SL28545ALC-4 [SILICON]

Processor Specific Clock Generator, CMOS, 8 X 8 MM, 0.40 MM PITCH, ROHS COMPLIANT, MO-220, QFN-64;
SL28545ALC-4
型号: SL28545ALC-4
厂家: SILICON    SILICON
描述:

Processor Specific Clock Generator, CMOS, 8 X 8 MM, 0.40 MM PITCH, ROHS COMPLIANT, MO-220, QFN-64

外围集成电路
文件: 总29页 (文件大小:332K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SL28545-4  
Clock Generator for next Gen Intel® Mobile Platform  
Features  
• Programmable CLKREQ#s control individual SRC  
clock  
• Compliant to Intel® CK505  
• Integratedvoltageregulatorandinetrnalseriesresistor  
for differential clocks  
• 33-MHz PCI clocks  
• Buffered Reference Clock 14.318 MHz  
• Low-voltage frequency select inputs  
• I2C support with readback capabilities  
• 8-step drive strength control for single-eneded clocks  
• Low power differential push-pull CPU clock pairs  
• 100-MHz low power differential push-pull SRC clocks  
• 96-MHz low power differential push-pull DOT clock  
• 27-MHz Spread and Non-spread video clocks  
• 48-MHz USB clock  
• Support spread spectrum modulation for maximum  
electromagnetic interference (EMI) reduction  
• 3.3V power supply  
• 68-pin QFN 8x8 package  
Table 1. Output Confguration Table  
CPU  
SRC  
PCI  
x7  
REF  
x 1  
DOT96  
x 1  
USB_48M  
x 1  
LCD  
x1  
27M  
x2  
x2/x3  
x8/10  
Block Diagram  
Pin Configuration  
VDD_REF  
Xin  
Xout  
14.318MHz  
Crystal  
REF0  
PLL Reference  
VDD_CPU  
CPU_STP#  
PCI_STP#  
CLKREQ#  
FS[C:A]  
CPUT[1:0]  
CPUC[1:0]  
CPU  
SRC  
VDD_CPU  
CPU PLL1  
SS  
CPUT2_ITP/SRC10T  
CPUC2_ITP/SRC10C  
68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52  
ITP_EN  
PCIF1  
CKPWRGD/PD#  
VDD_48  
48M/FSA  
VSS_48  
DOT96T / 27M_NSS  
1
2
3
4
5
6
51 XIN  
50 XOUT  
49 VDD_REF  
48 SDATA  
47 SCLK  
CKPWRGD/PD#  
FCTSEL  
VDD_SRC  
PCI  
SRCT [8:1]  
SRCC [8:1]  
46 VSS_CPU  
VDD_PCI  
DOT96C/ 27M_SS  
FSB/TEST_MODE  
*CLKREQ#_1  
7
45 CPUT0  
44 CPUC0  
43 VDD_CPU  
42 CPUT1  
PCI[5:1], PCIF[1:0]  
8
9
CY28545-4  
VDD_SRC  
PLL3  
SS  
LCD_100T/SRC0T  
LCD_100C/SRC0C  
SRCT_0 / LCD100MT 10  
LCD_100  
27M_SS  
SRCC_0 / LCD100MC 11  
VDD_SRC 12  
SRCT_1 13  
41 CPUC1  
40 CLKREQ#7*  
39 VSSA  
SRCC_1 14  
38 VDDA  
SRCT_2 15  
SRCC_2 16  
VDD_SRC 17  
37 CPUT2_ITP / SRCT_10  
36 CPUC2_ITP / SRCC_10  
35 VDD_SRC  
DOT96T/27M_NSS  
DOT96C/27M_SS  
DOT96  
PLL2  
Fixed  
27M_NSS  
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34  
VDD_48  
USB_48  
USB_48  
I2C  
Logic  
SDATA  
SCLK  
* internal Pull-up  
** internal Pull-down  
Confidential  
Tel:(408) 855-0555 Fax:(408) 855-0550  
Rev 1.1, March 10, 2008  
2200 Laurelwood Road, Santa Clara, CA 95054  
Page 1 of 29  
www.SpectraLinear.com  
SL28545-4  
Pin Description  
Pin No.  
Name  
Type  
Description  
1
2
PCIF1  
O, SE 33-MHz free running clock output  
CKPWRGD/PD#  
I
3.3V LVTTL input. This pin is a level sensitive strobe. When asserted, it latches  
data on the FSA, FSB, FSC, FCT_SEL and ITP_SEL pins. After assertion, it  
becomes a real time input for controlling power down.  
3
4
VDD_48  
PWR 3.3V power supply for outputs.  
48M/FSA  
I/O  
Fixed 48-MHz clock output/3.3V-tolerant input for CPU frequency selection  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
5
VSS_48  
GND Ground for outputs.  
6, 7  
DOT96T/ 27M_NSS  
DOT96C/ 27M_SS  
O, DIF Fixed 96-MHz clock output or 27 Mhz Spread and Non-spread output Selected  
via FCTSEL1 at CKPWRGD assertion.  
8
FSB/TEST_MODE  
I
3.3V-tolerant input for CPU frequency selection. Selects Ref/N or Tri-state when  
in test mode  
0 = Tri-state, 1 = Ref/N  
Refer to DC Electrical Specifications table for Vil_FS and Vih_FS specifications.  
9, 59, 20, 60, CLKREQ#[1, 3, 4, 5, 6, I, PU 3.3V LVTTL input for enabling assigned SRC clock (active LOW).  
25, 40, 34  
7, 8]  
Internal pull-up resistor of 100K to 3.3V, use 10K resistor to pull it low externally  
if needed  
10, 11  
SRC[T/C]0/  
LCD100M[T/C]  
O,DIF 100-MHz differential serial reference clock output/Differential LCD 100-MHz SS  
clock for flat-panel display  
Selected via FCT_SEL at CKPWRGD assertion.  
12, 17, 28, 35 VDD_SRC  
PWR 3.3V power supply for outputs.  
13, 14, 15,  
16, 18, 19,  
21, 22, 23,  
24, 26, 27,  
29, 30, 32, 33  
SRCT/C[1:8]  
O, DIF 100-MHz Differential serial reference clocks.  
31  
VSS_SRC  
GND Ground for outputs.  
36, 37  
CPUT2_ITP/SRCT10, O, DIF Selectable differential CPU or SRC clock output.  
CPUC2_ITP/SRCC10  
ITP_SEL = 0 @ CKPWRGD assertion = SRC10  
ITP_SEL = 1 @ CKPWRGD assertion = CPU2_ITP  
38  
VDDA  
PWR 3.3V power supply for PLL.  
GND Ground for PLL.  
39  
VSSA  
41, 42  
43  
CPUC1, CPUT1  
VDD_CPU  
CPUC0, CPUT0  
VSS_CPU  
SCLK  
O, DIF Differential CPU clock output to MCH  
PWR 3.3V power supply for outputs.  
O, DIF Differential CPU clock output  
GND Ground for outputs.  
44, 45  
46  
47  
I
SMBus-compatible SCLOCK.  
48  
SDATA  
I/O, OD SMBus-compatible SDATA.  
PWR 3.3V power supply for outputs.  
O, SE 14.318-MHz crystal output.  
49  
VDD_REF  
XOUT  
50  
51  
XIN  
I
14.318-MHz crystal input.  
52  
VSS_REF  
GPU_STP#  
GND Ground for outputs.  
53  
I, PU 3.3V LVTTL input for enableing DOT96 and 27MHz (spread and non-spread)  
clocks. Internal pull-up resistor of 100K to 3.3V, use 10K resistor to pull it low  
externally if needed  
0 = DOT96/27MHz disable, 1 = DOT96/27MHz enable  
54  
REF0/FSC_TESTSEL  
I/O  
Fixed 14.318 clock output / 3.3V-tolerant input for CPU frequency  
selection/Selects test mode if pulled to VIMFS_C when CKPWRGD is asserted  
High.  
Refer to DC Electrical Specifications table for VILFS_C,VIMFS_C,VIHFS_C specifi-  
cations.  
Confidential  
Rev 1.1,March 10, 2008  
Page 2 of 29  
SL28545-4  
Pin Description (continued)  
Pin No.  
Name  
CPU_STP#  
Type  
Description  
55  
56  
I
3.3V LVTTL input for CPU_STP# active LOW  
During direct clock off to M1 mode transition, a serial load of BSEL data is driven  
on this pin and sampled on the rising edge of PCI_STP#. See Figure 14.for more  
information.  
PCI_STP#  
I
3.3V LVTTL input for PCI_STP# active LOW  
During direct clock off to M1 mode transition, a serial load of BSEL data is driven  
on CPU_STP# and sampled on the rising edge of this pin. See Figure 14. for more  
information.  
57, 58, 63, 64 PCI[1,2,3,4]  
O, SE 33-MHz clock output  
PWR 3.3V power supply for outputs.  
GND Ground for outputs.  
61, 67  
62, 66  
65  
VDD_PCI  
VSS_PCI  
PCI5/FCT_SEL  
I/O,SE, 33-MHz clock output/3.3V LVTTL input for selecting SRC[T/C]0 or  
PD LCD_100M[T/C] on pin 10, 11 and selecting DOT96[T/C] or 27M Spread and  
Non-spread on pin 6 and 7(sampled on CKPWRGD assertion).  
Internal pull-down resistor of 100K to GND, use 10K resistor to pull it high exter-  
nally if needed  
Pin 6  
Pin 7  
Pin 10  
Pin 11  
FCT_SEL  
0 (default) DOT96T  
1 27M_NSS  
DOT96C  
LCD_100_T LCD_100_C  
27M_SS  
SRCT0 SRCC0  
68  
PCIF0/ITP_SEL  
I/O,SE, 33-MHz clock output / 3.3V LVTTL input for selecting SRC10 or CPU2_ITP on  
PD pin 36,17. (sampled on CKPWRGD assertion).  
Internal pull-down resistor of 100K to GND, use 10K resistor to pull it high exter-  
nally if needed  
0 = SRC10 (default), 1 = CPU2_ITP,  
use of this interface is optional. Clock device register changes  
Frequency Select Pins (FSA, FSB, and FSC)  
are normally made upon system initialization, if any are  
required. The interface cannot be used during system  
operation for power management functions.  
Host clock frequency selection is achieved by applying the  
appropriate logic levels to FSA, FSB, FSC inputs prior to  
CKPWRGD assertion (as seen by the clock synthesizer).  
Upon CKPWRGD being sampled HIGH by the clock chip  
(indicating processor CK_PWRGD voltage is stable), the clock  
chip samples the FSA, FSB, and FSC input values. For all  
logic levels of FSA, FSB, and FSC, CKPWRGD employs a  
Data Protocol  
The clock driver serial protocol accepts byte write, byte read,  
block write, and block read operations from the controller. For  
block write/read operation, the bytes must be accessed in  
sequential order from lowest to highest byte (most significant  
bit first) with the ability to stop after any complete byte has  
been transferred. For byte write and byte read operations, the  
system controller can access individually indexed bytes. The  
offset of the indexed byte is encoded in the command code,  
as described in Table 3.  
one-shot functionality in that once  
a valid HIGH on  
CK_PWRGD has been sampled, all further CKPWRGD, FSA,  
FSB, and FSC transitions will be ignored, except in test mode.  
Serial Data Interface  
To enhance the flexibility and function of the clock synthesizer,  
a two-signal serial interface is provided. Through the Serial  
Data Interface, various device functions, such as individual  
clock output buffers, can be individually enabled or disabled.  
The registers associated with the Serial Data Interface  
initialize to their default setting upon power-up, and therefore  
Table 2. Frequency Select Table FSA, FSB, and FSC  
The block write and block read protocol is outlined in Table 4  
while Table 5 outlines the corresponding byte write and byte  
read protocol. The slave receiver address is 11010010 (D2h)  
FSC FSB FSA  
CPU  
SRC  
PCIF/PCI  
27MHz  
REF  
DOT96  
USB  
0
0
0
0
1
1
0
0
1
1
0
0
0
1
0
1
0
1
266.66MHz  
100.00 MHz 33.33 MHz 27.00 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
14.318 MHz  
96.00 MHz 48.00 MHz  
96.00 MHz 48.00 MHz  
96.00 MHz 48.00 MHz  
96.00 MHz 48.00 MHz  
96.00 MHz 48.00 MHz  
96.00 MHz 48.00 MHz  
133.33 MHz 100.00 MHz 33.33 MHz 27.00 MHz  
200.00 MHz 100.00 MHz 33.33 MHz 27.00 MHz  
166.66 MHz 100.00 MHz 33.33 MHz 27.00 MHz  
333.33 MHz 100.00 MHz 33.33 MHz 27.00 MHz  
100.00 MHz 100.00 MHz 33.33 MHz 27.00 MHz  
Confidential  
Rev 1.1,March 10, 2008  
Page 3 of 29  
SL28545-4  
Table 2. Frequency Select Table FSA, FSB, and FSC  
FSC FSB FSA CPU SRC  
400.00 MHz 100.00 MHz 33.33 MHz 27.00 MHz  
Reserved Reserved Reserved Reserved  
PCIF/PCI  
27MHz  
REF  
DOT96  
USB  
1
1
1
1
0
1
14.318 MHz  
Reserved  
96.00 MHz 48.00 MHz  
Reserved  
Reserved  
Table 3. Command Code Definition  
Bit  
Description  
7
0 = Block read or block write operation, 1 = Byte read or byte write operation  
(6:0)  
Byte offset for byte read or byte write operation. For block read or block write operations, these bits should be  
'0000000'  
Table 4. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Byte Count–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeat start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Data byte 1–8 bits  
27:21  
28  
Slave address–7 bits  
Read = 1  
36:29  
37  
Acknowledge from slave  
Data byte 2–8 bits  
29  
Acknowledge from slave  
Byte Count from slave–8 bits  
Acknowledge  
45:38  
46  
37:30  
38  
Acknowledge from slave  
Data Byte/Slave Acknowledges  
Data Byte N–8 bits  
Acknowledge from slave  
Stop  
....  
46:39  
47  
Data byte 1 from slave–8 bits  
Acknowledge  
....  
....  
55:48  
56  
Data byte 2 from slave–8 bits  
Acknowledge  
....  
....  
Data bytes from slave/Acknowledge  
Data Byte N from slave–8 bits  
NOT Acknowledge  
Stop  
....  
....  
....  
Table 5. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
8:2  
9
Slave address–7 bits  
Write  
8:2  
9
Slave address–7 bits  
Write  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Data byte–8 bits  
10  
Acknowledge from slave  
Command Code–8 bits  
Acknowledge from slave  
Repeated start  
18:11  
19  
18:11  
19  
27:20  
28  
20  
Acknowledge from slave  
Stop  
27:21  
28  
Slave address–7 bits  
Read  
29  
29  
Acknowledge from slave  
Confidential  
Rev 1.1,March 10, 2008  
Page 4 of 29  
SL28545-4  
Table 5. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Data from slave–8 bits  
Bit  
Description  
Bit  
37:30  
38  
NOT Acknowledge  
Stop  
39  
Control Registers  
Byte 0 Control Register 0  
Bit  
7
@Pup  
Name  
Description  
0
0
0
0
RESEREVD  
RESEREVD  
RESEREVD  
iAMT_EN  
RESERVED  
RESERVED  
RESERVED  
6
5
4
Set via SMBus or by combination of PD, CPU_STP and PCI_STP  
0 = Legacy mode, 1 = iAMT enable  
3
2
1
0
0
0
0
1
RESEREVD  
RESEREVD  
RESEREVD  
PD_Restore  
RESERVED  
RESERVED  
RESERVED  
Save configuration in PD  
0 = Configuration cleared, 1 = Configuration saved  
Byte 1 Control Register 1  
Bit  
@Pup  
Name  
Description  
7
1
SRC7_OE  
SRC[T/C]7 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
3
2
1
0
1
1
1
1
1
1
1
SRC6_OE  
SRC5_OE  
SRC4_OE  
SRC3_OE  
SRC2_OE  
SRC1_OE  
SRC[T/C]6 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]5 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]4 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]3 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]2 Output Enable  
0 = Disabled, 1 = Enabled  
SRC[T/C]1 Output Enable  
0 = Disabled, 1 = Enabled  
SRC0  
/LCD_100M_OE  
SRC[T/C]0/LCD_100M[T/C] Output Enable  
0 = Disabled, 1 = Enabled  
Byte 2 Control Register 2  
Bit  
@Pup  
Name  
Description  
7
1
PCIF0_OE  
PCIF0 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
3
1
1
1
1
27M NSS/DOT_96_OE 27M Non-spread and DOT_96 MHz Output Enable  
0 = Disable, 1 = Enabled  
48M_OE  
REF0_OE  
RESERVED  
48-MHz Output Enable  
0 = Disabled, 1 = Enabled  
REF0 Output Enable  
0 = Disabled, 1 = Enabled  
RESERVED  
Confidential  
Rev 1.1,March 10, 2008  
Page 5 of 29  
SL28545-4  
Byte 2 Control Register 2 (continued)  
Bit  
@Pup  
Name  
Description  
2
1
CPU1_OE  
CPU[T/C]1 Output Enable  
0 = Disabled, 1 = Enabled  
1
0
1
0
CPU0_OE  
CPU[T/C]0 Output Enable  
0 = Disabled, 1 = Enabled  
CPU, SRC, PCI, PCIF PLL1 (CPU PLL) Spread Spectrum Enable  
Spread Enable  
0 = Spread off, 1 = Spread on  
Byte 3 Control Register 3  
Bit  
@Pup  
Name  
Description  
7
1
PCI5_OE  
PCI5 Output Enable  
0 = Disabled, 1 = Enabled  
6
5
4
3
1
1
1
1
PCI4_OE  
PCI3_OE  
PCI2_OE  
PCI1_OE  
PCI4 Output Enable  
0 = Disabled, 1 = Enabled  
PCI3 Output Enable  
0 = Disabled, 1 = Enabled  
PCI2 Output Enable  
0 = Disabled, 1 = Enabled  
PCI1 Output Enable  
0 = Disabled, 1 = Enabled  
2
1
1
1
RESERVED  
RESERVED  
CPU2/SRC10_OE  
CPU[T/C]2/SRC[T/C]10 Output Enable  
0 = Disabled, 1 = Enabled  
0
1
PCIF1_OE  
PCIF1 Output Enable  
0 = Disabled, 1 = Enabled  
Byte 4 Control Register 4  
Bit  
@Pup  
Name  
Description  
7
0
SRC7_STP _CTRL  
Allow control of SRC[T/C]7 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
SRC6_STP _CTRL  
SRC5_STP _CTRL  
SRC4_STP _CTRL  
SRC3_STP _CTRL  
SRC2_STP _CTRL  
SRC1_STP _CTRL  
SRC0_STP _CTRL  
Allow control of SRC[T/C]6 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]5 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]4 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]3 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]2 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]1 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of SRC[T/C]0 with assertion of PCI_STP# or SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Byte 5 Control Register 5  
Bit  
@Pup  
Name  
Description  
7
0
LCD_PD_MODE  
LCD PD# drive Mode  
0 = Driven (L/L) when PD# asserted  
1 = Tri-state (L/L) when PD# asserted  
6
0
DOT96_PD_MODE  
DOT96 PD# drive Mode  
0 = Driven (L/L) when PD# asserted  
1 = Tri-state (L/L) when PD# asserted  
Confidential  
Rev 1.1,March 10, 2008  
Page 6 of 29  
SL28545-4  
Byte 5 Control Register 5 (continued)  
Bit  
@Pup  
Name  
Description  
5
0
SRC_CLKREQ_MODE  
SRC CLKREQ# drive Mode  
0 = Driven (L/L) when CLKRQE# asserted  
1 = Tri-state (L/L) when CLKREQ# asserted  
4
3
2
1
0
0
0
1
1
1
PCIF1_STP_CTRL  
PCIF0_STP_CTRL  
CPU2_STP_CTRL  
CPU1_STP_CTRL  
CPU0_STP_CTRL  
Allow control of PCIF1 with assertion of SW and HW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of PCIF0 with assertion of SW and HW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Allow control of CPU[T/C]2 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Allow control of CPU[T/C]1 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Allow control of CPU[T/C]0 with assertion of CPU_STP#  
0 = Free running, 1 = Stopped with CPU_STP#  
Byte 6 Control Register 6  
Bit  
@Pup  
Name  
Description  
7
0
SRC_PCISTP_MODE  
SRC[T/C] PCI_STP# Drive Mode  
0 = Driven (H/L) when PCI_STP# asserted  
1 = Tri-state (L/L) when PCI_STP# asserted  
6
5
4
3
2
1
0
0
0
0
0
0
0
0
CPU2_CPUSTP_MODE CPU[T/C]2 CPU_STP# Drive Mode  
0 = Driven (H/L) when CPU_STP# asserted  
1 = Tri-state(L/L) when CPU_STP# asserted  
CPU1_CPUSTP_MODE CPU[T/C]1 CPU_STP# Drive Mode  
0 = Driven (H/L) when CPU_STP# asserted  
1 = Tri-state (L/L) when CPU_STP# asserted  
CPU0_CPUSTP_MODE CPU[T/C]0 CPU_STP# Drive Mode  
0 = Driven (H/L) when CPU_STP# asserted  
1 = Tri-state(L/L) when CPU_STP# asserted  
SRC_PD_MODE  
CPU2_PD_MODE  
CPU1_PD_MODE  
CPU0_PD_MODE  
SRC PD# Drive Mode  
0 = Driven (L/L) when PD# asserted  
1 = Tri-state (L/L) when PD# asserted  
CPU2 PD# Drive Mode  
0 = Driven (L/L) when PD# asserted  
1 = Tri-state (L/L) when PD# asserted  
CPU1 PD# Drive Mode  
0 = Driven (L/L) when PD# asserted  
1 = Tri-state (L/L) when PD# asserted  
CPU0 PD# Drive Mode  
0 = Driven (L/L) when PD# asserted  
1 = Tri-state (L/L) when PD# asserted  
Byte 7 Control Register 7  
Bit  
@Pup  
Name  
Description  
7
0
TEST_SEL  
REF/N or Tri-state Select  
0 = Tri-state, 1 = REF/N Clock  
6
0
TEST_MODE  
Test Clock Mode Entry Control  
0 = Normal operation, 1 = REF/N or Tri-state mode,  
5
4
0
0
RESERVED  
REF0  
RESERVED  
REF0 Output Drive Strength  
0 = Low, 1 = High  
Confidential  
Rev 1.1,March 10, 2008  
Page 7 of 29  
SL28545-4  
Byte 7 Control Register 7 (continued)  
Bit  
@Pup  
Name  
Description  
3
1
PCI, PCIF and SRC clock SW PCI_STP Function  
outputs except those set to 0 = SW PCI_STP assert, 1= SW PCI_STP deassert  
free running  
When this bit is set to 0, all STOPPABLE PCI, PCIF and SRC outputs will  
be stopped in a synchronous manner with no short pulses.  
When this bit is set to 1, all STOPPED PCI, PCIF and SRC outputs will  
resume in a synchronous manner with no short pulses.  
2
1
0
HW  
HW  
HW  
FSC  
FSB  
FSA  
FSC Reflects the value of the FSC pin sampled on power up  
0 = FSC was low during CK_PWRGD assertion  
FSB Reflects the value of the FSB pin sampled on power up  
0 = FSB was low during CK_PWRGD assertion  
FSA Reflects the value of the FSA pin sampled on power up  
0 = FSA was low during CK_PWRGD assertion  
Byte 8 Vendor ID  
Bit  
7
@Pup  
Name  
Description  
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
0
0
0
0
1
0
0
0
Revision Code Bit 3  
Revision Code Bit 2  
Revision Code Bit 1  
Revision Code Bit 0  
Vendor ID Bit 3  
6
5
4
3
2
Vendor ID Bit 2  
Vendor ID Bit 2  
1
Vendor ID Bit 1  
Vendor ID Bit 1  
0
Vendor ID Bit 0  
Vendor ID Bit 0  
Byte 9 Control Register 9  
Bit  
@Pup  
Name  
Description  
7
0
CPU SS S1  
CPU Spread percentage S1 bit  
S1 S0  
00=0.5%, 01=0.75%, 10=1%, 11=1.5%  
6
5
0
0
CPU SS Control  
CPU SS S0  
CPU Spread Control  
0 = down spread, 1 = center spread  
CPU Spread percentage S2 bit  
S1 S0  
00=0.5%, 01=0.75%, 10=1%, 11=1.5%  
4
3
2
0
0
1
RESERVED  
RESERVED  
48M  
RESERVED  
RESERVED  
48-MHz Output Drive Strength  
0 = Low, 1 = High  
1
0
1
0
PCI1  
PCI1 Output Drive Strength  
0 = Low, 1 = High  
PCIF0  
PCIF0 Output Drive Strength  
0 = Low, 1 = High  
Byte 10 Control Register 10  
Bit  
7
@Pup  
Name  
Description  
0
0
RESERVED  
RESERVED  
RESERVED  
6
RESERVED  
Confidential  
Rev 1.1,March 10, 2008  
Page 8 of 29  
SL28545-4  
Byte 10 Control Register 10 (continued)  
Bit  
5
@Pup  
Name  
S1  
Description  
0
0
27M_SS/LCD_100M SS Spread Spectrum Selection table:  
S[1:0] SS%  
‘00’ = –0.5%(Default value)  
‘01’ = –1.0%  
4
S0  
‘10’ = –1.5%  
‘11’ = –2.0%  
3
2
1
1
RESERVED  
27M_SS  
RESERVED  
27M Spread Output Enable  
0 = Disabled, 1 = Enabled  
1
0
1
0
27M_SS/LCD_100M  
Spread Enable  
27M_SS/LCD_100M Spread spectrum enable.  
0 = Disabled, 1 = Enabled  
PCIF1  
PCIF1 Output Drive Strength  
0 = Low, 1 = High  
Byte 11 Control Register 11  
Bit  
7
@Pup  
Name  
Description  
0
0
1
1
RESERVED  
RESERVED  
RESERVED  
SRC8_OE  
RESERVED  
RESERVED  
RESERVED  
6
5
4
SRC[T/C]8 Output Enable  
0 = Disable (Hi-Z), 1 = Enable  
3
2
0
0
RESERVED  
RESERVED  
SRC10_STP_CTRL  
Allow control of SRC[T/C]10 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
1
0
0
0
RESERVED  
RESERVED  
SRC8_STP_CTRL  
Allow control of SRC[T/C]8 with assertion of SW PCI_STP#  
0 = Free running, 1 = Stopped with PCI_STP#  
Byte 12 Control Register 12  
Bit  
7
@Pup  
0
Name  
RESERVED  
Description  
RESERVED, Set to 0  
RESERVED  
6
HW  
HW  
HW  
1
RESERVED  
5
RESERVED  
RESERVED  
4
RESERVED  
RESERVED  
3
27M_SS/27M_NSS  
27-MHz (spread and non-spread) Output Drive Strength  
0 = Low, 1 = High  
2
1
0
HW  
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
HW  
Byte 13 Control Register 13  
Bit  
7
@Pup  
Name  
Description  
0
0
RESERVED  
CLKREQ#8  
RESERVED  
6
CLKREQ#8 Input Enable  
0 = Disabled, 1 = Enabled  
5
4
0
0
CLKREQ#7  
CLKREQ#6  
CLKREQ#7 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#6 Input Enable  
0 = Disabled, 1 = Enabled  
Confidential  
Rev 1.1,March 10, 2008  
Page 9 of 29  
SL28545-4  
Byte 13 Control Register 13 (continued)  
Bit  
@Pup  
Name  
Description  
3
0
CLKREQ#5  
CLKREQ#5 Input Enable  
0 = Disabled, 1 = Enabled  
2
1
0
0
0
0
CLKREQ#4  
CLKREQ#3  
RESERVED  
CLKREQ#4 Input Enable  
0 = Disabled, 1 = Enabled  
CLKREQ#3 Input Enable  
0 = Disabled, 1 = Enabled  
RESERVED  
Byte 14 Control Register 14  
Bit  
@Pup  
Name  
Description  
7
0
CLKREQ#1  
CLKREQ#1 Input Enable  
0 = Disabled, 1 = Enabled  
6
5
1
1
LCD_CLK Freq  
LCD_CLK output frequency  
0 = 96MHz, 1 = 100MHz  
GPU_STP#_Control  
Allow GPU_STP# control DOT96/27M_NSS  
0 = DOT96/27M_NSS not stoppable by GPU_STP#  
1 = DOT96/27M_NSS stoppable by GPU_STP#  
4
1
GPU_STP#_Control  
Allow GPU_STP# control 27M_SS  
0 = 27M_SS not stoppable by GPU_STP#  
1 = 27M_SS stoppable by GPU_STP#  
3
2
1
0
0
0
0
0
PCI5  
PCI4  
PCI3  
PCI2  
PCI5 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
PCI4 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
PCI3 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
PCI2 (Spread and Non-spread) Output Drive Strength  
0 = Low, 1 = High  
Byte 15 Control Register 15  
Bit  
7
@Pup  
Name  
Description  
RESERVED  
1
0
0
0
0
1
0
1
RESERVED  
RESERVED  
RESERVED  
RESERVED  
RESERVED  
IO_VOUT2  
IO_VOUT1  
IO_VOUT0  
6
RESERVED  
5
RESERVED  
4
RESERVED  
3
RESERVED  
2
IO_VOUT[2,1,0]  
000 = 0.3V  
001 = 0.4V  
1
0
010 = 0.5V  
011 = 0.6V  
100 = 0.7V  
101 = 0.8V (Default)  
110 = 0.9V  
111 = Reserved  
Byte 16 Control Register 16  
Bit  
@Pup  
Name  
Description  
7
1
CLKREQ#8  
SRC[T/C]8 Control  
0 = SRC[T/C]8 not stoppable by CLKREQ#8  
1 = SRC[T/C]8 stoppable by CLKREQ#8  
Confidential  
Rev 1.1,March 10, 2008  
Page 10 of 29  
SL28545-4  
Bit  
@Pup  
Name  
Description  
6
5
4
3
2
1
0
0
CLKREQ#8  
SRC[T/C]7 Control  
0 = SRC[T/C]7 not stoppable by CLKREQ#8  
1 = SRC[T/C]7 stoppable by CLKREQ#8  
0
0
0
0
0
0
CLKREQ#8  
CLKREQ#8  
CLKREQ#8  
CLKREQ#8  
CLKREQ#8  
CLKREQ#8  
SRC[T/C]6 Control  
0 = SRC[T/C]6 not stoppable by CLKREQ#8  
1 = SRC[T/C]6 stoppable by CLKREQ#8  
SRC[T/C]5 Control  
0 = SRC[T/C]5 not stoppable by CLKREQ#8  
1 = SRC[T/C]5 stoppable by CLKREQ#8  
SRC[T/C]4 Control  
0 = SRC[T/C]4 not stoppable by CLKREQ#8  
1 = SRC[T/C]4 stoppable by CLKREQ#8  
SRC[T/C]3 Control  
0 = SRC[T/C]3 not stoppable by CLKREQ#8  
1 = SRC[T/C]3 stoppable by CLKREQ#8  
SRC[T/C]2 Control  
0 = SRC[T/C]2 not stoppable by CLKREQ#8  
1 = SRC[T/C]2 stoppable by CLKREQ#8  
SRC[T/C]1 Control  
0 = SRC[T/C1 not stoppable by CLKREQ#8  
1 = SRC[T/C]1 stoppable by CLKREQ#8  
Byte 17 Control Register 17  
Bit  
@Pup  
Name  
Description  
7
6
5
4
3
2
1
0
0
CLKREQ#5  
SRC[T/C]8 Control  
0 = SRC[T/C]8 not stoppable by CLKREQ#5  
1 = SRC[T/C]8 stoppable by CLKREQ#5  
0
0
1
0
0
0
0
CLKREQ#5  
CLKREQ#5  
CLKREQ#5  
CLKREQ#5  
CLKREQ#5  
CLKREQ#5  
CLKREQ#5  
SRC[T/C]7 Control  
0 = SRC[T/C]7 not stoppable by CLKREQ#5  
1 = SRC[T/C]7 stoppable by CLKREQ#5  
SRC[T/C]6 Control  
0 = SRC[T/C]6 not stoppable by CLKREQ#5  
1 = SRC[T/C]6 stoppable by CLKREQ#5  
SRC[T/C]5 Control  
0 = SRC[T/C]5 not stoppable by CLKREQ#5  
1 = SRC[T/C]5 stoppable by CLKREQ#5  
SRC[T/C]4 Control  
0 = SRC[T/C]4 not stoppable by CLKREQ#5  
1 = SRC[T/C]4 stoppable by CLKREQ#5  
SRC[T/C]3 Control  
0 = SRC[T/C]3 not stoppable by CLKREQ#5  
1 = SRC[T/C]3 stoppable by CLKREQ#5  
SRC[T/C]2 Control  
0 = SRC[T/C]2 not stoppable by CLKREQ#5  
1 = SRC[T/C]2 stoppable by CLKREQ#5  
SRC[T/C]1 Control  
0 = SRC[T/C]1 not stoppable by CLKREQ#5  
1 = SRC[T/C]1 stoppable by CLKREQ#5  
Byte 18 Control Register 18  
Bit  
@Pup  
Name  
Description  
7
0
CLKREQ#4  
SRC[T/C]8 Control  
0 = SRC[T/C]8 not stoppable by CLKREQ#4  
1 = SRC[T/C]8 stoppable by CLKREQ#4  
Confidential  
Rev 1.1,March 10, 2008  
Page 11 of 29  
SL28545-4  
Bit  
@Pup  
Name  
Description  
6
5
4
3
2
1
0
0
CLKREQ#4  
SRC[T/C]7 Control  
0 = SRC[T/C]7 not stoppable by CLKREQ#4  
1 = SRC[T/C]7 stoppable by CLKREQ#4  
0
0
1
0
0
0
CLKREQ#4  
CLKREQ#4  
CLKREQ#4  
CLKREQ#4  
CLKREQ#4  
CLKREQ#4  
SRC[T/C]6 Control  
0 = SRC[T/C]6 not stoppable by CLKREQ#4  
1 = SRC[T/C]6 stoppable by CLKREQ#4  
SRC[T/C]5 Control  
0 = SRC[T/C]5 not stoppable by CLKREQ#4  
1 = SRC[T/C]5 stoppable by CLKREQ#4  
SRC[T/C]4 Control  
0 = SRC[T/C]4 not stoppable by CLKREQ#4  
1 = SRC[T/C]4 stoppable by CLKREQ#4  
SRC[T/C]3 Control  
0 = SRC[T/C]3 not stoppable by CLKREQ#4  
1 = SRC[T/C]3 stoppable by CLKREQ#4  
SRC[T/C]2 Control  
0 = SRC[T/C]2 not stoppable by CLKREQ#4  
1 = SRC[T/C]2 stoppable by CLKREQ#4  
SRC[T/C]1 Control  
0 = SRC[T/C]1 not stoppable by CLKREQ#4  
1 = SRC[T/C]1 stoppable by CLKREQ#4  
Byte 19 Control Register 19  
Bit  
@Pup  
Name  
Description  
7
6
5
4
3
2
1
0
0
CLKREQ#3  
SRC[T/C]8 Control  
0 = SRC[T/C]8 not stoppable by CLKREQ#3  
1 = SRC[T/C]8 stoppable by CLKREQ#3  
0
0
0
0
1
0
0
CLKREQ#3  
CLKREQ#3  
CLKREQ#3  
CLKREQ#3  
CLKREQ#3  
CLKREQ#3  
CLKREQ#3  
SRC[T/C]7 Control  
0 = SRC[T/C]7 not stoppable by CLKREQ#3  
1 = SRC[T/C]7 stoppable by CLKREQ#3  
SRC[T/C]6 Control  
0 = SRC[T/C]6 not stoppable by CLKREQ#3  
1 = SRC[T/C]6 stoppable by CLKREQ#3  
SRC[T/C]5 Control  
0 = SRC[T/C]5 not stoppable by CLKREQ#3  
1 = SRC[T/C]5 stoppable by CLKREQ#3  
SRC[T/C]4 Control  
0 = SRC[T/C]4 not stoppable by CLKREQ#3  
1 = SRC[T/C]4 stoppable by CLKREQ#3  
SRC[T/C]3 Control  
0 = SRC[T/C]3 not stoppable by CLKREQ#3  
1 = SRC[T/C]3 stoppable by CLKREQ#3  
SRC[T/C]2 Control  
0 = SRC[T/C]2 not stoppable by CLKREQ#3  
1 = SRC[T/C]2 stoppable by CLKREQ#3  
SRC[T/C]1 Control  
0 = SRC[T/C]1 not stoppable by CLKREQ#3  
1 = SRC[T/C]1 stoppable by CLKREQ#3  
Byte 20 Control Register 20  
Bit  
@Pup  
Name  
Description  
7
0
CLKREQ#1  
SRC[T/C]8 Control  
0 = SRC[T/C]8 not stoppable by CLKREQ#1  
1 = SRC[T/C]8 stoppable by CLKREQ#1  
Confidential  
Rev 1.1,March 10, 2008  
Page 12 of 29  
SL28545-4  
Bit  
@Pup  
Name  
Description  
6
5
4
3
2
1
0
0
CLKREQ#1  
SRC[T/C]7 Control  
0 = SRC[T/C]7 not stoppable by CLKREQ#1  
1 = SRC[T/C]7 stoppable by CLKREQ#1  
0
0
0
0
0
1
CLKREQ#1  
CLKREQ#1  
CLKREQ#1  
CLKREQ#1  
CLKREQ#1  
CLKREQ#1  
SRC[T/C]6 Control  
0 = SRC[T/C]6 not stoppable by CLKREQ#1  
1 = SRC[T/C]6 stoppable by CLKREQ#1  
SRC[T/C]5 Control  
0 = SRC[T/C]5 not stoppable by CLKREQ#1  
1 = SRC[T/C]5 stoppable by CLKREQ#1  
SRC[T/C]4 Control  
0 = SRC[T/C]4 not stoppable by CLKREQ#1  
1 = SRC[T/C]4 stoppable by CLKREQ#1  
SRC[T/C]3 Control  
0 = SRC[T/C]3 not stoppable by CLKREQ#1  
1 = SRC[T/C]3 stoppable by CLKREQ#1  
SRC[T/C]2 Control  
0 = SRC[T/C]2 not stoppable by CLKREQ#1  
1 = SRC[T/C]2 stoppable by CLKREQ#1  
SRC[T/C]1 Control  
0 = SRC[T/C]1 not stoppable by CLKREQ#1  
1 = SRC[T/C]1 stoppable by CLKREQ#1  
Byte 21 Control Register 21  
Bit  
@Pup  
Name  
Description  
7
6
5
4
3
2
1
0
GPU_STP# Control  
SRC7  
Allow control of SRC7 by GPU_STP#  
0 = SRC7 not stoppable by GPU_STP#  
1 = SRC7 stoppable by GPU_STP#  
0
GPU_STP# Control  
SRC6  
Allow control of SRC6 by GPU_STP#  
0 = SRC6 not stoppable by GPU_STP#  
1 = SRC6 stoppable by GPU_STP#  
0
GPU_STP# Control  
SRC5  
Allow control of SRC5 by GPU_STP#  
0 = SRC5 not stoppable by GPU_STP#  
1 = SRC5 stoppable by GPU_STP#  
0
GPU_STP# Control  
SRC4  
Allow control of SRC4 by GPU_STP#  
0 = SRC4 not stoppable by GPU_STP#  
1 = SRC4 stoppable by GPU_STP#  
0
0
GPU_STP# Control  
SRC3  
Allow control of SRC3 by GPU_STP#  
0 = SRC3 not stoppable by GPU_STP#  
1 = SRC3 stoppable by GPU_STP#  
GPU_STP# Control  
SRC2  
Allow control of SRC2 by GPU_STP#  
0 = SRC2not stoppable by GPU_STP#  
1 = SRC2 stoppable by GPU_STP#  
FCT_SEL  
GPU_STP# Control  
SRC1  
Allow control of SRC1 by GPU_STP#  
0 = SRC1 not stoppable by GPU_STP#  
1 = SRC1 stoppable by GPU_STP#  
When FCT_SEL = 0, this bit is 0, FCT_SEL = 1, this bit is 1  
0
FCT_SEL#  
GPU_STP# Control  
SRC0/LCD  
Allow control of SRC0/LCD by GPU_STP#  
0 = SRC0/LCD not stoppable by GPU_STP#  
1 = SRC0/LCD stoppable by GPU_STP#  
When FCT_SEL = 1, this bit is 0, FCT_SEL = 0, this bit is 1  
Confidential  
Rev 1.1,March 10, 2008  
Page 13 of 29  
SL28545-4  
Byte 22 Control Register 22  
Bit  
7
@Pup  
Name  
Description  
0
1
0
0
0
PCI range boost  
PCI range select  
USB range boost  
USB range select  
6
RangeBoost Drive Strength RangeSel  
5
(Byte22)  
(Byte 7,9,12,14) (Byte 22) Buffer Strength  
4
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
1x  
1.25x  
1.5x  
2x  
2.25x  
2.5x  
2.7x  
3x  
3
27M_SS/27M_NSS  
range boost  
REF, PCI default  
27M, USB default  
2
0
27M_SS/27M_NSS  
range select  
1
0
0
1
REF range boost  
REF range select  
Table 6. Crystal Recommendations  
Frequency  
Drive  
(max.)  
Shunt Cap Motional  
Tolerance  
(max.)  
Stability  
(max.)  
Aging  
(max.)  
(Fund)  
Cut  
Loading Load Cap  
(max.)  
(max.)  
14.31818 MHz  
AT  
Parallel 20 pF  
0.1 mW  
5 pF  
0.016 pF  
35 ppm  
30 ppm  
5 ppm  
The SL28545-4 requires a Parallel Resonance Crystal. Substi-  
tuting a series resonance crystal will cause the SL28545-4 to  
operate at the wrong frequency and violate the ppm specifi-  
cation. For most applications there is a 300-ppm frequency  
shift between series and parallel crystals due to incorrect  
loading.  
crystal. This means the total capacitance on each side of the  
crystal must be twice the specified crystal load capacitance  
(CL). While the capacitance on each side of the crystal is in  
series with the crystal, trim capacitors (Ce1,Ce2) should be  
calculated to provide equal capacitive loading on both sides.  
Clock Chip  
Crystal Loading  
Crystal loading plays a critical role in achieving low ppm perfor-  
mance. To realize low ppm performance, the total capacitance  
the crystal will see must be considered to calculate the appro-  
priate capacitive loading (CL).  
Ci2  
Ci1  
Pin  
3 to 6p  
Figure 1 shows a typical crystal configuration using the two  
trim capacitors. An important clarification for the following  
discussion is that the trim capacitors are in series with the  
crystal not parallel. It’s a common misconception that load  
capacitors are in parallel with the crystal and should be  
approximately equal to the load capacitance of the crystal.  
This is not true.  
X2  
X1  
Cs2  
Cs1  
Trace  
2.8 pF  
XTAL  
Ce1  
Ce2  
Trim  
33 pF  
Figure 2. Crystal Loading Example  
Use the following formulas to calculate the trim capacitor  
values for Ce1 and Ce2.  
Load Capacitance (each side)  
Figure 1. Crystal Capacitive Clarification  
Ce = 2 * CL – (Cs + Ci)  
Calculating Load Capacitors  
Total Capacitance (as seen by the crystal)  
1
In addition to the standard external trim capacitors, trace  
capacitance and pin capacitance must also be considered to  
correctly calculate crystal loading. As mentioned previously,  
the capacitance on each side of the crystal is in series with the  
CLe  
=
1
1
(
)
+
Ce2 + Cs2 + Ci2  
Ce1 + Cs1 + Ci1  
Confidential  
Rev 1.1,March 10, 2008  
Page 14 of 29  
SL28545-4  
CLKREQ#X  
SRCT(free running)  
SRCC(free running)  
SRCT(stoppable)  
SRCT(stoppable)  
Figure 3. CLKREQ# Deassertion/Assertion Waveform  
CL ................................................... Crystal load capacitance  
CLKREQ# Deassertion (CLKREQ# -> HIGH)  
CLe .........................................Actual loading seen by crystal  
using standard value trim capacitors  
The impact of deasserting the CLKREQ# pins is that all SRC  
outputs that are set in the control registers to stoppable via  
deassertion of CLKREQ# are to be stopped after their next  
transition. The final state of all stopped SRC clocks is  
Low/Low.  
Ce .....................................................External trim capacitors  
Cs ............................................. Stray capacitance (terraced)  
Ci .......................................................... Internal capacitance  
(lead frame, bond wires etc.)  
PD# (Power-down) Clarification  
The CKPWRGD/PD# pin is a dual-function pin. During initial  
power-up, the pin functions as CK_PWRGD. Once  
CKPWRGD has been sampled HIGH by the clock chip, the pin  
assumes PD# functionality. The PD# pin is an asynchronous  
active LOW input used to shut off all clocks cleanly prior to  
shutting off power to the device. This signal is synchronized  
internal to the device prior to powering down the clock synthe-  
sizer. PD# is also an asynchronous input for powering up the  
system. When PD# is asserted LOW, all clocks need to be  
driven to a LOW value and held prior to turning off the VCOs  
and the crystal oscillator.  
CLKREQ# Description  
The CLKREQ# signals are active LOW inputs used for clean  
enabling and disabling selected SRC outputs. The outputs  
controlled by CLKREQ# are determined by the settings in  
register byte 8. The CLKREQ# signal is a de-bounced signal  
in that it’s state must remain unchanged during two consec-  
utive rising edges of SRCC to be recognized as a valid  
assertion or deassertion. (The assertion and deassertion of  
this signal is absolutely asynchronous.)  
CLKREQ# Assertion (CLKREQ# -> LOW)  
PD# (Power-down) Assertion  
All differential outputs that were stopped are to resume normal  
operation in a glitch-free manner. The maximum latency from  
the assertion to active outputs is between 2 and 6 SRC clock  
periods (2 clocks are shown) with all SRC outputs resuming  
simultaneously. All stopped SRC outputs must be driven HIGH  
within 10 ns of CLKREQ# deassertion to a voltage greater than  
200 mV.  
When PD# is sampled LOW by two consecutive rising edges  
of CPUC, all single-ended outputs will be held LOW on their  
next HIGH-to-LOW transition and differential clocks must be  
held Low on the next diff clock# HIGH-to-LOW transition within  
4 clock periods. Note that Figure 4 shows CPUT = 133 MHz  
and PD drive mode = ‘1’ for all differential outputs. This  
diagram and description is applicable to valid CPU  
frequencies. In the event that PD mode is desired as the initial  
power-on state, PD must be asserted HIGH in less than 10 µs  
after asserting CK_PWRGD..  
P D #  
C P U T , 133M H z  
C P U C , 133M H z  
S R C T 100M H z  
S R C C 100M H z  
U S B , 48M H z  
D O T 96T  
D O T 96C  
P C I, 33 M H z  
R E F  
Figure 4. Power-down Assertion Timing Waveform  
Confidential  
Rev 1.1,March 10, 2008  
Page 15 of 29  
SL28545-4  
PD# Deassertion  
condition resulting from power down will be driven high in less  
than 300 µs of PD deassertion to a voltage greater than  
200 mV. After the clock chip’s internal PLL is powered up and  
locked, all outputs will be enabled within a few clock cycles of  
each other. Figure 5 is an example showing the relationship of  
clocks coming up.  
The power-up latency is less than 1.8 ms. This is the time from  
the deassertion of the PD pin or the ramping of the power  
supply until the time that stable clocks are output from the  
clock chip. All differential outputs stopped in a three-state  
Tstable  
<1.8ms  
PD#  
CPUT, 133MHz  
CPUC, 133MHz  
SRCT 100MHz  
SRCC 100MHz  
USB, 48MHz  
DOT96T  
DOT96C  
PCI, 33MHz  
REF  
Tdrive_PW RDN#  
<300µS, >200mV  
Figure 5. Power-down Deassertion Timing Waveform  
set with the SMBus configuration to be stoppable via assertion  
CPU_STP# Assertion  
of CPU_STP# will be stopped within two–six CPU clock  
periods after being sampled by two rising edges of the internal  
CPUC clock. The final state of all stopped CPU clocks is  
High/Low when driven, Low/Low when tri-stated.  
The CPU_STP# signal is an active LOW input used for  
synchronous stopping and starting the CPU output clocks  
while the rest of the clock generator continues to function.  
When the CPU_STP# pin is asserted, all CPU outputs that are  
CPU_STP#  
CPUT  
CPUC  
Figure 6. CPU_STP# Assertion Waveform  
CPU_STP#  
CPUT  
CPUC  
CPUT Internal  
CPUC Internal  
Tdrive_CPU_STP#,10 ns>200 mV  
Figure 7. CPU_STP# Deassertion Waveform  
Confidential  
Rev 1.1,March 10, 2008  
Page 16 of 29  
SL28545-4  
PCI_STP# Assertion  
driven Low, SRC outputs are High/Low if set to driven and  
Low/Low if set to tri-state.  
The PCI_STP# signal is an active LOW input used for  
synchronous stopping and starting the PCI outputs and SRC  
outputs if they are set to be stoppable in SMbus while the rest  
of the clock generator continues to function. The set-up time  
for capturing PCI_STP# going LOW is 10 ns (tSU). (See  
Figure 9.) The PCIF clocks will not be affected by this pin if  
their corresponding control bit in the SMBus register is set to  
allow them to be free running. All stopped PCI outputs are  
PCI_STP# Deassertion  
The deassertion of the PCI_STP# signal will cause all PCI and  
stoppable PCIF clocks to resume running in a synchronous  
manner within two PCI clock periods after PCI_STP# transi-  
tions to a HIGH level.  
1.8mS  
CPU_STOP#  
PD  
CPUT(Free Running)  
CPUC(Free Running)  
CPUT(Stoppable)  
CPUC(Stoppable)  
DOT96T  
DOT96C  
Figure 8. CPU_STP# = Tri-state, CPU_PD = Tri-state, DOT_PD = Tri-state  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 9. PC I_STP# Assertion Waveform  
Figure 10. CPU_STP# = Driven, CPU_PD = Driven, DOT_PD = Driven  
Confidential  
Rev 1.1,March 10, 2008  
Page 17 of 29  
SL28545-4  
Tdrive_SRC  
Tsu  
PCI_STP#  
PCI_F  
PCI  
SRC 100MHz  
Figure 11. PCI_STP# Deassertion Waveform  
Figure 12. CKPWRGD Timing DIagram  
Table 7. Output Driver Status during PCI-STP# and CPU_STP#  
PCI_STP# Asserted  
Driven Low  
CPU_STP# Asserted  
Running  
SMBus OE Disabled  
Single-ended Clocks Stoppable  
Non Stoppable  
Stoppable  
Driven Low  
Running  
Running  
Differential Clocks  
Clock Driven High  
Clock# Driven Low  
Clock Driven High  
Clock# Driven Low  
Driven Low or 20K  
pulldown  
Non Stoppable  
Running  
Running  
Table 8. Output Driver Status  
All Single-ended Clocks  
All Differential Clocks except CPU1  
Clock Clock#  
Low or 20K pulldown Low  
CPU1  
w/o Strap  
Latches Open State Low  
w/Strap  
Clock  
Clock#  
Hi-Z  
Low or 20K  
pulldown  
Low  
Powerdown  
M1  
Low  
Low  
Hi-Z  
Hi-Z  
Low or 20K pulldown Low  
Low or 20K pulldown Low  
Low or 20K  
pulldown  
Low  
Running  
Running  
Confidential  
Rev 1.1,March 10, 2008  
Page 18 of 29  
SL28545-4  
Figure 13. CY28545-4 State Diagram  
Confidential  
Rev 1.1,March 10, 2008  
Page 19 of 29  
SL28545-4  
Absolute Maximum Conditions  
Parameter  
VDD  
Description  
Core Supply Voltage  
Condition  
Min.  
–0.5  
–0.5  
–0.5  
–65  
0
Max.  
4.6  
Unit  
V
4.6  
VDD_A  
VIN  
Analog Supply Voltage  
Input Voltage  
V
V
+ 0.5  
Relative to VSS  
Non-functional  
Functional  
VDC  
°C  
DD  
TS  
Temperature, Storage  
150  
85  
150  
20  
60  
TA  
Temperature, Operating Ambient  
Temperature, Junction  
°C  
TJ  
Functional  
°C  
ØJC  
Dissipation, Junction to Case  
Dissipation, Junction to Ambient  
Mil-STD-883E Method 1012.1  
JEDEC (JESD 51)  
°C/W  
°C/W  
V
ØJA  
ESDHBM  
UL-94  
MSL  
ESD Protection (Human Body Model) MIL-STD-883, Method 3015  
2000  
Flammability Rating  
At 1/8 in.  
V–0  
1
Moisture Sensitivity Level  
Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
DC Electrical Specifications  
Parameter  
All VDDs  
VILI2C  
VIHI2C  
VIL_FS  
VIH_FS  
VILFS_C  
VIMFS_C  
VIHFS_C  
VIL  
Description  
3.3V Operating Voltage  
Input Low Voltage  
Condition  
Min.  
3.135  
Max. Unit  
3.3 ± 5%  
3.465  
1.0  
V
V
SDATA, SCLK  
SDATA, SCLK  
Input High Voltage  
2.2  
V
V
V
– 0.3  
FS_[A,B] Input Low Voltage  
FS_[A,B] Input High Voltage  
FS_C Input Low Voltage  
FS_C Input Middle Voltage  
FS_C Input High Voltage  
3.3V Input Low Voltage  
3.3V Input High Voltage  
Input Low Leakage Current  
Input High Leakage Current  
3.3V Output Low Voltage  
3.3V Output High Voltage  
High-impedance Output Current  
Input Pin Capacitance  
Output Pin Capacitance  
Pin Inductance  
0.35  
V
SS  
V
+ 0.5  
0.7  
– 0.3  
V
DD  
0.35  
1.7  
+ 0.5  
V
SS  
0.7  
2.0  
– 0.3  
V
V
V
V
DD  
V
0.8  
+ 0.3  
V
SS  
VIH  
2.0  
–5  
V
DD  
IIL  
Except internal pull-up resistors, 0 < VIN < VDD  
Except internal pull-down resistors, 0 < VIN < VDD  
IOL = 1 mA  
5
5
µA  
µA  
V
IIH  
VOL  
0.4  
VOH  
IOH = –1 mA  
2.4  
–10  
3
V
IOZ  
10  
5
µA  
pF  
pF  
nH  
V
CIN  
COUT  
LIN  
3
6
7
VXIH  
Xin High Voltage  
0.7V  
0
VDD  
DD  
VXIL  
Xin Low Voltage  
0.3V  
V
DD  
IDD3.3V  
IPD3.3V  
Dynamic Supply Current  
Power-down Supply Current  
1901  
mA  
mA  
1
1. Measured with CPU running at 266MHz under low drive condition  
Confidential  
Rev 1.1,March 10, 2008  
Page 20 of 29  
SL28545-4  
AC Electrical Specifications  
Parameter  
Crystal  
TDC  
Description  
Condition  
Min.  
Max.  
Unit  
XIN Duty Cycle  
The device will operate reliably with input duty  
cycles up to 30/70 but the REF clock duty cycle  
will not be within specification  
47.5  
52.5  
%
TPERIOD  
XIN Period  
When XIN is driven from an external clock  
source  
69.841  
71.0  
ns  
TR/TF  
XIN Rise and Fall Times  
XIN Cycle to Cycle Jitter  
Measured between 0.3VDD and 0.7VDD  
10.0  
500  
ns  
ps  
TCCJ  
As an average over 1-µs duration  
CPU at 0.8V  
TDC  
CPUT and CPUC Duty Cycle  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
Measured at 0V differential @ 0.1s  
45  
55  
%
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
TPERIOD  
100-MHz CPUT and CPUC Period  
133-MHz CPUT and CPUC Period  
166-MHz CPUT and CPUC Period  
200-MHz CPUT and CPUC Period  
266-MHz CPUT and CPUC Period  
333-MHz CPUT and CPUC Period  
400-MHz CPUT and CPUC Period  
9.99700 10.0030 ns  
7.497751 7.52251 ns  
5.99820 6.00180 ns  
4.99850 5.00150 ns  
3.74963 3.75038 ns  
2.99970 3.00030 ns  
2.49975 2.50025 ns  
9.99700 10.05327 ns  
7.49775 7.53995 ns  
5.99820 6.03196 ns  
4.99850 5.02663 ns  
3.74887 3.76997 ns  
2.99910 3.01598 ns  
2.49925 2.51331 ns  
9.91200 10.0880 ns  
TPERIODSS 100-MHz CPUT and CPUC Period, SSC Measured at differential 0V @ 0.1s  
TPERIODSS 133-MHz CPUT and CPUC Period, SSC Measured at differential 0V @ 0.1s  
TPERIODSS 166-MHz CPUT and CPUC Period, SSC Measured at differential 0V @ 0.1s  
TPERIODSS 200-MHz CPUT and CPUC Period, SSC Measured at differential 0V @ 0.1s  
TPERIODSS 266-MHz CPUT and CPUC Period, SSC Measured at 0V differential @ 0.1s  
TPERIODSS 333-MHz CPUT and CPUC Period, SSC Measured at 0V differential @ 0.1s  
TPERIODSS 400-MHz CPUT and CPUC Period, SSC Measured at 0V differential @ 0.1s  
TPERIODAbs 100-MHz CPUT and CPUC Absolute  
period  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
Measured at 0V differential @ 1 clock  
TPERIODAbs 133-MHz CPUT and CPUC Absolute  
period  
7.41275 7.58725 ns  
5.91320 6.08680 ns  
4.91350 5.08650 ns  
3.66387 3.83613 ns  
2.91410 3.08590 ns  
2.41425 2.58575 ns  
9.91200 10.13827 ns  
7.41275 7.62495 ns  
5.91320 6.11696 ns  
4.91350 5.11163 ns  
3.66387 3.85497 ns  
TPERIODAbs 166-MHz CPUT and CPUC Absolute  
period  
TPERIODAbs 200-MHz CPUT and CPUC Absolute  
period  
TPERIODAbs 266-MHz CPUT and CPUC Absolute  
period  
TPERIODAbs 333-MHz CPUT and CPUC Absolute  
period  
TPERIODAbs 400-MHz CPUT and CPUC Absolute  
period  
TPERI-  
100-MHz CPUT and CPUC Absolute  
period, SSC  
ODSSAbs  
1. Measured with CPU running at 266MHz  
TPERI-  
ODSSAbs  
TPERI-  
ODSSAbs  
TPERI-  
ODSSAbs  
TPERI-  
133-MHz CPUT and CPUC Absolute  
period, SSC  
166-MHz CPUT and CPUC Absolute  
period, SSC  
200-MHz CPUT and CPUC Absolute  
period, SSC  
266-MHz CPUT and CPUC Absolute  
period, SSC  
ODSSAbs  
Confidential  
Rev 1.1,March 10, 2008  
Page 21 of 29  
SL28545-4  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
TPERI-  
ODSSAbs  
TPERI-  
ODSSAbs  
TCCJ  
333-MHz CPUT and CPUC Absolute  
period, SSC  
Measured at 0V differential @ 1 clock  
2.91410 3.10098 ns  
400-MHz CPUT and CPUC Absolute  
period, SSC  
Measured at 0V differential @ 1 clock  
2.41425 2.59831 ns  
CPUT/C Cycle to Cycle Jitter  
CPU2_ITP Cycle to Cycle Jitter  
Long-term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
85  
ps  
ps  
TCCJ2  
LACC  
125  
300  
100  
8.0  
ppm  
ps  
TSKEW  
CPU1 to CPU0 Clock Skew  
Slew_rise Rising slew rate  
Slew_Fall Falling slew rate  
Slew_var Slew rate matching  
Measured differentially from +150mV to  
-150mV  
2.5  
V/ns  
Measured differentially from -150mV to  
+150mV  
2.5  
8.0  
V/ns  
20  
%
V
Vmax  
Max output voltage  
Measurement taken from single eneded  
waveform including overshoot  
1.15  
Vmin  
Min output Voltage  
Measurement taken from single eneded  
waveform including undershoot  
–0.3  
300  
V
Vcross  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
SRC at 0.8V  
TDC  
SRCT and SRCC Duty Cycle  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
ns  
ns  
ns  
9.99700  
10.0030  
TPERIOD  
100-MHz SRCT and SRCC Period  
9.99700 10.05327  
9.87200 10.12800  
TPERIODSS 100-MHz SRCT and SRCC Period, SSC Measured at crossing point VOX  
TPERIODAbs 100-MHz SRCT and SRCC Absolute  
Period  
Measured at crossing point VOX  
9.87200 10.17827  
TPERI-  
ODSSAbs  
TSKEW  
100-MHz SRCT and SRCC Absolute  
Period, SSC  
Measured at crossing point VOX  
ns  
Any SRCT/C to SRCT/C Clock Skew  
SRCT/C Cycle to Cycle Jitter  
SRCT/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
250  
125  
300  
8.0  
ps  
ps  
TCCJ  
LACC  
ppm  
V/ns  
Slew_rise Rising slew rate  
Slew_Fall Falling slew rate  
Slew_var Slew rate matching  
Measured differentially from +150mV to  
-150mV  
2.5  
Measured differentially from -150mV to  
+150mV  
2.5  
8.0  
V/ns  
20  
%
V
Vmax  
Max output voltage  
Measurement taken from single eneded  
waveform including overshoot  
1.15  
Vmin  
Min output Voltage  
Measurement taken from single eneded  
waveform including undershoot  
–0.3  
V
Vcross  
TSKEW  
TCCJ  
Crossing Point Voltage at 0.7V Swing  
Any SRCT/C to SRCT/C Clock Skew  
SRCT/C Cycle to Cycle Jitter  
300  
550  
250  
125  
300  
mV  
ps  
Measured at crossing point VOX  
Measured at crossing point VOX  
Measured at crossing point VOX  
ps  
LACC  
SRCT/C Long Term Accuracy  
ppm  
LCD_100M_SSC at 0.8V  
TDC  
SSCT and SSCC Duty Cycle  
100-MHz SSCT and SSCC Period  
Measured at crossing point VOX  
Measured at crossing point VOX  
45  
55  
%
ns  
ns  
ns  
9.997001 10.00300  
9.997001 10.05327  
9.872001 10.12800  
TPERIOD  
TPERIODSS 100-MHz SSCT and SSCC Period, SSC Measured at crossing point VOX  
TPERIODAbs 100-MHz SSCT and SSCC Absolute  
Period  
Measured at crossing point VOX  
Confidential  
Rev 1.1,March 10, 2008  
Page 22 of 29  
SL28545-4  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
9.872001 10.17827  
TPERI-  
ODSSAbs  
TCCJ  
100-MHz SRCT and SRCC Absolute  
Period, SSC  
Measured at crossing point VOX  
ns  
SSCT/C Cycle to Cycle Jitter  
SSCT/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
125  
300  
8.0  
ps  
LACC  
ppm  
V/ns  
Slew_rise Rising slew rate  
Slew_Fall Falling slew rate  
Slew_var Slew rate matching  
Measured differentially from +150mV to  
-150mV  
2.5  
Measured differentially from -150mV to  
+150mV  
2.5  
8.0  
V/ns  
20  
%
V
Vmax  
Max output voltage  
Measurement taken from single eneded  
waveform including overshoot  
1.15  
Vmin  
Min output Voltage  
Measurement taken from single eneded  
waveform including undershoot  
–0.3  
300  
V
Vcross  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
DOT96 at 0.8V  
45  
55  
TDC  
DOT96T and DOT96C Duty Cycle  
DOT96T and DOT96C Period  
Measured at crossing point VOX  
Measured at crossing point VOX  
%
ns  
10.41354 10.41979  
10.16354 10.66979  
TPERIOD  
TPERIODAbs DOT96T and DOT96C Absolute Period Measured at crossing point VOX  
ns  
TCCJ  
LACC  
DOT96T/C Cycle to Cycle Jitter  
DOT96T/C Long Term Accuracy  
Measured at crossing point VOX  
Measured at crossing point VOX  
250  
300  
8.0  
ps  
ppm  
V/ns  
Slew_rise Rising slew rate  
Slew_Fall Falling slew rate  
Slew_var Slew rate matching  
Measured differentially from +150mV to  
-150mV  
2.5  
Measured differentially from -150mV to  
+150mV  
2.5  
8.0  
V/ns  
20  
%
V
Vmax  
Max output voltage  
Measurement taken from single eneded  
waveform including overshoot  
1.15  
Vmin  
Min output Voltage  
Measurement taken from single eneded  
waveform including undershoot  
–0.3  
300  
V
Vcross  
Crossing Point Voltage at 0.7V Swing  
550  
mV  
PCI/PCIF at 3.3V  
45  
55  
TDC  
PCI Duty Cycle  
Spread Disabled PCIF/PCI Period  
Measurement at 1.5V  
Measurement at 1.5V  
%
ns  
ns  
ns  
ns  
29.99100 30.00900  
29.9910 30.15980  
29.49100 30.50900  
29.49100 30.65980  
TPERIOD  
TPERIODSS Spread Enabled PCIF/PCI Period, SSC Measurement at 1.5V  
TPERIODAbs Spread Disabled PCIF/PCI Period Measurement at 1.5V  
Spread Enabled PCIF/PCI Period, SSC Measurement at 1.5V  
TPERI-  
ODSSAbs  
THIGH  
12.0  
12.0  
1.0  
PCIF and PCI high time  
Measurement at 2.4V  
ns  
ns  
TLOW  
TR/TF  
TSKEW  
Tdelay  
Tdrive  
PCIF and PCI low time  
Measurement at 0.4V  
PCIF/PCI rising and falling Edge Rate  
Any PCI clock to Any PCI clock Skew  
Intentional PCI-PCI delay  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
4.0  
1000  
200  
15  
V/ns  
ps  
Measurement at 1.5V  
pS  
ns  
PCI output enable after PCI_STP#  
de-assertion  
500  
300  
TCCJ  
LACC  
PCIF and PCI Cycle to Cycle Jitter  
PCIF/PCI Long Term Accuracy  
Measurement at 1.5V  
ps  
Measured at crossing point VOX  
ppm  
Confidential  
Rev 1.1, March 10, 2008  
Page 23 of 29  
SL28545-4  
AC Electrical Specifications (continued)  
Parameter  
Description  
Condition  
Min.  
Max.  
Unit  
48_M at 3.3V  
45  
55  
TDC  
Duty Cycle  
Period  
Measurement at 1.5V  
%
ns  
20.83125 20.83542  
20.48125 21.18542  
TPERIOD  
Measurement at 1.5V  
TPERIODAbs Absolute Period  
Measurement at 1.5V  
ns  
8.094  
7.694  
1.0  
11.100  
11.100  
2.0  
THIGH  
TLOW  
TR/TF  
TCCJ  
48_M High time  
Measurement at 2.4V  
ns  
48_M Low time  
Measurement at 0.4V  
ns  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
48M Long Term Accuracy  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
V/ns  
ps  
350  
300  
LACC  
Measured at crossing point VOX  
ppm  
27_M at 3.3V  
TDC  
Duty Cycle  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
45  
55  
%
ns  
ns  
37.035  
36.785  
37.038  
37.288  
TPERIOD  
Spread Disabled 27M Period  
TPERI-  
ODABS  
THIGH  
Spread Disabled 27M absolute Period  
10.5  
10.5  
1.0  
27_M High time  
Measurement at 2.0V  
Measurement at 0.8V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
1uS after trigger  
ns  
ns  
TLOW  
27_M Low time  
4.0  
350  
700  
TR/TF  
Rising and Falling Edge Rate  
Cycle to Cycle Jitter  
Long Term Jitter  
V/ns  
ps  
TCCJ  
TLTJ  
ps  
REF at 3.3V  
TDC  
45  
55  
REF Duty Cycle  
REF Period  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
Measured between 0.8V and 2.0V  
Measurement at 1.5V  
Measurement at 1.5V  
Measurement at 1.5V  
%
ns  
69.8203  
69.8622  
TPERIOD  
68.82033 70.86224  
TPERIODAbs REF Absolute Period  
ns  
1.0  
4.0  
500  
TR/TF  
TSKEW  
TCCJ  
REF Rising and Falling Edge Rate  
V/ns  
ps  
REF Clock to REF Clock  
REF Cycle to Cycle Jitter  
Long Term Accuracy  
1000  
300  
ps  
LACC  
ppm  
ENABLE/DISABLE and SET-UP  
TSTABLE Clock Stabilization from Power-up  
TSS  
10.0  
0
1.8  
ms  
ns  
ns  
Stopclock Set-up Time  
Stopclock Hold Time  
TSH  
Confidential  
Rev 1.1,March 10, 2008  
Page 24 of 29  
SL28545-4  
Test and Measurement Set-up  
For Single-ended Signals and Reference  
The following diagram shows test load configurations for the  
single-ended PCI, USB, and REF output signals.  
Figure 14.Single-ended Load Configuration Low Drive Option  
Figure 15. Single-ended Load Configuration High Drive Option  
The following diagram shows the test load configuration for the  
differential CPU and SRC outputs.  
Figure 16. 0.8V Differential Load Configuration  
Confidential  
Rev 1.1,March 10, 2008  
Page 25 of 29  
SL28545-4  
3 .3 V s ig n a ls  
T D C  
-
-
3.3V  
2.0V  
1.5V  
0.8V  
0V  
T R  
T F  
Figure 17. Single-ended Output Signals (for AC Parameters Measurement)  
Ordering Information  
Part Number  
Lead-free  
Package Type  
Product Flow  
SL28545ALC-4  
SL28545ALC-4T  
68-pin QFN  
68-pin QFN Tape and Reel  
Commercial, 0° to 85°C  
Commercial, 0° to 85°C  
SL28545ALC-4 is Pb free and RoHS compliant  
Rev 1.1,March 10, 2008  
Confidential  
Page 26 of 29  
SL28545-4  
Package Diagrams  
68-Lead QFN 8 x 8 mm (0.4-mm Pitch)  
MIN/MAX  
DIMENSIONS IN MM[INCHES]  
REFERENCE JEDEC MO-220  
PACKAGE WEIGHT: 0.17 grams  
TOP VIEW  
SIDE VIEW  
BOTTOM VIEW  
7.90[0.311]  
A
0.18[0.007]  
0.28[0.011]  
8.10[0.319]  
0.08  
C
1.0[0.039] MAX  
0.80[0.031] MAX  
7.70[0.303]  
7.80[0.307]  
0.05[0.002] MAX  
0.2[0.008] REF  
6.30 REF  
PIN1 ID  
0.20 R.  
N
N
1
2
3
1
2
3
0.80[0.031]  
0.45[0.017]  
DIA  
6.30  
REF  
0.40[0.012]  
0.50[0.020]  
0°-12°  
0.24[0.009]  
0.60[0.023]  
0.4 B.S.C.  
Confidential  
Rev 1.1,March 10, 2008  
Page 27 of 29  
SL28545-4  
Package Diagrams (continued)  
68-Lead QFN 8 x 8 mm (0.4-mm Pitch)  
Confidential  
Rev 1.1,March 10, 2008  
Page 28 of 29  
SL28545-4  
Document History Page  
Document Title: SL28545-4 Clock Generator for next Gen Intel® Mobile Platform  
Document Number:  
Orig. of  
REV.  
1.0  
Issue Date Change  
Description of Change  
11/20/07  
3/10/08  
SLI  
SLI  
New data sheet  
1.1  
Removed Preliminary status  
Updated package diagram  
Updated DC Electrical Specification table  
Updated AC Electrical Specification table  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the  
use of any circuitry or for the infringement of any patents or other rights of third parties which would result from each use. This  
product is intended for use in normal commercial applications and is not warranted nor is it intended for use in life support, criti-  
cal medical instruments, or any other application requiring extended temperature range, high reliability, or any other extraordi-  
nary environmental requirements unless pursuant to additional processing by Spectra Linear Inc., and expressed written  
agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any circuitry or specification without notice.  
Confidential  
Rev 1.1,March 10, 2008  
Page 29 of 29  

相关型号:

SL28548ALC-2

Processor Specific Clock Generator, CMOS, 9 X 9 MM, 0.50 MM PITCH, ROHS COMPLIANT, QFN-64
SILICON

SL28548ATC-2

Clock Generator,
SILICON

SL28548ATC-2T

Processor Specific Clock Generator, CMOS, PDSO64, 6 X 17 MM, ROHS COMPLIANT, MO-153, TSSOP-64
SILICON

SL28555AQC

Processor Specific Clock Generator, CMOS, 8 X 8 MM, LEAD FREE, QFN-56
SILICON

SL28610

Low Power Clock Generator for Intel® Ultra Mobile Platform
SILICON

SL28610BLC

Low Power Clock Generator for Intel® Ultra Mobile Platform
SILICON

SL28610BLI

Processor Specific Clock Generator, 100MHz, CMOS, 6 X 6 MM, ROHS COMPLIANT, QFN-48
SILICON

SL28610BLIT

Processor Specific Clock Generator, 200MHz, CMOS, 6 X 6 MM, ROHS COMPLIANT, QFN-48
SILICON

SL28640BLC

Clock Generator, CMOS, 10 X 10 MM, LEAD FREE, QFP-72
SILICON

SL28640BLCT

Clock Generator, CMOS, 10 X 10 MM, LEAD FREE, QFP-72
SILICON

SL28647CLC

Processor Specific Clock Generator, 400MHz, CMOS, 10 X 10 MM, ROHS COMPLIANT, QFN-72
SILICON

SL28647CLCT

Processor Specific Clock Generator, 400MHz, CMOS, 10 X 10 MM, ROHS COMPLIANT, QFN-72
SILICON