STK25C48-WF35 [SIMTEK]

2KX8 NON-VOLATILE SRAM, 35ns, PDIP24, 0.600 INCH, PLASTIC, DIP-24;
STK25C48-WF35
型号: STK25C48-WF35
厂家: SIMTEK CORPORATION    SIMTEK CORPORATION
描述:

2KX8 NON-VOLATILE SRAM, 35ns, PDIP24, 0.600 INCH, PLASTIC, DIP-24

静态存储器 光电二极管
文件: 总10页 (文件大小:286K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STK25C48  
2K x 8 AutoStore™ nvSRAM  
QuantumTrap™ CMOS  
Nonvolatile Static RAM  
Obsolete - Not Recommend for new Designs  
DESCRIPTION  
FEATURES  
The STK25C48 is a fast SRAM with a nonvolatile element  
incorporated in each static memory cell. The SRAM can  
be read and written an unlimited number of times, while  
independent nonvolatile data resides in the Nonvolatile  
Elements. Data transfers from the SRAM to the Nonvola-  
tile Elements (the STORE operation) can take place auto-  
matically on power down using charge stored in system  
capacitance. Transfers from the Nonvolatile Elements to  
the SRAM (the RECALL operation) take place automati-  
cally on restoration of power. The nvSRAM can be used in  
place of existing 2K x 8 SRAMs and also matches the  
pinout of 2K x 8 battery-backed SRAMs, EPROMs and  
EEPROMs, allowing direct substitution while enhancing  
performance. No support circuitry is required for micro-  
processor interfacing.  
• Nonvolatile Storage without Battery Problems  
• Directly Replaces 2K x 8 Static RAM, Battery-  
Backed RAM or EEPROMs  
• 25ns, 35ns and 45ns Access Times  
STORE to Nonvolatile Elements Initiated by  
AutoStore™ on Power Down  
RECALL to SRAM Initiated by Power Restore  
• 10mA Typical ICC at 200ns Cycle Time  
• Unlimited READ, WRITE and RECALL Cycles  
• 1,000,000 STORE Cycles to Nonvolatile Ele-  
ments  
• 100-Year Data Retention over Full Industrial  
Temperature Range  
• Commercial and Industrial Temperatures  
• 24-Pin 600 PDIP Package  
PIN CONFIGURATIONS  
BLOCK DIAGRAM  
1
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
V
A
A
W
G
CC  
QUANTUM TRAP  
32 x 512  
2
8
VCC  
A
3
7
9
4
A
A
A
A
6
5
4
5
STORE  
A5  
A6  
A7  
A8  
A9  
STORE/  
RECALL  
CONTROL  
6
POWER  
CONTROL  
A
E
10  
STATIC RAM  
ARRAY  
7
3
2
RECALL  
8
A
DQ  
7
6
5
32 x 512  
9
A
DQ  
DQ  
DQ  
1
10  
11  
12  
A
0
DQ  
0
4
3
DQ  
DQ  
24 - 600 PDIP  
1
DQ  
DQ0  
DQ1  
DQ2  
DQ3  
DQ4  
DQ5  
DQ6  
DQ7  
COLUMN I/O  
PIN NAMES  
COLUMN DEC  
A
- A  
10  
Address Inputs  
Write Enable  
Data In/Out  
Chip Enable  
Output Enable  
Power (+ 5V)  
Ground  
0
W
DQ - DQ  
0
7
A10  
A0 A1 A2 A3 A4  
G
E
G
E
W
V
V
CC  
SS  
March 2006  
1
Document Control # ML0005 rev 0.2  
STK25C48  
a
ABSOLUTE MAXIMUM RATINGS  
Note a: Stresses greater than those listed under “Absolute Maximum  
Ratings” may cause permanent damage to the device. This is a  
stress rating only, and functional operation of the device at condi-  
tions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rat-  
ing conditions for extended periods may affect reliability.  
Voltage on Input Relative to Ground. . . . . . . . . . . . . .0.5V to 7.0V  
Voltage on Input Relative to VSS . . . . . . . . . . –0.6V to (VCC + 0.5V)  
Voltage on DQ0-7. . . . . . . . . . . . . . . . . . . . . . –0.5V to (VCC + 0.5V)  
Temperature under Bias . . . . . . . . . . . . . . . . . . . . . –55°C to 125°C  
Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1W  
DC Output Current (1 output at a time, 1s duration). . . . . . . . 15mA  
DC CHARACTERISTICS  
(V = 5.0V 10%)  
CC  
COMMERCIAL  
INDUSTRIAL  
SYMBOL  
PARAMETER  
UNITS  
NOTES  
MIN  
MAX  
MIN  
MAX  
b
I
Average V  
Current  
85  
75  
65  
90  
75  
65  
mA  
mA  
mA  
t
t
t
= 25ns  
= 35ns  
= 45ns  
CC  
CC  
AVAV  
AVAV  
AVAV  
1
c
I
I
Average V  
Average V  
Current during STORE  
3
3
mA  
mA  
All Inputs Don’t Care, V = max  
CC  
CC  
CC  
CC  
CC  
2
3
b
Current at t  
AVAV  
= 200ns  
W (V  
– 0.2V)  
CC  
10  
10  
5V, 25°C, Typical  
All Others Cycling, CMOS Levels  
c
I
I
Average V Current during  
All Inputs Don’t Care  
CC  
CAP  
AutoStore™ Cycle  
4
2
2
mA  
d
d
Average V  
Current  
25  
21  
18  
26  
22  
19  
mA  
mA  
mA  
t
t
t
= 25ns, E V  
= 35ns, E V  
= 45ns, E V  
SB  
SB  
CC  
(Standby, Cycling TTL Input Levels)  
AVAV  
AVAV  
AVAV  
IH  
IH  
IH  
1
2
I
I
I
V
Standby Current  
E (V  
– 0.2V)  
CC  
CC  
1.5  
1
1.5  
1
mA  
μA  
μA  
(Standby, Stable CMOS Input Levels)  
All Others V 0.2V or (V – 0.2V)  
IN CC  
Input Leakage Current  
V = max  
CC  
ILK  
V
= V to V  
IN  
SS CC  
Off-State Output Leakage Current  
V = max  
CC  
OLK  
5
5
V
= V to V , E or G V  
IN  
SS CC IH  
V
V
V
V
T
Input Logic “1” Voltage  
Input Logic “0” Voltage  
Output Logic “1” Voltage  
Output Logic “0” Voltage  
Operating Temperature  
2.2  
V
+ .5  
2.2  
– .5  
V
+ .5  
V
V
All Inputs  
All Inputs  
IH  
CC  
CC  
V
– .5  
0.8  
V
0.8  
IL  
SS  
SS  
2.4  
2.4  
V
I
I
=–4mA  
= 8mA  
OH  
OL  
OUT  
OUT  
0.4  
70  
0.4  
85  
V
0
40  
°C  
A
Note b: ICC and ICC3 are dependent on output loading and cycle rate. The specified values are obtained with outputs unloaded.  
Note c: ICC1 and ICC are the average currents required for the duration of the respective STORE cycles (tSTORE ).  
4
Note d: E 2VIH will not produce standby current levels until any nonvolatile cycle in progress has timed out.  
AC TEST CONDITIONS  
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0V to 3V  
Input Rise and Fall Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ≤ 5ns  
Input and Output Timing Reference Levels . . . . . . . . . . . . . . . 1.5V  
Output Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .See Figure 1  
5.0V  
480 Ohms  
e
OUTPUT  
CAPACITANCE  
(T = 25°C, f = 1.0MHz)  
A
30 pF  
INCLUDING  
SCOPE AND  
FIXTURE  
255 Ohms  
SYMBOL  
PARAMETER  
MAX  
UNITS  
CONDITIONS  
ΔV = 0 to 3V  
ΔV = 0 to 3V  
C
Input Capacitance  
Output Capacitance  
8
7
pF  
IN  
C
pF  
OUT  
Note e: These parameters are guaranteed but not tested.  
Figure 1: AC Output Loading  
March 2006  
2Document Control # ML0005 rev 0.2  
STK25C48  
SRAM READ CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK25C48-25 STK25C48-35 STK25C48-45  
PARAMETER  
UNITS  
#1, #2  
Alt.  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
1
2
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
t
Chip Enable Access Time  
25  
35  
45  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ELQV  
ACS  
f
Read Cycle Time  
25  
35  
45  
AVAV  
RC  
AA  
g
3
Address Access Time  
25  
10  
35  
15  
45  
20  
AVQV  
4
Output Enable to Data Valid  
Output Hold after Address Change  
Chip Enable to Output Active  
Chip Disable to Output Inactive  
Output Enable to Output Active  
Output Disable to Output Inactive  
Chip Enable to Power Active  
Chip Disable to Power Standby  
GLQV  
OE  
OH  
LZ  
g
5
5
5
5
5
5
5
AXQX  
6
ELQX  
h
7
10  
10  
25  
13  
13  
35  
15  
15  
45  
EHQZ  
HZ  
8
0
0
0
0
0
0
GLQX  
OLZ  
OHZ  
PA  
h
9
GHQZ  
e
10  
11  
ELICCH  
EHICCL  
d, e  
PS  
Note f: W must be high during SRAM READ cycles and low during SRAM WRITE cycles.  
Note g: I/O state assumes E, G < VIL and W > VIH; device is continuously selected.  
Note h: Measured + 200mV from steady state output voltage.  
f, g  
SRAM READ CYCLE #1: Address Controlled  
2
t
AVAV  
ADDRESS  
3
t
AVQV  
5
t
AXQX  
DQ (DATA OUT)  
DATA VALID  
f
SRAM READ CYCLE #2: E Controlled  
2
t
AVAV  
ADDRESS  
E
1
11  
EHICCL  
t
ELQV  
t
6
t
ELQX  
7
t
EHQZ  
G
9
t
4
GHQZ  
t
GLQV  
8
t
GLQX  
DQ (DATA OUT)  
DATA VALID  
10  
ELICCH  
t
ACTIVE  
STANDBY  
I
CC  
March 2006  
3
Document Control # ML0005 rev 0.2  
STK25C48  
SRAM WRITE CYCLES #1 & #2  
(V = 5.0V 10%)  
CC  
SYMBOLS  
NO.  
STK25C48-25  
STK25C48-35  
STK25C48-45  
PARAMETER  
UNITS  
#1  
#2  
Alt.  
MIN  
25  
20  
20  
10  
0
MAX  
MIN  
35  
25  
25  
12  
0
MAX  
MIN  
45  
30  
30  
15  
0
MAX  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
t
t
t
WC  
Write Cycle Time  
Write Pulse Width  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
AVAV  
t
t
t
WLWH  
WLEH  
WP  
CW  
DW  
t
t
t
t
Chip Enable to End of Write  
Data Set-up to End of Write  
Data Hold after End of Write  
Address Set-up to End of Write  
Address Set-up to Start of Write  
Address Hold after End of Write  
Write Enable to Output Disable  
Output Active after End of Write  
ELWH  
DVWH  
WHDX  
ELEH  
DVEH  
EHDX  
t
t
t
t
t
DH  
t
t
t
20  
0
25  
0
30  
0
AVWH  
AVEH  
AW  
t
t
t
AS  
AVWL  
AVEL  
t
t
t
0
0
0
WHAX  
h, i  
EHAX  
WR  
t
t
10  
13  
15  
WLQZ  
WZ  
t
t
5
5
5
WHQX  
OW  
Note i: If W is low when E goes low, the outputs remain in the high-impedance state.  
Note j: E or W must be VIH during address transitions.  
j
SRAM WRITE CYCLE #1: W Controlled  
12  
AVAV  
t
ADDRESS  
19  
WHAX  
14  
ELWH  
t
t
E
17  
AVWH  
t
18  
AVWL  
t
13  
t
WLWH  
W
15  
DVWH  
16  
WHDX  
t
t
DATA IN  
DATA VALID  
20  
WLQZ  
t
21  
WHQX  
t
HIGH IMPEDANCE  
DATA OUT  
PREVIOUS DATA  
j
SRAM WRITE CYCLE #2: E Controlled  
12  
AVAV  
t
ADDRESS  
18  
AVEL  
19  
t
EHAX  
14  
ELEH  
t
t
E
1 7  
AVEH  
t
13  
WLEH  
t
W
16  
EHDX  
15  
DVEH  
t
t
DATA IN  
DATA VALID  
HIGH IMPEDANCE  
DATA OUT  
March 2006  
4Document Control # ML0005 rev 0.2  
STK25C48  
AutoStore™/POWER-UP RECALL  
(V = 5.0V ± 10%)  
CC  
SYMBOLS  
STK25C48  
NO.  
PARAMETER  
UNITS NOTES  
Standard  
MIN  
MAX  
550  
10  
22  
23  
24  
25  
26  
t
t
t
Power-up RECALL Duration  
STORE Cycle Duration  
μs  
ms  
μs  
V
k
g
g
RESTORE  
STORE  
Time Allowed to Complete SRAM Cycle  
Low Voltage Trigger Level  
1
DELAY  
V
4.0  
4.5  
3.6  
SWITCH  
RESET  
V
Low Voltage Reset Level  
V
e
Note k: tRESTORE starts from the time VCC rises above VSWITCH  
.
AutoStore™/POWER-UP RECALL  
V
CC  
5V  
25  
V
SWITCH  
26  
RESET  
V
AutoStore™  
23  
STORE  
t
POWER-UP RECALL  
24  
DELAY  
22  
RESTORE  
t
t
W
DQ (DATA OUT)  
BROWN OUT  
BROWN OUT  
POWER-UP  
BROWN OUT  
AutoStore™  
AutoStore™  
RECALL  
NO STORE DUE TO  
NO SRAM WRITES  
NO RECALL  
(VCC DID NOT GO  
RECALL WHEN  
RETURNS  
NO RECALL  
(VCC DID NOT GO  
V
CC  
BELOW VRESET  
)
ABOVE VSWITCH  
BELOW VRESET  
)
March 2006  
5
Document Control # ML0005 rev 0.2  
STK25C48  
DEVICE OPERATION  
The STK25C48 is a versatile memory chip that pro-  
vides several modes of operation. The STK25C48  
can operate as a standard 8K x 8 SRAM. It has an  
8K x 8 Nonvolatile Elements shadow to which the  
SRAM information can be copied, or from which the  
SRAM can be updated in nonvolatile mode.  
AutoStore™ OPERATION  
The STK25C48 uses the intrinsic system capaci-  
tance to perform an automatic store on power down.  
As long as the system power supply takes at least  
tSTORE to decay from VSWITCH down to 3.6V, the  
STK25C48 will safely and automatically store the  
SRAM data in Nonvolatile Elements on power down.  
NOISE CONSIDERATIONS  
In order to prevent unneeded STORE operations,  
automatic STORE will be ignored unless at least one  
WRITE operation has taken place since the most  
recent STORE or RECALL cycle.  
Note that the STK25C48 is a high-speed memory  
and so must have a high-frequency bypass capaci-  
tor of approximately 0.1μF connected between VCC  
and VSS, using leads and traces that are as short as  
possible. As with all high-speed CMOS ICs, normal  
careful routing of power, ground and signals will  
help prevent noise problems.  
POWER-UP RECALL  
During power up, or after any low-power condition  
(VCC < VRESET), an internal RECALL request will be  
latched. When VCC once again exceeds the sense  
voltage of VSWITCH, a RECALL cycle will automatically  
be initiated and will take tRESTORE to complete.  
SRAM READ  
The STK25C48 performs a READ cycle whenever E  
and G are low and W is high. The address specified  
on pins A0-10 determines which of the 2,048 data  
bytes will be accessed. When the READ is initiated  
by an address transition, the outputs will be valid  
after a delay of tAVQV (READ cycle #1). If the READ is  
initiated by E or G, the outputs will be valid at tELQV or  
at tGLQV, whichever is later (READ cycle #2). The data  
outputs will repeatedly respond to address changes  
within the tAVQV access time without the need for tran-  
sitions on any control input pins, and will remain valid  
until another address change or until E or G is  
brought high or W is brought low.  
If the STK25C48 is in a WRITE state at the end of  
power-up RECALL, the SRAM data will be corrupted.  
To help avoid this situation, a 10K Ohm resistor  
should be connected either between W and system  
VCC or between E and system VCC.  
HARDWARE PROTECT  
The STK25C48 offers hardware protection against  
inadvertent STORE operation and SRAM WRITEs  
during low-voltage conditions. When VCC < VSWITCH  
,
STORE operations and SRAM WRITEs are inhibited.  
SRAM WRITE  
LOW AVERAGE ACTIVE POWER  
A WRITE cycle is performed whenever E and W are  
low. The address inputs must be stable prior to  
entering the WRITE cycle and must remain stable  
until either E or W goes high at the end of the cycle.  
The data on the common I/O pins DQ0-7 will be writ-  
ten into the memory if it is valid tDVWH before the end  
of a W controlled WRITE or tDVEH before the end of an  
E controlled WRITE.  
The STK25C48 draws significantly less current  
when it is cycled at times longer than 50ns. Figure 2  
shows the relationship between ICC and READ cycle  
time. Worst-case current consumption is shown for  
both CMOS and TTL input levels (commercial tem-  
perature range, VCC = 5.5V, 100% duty cycle on chip  
enable). Figure 3 shows the same relationship for  
WRITE cycles. If the chip enable duty cycle is less  
than 100%, only standby current is drawn when the  
chip is disabled. The overall average current drawn  
by the STK25C48 depends on the following items:  
1) CMOS vs. TTL input levels; 2) the duty cycle of  
chip enable; 3) the overall cycle rate for accesses;  
4) the ratio of READs to WRITEs; 5) the operating  
temperature; 6) the VCC level; and 7) I/O loading.  
It is recommended that G be kept high during the  
entire WRITE cycle to avoid data bus contention on  
the common I/O lines. If G is left low, internal circuitry  
will turn off the output buffers tWLQZ after W goes low.  
March 2006  
6Document Control # ML0005 rev 0.2  
STK25C48  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
TTL  
CMOS  
TTL  
CMOS  
50  
100  
150  
200  
50  
100  
150  
200  
Cycle Time (ns)  
Cycle Time (ns)  
Figure 2: I (max) Reads  
Figure 3: I (max) Writes  
CC  
CC  
March 2006  
7
Document Control # ML0005 rev 0.2  
STK25C48  
ORDERING INFORMATION  
- W F 45 I  
STK25C48  
Temperature Range  
Blank = Commercial (0 to 70°C)  
I = Industrial (–40 to 85°C)  
Access Time  
25 = 25ns  
35 = 35ns  
45 = 45ns  
Lead Finish  
Blank = 85%Sn/15%Pb  
F = 100% Sn (Matte Tin)  
Package  
W = Plastic 24-pin 600 mil DIP  
March 2006  
8Document Control # ML0005 rev 0.2  
STK25C48  
Document Revision History  
Revision  
0.0  
Date  
December 2002  
September 2003  
March 2006  
Summary  
Removed 20 nsec device.  
0.1  
Added lead-free lead finish  
0.2  
Marked as Obsolete, Not recommended for new design.  
March 2006  
9
Document Control # ML0005 rev 0.2  
STK25C48  
March 2006  
10Document Control # ML0005 rev 0.2  

相关型号:

STK25C48-WF35I

2KX8 NON-VOLATILE SRAM, 35ns, PDIP24, 0.600 INCH, PLASTIC, DIP-24
SIMTEK

STK25C48-WF45I

2KX8 NON-VOLATILE SRAM, 45ns, PDIP24, 0.600 INCH, PLASTIC, DIP-24
SIMTEK

STK25CA8

128K x 8 AutoStore nvSRAM CMOS Nonvolatile Static RAM Module
ETC

STK25CA8-D35

Non-Volatile SRAM Module, 128KX8, 35ns, CMOS, PDIP32, 0.600 INCH, MODULE, DIP-32
SIMTEK

STK25CA8-D35I

128K x 8 AutoStore nvSRAM CMOS Nonvolatile Static RAM Module
ETC

STK25CA8-D45

Non-Volatile SRAM Module, 128KX8, 45ns, CMOS, PDIP32, 0.600 INCH, MODULE, DIP-32
SIMTEK

STK25CA8-D45I

Non-Volatile SRAM Module, 128KX8, 45ns, CMOS, PDIP32, 0.600 INCH, MODULE, DIP-32
SIMTEK

STK25CA8-D55

Non-Volatile SRAM Module, 128KX8, 55ns, CMOS, 0.600 INCH, MODULE, DIP-32
CYPRESS

STK25CA8-D55I

128KX8 NON-VOLATILE SRAM MODULE, 55ns, DMA32, 0.600 INCH, MODULE, DIP-32
CYPRESS

STK28C256

x8 EEPROM
ETC

STK28C256C12

EEPROM, 32KX8, 120ns, Parallel, SNOS, CDIP28
SIMTEK

STK28C256C12M

EEPROM, 32KX8, 120ns, Parallel, SNOS, CDIP28
SIMTEK