SL28540ALC [SILICON]

Clock Generator, 200MHz, CMOS, 8 X 8 MM, LEAD FREE, QFN-56;
SL28540ALC
型号: SL28540ALC
厂家: SILICON    SILICON
描述:

Clock Generator, 200MHz, CMOS, 8 X 8 MM, LEAD FREE, QFN-56

时钟 外围集成电路 晶体
文件: 总25页 (文件大小:180K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL28540  
Low Power Clock Generator for Intel®Mobile Platform  
• 48 MHz USB clocks  
Features  
• 33 MHz PCI clocks  
• Compliant to Intel® CK540 UMPC clock spec  
• Low power push-pull type differential output buffers  
• Integrated voltage regulator  
• Buffered Reference Clock 14.318 MHz  
• Low-voltage frequency select input  
• I2C support with readback capabilities  
• Integrated series termination resistors on differential  
clocks  
• Ideal Lexmark Spread Spectrum profile for maximum  
electromagnetic interference (EMI) reduction  
• Scalable low voltage VDD_IO (3.3V to 1.05V)  
• 8-step drive strength control for all single-ended clocks  
• Differential CPU clocks with selectable frequency  
• 100 MHz Differential SRC clocks  
56-pin QFN (8x8) package  
CPU  
SRC  
x7  
PCI  
x6  
REF DOT96 USB_48 LCD  
x 1 x 1 x 1 x1  
x2 / x3  
• 96 MHz Differential DOT clock  
Block Diagram  
Pin Configuration  
VDD_REF  
Xin  
Xout  
14.318MHz  
Crystal  
REF  
PLL Reference  
VDD_CPU_I/O  
CPU_STP#  
CPUT[1:0]  
CPUC[1:0]  
PCI_STP#  
CLKREQ#  
CPU  
SRC  
VDD_SRC_I/O  
CPU PLL1  
SS  
FS[C:A]  
CPUT2_ITP/SRC8T  
CPUC2_ITP/SRC8C  
ITP_EN  
CKPWRGD/PD#  
VDD_SRC_I/O  
GCLK_SEL  
PCI  
SRCT [2,3,4,11,7]  
SRCC [2,3,4,11,7]  
VDD_PCI  
PCI[4:0], PCIF0  
VDD_SRC_I/O  
PLL3  
SS  
LCD_100T/SRC1T  
LCD_100C/SRC1C  
LCD_100  
DOT96  
VDD_I/O  
DOT96T  
DOT96C  
PLL2  
Fixed  
VDD_48  
USB_48  
I2C  
Logic  
SDATA  
SCLK  
* internal Pull-up  
** internal Pull-down  
..................................................... Document #: Page 1 of 25  
400 West Cesar Chavez, Austin, TX 78701 1+(512) 416-8500 1+(512) 416-9669  
www.silabs.com  
SL28540  
Pin Definitions  
Pin No.  
Name  
Type  
Description  
1
2
3
Xout  
Xin  
O, SE 14.318 MHz Crystal output.  
I
14.318 MHz Crystal input.  
VDD_REF  
PWR 3.3V Power supply for outputs and maintains SMBUS registers during power  
down.  
4
REF0 / FSC / TEST_SEL  
I/O  
Fixed 14.318 clock output/3.3V-tolerant input for CPU frequency selection/  
Selects test mode if pulled to VIHFS_C when CK_PWRGD is asserted HIGH.  
Refer to DC Electrical Specifications table for VILFS_C, VIMFS_C, VIHFS_C specifica-  
tions.  
5
6
7
SDATA  
I/O  
I
SMBus compatible SDATA.  
SMBus compatible SCLOCK.  
SCLK  
PCI0 / CR#_A  
I/O, SE 33 MHz Clock/3.3V Clock Request # Input  
Mappable via I2C to control either SRC 0 or SRC 2. Default PCI0.  
To configure this pin to serve as a Clock Request pin for either SRC pair 2 or pair  
0 using the CR#_A_EN bit located in byte 5 bit 7, first disable PCI output (Hi-z) in  
byte 2, bit 1.  
0 = PCI0 enabled (default)  
1= CR#_A enabled.  
Byte 5, bit 6 controls whether CR#_A controls SRC0 or SRC2 pair  
Byte 5, bit 6:  
0 = CR#_A controls SRC0 pair (default)  
1= CR#_A controls SRC2 pair  
8
9
VDD_PCI  
PWR 3.3V power supply for PCI PLL  
PCI1 / CR#_B  
I/O, SE 33 MHz Clock/3.3V Clock Request # Input  
Mappable via I2C to control either SRC 1 or SRC 4. Default PCI1.  
To configure this pin to serve as a Clock Request pin for either SRC pair 1 or pair  
4 using the CR#_B_EN bit located in byte 5, bit 5, first disable PCI output (Hi-z) in  
byte 2, bit 1.  
0 = PCI1 enabled (default)  
1= CR#_B enabled.  
Byte 5, bit 4 controls whether CR#_B controls SRC1 or SRC4 pair  
Byte 5, bit 4:  
0 = CR#_B controls SRC1 pair (default)  
1= CR#_B controls SRC4 pair  
10  
11  
PCI2  
PCI3  
O, SE 33 MHz Clock output/3.3V-tolerant input for enabling Trusted Mode  
O, SE 33 MHz Clock output  
11, 12 PCI 4/GCLK_SEL  
I/O, SE 33 MHz Clock output/3.3V-tolerant input for selecting clock source on pin 23,  
PD  
24.  
Sampled at CKPWRGD assertion:  
0 = SRC1(default), 1 = LCD_100M  
Internal weak pull-down to GND  
13  
PCIF0 / ITP_EN  
I/O, SE 33 MHz free running clock output/3.3V LVTTL input to enable SRC8 or  
CPU2_ITP (sampled on the CKPWRGD assertion)  
1 = CPU2_ITP, 0 = SRC8  
14  
15  
16  
VSS_PCI  
GND Ground for outputs.  
VDD_48  
PWR 3.3V power supply for outputs and PLL.  
USB_48 / FSA  
I/O  
Fixed 48 MHz clock output/3.3V-tolerant input for CPU frequency selection  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
17  
18  
19  
20  
VSS_48  
VDD_IO  
DOT96T  
DOT96C  
GND Ground for outputs.  
PWR 3.3V-1.05V power supply for outputs  
O, DIF Fixed True 96 MHz clock output.  
O, DIF Fixed complement 96 MHz clock output.  
.....................................................Document #: Page 2 of 25  
SL28540  
Pin Definitions (continued)  
Pin No.  
21  
Name  
Type  
Description  
VSS_IO  
GND Ground for outputs.  
PWR 3.3V Power supply for PLL3.  
22  
VDD_PLL3  
23  
SRCT1 / LCDT_100  
O, DIF True 100 MHz differential serial reference clock output/True 100 MHz LCD  
video clock output  
24  
SRCC1 / LCDC_100  
O, DIF Complementary 100 MHz differential serial reference clock output/Comple-  
mentary 100 MHz LCD video clock output  
25  
26  
27  
28  
29  
30  
VSS_PLL3  
VDD_PLL3_IO  
SRCT2  
GND Ground for PLL3.  
PWR 3.3V-1.05V power supply for outputs.  
O, DIF True 100 MHz differential serial reference clock output.  
O, DIF Complementary 100 MHz differential serial reference clock output.  
GND Ground for outputs.  
SRCC2  
VSS_SRC  
SRCT3 / CR#_C  
I/O, True 100 MHz differential serial reference clock output /3.3V Clock Request  
DIF #_C/D input  
Selected via CR#_C_EN/CR#_D_EN bit located in byte 5 bit 3and 1.  
The CR#_C_SEL and CR#_D_SEL bits in byte 5 bit 2 and 0 will select which SRC  
to stop when asserted  
31  
SRCC3 / CR#_D  
I/O, Complementary 100 MHz differential serial reference clock output/3.3V Clock  
DIF Request #_C/D input  
Selected via CR#_C_EN/CR#_D_EN bit located in byte 5 bit 3and 1.  
The CR#_C_SEL and CR#_D_SEL bits in byte 5 bit 2 and 0 will select which SRC  
to stop when asserted  
32  
33  
34  
35  
36  
37  
VDD_SRC_IO  
SRCT4  
PWR 3.3V-1.05V Power supply for outputs.  
O, DIF True 100 MHz differential serial reference clocks.  
O, DIF Complementary 100 MHz differential serial reference clocks.  
O, DIF True 100 MHz differential serial reference clocks.  
O, DIF Complementary 100 MHz differential serial reference clocks.  
SRCC4  
SRCT11  
SRCC11  
CPU_STOP#  
I
3.3V-tolerant input for stopping CPU outputs  
During direct clock off to M1 mode transition, a serial load of BSEL data is driven  
on CPU_STOP# and sampled on the rising edge of PCI_STOP#. See Figure 12  
for more information.  
38  
PCI_STOP#  
I
3.3V-tolerant input for stopping PCI and SRC outputs  
During direct clock off to M1 mode transition, a serial load of BSEL data is driven  
on CPU_STOP# and sampled on the rising edge of PCI_STOP#. See Figure 12  
for more information.  
39  
40  
41  
VDD_SRC  
PWR 3.3V power supply for SRC PLL.  
GND Ground for outputs.  
VSS_SRC  
SRCC7/ CR#_E  
I/O, Complementary 100 MHz differential serial reference clocks/3.3V CR#_E  
DIF Input.  
Selected via CR#_E_EN/CR#_F_EN bit located in byte 6 bit 7 and 6.  
When selected, CR#_E controls SRC6, CR#_F controls SRC8  
42  
SRCT7/ CR#_F  
I/O, True 100 MHz differential serial reference clocks/3.3V CR#_F Input.  
DIF Selected via CR#_E_EN/CR#_F_EN bit located in byte 6 bit 7 and 6.  
When selected, CR#_E controls SRC6, CR#_F controls SRC8  
43  
44  
VDD_SRC_IO  
PWR 3.3V-1.05V Power supply for outputs.  
SRCC8 / CPUC2_ITP  
O, DIF Selectable complementary differential CPU or SRC clock output.  
ITP_EN = 0 @ CK_PWRGD assertion = SRC8  
ITP_EN = 1 @ CK_PWRGD assertion = CPU2  
45  
46  
SRCT8 / CPUT2_ITP,  
NC  
O, DIF Selectable True differential CPU or SRC clock output.  
ITP_EN = 0 @ CK_PWRGD assertion = SRC8  
ITP_EN = 1 @ CK_PWRGD assertion = CPU2  
NC  
No connect.  
.....................................................Document #: Page 3 of 25  
SL28540  
Pin Definitions (continued)  
Pin No.  
47  
Name  
VDD_CPU_IO  
Type  
Description  
PWR 3.3V-1.05V Power supply for outputs.  
48  
CPUC1  
O, DIF Complementary differential CPU clock outputs.  
Note that CPU1 is the iAMT clock and is on in that mode.  
49  
CPUT1  
O, DIF True differential CPU clock outputs.  
Note that CPU1 is the iAMT clock and is on in that mode.  
50  
51  
52  
53  
54  
VSS_CPU  
GND Ground for outputs.  
CPUC0  
O, DIF Complement differential CPU clock outputs.  
O, DIF True differential CPU clock outputs.  
PWR 3.3V Power supply for CPU PLL.  
CPUT0  
VDD_CPU  
CKPWRGD / PWRDWN#  
I
3.3V LVTTL input. This pin is a level sensitive strobe used to latch the FS_A,  
FS_B, FS_C, GLCK_SEL and ITP_EN.  
After CKPWRGD (active HIGH) assertion, this pin becomes a real-time input for  
asserting power down (active LOW).  
55  
56  
FSB / TEST_MODE  
VSS_REF  
I
3.3V-tolerant input for CPU frequency selection / Selects Ref/N or Tri-state  
when in test mode.  
0 = Tri-state, 1 = Ref/N  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
GND Ground for outputs.  
Table 1. Frequency Select Pin (FSA, FSB and FSC)  
FSC  
FSB  
FSA  
CPU  
SRC  
PCIF/PCI  
33 MHz  
33 MHz  
33 MHz  
33 MHz  
REF  
DOT96  
96 MHz  
96 MHz  
96 MHz  
96 MHz  
USB  
1
0
0
0
0
0
1
1
1
1
1
0
100 MHz  
133 MHz  
166 MHz  
200 MHz  
100 MHz  
100 MHz  
100 MHz  
100 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
48 MHz  
48 MHz  
48 MHz  
48 MHz  
Apply the appropriate logic levels to FSA, FSB, and FSC  
inputs before CK-PWRGD assertion to achieve host clock  
frequency selection. When the clock chip sampled HIGH on  
CK-PWRGD and indicates that VTT voltage is stable then  
FSA, FSB, and FSC input values are sampled. This process  
employs a one-shot functionality and once the CK-PWRGD  
sampled a valid HIGH, all other FSA, FSB, FSC, and  
CK-PWRGD transitions are ignored except in test mode  
system initialization, if any are required. The interface cannot  
be used during system operation for power management  
functions.  
Data Protocol  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, Access the bytes in sequential  
order from lowest to highest (most significant bit first) with the  
ability to stop after any complete byte is transferred. For byte  
write and byte read operations, the system controller can  
access individually indexed bytes. The offset of the indexed  
byte is encoded in the command code described in Table 2.  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers are individually enabled or disabled. The  
registers associated with the Serial Data Interface initialize to  
their default setting at power-up. The use of this interface is  
The block write and block read protocol is outlined in Table 3  
while Table 4 outlines byte write and byte read protocol. The  
slave receiver address is 11010010 (D2h)  
optional. Clock device register changes are normally made at  
.
Table 2. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0) Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be '0000000'  
.....................................................Document #: Page 4 of 25  
 
SL28540  
Table 3. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Byte Count–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Data byte 1–8 bits  
27:21  
28  
Slave address–7 bits  
Read = 1  
36:29  
37  
Acknowledge from slave  
Data byte 2–8 bits  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte /Slave Acknowledges  
Data Byte N–8 bits  
Acknowledge from slave  
Stop  
....  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
....  
....  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
....  
Data bytes from slave / Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
....  
....  
....  
Stop  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Data from slave–8 bits  
NOT Acknowledge  
Stop  
37:30  
38  
39  
.....................................................Document #: Page 5 of 25  
SL28540  
Control Registers  
Byte 0: Control Register 0  
Bit  
7
@Pup  
HW  
HW  
HW  
0
Name  
FS_C  
Description  
CPU Frequency Select Bit, set by HW  
6
FS_B  
CPU Frequency Select Bit, set by HW  
CPU Frequency Select Bit, set by HW  
5
FS_A  
4
iAMT_EN  
Set via SMBus or by combination of PWRDWN, CPU_STP, and PCI_STP  
0 = Legacy Mode, 1 = iAMT Enabled  
3
2
1
0
0
0
0
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
PD_Restore  
Save Config. In powerdown  
0 = Config. Cleared, 1 = Config. Saved  
Byte 1: Control Register 1  
Bit  
7
@Pup  
Name  
Description  
0
0
Reserved  
Reserved  
6
PLL1_SS_DC  
Select for down or center SS  
0 = Down spread, 1 = Center spread  
5
0
PLL3_SS_DC  
Select for down or center SS  
0 = Down spread, 1 = Center spread  
4
3
2
1
0
0
0
0
1
1
PLL3_CFB3  
PLL3_CFB2  
PLL3_CFB1  
PLL3_CFB0  
Reserved  
SeeTable 8: PLL3 / SE configuration table  
Reserved  
Byte 2: Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
REF_OE  
Output enable for REF  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
USB_OE  
PCIF0_OE  
PCI4_OE  
PCI3_OE  
PCI2_OE  
PCI1_OE  
PCI0_OE  
Output enable for USB  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCIF0  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI4  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI3  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI2  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI1  
0 = Output Disabled, 1 = Output Enabled  
Output enable for PCI0  
0 = Output Disabled, 1 = Output Enabled  
Byte 3: Control Register 3  
Bit @Pup  
Name  
Description  
.....................................................Document #: Page 6 of 25  
SL28540  
Byte 3: Control Register 3  
7
1
SRC[T/C]11_OE  
Output enable for SRC11  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
1
1
1
Reserved  
Reserved  
Reserved  
Reserved  
SRC[T/C]8/CPU2_ITP_OE Output enable for SRC8 or CPU2_ITP  
0 = Output Disabled, 1 = Output Enabled  
3
1
SRC[T/C]7_OE  
Output enable for SRC7  
0 = Output Disabled, 1 = Output Enabled  
2
1
0
1
1
1
Reserved  
Reserved  
Reserved  
Reserved  
SRC[T/C]4_OE  
Output enable for SRC4  
0 = Output Disabled, 1 = Output Enabled  
Byte 4: Control Register 4  
Bit  
@Pup  
Name  
Description  
7
1
SRC[T/C]3_OE  
Output enable for SRC3  
0 = Output Disabled, 1 = Output Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
SRC[T/C]2_OE  
Output enable for SRC2  
0 = Output Disabled, 1 = Output Enabled  
SRC[T/C]1/LCD_100M[T/C] Output enable for SRC1/LCD_100M  
_OE  
0 = Output Disabled, 1 = Output Enabled  
DOT96[T/C]_OE  
Output enable for DOT96  
0 = Output Disabled, 1 = Output Enabled  
CPU[T/C]1_OE  
CPU[T/C]0_OE  
PLL1_SS_EN  
PLL3_SS_EN  
Output enable for CPU1  
0 = Output Disabled, 1 = Output Enabled  
Output enable for CPU0  
0 = Output Disabled, 1 = Output Enabled  
Enable PLL1’s spread modulation,  
0 = Spread Disabled, 1 = Spread Enabled  
Enable PLL3’s spread modulation  
0 = Spread Disabled, 1 = Spread Enabled  
Byte 5: Control Register 5  
Bit  
@Pup  
Name  
Description  
7
0
CR#_A_EN  
Enable CR#_A (clk req)  
0 = Disabled, 1 = Enabled,  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
CR#_A_SEL  
CR#_B_EN  
CR#_B_SEL  
CR#_C_EN  
CR#_C_SEL  
CR#_D_EN  
CR#_D_SEL  
Set CR#_A SRC0 or SRC2  
0 = CR#_ASRC0, 1 = CR#_ASRC2  
Enable CR#_B(clk req)  
0 = Disabled, 1 = Enabled,  
Set CR#_B SRC1 or SRC4  
0 = CR#_BSRC1, 1 = CR#_BSRC4  
Enable CR#_C (clk req)  
0 = Disabled, 1 = Enabled  
Set CR#_C SRC0 or SRC2  
0 = CR#_CSRC0, 1 = CR#_CSRC2  
Enable CR#_D (clk req)  
0 = Disabled, 1 = Enabled  
Set CR#_D SRC1 or SRC4  
0 = CR#_DSRC1, 1 = CR#_DSRC4  
.....................................................Document #: Page 7 of 25  
SL28540  
Byte 6: Control Register 6  
Bit  
@Pup  
Name  
Description  
7
0
CR#_E_EN  
Enable CR#_E (clk req) SRC6  
0 = Disabled, 1 = Enabled  
6
0
CR#_F_EN  
Enable CR#_F (clk req) SRC8  
0 = Disabled, 1 = Enabled  
5
4
3
2
1
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
LCD_100_STP_CTRL  
If set, LCD_100 stop with PCI_STOP#  
0 = Free running, 1 = PCI_STOP# stoppable  
0
0
SRC_STP_CTRL  
If set, SRCs stop with PCI_STOP#  
0 = Free running, 1 = PCI_STOP# stoppable  
Byte 7: Vendor ID  
Bit  
7
@Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
0
0
0
0
1
0
0
0
Rev Code Bit 3  
Rev Code Bit 2  
Rev Code Bit 1  
Rev Code Bit 0  
Vendor ID bit 3  
Vendor ID bit 2  
Vendor ID bit 1  
Vendor ID bit 0  
6
5
4
3
2
Vendor ID Bit 2  
1
Vendor ID Bit 1  
0
Vendor ID Bit 0  
Byte 8: Control Register 8  
Bit  
7
@Pup  
Name  
Description  
1
0
1
0
Device_ID3  
Device_ID2  
Device_ID1  
Device_ID0  
0000 = CK505 Yellow Cover Device, 56-pin TSSOP  
0001 = CK505 Yellow Cover Device, 64-pin TSSOP  
6
0010 = CK505 Yellow Cover Device, 48-pin QFN (Reserved)  
0011 = CK505 Yellow Cover Device, 56-pin QFN (Reserved)  
0100 = CK505 Yellow Cover Device, 64-pin QFN  
0101 = CK505 Yellow Cover Device, 72-pin QFN (Reserved)  
0110 = CK505 Yellow Cover Device, 48-pin SSOP (Reserved)  
0111 = CK505 Yellow Cover Device, 56-pin SSOP (Reserved)  
1000 = Reserved  
5
4
1001 = Reserevd  
1010 = CK505 Mobile  
1011 = Reserved  
1100 = Reserved  
1101 = Reserved  
1110 = Reserved  
1111 = Reserved  
3
2
1
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte 9: Control Register 9  
Bit @Pup  
Name  
Description  
.....................................................Document #: Page 8 of 25  
SL28540  
Byte 9: Control Register 9  
7
6
5
0
HW  
1
PCIF_0_with PCI_STOP# Allows control of PCIF_0 with assertion of PCI_STOP#  
0 = Free running PCIF, 1 = Stopped with PCI_STOP#  
TME_STRAP  
Trusted mode enable strap status  
0 = Normal, 1 = No overclocking  
REF drive strength  
REF drive strength bit 1 (DSC 1)  
0 = Low, 1 = High  
See byte 13 for full-range setting  
4
3
0
0
TEST_MODE_SEL  
Mode select either REF/N or tri-state  
0 = All output tri-state, 1 = All output REF/N  
TEST_MODE_ENTRY  
Allow entry into test mode  
0 = Normal operation, 1 = Enter test mode  
2
1
0
1
0
1
12C_VOUT<2>  
12C_VOUT<1>  
12C_VOUT<0>  
I2C_VOUT[2,1,0]  
000 = 0.3V  
001 = 0.4V  
010 = 0.5V  
011 = 0.6V  
100 = 0.7V  
101 = 0.8V (default)  
110 = 0.9V  
111 = 1.0V  
Byte 10: Control Register 10  
Bit  
@Pup  
Name  
Description  
7
HW  
GCLK_SEL latch  
Readback of GCLK_SEL latch  
0 = SRC1, 1 = LCD_100M  
6
0
PLL3_EN  
PLL3 power down  
0 = Power down, 1 = Power up  
When GCLK_SEL=0, this bit is 0. When GCLK_SEL=1, this bit is 1.  
5
4
3
2
1
0
1
1
1
1
1
1
PLL2_EN  
SRC_DIV_EN  
PLL2 power down  
0 = Power down, 1 = Power up  
SRC divider disable  
0 = Disabled, 1 = Enabled  
PCI_DIV_EN  
PCI divider disable  
0 = Disabled, 1 = Enabled  
CPU_DIV_EN  
CPU divider disable  
0 = Disabled, 1 = Enabled  
CPU1 Stop Enable  
CPU0 Stop Enable  
Enable CPU_STOP# control of CPU1  
0 = Free running, 1= Stoppable  
Enable CPU_STOP# control of CPU0  
0 = Free running, 1= Stoppable  
Byte 11: Control Register 11  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
6
5
4
3
2
1
.....................................................Document #: Page 9 of 25  
SL28540  
Byte 11: Control Register 11 (continued)  
0
1
CPU[T/C]2  
Allow control of CPU2 with assertion of CPU_STOP#  
0 = Free running, 1 = Stopped with CPU_STOP#  
Byte 12: Byte Count  
Bit  
7
@Pup  
Name  
Reserved  
Reserved  
BC5  
Description  
0
0
0
0
1
1
0
1
Reserved  
Reserved  
Byte count  
Byte count  
Byte count  
Byte count  
Byte count  
Byte count  
6
5
4
BC4  
3
BC3  
2
BC2  
1
BC1  
0
BC0  
Byte 13: Control Register 13  
Bit  
@Pup  
Name  
Description  
7
0
PCI/PCIF drive strength Drive Strength Control table (DSC[2:0])  
control bit 2  
6
5
4
3
2
1
0
1
1
0
1
0
0
0
PCI/PCIF drive strength  
control bit 1  
DSC_2  
DSC_1  
DSC_0  
Buffer  
Strength  
Strongest  
PCI/PCIF drive strength  
control bit 0  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
USB drive strength control  
bit 2  
USB drive strength control  
bit 1  
Default PCI  
Default REF/USB  
USB drive strength control  
bit 0  
Weakest  
REF drive strength control  
bit 2  
REF drive strength control  
bit 0  
Byte 14: Control Register 14  
Bit  
7
@Pup  
Name  
Description  
0
0
0
Reserevd  
Reserevd  
Reserved  
Reserved  
6
5
PLL1 spread percentage Select percentage of spread for PLL1  
0 = 0.5%, 1=1%  
4
3
2
1
0
0
0
0
Reserevd  
Reserevd  
Reserevd  
Reserevd  
Reserved  
Reserved  
Reserved  
Reserved  
...................................................Document #: Page 10 of 25  
SL28540  
Byte 14: Control Register 14  
Bit  
@Pup  
Name  
Description  
0
1
SW_PCI  
SW PCI_STP# Function  
0 = SW PCI_STP assert, 1 = SW PCI_STP deassert  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs are  
stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs are  
resumed in a synchronous manner with no short pulses.  
Table 5. Crystal Recommendations  
Frequency  
Drive  
(max.)  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
(Fund)  
Cut  
Loading Load Cap  
(max.)  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
The SL28540 requires a Parallel Resonance Crystal. Substi-  
tuting a series resonance crystal causes the SL28540 to  
operate at the wrong frequency and violates the ppm specifi-  
cation. For most applications there is a 300-ppm frequency  
shift between series and parallel crystals due to incorrect  
loading  
C lo ck C h ip  
C i2  
C i1  
P in  
3 to 6 p  
Crystal Loading  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, use the total capac-  
itance the crystal sees to calculate the appropriate capacitive  
loading (CL).  
X 2  
X 1  
C s2  
C s1  
T ra ce  
2 .8 p F  
X T A L  
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. It is important that the trim capacitors are in  
series with the crystal. It is not true that load capacitors are in  
parallel with the crystal and are approximately equal to the  
load capacitance of the crystal.  
C e 1  
C e 2  
T rim  
3 3 p F  
Figure 2. Crystal Loading Example  
,
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Load Capacitance (each side)  
Ce = 2 * CL – (Cs + Ci)  
Total Capacitance (as seen by the crystal)  
1
CLe  
=
1
1
(
)
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
Figure 1. Crystal Capacitive Clarification  
CL....................................................Crystal load capacitance  
CLe......................................... Actual loading seen by crystal  
using standard value trim capacitors  
Calculating Load Capacitors  
In addition to the standard external trim capacitors, consider  
the trace capacitance and pin capacitance to calculate the  
crystal loading correctly. Again, the capacitance on each side  
is in series with the crystal. The total capacitance on both side  
is twice the specified crystal load capacitance (CL). Trim  
capacitors are calculated to provide equal capacitive loading  
on both sides.  
Ce..................................................... External trim capacitors  
Cs..............................................Stray capacitance (terraced)  
Ci ...........................................................Internal capacitance  
(lead frame, bond wires, etc.)  
................................................... Document #: Page 11 of 25  
 
SL28540  
PD_RESTORE  
PWRDWN# (Power down) Assertion  
If a ‘0’ is set for Byte 0 bit 0 then, upon assertion of PWRDWN#  
LOW, the SL28540 initiates a full reset. The result of this is that  
the clock chip emulates a cold power on start and goes to the  
“Latches Open” state. If the PD_RESTORE bit is set to a ‘1’  
then the configuration is stored upon PWRDWN# asserted  
LOW. Note that if the iAMT bit, Byte 0 bit 3, is set to a ‘1’ then  
the PD_RESTORE bit must be ignored. In other words, in Intel  
iAMT mode, PWRDWN# reset is not allowed.  
When PD is sampled HIGH by two consecutive rising edges  
of CPUC, all single-ended outputs will be held LOW on their  
next HIGH-to-LOW transition and differential clocks must held  
LOW. When PD mode is desired as the initial power on state,  
PD must be asserted HIGH in less than 10 s after asserting  
CKPWRGD.  
PWRDWN# Deassertion  
The power up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD# pin or the ramping of the power  
supply until the time that stable clocks are generated from the  
clock chip. All differential outputs stopped in a three-state  
condition, resulting from power down are driven high in less  
than 300 s of PD# deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs are enabled within a few clock cycles of  
each clock. Figure 4 is an example showing the relationship of  
clocks coming up.  
PWRDWN# (Power down) Clarification  
The CKPWRGD/PWRDWN# pin is a dual-function pin. During  
initial power up, the pin functions as CKPWRGD. Once  
CKPWRGD has been sampled HIGH by the clock chip, the pin  
assumes PD# functionality. The PD# pin is an asynchronous  
active LOW input used to shut off all clocks cleanly before  
shutting off power to the device. This signal is synchronized  
internally to the device before powering down the clock  
synthesizer. PD# is also an asynchronous input for powering  
up the system. When PD# is asserted LOW, clocks are driven  
to a LOW value and held before turning off the VCOs and the  
crystal oscillator.  
PD#  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33 MHz  
REF  
Figure 3. Power down Assertion Timing Waveform  
Ts table  
<1.8 ms  
PD#  
CP UT , 133MHz  
CP UC, 133MHz  
S RCT 100MHz  
S RCC 100MHz  
US B , 48MHz  
DOT 96T  
DOT 96C  
P CI, 33MHz  
REF  
Tdriv e_PW R D N #  
<300 s , >200m V  
Figure 4. Power down Deassertion Timing Waveform  
...................................................Document #: Page 12 of 25  
 
SL28540  
Figure 5. CKPWRGD Timing Diagram  
...................................................Document #: Page 13 of 25  
SL28540  
CPU_STP# Assertion  
CPU_STP# Deassertion  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
When the CPU_STP# pin is asserted, all CPU outputs that are  
set with the SMBus configuration to be stoppable are stopped  
within two to six CPU clock periods after sampled by two rising  
edges of the internal CPUC clock. The final states of the  
stopped CPU signals are CPUT = HIGH and CPUC = LOW.  
The deassertion of the CPU_STP# signal causes all stopped  
CPU outputs to resume normal operation in a synchronous  
manner. No short or stretched clock pulses are produced when  
the clock resumes. The maximum latency from the  
deassertion to active outputs is no more than two CPU clock  
cycles.  
CPU_STP#  
CPUT  
CPUC  
Figure 6. CPU_STP# Assertion Waveform  
CPU_STP#  
CPUT  
CPUC  
CPUT Internal  
CPUC Internal  
Tdrive_CPU_STP#,10 ns>200 mV  
Figure 7. CPU_STP# Deassertion Waveform  
1.8 ms  
CPU_STOP#  
PD#  
CPUT(Free Running  
CPUC(Free Running  
CPUT(Stoppable)  
CPUC(Stoppable)  
DOT96T  
DOT96C  
Figure 8. CPU_STP# = Driven, CPU_PD = Driven, DOT_PD = Driven  
...................................................Document #: Page 14 of 25  
SL28540  
.
PCI_STP# Assertion  
The PCI_STP# signal is an active LOW input used for  
synchronously stopping and starting the PCI outputs while the  
rest of the clock generator continues to function. The set-up  
time for capturing PCI_STP# going LOW is 10 ns (tSU). (See  
Figure 9.) The PCIF clocks are affected by this pin if their  
corresponding control bit in the SMBus register is set to allow  
them to be free running.  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 9. PCI_STP# Assertion Waveform  
PCI_STP# Deassertion  
.
The deassertion of the PCI_STP# signal causes all PCI and  
stoppable PCIF clocks to resume running in a synchronous  
manner within two PCI clock periods, after PCI_STP# transi-  
tions to a HIGH level.  
Tdrive_SRC  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 10. PCI_STP# Deassertion Waveform  
.
Table 6. Output Driver Status during PCI-STOP# and CPU-STOP#  
PCI_STOP# Asserted  
CPU_STOP# Asserted  
Running  
SMBus OE Disabled  
Single-ended Clocks Stoppable  
Non stoppable  
Stoppable  
Driven low  
Driven low  
Running  
Running  
Differential Clocks  
Clock driven high  
Clock# driven low  
Running  
Clock driven high  
Clock# driven low  
Running  
Clock driven Low or 20K  
pulldown  
Non stoppable  
Table 7. Output Driver Status  
All Single-ended Clocks  
w/o Strap w/ Strap  
Low Hi-Z  
All Differential Clocks except CPU1  
CPU1  
Clock  
Clock#  
Clock  
Clock#  
Low  
Latches Open State  
Powerdown  
Low or 20K pulldown Low  
Low or 20K  
pulldown  
Low  
Hi-Z  
Low or 20K pulldown Low  
Low or 20K  
pulldown  
Low  
...................................................Document #: Page 15 of 25  
 
SL28540  
.
Table 8. PLL3/SE Configuration Table  
GCLK_SEL  
B1b4  
B1b3  
B1b2  
B1b1  
Pin 23 (MHz)  
Pin 24 (MHz) Spread (%)  
Comment  
0
0
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
PLL3 Disabled  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
0.5  
0.5  
1
SRC1 from SRC_Main  
LCD_100 from PLL3  
LCD_100 from PLL3  
LCD_100 from PLL3  
LCD_100 from PLL3  
1.5  
2
Figure 11. Clock Generator Power up/Run State Diagram  
...................................................Document #: Page 16 of 25  
SL28540  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Analog Supply Voltage  
IO Supply Voltage  
Input Voltage  
Condition  
Min.  
Max.  
4.6  
4.6  
3.8  
4.6  
150  
85  
Unit  
V
VDD_A  
VDD_IO  
VIN  
V
V
Relative to VSS  
Non-functional  
Functional  
–0.5  
–65  
0
V
TS  
Temperature, Storage  
°C  
°C  
TA  
Temperature, Operating  
Ambient  
TJ  
Temperature, Junction  
Functional  
150  
20  
60  
°C  
°C/W  
°C/W  
V
ØJC  
Dissipation, Junction to Case Mil-STD-883E Method 1012.1  
Dissipation, Junction to Ambient JEDEC (JESD 51)  
ØJA  
ESDHBM  
ESD Protection (Human Body MIL-STD-883, Method 3015  
Model)  
2000  
UL-94  
MSL  
Flammability Rating  
At 1/8 in.  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
VDD core  
Description  
3.3V Operating Voltage  
3.3V Operating Voltage  
1.05V Operating Voltage  
3.3V Input High Voltage (SE)  
3.3V Input Low Voltage (SE)  
Input High Voltage  
Condition  
Min.  
3.135  
3.135  
0.9975  
2.0  
Max.  
Unit  
V
3.3 ± 5%  
3.465  
VDD IO  
3.3 ± 5%,  
1.05V± 5%  
3.465  
V
1.1025  
V
VIH  
VDD + 0.3  
V
VIL  
VSS – 0.3  
2.2  
0.8  
V
VIHI2C  
VILI2C  
VIH_FS  
VIL_FS  
VIHFS_C_TEST  
SDATA, SCLK  
SDATA, SCLK  
V
Input Low Voltage  
1.0  
V
FS_[A,B] Input High Voltage  
FS_[A,B] Input Low Voltage  
FS_C Input High Voltage  
0.7  
VDD + 0.3  
V
VSS – 0.3  
2.0  
0.35  
V
VDD + 0.3  
V
VIMFS_C_NORMAL FS_C Input Middle Voltage  
VILFS_C_NORMAL FS_C Input Low Voltage  
0.7  
1.5  
0.35  
5
V
VSS – 0.3  
V
IIH  
Input High Leakage Current  
Input Low Leakage Current  
3.3V Output High Voltage (SE)  
3.3V Output Low Voltage (SE)  
High-impedance Output Current  
Input Pin Capacitance  
Except internal pull-down resistors, 0 < VIN < VDD  
Except internal pull-up resistors, 0 < VIN < VDD  
IOH = –1 mA  
A  
A  
V
IIL  
–5  
VOH  
2.4  
VOL  
IOL = 1 mA  
0.4  
10  
V
IOZ  
–10  
A  
pF  
pF  
nH  
V
CIN  
1.5  
5
COUT  
LIN  
Output Pin Capacitance  
Pin Inductance  
6
7
VXIH  
VXIL  
Xin High Voltage  
0.7VDD  
VDD  
0.3VDD  
1001  
40  
Xin Low Voltage  
0
V
IDD3.3V  
IDD_IO  
IDD_PWRDWN  
Dynamic Supply Current  
Dynamic IO Supply Current  
Power down supply current  
mA  
mA  
mA  
1
1. All clock outputs are driving test case lump loads  
...................................................Document #: Page 17 of 25  
SL28540  
AC Electrical Specifications  
Parameter  
Crystal  
TDC  
Description  
Condition  
Min.  
Max.  
Unit  
XIN Duty Cycle  
XIN Period  
The device operates reliably with input  
dutycyclesupto30/70buttheREFclock  
duty cycle will not be within specification  
47.5  
52.5  
%
TPERIOD  
When XIN is driven from an external  
clock source  
69.841  
71.0  
ns  
TR/TF  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Measured between 0.3VDD and 0.7VDD  
10.0  
500  
ns  
ps  
TCCJ  
As an average over 1-s duration  
CPU at 0.8V  
TDC  
CPUT and CPUC Duty Cycle  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
45  
55  
%
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODSS  
TPERIODAbs  
100 MHz CPUT and CPUC Period  
133 MHz CPUT and CPUC Period  
166 MHz CPUT and CPUC Period  
200 MHz CPUT and CPUC Period  
9.99900  
7.49925  
5.99940  
4.99950  
10.0010  
7.50075  
6.00060  
5.00050  
100 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
133 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
166 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
200 MHz CPUT and CPUC Period, SSC Measured at 0V differential at 0.1s  
10.02406 10.0261  
7.51805  
6.01444  
5.01203  
9.91400  
7.51955  
6.01564  
5.01303  
10.0860  
100 MHz CPUT and CPUC Absolute  
period  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
TPERIODAbs  
TPERIODAbs  
TPERIODAbs  
133 MHz CPUT and CPUC Absolute  
period  
7.41425  
5.91440  
4.91450  
9.93906  
7.43305  
5.92944  
4.92703  
7.58575  
6.08560  
5.08550  
10.1362  
7.62340  
6.11572  
5.11060  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
166 MHz CPUT and CPUC Absolute  
period  
200 MHz CPUT and CPUC Absolute  
period  
TPERIODSSAbs 100 MHz CPUT and CPUC Absolute  
period, SSC  
TPERIODSSAbs 133 MHz CPUT and CPUC Absolute  
period, SSC  
TPERIODSSAbs 166 MHz CPUT and CPUC Absolute  
period, SSC  
TPERIODSSAbs 200 MHz CPUT and CPUC Absolute  
period, SSC  
TCCJ  
CPUT/C Cycle to Cycle Jitter  
CPU2_ITP Cycle to Cycle Jitter  
Long-term Accuracy  
Measured at 0V differential  
85  
125  
100  
100  
150  
8
ps  
ps  
TCCJ2  
LACC  
Measured at 0V differential  
Measured at 0V differential  
ppm  
ps  
TSKEW  
TSKEW2  
TR/TF  
TRFM  
CPU1 to CPU0 Clock Skew  
CPU2_ITP to CPU0 Clock Skew  
CPU Rising and Falling slew rate  
Rise/Fall Matching  
Measured at 0V differential  
Measured at 0V differential  
ps  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
V/ns  
%
20  
VHIGH  
VLOW  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
SRC at 0.8V  
TDC  
SRCT and SRCC Duty Cycle  
100 MHz SRC Period  
Measured at 0V differential  
45  
55  
%
TPERIOD  
Measured at 0V differential @ 0.1s  
9.99900  
10.0010  
ns  
...................................................Document #: Page 18 of 25  
SL28540  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
TPERIODSS  
100 MHz SRC Period with Spread  
enabled  
Measured at 0V differential @ 0.1s  
10.02406 10.0261  
ns  
TPERIODAbs  
100 MHz SRC Absolute Period  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
9.8740  
10.1260  
10.1762  
ns  
ns  
TPERIODSSAbs 100 MHz SRC Absolute Period with  
Spread enbled  
9.89906  
TCCJ  
SRC Cycle to Cycle Jitter  
SRC Long Term Accuracy  
SRC Rising and Falling slew rate  
Rise/Fall Matching  
Measured at 0V differential  
125  
100  
8
ps  
ppm  
V/ns  
%
LACC  
Measured at 0V differential  
TR / TF  
TRFM  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
2.5  
20  
VHIGH  
VLOW  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
DOT96 at 0.8V  
TDC  
DOT96T and DOT96C Duty Cycle  
DOT96T and DOT96C Period  
Measured at 0V differential  
45  
55  
10.4177  
10.6677  
250  
%
ns  
TPERIOD  
TPERIODAbs  
TCCJ  
Measured at 0V differential at 0.1s  
10.4156  
DOT96T and DOT96C Absolute Period Measured at 0V differential at 0.1s  
10.1656  
ns  
DOT96 Cycle to Cycle Jitter  
DOT96 Long Term Accuracy  
DOT96 Rising and Falling slew rate  
Rise/Fall Matching  
Measured at 0V differential at 1 clock  
Measured at 0V differential at 1 clock  
Measured differentially from ±150 mV  
Measured single-endedly from ±75 mV  
ps  
LACC  
100  
ppm  
V/ns  
%
TR / TF  
TRFM  
2.5  
8
20  
VHIGH  
VLOW  
Voltage High  
1.15  
V
Voltage Low  
–0.3  
300  
V
VOX  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
LCD_100_SSC at 0.8V  
TDC  
LCD_100 Duty Cycle  
Measured at 0V differential  
45  
55  
%
ns  
TPERIOD  
TPERIODSS  
TPERIODAbs  
LCD_100 Period  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 0.1s  
Measured at 0V differential at 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential  
9.99900  
10.0010  
LCD_100 Period with -0.5% Spread  
LCD_100 Absolute Period  
10.02406 10.0261  
ns  
9.874  
10.0860  
10.1762  
250  
100  
8
ns  
TPERIODSSAbs LCD_100 Absolute Period, SSC  
9.89906  
ns  
TCCJ  
LCD_100 Cycle to Cycle Jitter  
LCD_100 Long Term Accuracy  
ps  
LACC  
TR / TF  
TRFM  
VHIGH  
VLOW  
VOX  
Measured at 0V differential  
ppm  
V/ns  
%
LCD_100 Rising and Falling slew rate Measured differentially from ±150 mV  
2.5  
Rise/Fall Matching  
Voltage High  
Measured single-endedly from ±75 mV  
20  
1.15  
V
Voltage Low  
–0.3  
300  
V
Crossing Point Voltage at 0.7V Swing  
550  
mV  
PCI/PCIF at 3.3V  
TDC  
PCI Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
TPERIODSS  
TPERIODAbs  
Spread Disabled PCIF/PCI Period  
Spread Enabled PCIF/PCI Period  
Spread Disabled PCIF/PCI Period  
29.99100 30.00900 ns  
29.99100 30.15980 ns  
29.49100 30.50900 ns  
29.49100 30.65980 ns  
TPERIODSSAbs Spread Enabled PCIF/PCI Period  
THIGH  
TLOW  
Pread enabled PCIF and PCI high time Measurement at 2.0V  
Spread enabled PCIF and PCI low time Measurement at 0.8V  
12  
12  
ns  
ns  
...................................................Document #: Page 19 of 25  
SL28540  
AC Electrical Specifications (continued)  
Parameter  
TR / TF  
TSKEW  
TCCJ  
Description  
Condition  
Min.  
1.0  
Max.  
4.0  
Unit  
V/ns  
ps  
PCIF/PCI rising and falling Edge Rate Measured between 0.8V and 2.0V  
Any PCI clock to Any PCI clock Skew Measurement at 1.5V  
1000  
500  
300  
PCIF and PCI Cycle to Cycle Jitter  
PCIF/PCI Long Term Accuracy  
Measurement at 1.5V  
Measurement at 1.5V  
ps  
LACC  
ppm  
48_M at 3.3V  
TDC  
Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 2.0V  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
TPERIODAbs  
THIGH  
Period  
20.83125 20.83542 ns  
20.48125 21.18542 ns  
8.216563 11.15198 ns  
Absolute Period  
48_M High time  
TLOW  
48_M Low time  
7.694  
1.0  
9.836  
2.0  
ns  
V/ns  
ps  
TR / TF  
TCCJ  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
48M Long Term Accuracy  
350  
100  
LACC  
ppm  
REF  
TDC  
REF Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
TPERIOD  
TPERIODAbs  
TR / TF  
TSKEW  
TCCJ  
REF Period  
69.82033 69.86224 ns  
68.83429 70.86224 ns  
REF Absolute Period  
REF Rising and Falling Edge Rate  
REF Clock to REF Clock  
REF Cycle to Cycle Jitter  
Long Term Accuracy  
1.0  
4.0  
500  
V/ns  
ps  
1000  
300  
ps  
LACC  
ppm  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS Stopclock Set-up Time  
1.8  
ms  
ns  
10.0  
Test and Measurement Set-up  
For PCI Single-ended Signals and Reference  
The following diagram shows the test load configurations for  
the single-ended PCI, USB, and REF output signals.  
Measurement  
Point  
22  
L1  
L2  
50  
4 pF  
4 pF  
PCI/USB  
L1 = 0.5", L2 = 4"  
Measurement  
Point  
50  
22  
L2  
L1  
Figure 12. Single-ended PCI and USB Double Load Configuration  
...................................................Document #: Page 20 of 25  
SL28540  
Measurement  
Point  
4 pF  
15  
L2  
L1  
50  
Measurement  
Point  
4 pF  
15  
15  
L1  
L1  
L2  
REF  
50  
Measurement  
Point  
4 pF  
L2  
50  
Figure 13. Single-ended REF Triple Load Configuration  
Figure 14. Single-ended Output Signals (for AC Parameters Measurement)  
For CPU, SRC, and DOT96 Signals and Reference  
This diagram shows the test load configuration for the differential CPU and SRC outputs  
Figure 15. 0.7V Differential Load Configuration  
...................................................Document #: Page 21 of 25  
SL28540  
Clock Period (Differential)  
Positive Duty Cycle (Differential)  
Negative Duty Cycle (Differential)  
0.0V  
0.0V  
Clck-Clck#  
Rise  
Edge  
Rate  
Fall  
Edge  
Rate  
VIH = +150V  
0.0V  
VIH = +150V  
0.0V  
VIL = -150V  
VIL = -150V  
Clock-Clock#  
Figure 16. Differential Measurement for Differential Output Signals (for AC Parameters Measurement)  
VMAX = 1.15V  
VMAX = 1.15V  
CLK#  
VcrossMAX = 550mV  
VcrossMIN = 300mV  
VcrossMAX = 550mV  
VcrossMIN = 300mV  
CLK  
VMIN = 0.30V  
VMIN = 0.30V  
CLK#  
Vcross delta = 140mV  
Vcross delta = 140mV  
CLK#  
CLK#  
Vcross median +75mV  
Vcross median  
Vcross median  
Vcross median -75mV  
CLK  
CLK  
Figure 17. Single-ended Measurement for Differential Output Signals (for AC Parameters Measurement)  
...................................................Document #: Page 22 of 25  
SL28540  
Ordering Information  
Part Number  
Lead-free  
Package Type  
Product Flow  
SL28540ALC  
56-pin QFN  
56-pin QFN, Tape and Reel  
Commercial, 0to 85C  
Commercial, 0to 85C  
SL28540ALCT  
...................................................Document #: Page 23 of 25  
SL28540  
Package Diagrams  
56-Lead QFN 8x 8mm LF56A  
TOP VIEW  
BOTTOM VIEW  
SIDE VIEW  
0.08[0.003]  
C
1.00[0.039] MAX.  
0.80[0.031] MAX.  
7.90[0.311]  
8.10[0.319]  
A
0.05[0.002] MAX.  
0.18[0.007]  
0.28[0.011]  
7.70[0.303]  
7.80[0.307]  
0.20[0.008] REF.  
PIN1 ID  
N
N
0.20[0.008] R.  
1
2
1
2
0.45[0.018]  
0.80[0.031]  
DIA.  
E-PAD  
(PAD SIZE VARY  
BY DEVICE TYPE)  
0.30[0.012]  
0.50[0.020]  
0.24[0.009]  
0.60[0.024]  
(4X)  
0°-12°  
0.50[0.020]  
6.45[0.254]  
6.55[0.258]  
C
SEATING  
PLANE  
...................................................Document #: Page 24 of 25  
SL28540  
Document History Page  
Document Title: SL28540 Low Power Clock Generator for Intel®Mobile Platform  
Document Number:  
Orig. of  
REV.  
1.0  
Issue Date Change  
Description of Change  
03/19/2007  
08/15/2007  
SLI  
SLI  
New data sheet  
1.1  
Updated Features list  
Updated DC Electrical Specifications table  
Updated AC Electrical Specifications table  
Updated ordering information  
1.2  
09/15/2008  
JMA  
1. Added iAMT functions  
2. Removed TME definition  
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Sil-  
icon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use  
of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or  
parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, represen-  
tation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or  
incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sus-  
tain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer  
shall indemnify and hold Silicon Laboratories harmless against all claims and damages.  
...................................................Document #: Page 25 of 25  

相关型号:

SL28540ALCT

Clock Generator, 200MHz, CMOS, 8 X 8 MM, LEAD FREE, QFN-56
SILICON

SL28541

Clock Generator for Intel®Mobile Chipset
SILICON

SL28541BQCR

Clock Generator, 400MHz, CMOS, HALOGEN FREE AND ROHS COMPLIANT, MO-220, QFN-64
SILICON

SL28541BQCRT

Clock Generator for Intel®Mobile Chipset
SILICON

SL28541BQIR

Clock Generator for Intel®Mobile Chipset
SILICON

SL28541BQIRT

Clock Generator for Intel®Mobile Chipset
SILICON

SL28541BZC

Clock Generator, 400MHz, CMOS, PDSO64, 6 X 17 MM, HALOGEN FREE AND ROHS COMPLIANT, MO-153EF, TSSOP-64
SILICON

SL28541BZC-2

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, HALOGEN FREE AND ROHS COMPLIANT, MO-153EE, TSSOP-56
SILICON

SL28541BZC-2T

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, HALOGEN FREE AND ROHS COMPLIANT, MO-153EE, TSSOP-56
SILICON

SL28541BZCT

Clock Generator, 400MHz, CMOS, PDSO64, 6 X 17 MM, HALOGEN FREE AND ROHS COMPLIANT, MO-153EF, TSSOP-64
SILICON

SL28541BZI

Clock Generator for Intel®Mobile Chipset
SILICON

SL28541BZI-2

Processor Specific Clock Generator, 400MHz, CMOS, PDSO56, HALOGEN FREE AND ROHS COMPLIANT, MO-153EE, TSSOP-56
SILICON