cap  
0.4V  
0V  
Tr  
Tf  
Figure 14. Single-Ended PCI Lumped Load Configuration  
The following diagram shows the test load configuration for the  
differential CPU and SRC outputs.  
M e a s u re m e n t  
P o in t  
2 p F  
3 3 Ω  
C P U T  
S R C T  
D O T 9 6 T  
4 9 .9 Ω  
9 6 _ 1 0 0 S S C T  
1 0 0 Ω D iffe re n tia l  
M e a s u re m e n t  
P o in t  
2 p F  
C P U C  
S R C C  
D O T 9 6 C  
3 3 Ω  
4 9 .9 Ω  
9 6 _ 1 0 0 S S C C  
IR E F  
4 7 5 Ω  
Figure 15. 0.7V Differential Clock Load Configuration  
Rev 1.2,July 3 , 2007  
Page 18 of 21  
SL28442-2  
3 .3 V s ig n a ls  
T D C  
-
-
3 .3 V  
2 .4 V  
1 .5 V  
0 .4 V  
0 V  
T R  
T F  
Figure 16. Single-ended Output Signals (for AC Parameters Measurement)  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any cir-  
cuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in  
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other applica-  
tion requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional  
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any  
circuitry or specification without notice.  
Rev 1.2, July 3 , 2007  
Page 19 of 21  
SL28442-2  
Ordering Information  
Part Number  
Lead-free  
Package Type  
Product Flow  
SL28442AZC-2  
SL28442AZC-2T  
56-pin TSSOP  
56-pin TSSOP—Tape and Reel  
Commercial, 0° to 85°C  
Commercial, 0° to 85°C  
Package Diagrams  
56-Lead Thin Shrunk Small Outline Package, Type II (6 mm x 12 mm) Z56  
0.249[0.009]  
28  
1
DIMENSIONS IN MM[INCHES] MIN.  
MAX.  
7.950[0.313]  
8.255[0.325]  
REFERENCE JEDEC MO-153  
PACKAGE WEIGHT 0.42gms  
5.994[0.236]  
6.198[0.244]  
29  
56  
13.894[0.547]  
14.097[0.555]  
1.100[0.043]  
MAX.  
GAUGE PLANE  
0.25[0.010]  
0.20[0.008]  
0.508[0.020]  
0.762[0.030]  
0.051[0.002]  
0.152[0.006]  
0.851[0.033]  
0.950[0.037]  
0.500[0.020]  
BSC  
0°-8°  
0.100[0.003]  
0.200[0.008]  
0.170[0.006]  
0.279[0.011]  
SEATING  
PLANE  
Rev 1.2,July 3 , 2007  
Page 20 of 21  
SL28442-2  
Document History Page  
Document Title: SL28442-2 Clock Generator for Intel® Alviso Chipset  
Document Number:  
Orig. of  
REV.  
1.0  
ECN NO. Issue Date Change  
Description of Change  
05/18/2007  
06/05/2007  
SLI  
SLI  
New data sheet  
1.1  
Updated AC Electrical Specification table  
Modified Ordering Information  
1.2  
07/03/2007  
SLI  
Remove Preliminary  
Updated AC Electrical Specification table  
Update Package Diagrams  
Rev 1.2,July 3 , 2007  
Page 21 of 21  

相关型号:

SL28504

Clock Generator for IntelEaglelake Chipset
SILICON

SL28504-2

Clock Generator for Intel®Eaglelake Chipset
SILICON

SL28504BZC

Clock Generator for IntelEaglelake Chipset
SILICON

SL28504BZC-1T

Processor Specific Clock Generator, 400MHz, CMOS, PDSO64, TSSOP-64
SILICON

SL28504BZC-2

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, ROHS COMPLIANT, MO-153, TSSOP-56
SILICON

SL28504BZC-2T

Clock Generator for Intel®Eaglelake Chipset
SILICON

SL28504BZCT

Clock Generator for IntelEaglelake Chipset
SILICON

SL28504BZI

Processor Specific Clock Generator, 400MHz, CMOS, PDSO64, LEAD FREE, MO-153EF, TSSOP-64
SILICON

SL28504BZI-2

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, LEAD FREE, MO-153EE, TSSOP-56
SILICON

SL28504BZI-2T

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, 6 X 12 MM, LEAD FREE, MO-153EE, TSSOP-56
SILICON

SL28504BZIT

Clock Generator for IntelEaglelake Chipset
SILICON

SL28506

Clock Generator for Intel® Eaglelake Chipset
SILICON