SP3232EBCY/TR [SIPEX]

True +3.0V to +5.5V RS-232 Transceivers; 真正的+ 3.0V至+ 5.5V的RS - 232收发器
SP3232EBCY/TR
型号: SP3232EBCY/TR
厂家: SIPEX CORPORATION    SIPEX CORPORATION
描述:

True +3.0V to +5.5V RS-232 Transceivers
真正的+ 3.0V至+ 5.5V的RS - 232收发器

线路驱动器或接收器 驱动程序和接口 接口集成电路 光电二极管
文件: 总20页 (文件大小:222K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
SP3222EB/3232EB  
True +3.0V to +5.5V RS-232Transceivers  
FEATURES  
V
CC  
1
2
3
4
5
6
7
16  
15  
Meets true EIA/TIA-232-F Standards  
from a +3.0V to +5.5V power supply  
250kbps Transmission Rate Under Load  
1µA Low-Power Shutdown with Receivers  
Active (SP3222EB)  
C1+  
V+  
GND  
C1-  
14 T1OUT  
SP3232EB  
C2+  
C2-  
13  
12  
11  
R1IN  
Interoperable with RS-232 down to +2.7V  
power source  
R1OUT  
T1IN  
Enhanced ESD Specifications:  
±15kV Human Body Model  
V-  
10  
9
T2OUT  
R2IN  
T2IN  
±15kV IEC1000-4-2 Air Discharge  
±8kV IEC1000-4-2 Contact Discharge  
8
R2OUT  
Now Available in Lead Free Packaging  
DESCRIPTION  
The SP3222EB/3232EB series is an RS-232 transceiver solution intended for portable or  
hand-held applications such as notebook or palmtop computers. The SP3222EB/3232EB  
series has a high-efficiency, charge-pump power supply that requires only 0.1µF capacitors  
in3.3Voperation. ThischargepumpallowstheSP3222EB/3232EB seriestodelivertrueRS-  
232 performance from a single power supply ranging from +3.0V to +5.5V. The SP3222EB/  
3232EB are 2-driver/2-receiver devices. This series is ideal for portable or hand-held  
applications such as notebook or palmtop computers. The ESD tolerance of the SP3222EB/  
3232EB devices are over ±15kV for both Human Body Model and IEC1000-4-2 Air discharge  
test methods. The SP3222EB device has a low-power shutdown mode where the devices'  
driver outputs and charge pumps are disabled. During shutdown, the supply current falls to  
less than 1µA.  
SELECTION TABLE  
RS-232  
Drivers  
RS-232  
External  
TTL  
No. of  
Pins  
MODEL  
Power Supplies  
Shutdown  
Receivers Components  
3-State  
+3.0V to +5.5V  
+3.0V to +5.5V  
2
2
2
2
4
4
Yes  
No  
Yes  
No  
18, 20  
16  
SP3222EB  
SP3232EB  
Date: 02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
1
ABSOLUTE MAXIMUM RATINGS  
These are stress ratings only and functional  
operation of the device at these ratings or any other  
above those indicated in the operation sections of  
the specifications below is not implied. Exposure to  
absolute maximum rating conditions for extended  
periods of time may affect reliability and cause  
permanent damage to the device.  
Output Voltages  
TxOUT ........................................................... ±13.2V  
RxOUT ..................................... -0.3V to (VCC + 0.3V)  
Short-Circuit Duration  
TxOUT .................................................... Continuous  
Storage Temperature ...................... -65°C to +150°C  
Power Dissipation Per Package  
VCC ...................................................... -0.3V to +6.0V  
V+ (NOTE 1) ...................................... -0.3V to +7.0V  
V- (NOTE 1) ....................................... +0.3V to -7.0V  
V+ + |V-| (NOTE 1)........................................... +13V  
20-pin SSOP (derate 9.25mW/oC above +70oC) ........ 750mW  
18-pin PDIP (derate 15.2mW/oC above +70oC) ....... 1220mW  
18-pin SOIC (derate 15.7mW/oC above +70oC) ....... 1260mW  
20-pin TSSOP (derate 11.1mW/oC above +70oC)...... 890mW  
16-pin SSOP (derate 9.69mW/oC above +70oC) ........ 775mW  
16-pin PDIP (derate 14.3mW/oC above +70oC) ....... 1150mW  
16-pin Wide SOIC (derate 11.2mW/oC above +70oC) .... 900mW  
16-pin TSSOP (derate 10.5mW/oC above +70oC)...... 850mW  
16-pin nSOIC (derate 13.57mW/°C above +70°C) ...... 1086mW  
ICC (DC VCC or GND current)......................... ±100mA  
Input Voltages  
TxIN, EN ............................................ -0.3V to +6.0V  
RxIN .................................................................. ±25V  
NOTE 1: V+ and V- can have maximum magnitudes of 7V, but their absolute difference cannot exceed 13V.  
NOTE 2: Driver Input hysteresis is typically 250mV.  
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX, C1 to  
C4=0.1µF  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNITS CONDITIONS  
DC CHARACTERISTICS  
Supply Current  
0.3  
1.0  
1.0  
10  
mA  
no load, TAMB = +25°C, VCC = 3.3V,  
TxIN = VCC or GND  
Shutdown Supply Current  
µA  
SHDN = GND, TAMB = +25°C,  
VCC = +3.3V, TxIN = VCC or GND  
LOGIC INPUTS AND RECEIVER OUTPUTS  
Input Logic Threshold LOW  
Input Logic Threshold HIGH  
GND  
0.8  
V
TxIN, EN, SHDN, Note 2  
2.0  
2.4  
VCC  
V
V
VCC = 3.3V, Note 2  
VCC = 5.0V, Note 2  
Input Leakage Current  
±0.01  
±0.05  
±1.0  
µA  
TxIN, EN, SHDN, TAMB = +25°C,  
VIN = 0V to VCC  
Output Leakage Current  
Output Voltage LOW  
Output Voltage HIGH  
DRIVER OUTPUTS  
Output Voltage Swing  
±10  
µA  
V
receivers disabled, VOUT = 0V to VCC  
IOUT = 1.6mA  
0.4  
VCC-0.6 VCC-0.1  
V
IOUT = -1.0mA  
±5.0  
±5.4  
±35  
V
3kload to ground at all driver  
outputs, TAMB = +25°C  
Output Resistance  
300  
VCC = V+ = V- = 0V, TOUT = +2V  
VOUT = 0V  
Output Short-Circuit Current  
Output Leakage Current  
±60  
±25  
mA  
µA  
VOUT = ±12V,VCC= 0V,  
or 3.0V to 5.5V, drivers disabled  
Date:02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
2
ELECTRICAL CHARACTERISTICS  
Unless otherwise noted, the following specifications apply for VCC = +3.0V to +5.5V with TAMB = TMIN to TMAX , C1 to  
C4=0.1µF. Typical Values apply at VCC = +3.3V or +5.5V and TAMB = 25oC.  
PARAMETER  
MIN. TYP. MAX. UNITS CONDITIONS  
RECEIVER INPUTS  
Input Voltage Range  
Input Threshold LOW  
-25  
+25  
V
V
0.6  
0.8  
1.2  
1.5  
V
CC=3.3V  
VCC=5.0V  
Input Threshold HIGH  
1.5  
1.8  
2.4  
2.4  
V
V =3.3V  
VCCCC=5.0V  
Input Hysteresis  
0.3  
5
V
Input Resistance  
3
7
k  
TIMING CHARACTERISTICS  
Maximum Data Rate  
Receiver Propagation Delay  
250  
kbps  
RL=3k, CL=1000pF, one driver switching  
µs  
0.15  
0.15  
t
, RxIN to RxOUT, C =150pF  
tPPLHHL, RxIN to RxOUT, CLL=150pF  
Receiver Output Enable Time  
Receiver Output Disable Time  
Driver Skew  
200  
200  
100  
50  
ns  
ns  
ns  
| tPHL - tPLH |, TAMB = 25oC  
| tPHL - tPLH  
Receiver Skew  
ns  
|
Transition-Region Slew Rate  
30  
V/µs  
V
= 3.3V, R = 3K, T  
= 25oC,  
mCeCasurementLs taken froAmMB-3.0V to +3.0V  
or +3.0V to -3.0V  
Date: 02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
3
TYPICAL PERFORMANCE CHARACTERISTICS  
Unless otherwise noted, the following performance characteristics apply for VCC = +3.3V, 250kbps data rates, all drivers  
loaded with 3k, 0.1µF charge pump capacitors, and TAMB = +25°C.  
6
4
30  
25  
20  
15  
10  
5
- Slew  
+ Slew  
TxOUT +  
2
T1 at 250Kbps  
T2 at 15.6Kbps  
All TX loaded 3K // CLoad  
0
-2  
-4  
-6  
T1 at 250Kbps  
T2 at 15.6Kbps  
All TX loaded 3K // CLoad  
TxOUT -  
0
0
1000  
2000  
3000  
4000  
5000  
0
500 1000  
2000 3000 4000 5000  
Load Capacitance (pF)  
Load Capacitance (pF)  
Figure 1. Transmitter Output Voltage vs Load  
Capacitance.  
Figure 2. Slew Rate vs Load Capacitance.  
35  
16  
14  
12  
10  
8
T1 at Full Data Rate  
T2 at 1/16 Data Rate  
All TX loaded 3K // CLoad  
30  
25  
20  
15  
10  
5
250Kbps  
125Kbps  
20Kbps  
6
1 Transmitter at 250Kbps  
1 Transmitter at 15.6Kbps  
All transmitters loaded with 3K // 1000pf  
4
2
0
0
0
1000  
2000  
3000  
4000  
5000  
2.7  
3
3.5  
4
4.5  
5
Load Capacitance (pF)  
Supply Voltage (V)  
Figure 4. Supply Current vs Supply Voltage.  
Figure 3. Supply Current vs Load Capacitance when  
Transmitting Data.  
6
TxOUT +  
4
2
T1 at 250Kbps  
T2 at 15.6Kbps  
All TX loaded 3K // 1000 pF  
0
-2  
-4  
TxOUT -  
-6  
2.7  
3
3.5  
4
4.5  
5
Supply Voltage (V)  
Figure 5. Transmitter Output Voltage vs Supply  
Voltage.  
Date:02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
4
PIN DESCRIPTION  
PIN NUMBER  
SP3222EB  
NAME  
FUNCTION  
SP3232EB  
SSOP  
DIP/SO  
TSSOP  
Receiver Enable. Apply logic LOW for normal operation.  
EN  
1
1
-
Apply logic HIGH to disable the receiver outputs (high-Z state).  
C1+  
V+  
Positive terminal of the voltage doubler charge-pump capacitor.  
+5.5V generated by the charge pump.  
2
3
2
3
1
2
C1-  
C2+  
C2-  
V-  
Negative terminal of the voltage doubler charge-pump capacitor.  
Positive terminal of the inverting charge-pump capacitor.  
Negative terminal of the inverting charge-pump capacitor.  
-5.5V generated by the charge pump.  
4
4
3
5
5
4
6
6
5
7
7
6
T1OUT RS-232 driver output.  
T2OUT RS-232 driver output.  
15  
8
17  
8
14  
7
R1IN  
R2IN  
RS-232 receiver input.  
RS-232 receiver input.  
14  
9
16  
9
13  
8
R1OUT TTL/CMOS reciever output.  
R2OUT TTL/CMOS reciever output.  
13  
10  
12  
11  
16  
17  
15  
10  
13  
12  
18  
19  
12  
9
T1IN  
T2IN  
GND  
VCC  
TTL/CMOS driver input.  
11  
10  
15  
16  
TTL/CMOS driver input.  
Ground.  
+3.0V to +5.5V supply voltage  
Shutdown Control Input. Drive HIGH for normal device operation.  
SHDN Drive LOW to shutdown the drivers (high-Z output) and the on-  
board power supply.  
18  
-
20  
-
-
N.C.  
No Connect.  
11, 14  
Table 1. Device Pin Description  
Date: 02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
5
EN  
1
2
3
4
5
6
7
20  
19  
18  
17  
16  
15  
SHDN  
EN  
1
2
3
4
5
6
7
18  
17  
16  
15  
14  
13  
SHDN  
VCC  
C1+  
V+  
V
CC  
C1+  
V+  
GND  
GND  
C1-  
T1OUT  
R1IN  
C1-  
T1OUT  
R1IN  
SP3222EB  
C2+  
C2-  
V-  
SP3222EB  
C2+  
C2-  
V-  
R1OUT  
R1OUT  
14  
13  
N.C.  
12  
11  
10  
T1IN  
T2OUT  
R2IN  
8
9
T1IN  
T2OUT  
R2IN  
8
9
T2IN  
12 T2IN  
N.C.  
R2OUT  
10  
R2OUT  
11  
DIP/SO  
SSOP/TSSOP  
Figure 6. Pinout Configurations for the SP3222EB  
V
CC  
1
2
3
4
5
6
7
16  
C1+  
V+  
GND  
15  
14  
13  
12  
11  
C1-  
T1OUT  
R1IN  
SP3232EB  
C2+  
C2-  
R1OUT  
T1IN  
V-  
10  
9
T2OUT  
R2IN  
T2IN  
8
R2OUT  
Figure 7. Pinout Configuration for the SP3232EB  
Date:02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
6
V
CC  
V
CC  
+
+
19  
+
+
0.1µF  
0.1µF  
C5  
C1  
17  
VCC  
C5  
C1  
0.1µF  
0.1µF  
VCC  
2
3
C1+  
2
V+  
V-  
3
C1+  
+
+
V+  
V-  
+
+
0.1µF  
0.1µF  
*C3  
C4  
0.1µF  
0.1µF  
*C3  
C4  
4
5
C1-  
4
5
C1-  
C2+  
7
SP3222EB  
C2+  
7
SP3222EB  
DIP/SO  
+
SSOP  
+
C2  
0.1µF  
C2  
0.1µF  
6
TSSOP  
C2-  
6
C2-  
T1OUT  
T2OUT  
17  
8
13 T1IN  
T1OUT  
T2OUT  
15  
8
12 T1IN  
LOGIC  
RS-232  
LOGIC  
RS-232  
12  
15  
10  
INPUTS  
T2IN  
OUTPUTS  
11  
13  
10  
INPUTS  
T2IN  
OUTPUTS  
16  
R1IN  
R1OUT  
R2OUT  
14  
R1IN  
R1OUT  
R2OUT  
5k  
RS-232  
INPUTS  
LOGIC  
5k  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
OUTPUTS  
R2IN  
9
R2IN  
9
5kΩ  
5kΩ  
1 EN  
20  
1 EN  
18  
SHDN  
SHDN  
GND  
18  
GND  
16  
*can be returned to  
either VCC or GND  
*can be returned to  
either VCC or GND  
Figure 8. SP3222EB Typical Operating Circuits  
V
CC  
+
16  
0.1µF  
0.1µF  
C5  
C1  
VCC  
2
1
C1+  
V+  
V-  
+
+
+
+
0.1µF  
0.1µF  
*C3  
C4  
3
4
C1-  
6
C2+  
SP3232EB  
C2  
0.1µF  
5
C2-  
T1OUT  
T2OUT  
14  
11 T1IN  
LOGIC  
RS-232  
7
10  
12  
9
INPUTS  
T2IN  
OUTPUTS  
R1IN 13  
R1OUT  
R2OUT  
5k  
5kΩ  
RS-232  
INPUTS  
LOGIC  
OUTPUTS  
R2IN  
8
GND  
15  
*can be returned to  
either VCC or GND  
Figure 9. SP3232EB Typical Operating Circuit  
Date: 02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
7
DESCRIPTION  
Thedriverscanguaranteeadatarateof 250kbps  
fully loaded with 3Kin parallel with 1000pF,  
ensuring compatibility with PC-to-PC commu-  
nication software.  
The SP3222EB/3232EB transceivers meet the  
EIA/TIA-232 and V.28/V.24 communication  
protocols and can be implemented in battery-  
powered, portable, or hand-held applications  
such as notebook or palmtop computers. The  
SP3222EB/3232EB devices all feature Sipex's  
proprietary on-board charge pump circuitry that  
generates 2 x VCC for RS-232 voltage levels  
from a single +3.0V to +5.5V power supply.  
This series is ideal for +3.3V-only systems,  
mixed +3.3V to +5.5V systems, or +5.0V-only  
systems that require true RS-232 performance.  
TheSP3222EB/3232EBserieshavedriversthat  
operate at a typical data rate of 250kbps fully  
loaded.  
The slew rate of the driver output is internally  
limited to a maximum of 30V/µs in order to  
meet the EIA standards (EIA RS-232D 2.1.7,  
Paragraph 5). The transition of the loaded  
output from HIGH to LOW also meets the  
monotonicity requirements of the standard.  
Figure 10 shows a loopback test circuit used to  
the RS-232 drivers. Figure 11 shows the test  
results of the loopback circuit with all drivers  
active at 120kbps with RS-232 loads in parallel  
with 1000pF capacitors. Figure 12 shows the  
test results where one driver was active at  
250kbps and all drivers loaded with an RS-232  
receiver in parallel with a 1000pF capacitor. A  
solid RS-232 data transmission rate of 250kbps  
provides compatibility with many designs in  
personal computer peripherals and LAN appli-  
cations.  
The SP3222EB and SP3232EB are 2-driver/2-  
receiver devices ideal for portable or hand-held  
applications. The SP3222EB features a 1µA  
shutdown mode that reduces power consump-  
tionandextendsbatterylifeinportablesystems.  
Its receivers remain active in shutdown mode,  
allowing external devices such as modems to be  
monitored using only 1µA supply current.  
The SP3222EB driver'soutputstagesareturned  
off (tri-state) when the device is in shutdown  
mode. When the power is off, the SP3222EB  
device permits the outputs to be driven up to  
±12V. The driver's inputs do not have pull-up  
resistors. Designers should connect unused in-  
puts to VCC or GND.  
THEORY OF OPERATION  
The SP3222EB/3232EB series are made up of  
three basic circuit blocks: 1. Drivers, 2.  
Receivers, and 3. the Sipex proprietary charge  
pump.  
In the shutdown mode, the supply current falls  
to less than 1µA, where SHDN = LOW. When  
the SP3222EB device is shut down, the device's  
driver outputs are disabled (tri-stated) and the  
charge pumps are turned off with V+ pulled  
down to VCC and V- pulled to GND. The time  
required to exit shutdown is typically 100µs.  
Connect SHDN to VCC if the shutdown mode is  
not used.  
Drivers  
The drivers are inverting level transmitters that  
convert TTL or CMOS logic levels to ±5.0V  
EIA/TIA-232 levels inverted relative to the in-  
put logic levels. Typically, the RS-232 output  
voltage swing is ±5.5V with no load and at least  
±5V minimum fully loaded. The driver outputs  
are protected against infinite short-circuits to  
groundwithoutdegradationinreliability. Driver  
outputs will meet EIA/TIA-562 levels of ±3.7V  
with supply voltages as low as 2.7V.  
Date:02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
8
V
CC  
+
+
0.1µF  
0.1µF  
C5  
C1  
V
CC  
C1+  
V+  
V-  
+
+
C3  
C4  
0.1µF  
0.1µF  
C1-  
SP3222EB  
SP3232EB  
C2+  
+
C2  
0.1µF  
C2-  
TxOUT  
TxIN  
LOGIC  
INPUTS  
RxIN  
RxOUT  
EN*  
LOGIC  
OUTPUTS  
5k  
*SHDN  
V
CC  
GND  
1000pF  
* SP3222EB only  
Figure 10. SP3222EB/3232EB Driver Loopback Test Circuit  
Figure 11. Driver Loopback Test Results at 120kbps  
Figure 12. Driver Loopback Test Results at 250 kbps  
Date: 02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
9
In applications that are sensitive to power-sup-  
ply noise, decouple VCC to ground with a capaci-  
tor of the same value as charge-pump capacitor  
C1. Physically connect bypass capacitors as  
close to the IC as possible.  
Receivers  
The receivers convert EIA/TIA-232 levels to  
TTL or CMOS logic output levels. The  
SP3222EB receivers have an inverting tri-state  
output. Thesereceiveroutputs(RxOUT)aretri-  
stated when the enable control EN = HIGH. In  
the shutdown mode, the receivers can be active  
or inactive. EN has no effect on TxOUT. The  
truth table logic of the SP3222EB driver and  
receiver outputs can be found in Table 2.  
The charge pumps operate in a discontinuous  
mode using an internal oscillator. If the output  
voltages are less than a magnitude of 5.5V, the  
charge pumps are enabled. If the output voltage  
exceed a magnitude of 5.5V, the charge pumps  
are disabled. This oscillator controls the four  
phases of the voltage shifting. A description of  
each phase follows.  
Since receiver input is usually from a transmis-  
sion line where long cable lengths and system  
interference can degrade the signal, the inputs  
haveatypicalhysteresismarginof300mV. This  
ensures that the receiver is virtually immune to  
noisy transmission lines. Should an input be left  
unconnected, a 5kpulldown resistor to ground  
will commit the output of the receiver to a HIGH  
state.  
Phase 1  
— VSS charge storage — During this phase of  
the clock cycle, the positive side of capacitors  
C1 and C2 are initially charged to VCC. Cl+ is  
then switched to GND and the charge in C1is  
transferred to C2 . Since C2+ is connected to  
VCC, the voltage potential across capacitor C2  
is now 2 times VCC.  
Charge Pump  
The charge pump is a Sipex–patented design  
(5,306,954) and uses a unique approach com-  
paredtoolderless–efficientdesigns. Thecharge  
pump still requires four external capacitors, but  
uses a four–phase voltage shifting technique to  
attain symmetrical 5.5V power supplies. The  
internal power supply consists of a regulated  
dual charge pump that provides output voltages  
5.5V regardless of the input voltage (VCC) over  
the +3.0V to +5.5V range.  
Phase 2  
— VSS transfer — Phase two of the clock con-  
nects the negative terminal of C2 to the VSS  
storage capacitor and the positive terminal of C2  
to GND. This transfers a negative generated  
voltage to C3. This generated voltage is regu-  
lated to a minimum voltage of -5.5V. Simulta-  
neous with the transfer of the voltage to C3, the  
positive side of capacitor C1 is switched to VCC  
and the negative side is connected to GND.  
In most circumstances, decoupling the power  
supplycanbeachievedadequatelyusinga0.1µF  
bypasscapacitoratC5(refertoFigures8and9).  
Phase 3  
— VDD charge storage — The third phase of the  
clock is identical to the first phase — the charge  
transferred in C1 produces –VCC in the negative  
terminal of C1, which is applied to the negative  
side of capacitor C2. Since C2+ is at VCC, the  
voltage potential across C2 is 2 times VCC.  
SHDN  
EN  
0
TxOUT  
Tri-state  
Tri-state  
Active  
RxOUT  
Active  
0
0
1
1
1
Tri-state  
Active  
Phase 4  
0
— VDD transfer — The fourth phase of the clock  
connects the negative terminal of C2 to GND,  
and transfers this positive generated voltage  
across C2 to C4, the VDD storage capacitor.  
1
Active  
Tri-state  
Table 2. SP3222EB Truth Table Logic for Shutdown  
and Enable Control  
Date:02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
10  
This voltage is regulated to +5.5V. At this  
voltage, the internal oscillator is disabled. Si-  
multaneous with the transfer of the voltage to  
C4, the positive side of capacitor C1 is switched  
to VCC and the negative side is connected to  
GND, allowing the charge pump cycle to begin  
again. The charge pump cycle will continue as  
long as the operational conditions for the inter-  
nal oscillator are present.  
The simulation is performed by using a test  
model as shown in Figure 18. This method  
will test the IC’s capability to withstand an  
ESD transient during normal handling such as  
in manufacturing areas where the ICs tend to  
be handled frequently.  
The IEC-1000-4-2, formerly IEC801-2, is  
generally used for testing ESD on equipment  
and systems. For system manufacturers, they  
must guarantee a certain amount of ESD  
protection since the system itself is exposed to  
the outside environment and human presence.  
The premise with IEC1000-4-2 is that the  
system is required to withstand an amount of  
static electricity when ESD is applied to points  
and surfaces of the equipment that are  
accessible to personnel during normal usage.  
The transceiver IC receives most of the ESD  
current when the ESD source is applied to the  
connector pins. The test circuit for IEC1000-4-2  
is shown on Figure 19. There are two methods  
within IEC1000-4-2, the Air Discharge method  
and the Contact Discharge method.  
Since both V+ and Vare separately generated  
from VCC; in a no–load condition V+ and Vwill  
besymmetrical. Olderchargepumpapproaches  
that generate Vfrom V+ will show a decrease in  
the magnitude of Vcompared to V+ due to the  
inherent inefficiencies in the design.  
The clock rate for the charge pump typically  
operatesat250kHz. Theexternalcapacitorscan  
be as low as 0.1µF with a 16V breakdown  
voltage rating.  
ESD Tolerance  
The SP3222EB/3232EB series incorporates  
ruggedized ESD cells on all driver output and  
receiver input pins. The ESD structure is  
improved over our previous family for more  
rugged applications and environments sensitive  
to electrostatic discharges and associated  
transients. The improved ESD tolerance is at  
least ±15kV without damage nor latch-up.  
With the Air Discharge Method, an ESD  
voltage is applied to the equipment under  
test (EUT) through air. This simulates an  
electrically charged person ready to connect a  
cable onto the rear of the system only to find  
an unpleasant zap just before the person  
touches the back panel. The high energy  
potential on the person discharges through  
an arcing path to the rear panel of the system  
before he or she even touches the system. This  
energy, whether discharged directly or through  
air, is predominantly a function of the discharge  
current rather than the discharge voltage.  
Variables with an air discharge such as  
approach speed of the object carrying the ESD  
potential to the system and humidity will tend to  
change the discharge current. For example, the  
rise time of the discharge current varies with  
the approach speed.  
There are different methods of ESD testing  
applied:  
a) MIL-STD-883, Method 3015.7  
b) IEC1000-4-2 Air-Discharge  
c) IEC1000-4-2 Direct Contact  
The Human Body Model has been the generally  
accepted ESD testing method for semiconduc-  
tors. ThismethodisalsospecifiedinMIL-STD-  
883,Method3015.7forESDtesting.Thepremise  
of this ESD test is to simulate the human body’s  
potential to store electrostatic energy and  
discharge it to an integrated circuit.  
Date: 02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
11  
V
= +5V  
CC  
C
+5V  
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
+
C
C
2
1
SS  
C
–5V  
–5V  
3
Figure 13. Charge Pump — Phase 1  
V
= +5V  
CC  
C
4
+
+
V
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
C
2
1
C
–10V  
3
Figure 14. Charge Pump — Phase 2  
[
T
]
+6V  
a) C2+  
T
T
GND  
1
2
GND  
b) C -  
2
-6V  
Ch1 2.00V Ch2 2.00V M 1.00µs Ch1 5.48V  
Figure 15. Charge Pump Waveforms  
V
= +5V  
CC  
C
+
+5V  
4
+
V
Storage Capacitor  
Storage Capacitor  
DD  
SS  
+
+
C
C
2
1
V
C
–5V  
–5V  
3
Figure 16. Charge Pump — Phase 3  
V
= +5V  
CC  
C
+
+10V  
+
4
V
V
Storage Capacitor  
Storage Capacitor  
DD  
+
C
C
2
1
+
3
SS  
C
Figure 17. Charge Pump — Phase 4  
Date:02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
12  
R
R
S
S
R
R
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
Figure 18. ESD Test Circuit for Human Body Model  
The circuit models in Figures 18 and 19  
represent the typical ESD testing circuits used  
forallthreemethods. TheCS isinitiallycharged  
with the DC power supply when the first  
switch (SW1) is on. Now that the capacitor is  
charged, the second switch (SW2) is on while  
SW1 switches off. The voltage stored in the  
capacitor is then applied through RS, the current  
limiting resistor, onto the device under test  
(DUT). In ESD tests, the SW2 switch is pulsed  
so that the device under test receives a duration  
of voltage.  
The Contact Discharge Method applies the ESD  
current directly to the EUT. This method was  
devised to reduce the unpredictability of the  
ESD arc. The discharge current rise time is  
constant since the energy is directly transferred  
without the air-gap arc. In situations such as  
hand held systems, the ESD charge can be  
directly discharged to the equipment from a  
person already holding the equipment. The  
current is transferred on to the keypad or the  
serial port of the equipment directly and then  
travels through the PCB and finally to the IC.  
Contact-Discharge Module  
Contact-Discharge Module  
R
R
R
R
S
S
R
R
V
V
C
C
SW2  
SW2  
SW1  
SW1  
Device  
Under  
Test  
DC Power  
Source  
C
C
S
S
R
R
and R add up to 330for IEC1000-4-2.  
and R add up to 330for IEC1000-4-2.  
S
S
V
V
Figure 19. ESD Test Circuit for IEC1000-4-2  
Date: 02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
13  
For the Human Body Model, the current  
limiting resistor (RS) and the source capacitor  
(CS) are 1.5kan 100pF, respectively. For  
IEC-1000-4-2, the current limiting resistor (RS)  
and the source capacitor (CS) are 330an  
150pF, respectively.  
30A  
15A  
0A  
The higher CS value and lower RS value in the  
IEC1000-4-2 model are more stringent than the  
HumanBodyModel. Thelargerstoragecapacitor  
injectsahighervoltagetothetestpointwhenSW2  
isswitchedon. Thelowercurrentlimitingresistor  
increases the current charge onto the test point.  
t=0ns  
t=30ns  
t  
Figure 20. ESD Test Waveform for IEC1000-4-2  
Device Pin  
Tested  
Human Body  
Model  
IEC1000-4-2  
Air Discharge Direct Contact  
Level  
Driver Outputs  
Receiver Inputs  
±15kV  
±15kV  
±15kV  
±15kV  
±8kV  
±8kV  
4
4
Table 3. Transceiver ESD Tolerance Levels  
Date:02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
14  
PACKAGE: PLASTIC SHRINK  
SMALL OUTLINE  
(SSOP)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
20–PIN  
0.068/0.078  
(1.73/1.99)  
A
A1  
B
D
E
0.068/0.078  
(1.73/1.99)  
0.002/0.008  
(0.05/0.21)  
0.002/0.008  
(0.05/0.21)  
0.010/0.015  
(0.25/0.38)  
0.010/0.015  
(0.25/0.38)  
0.239/0.249  
(6.07/6.33)  
0.278/0.289  
(7.07/7.33)  
0.205/0.212  
(5.20/5.38)  
0.205/0.212  
(5.20/5.38)  
0.0256 BSC  
(0.65 BSC)  
e
0.0256 BSC  
(0.65 BSC)  
0.301/0.311  
(7.65/7.90)  
H
L
0.301/0.311  
(7.65/7.90)  
0.022/0.037  
(0.55/0.95)  
0.022/0.037  
(0.55/0.95)  
0°/8°  
Ø
0°/8°  
(0°/8°)  
(0°/8°)  
Date: 02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
15  
PACKAGE: PLASTIC  
DUAL–IN–LINE  
(NARROW)  
E1  
E
D1 = 0.005" min.  
(0.127 min.)  
A1 = 0.015" min.  
(0.381min.)  
D
A = 0.210" max.  
(5.334 max).  
C
A2  
Ø
L
B1  
B
e
= 0.300 BSC  
(7.620 BSC)  
e = 0.100 BSC  
(2.540 BSC)  
A
ALTERNATE  
END PINS  
(BOTH ENDS)  
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
18–PIN  
0.115/0.195  
0.115/0.195  
A2  
(2.921/4.953)  
(2.921/4.953)  
0.014/0.022  
0.014/0.022  
B
(0.356/0.559)  
(0.356/0.559)  
0.045/0.070  
0.045/0.070  
B1  
C
(1.143/1.778)  
(1.143/1.778)  
0.008/0.014  
0.008/0.014  
(0.203/0.356)  
(0.203/0.356)  
0.780/0.800  
0.880/0.920  
D
(19.812/20.320) (22.352/23.368)  
0.300/0.325  
0.300/0.325  
E
(7.620/8.255)  
(7.620/8.255)  
0.240/0.280  
0.240/0.280  
E1  
L
(6.096/7.112)  
(6.096/7.112)  
0.115/0.150  
0.115/0.150  
(2.921/3.810)  
(2.921/3.810)  
0°/ 15°  
0°/ 15°  
Ø
(0°/15°)  
(0°/15°)  
Date:02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
16  
PACKAGE: PLASTIC  
SMALL OUTLINE (SOIC)  
(WIDE)  
E
H
D
A
Ø
A1  
L
e
B
DIMENSIONS (Inches)  
Minimum/Maximum  
(mm)  
16–PIN  
18–PIN  
A
A1  
B
D
E
0.090/0.104  
(2.29/2.649)  
0.090/0.104  
(2.29/2.649))  
0.004/0.012  
0.004/0.012  
(0.102/0.300) (0.102/0.300)  
0.013/0.020  
0.013/0.020  
(0.330/0.508) (0.330/0.508)  
0.398/0.413  
0.447/0.463  
(10.10/10.49) (11.35/11.74)  
0.291/0.299 0.291/0.299  
(7.402/7.600) (7.402/7.600)  
e
0.050 BSC  
0.050 BSC  
(1.270 BSC)  
(1.270 BSC)  
H
L
0.394/0.419  
0.394/0.419  
(10.00/10.64) (10.00/10.64)  
0.016/0.050  
0.016/0.050  
(0.406/1.270) (0.406/1.270)  
Ø
0°/8°  
0°/8°  
(0°/8°)  
(0°/8°)  
Date: 02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
17  
D
Ø1  
E/2  
E1  
E
Gauge Plane  
E1/2  
L2  
Ø
Seating Plane  
Ø1  
L
L1  
1
3
2
b
INDEX AREA  
(D/2 X E1/2)  
VIEW C  
e
TOP VIEW  
B
16 Pin SOIC JEDEC MS-013 (AA) Variation  
SEE VIEW C  
B
MIN  
2.35  
0.1  
2.05  
0.31  
0.2  
NOM  
MAX  
2.65  
0.3  
2.55  
0.51  
0.33  
SYMBOL  
A
A1  
A2  
b
-
-
-
-
c
-
D
E
E1  
e
L
10.30 BSC  
10.30 DSC  
7.50 BSC  
1.27 BSC  
-
A2  
A
Seating Plane  
SIDE VIEW  
A1  
0.4  
1.27  
L1  
L2  
ø
1.04 REF  
0.25 BSC  
-
0º  
5º  
8º  
15º  
ø1  
-
b
WITH PLATING  
Note: Dimensions in (mm)  
c
BASE METAL  
SECTION B-B  
Date:02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
18  
D
e
Ø2  
E
E1  
Seaing Plane  
L
Ø3  
Ø1  
L1  
DETAIL A  
1
2
INDEX AREA  
D
2
E1  
x
2
SEE DETAIL “A”  
A2  
A
Seating Plane  
A1  
b
B
B
16 Pin TSSOP JEDEC MO-153 (AB)  
Variation  
MIN  
-
0.05  
0.8  
0.19  
0.09  
4.9  
NOM  
MAX  
1.2  
0.15  
1.05  
0.3  
SYMBOL  
A
A1  
A2  
b
c
D
-
-
1
-
-
5
b
0.2  
5.1  
E
E1  
e
Ø1  
ø2  
ø3  
L
6.40 BSC  
4.4  
0.65 BSC  
4º  
12º REF  
12º REF  
0.6  
4.3  
0º  
4.5  
8º  
C
Section B-B  
0.45  
0.75  
L1  
1.00 REF  
Note: Dimensions in (mm)  
Date: 02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
19  
ORDERING INFORMATION  
Package Type  
Part Number  
Temperature Range  
SP3222EBCA .......................................... 0˚C to +70˚C .......................................... 20-Pin SSOP  
SP3222EBCA/TR..................................... 0˚C to +70˚C .......................................... 20-Pin SSOP  
SP3222EBCP .......................................... 0˚C to +70˚C ............................................ 18-Pin PDIP  
SP3222EBCT........................................... 0˚C to +70˚C ........................................ 18-Pin WSOIC  
SP3222EBCT/TR ..................................... 0˚C to +70˚C ........................................ 18-Pin WSOIC  
SP3222EBCY .......................................... 0˚C to +70˚C ........................................ 20-Pin TSSOP  
SP3222EBCY/TR..................................... 0˚C to +70˚C ........................................ 20-Pin TSSOP  
SP3222EBEA.......................................... -40˚C to +85˚C ........................................ 20-Pin SSOP  
SP3222EBEA/TR .................................... -40˚C to +85˚C ........................................ 20-Pin SSOP  
SP3222EBEP.......................................... -40˚C to +85˚C .......................................... 18-Pin PDIP  
SP3222EBET .......................................... -40˚C to +85˚C ...................................... 18-Pin WSOIC  
SP3222EBET/TR .................................... -40˚C to +85˚C ...................................... 18-Pin WSOIC  
SP3222EBEY.......................................... -40˚C to +85˚C ...................................... 20-Pin TSSOP  
SP3222EBEY/TR .................................... -40˚C to +85˚C ...................................... 20-Pin TSSOP  
SP3232EBCA .......................................... 0˚C to +70˚C .......................................... 16-Pin SSOP  
SP3232EBCA/TR..................................... 0˚C to +70˚C .......................................... 16-Pin SSOP  
SP3232EBCP .......................................... 0˚C to +70˚C ............................................ 16-Pin PDIP  
SP3232EBCT........................................... 0˚C to +70˚C ........................................ 16-Pin WSOIC  
SP3232EBCT/TR ..................................... 0˚C to +70˚C ........................................ 16-Pin WSOIC  
SP3232EBCN .......................................... 0˚C to +70˚C ......................................... 16-Pin nSOIC  
SP3232EBCN/TR .................................... 0˚C to +70˚C ......................................... 16-Pin nSOIC  
SP3232EBCY .......................................... 0˚C to +70˚C ........................................ 16-Pin TSSOP  
SP3232EBCY/TR..................................... 0˚C to +70˚C ........................................ 16-Pin TSSOP  
SP3232EBEA.......................................... -40˚C to +85˚C ........................................ 16-Pin SSOP  
SP3232EBEA/TR .................................... -40˚C to +85˚C ........................................ 16-Pin SSOP  
SP3232EBEP.......................................... -40˚C to +85˚C .......................................... 16-Pin PDIP  
SP3232EBET .......................................... -40˚C to +85˚C ...................................... 16-Pin WSOIC  
SP3232EBET .......................................... -40˚C to +85˚C ...................................... 16-Pin WSOIC  
SP3232EBEN ......................................... -40˚C to +85˚C ....................................... 16-Pin nSOIC  
SP3232EBEN/TR.................................... -40˚C to +85˚C ....................................... 16-Pin nSOIC  
SP3232EBEY.......................................... -40˚C to +85˚C ...................................... 16-Pin TSSOP  
SP3232EBEY/TR .................................... -40˚C to +85˚C ...................................... 16-Pin TSSOP  
Available in lead free packaging. To order add "-L" suffix to part number.  
Example: SP3232EBEN/TR = standard; SP3232EBEN-L/TR = lead free  
/TR = Tape and Reel  
Pack quantity is 1,500 for WSOIC, SSOP or 20 pin TSSOP and 2,500 for NSOIC or 16 pin TSSOP.  
CLICK HERE TO ORDER SAMPLES  
Corporation  
ANALOG EXCELLENCE  
Headquarters and  
Sales Office  
233 South Hillview Drive  
Milpitas, CA 95035  
TEL: (408) 934-7500  
FAX: (408) 935-7600  
Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the  
application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.  
Date:02/27/05  
SP3222EB/3232EB True +3.0 to +5.5V RS-232 Transceivers  
© Copyright 2005 Sipex Corporation  
20  

相关型号:

SP3232EBEA

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEA-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO16, LEAD FREE, MO-153AC, SSOP-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEA-L

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEA-L/TR

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEA-LTR

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEA/TR

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEN

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEN-L

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO16, LEAD FREE, MS-012AC, NSOIC-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEN-L/TR

Line Transceiver, 2 Func, 2 Driver, 2 Rcvr, PDSO16, LEAD FREE, MS-012AC, NSOIC-16

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEN-LTR

True 3.0V to 5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
EXAR

SP3232EBEN/TR

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX

SP3232EBEP

True +3.0V to +5.5V RS-232 Transceivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SIPEX