AAT3603AIIH-T1 [SKYWORKS]

Power Supply Management Circuit, Adjustable, 7 Channel, TQFN-36;
AAT3603AIIH-T1
型号: AAT3603AIIH-T1
厂家: SKYWORKS SOLUTIONS INC.    SKYWORKS SOLUTIONS INC.
描述:

Power Supply Management Circuit, Adjustable, 7 Channel, TQFN-36

文件: 总36页 (文件大小:2417K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
General Description  
Features  
The AAT3603A is a member of Skyworks' Total Power  
Management IC (TPMICTM) product family. It contains a  
single-cell Lithium Ion/Polymer battery charger, a fully  
integrated step-down converter and 5 low dropout (LDO)  
regulators. The device is ideal for low cost PND or GPS  
applications.  
Voltage Regulator VIN Range: 4.5V to 6V  
Low Cost Power Integration  
Low Standby Current  
170µA (typ) w/ Buck, LDO1, and LDO2 Active,  
No Load  
One Step-Down Buck Converter  
1.8V, 300mA Output  
1.5MHz Switching Frequency  
The battery charger is a complete thermally regulated  
constant current/constant voltage linear charger. It  
includes an integrated pass device, reverse blocking pro-  
tection, high accuracy current and voltage regulation,  
charge status, and charge termination. The charging  
current, charge termination current, and recharge volt-  
age are programmable with an external resistor and/or  
by a standard I2C interface.  
Fast Turn-On Time (100µs typ)  
Three LDOs Programmable with I2C  
LDO1: 3.3V, 300mA  
LDO4: 3.3V, 150mA  
LDO5: 3.3V, 150mA  
PSRR: 60dB@10kHz  
Noise: 50µVrms for LDO3, LDO4, and LDO5  
The step-down DC/DC converter is integrated with inter-  
nal compensation and operates at a switching frequency  
of 1.5MHz, thus minimizing the size of external compo-  
nents while keeping switching losses low and efficiency  
greater than 92%. The output voltages of LDO1, LDO4,  
and LDO5 are programmable using the I2C interface.  
One Battery Charger  
Digitized Thermal Regulation  
Charge Current Programming up to 1.4A  
Charge Current Termination Programming  
Automatic Trickle Charge for Battery Preconditioning  
(2.8V Cutoff)  
Adapter OK (ADPP) and Reset (RESET) Timer Outputs  
Separate Enable Pins for Supply Outputs  
Over-Current Protection  
Over-Temperature Protection  
5x5mm TQFN55-36 Package  
The five LDOs offer 60dB power supply rejection ratio  
(PSRR) and low noise operation making them suitable for  
powering noise-sensitive loads.  
All six voltage regulators operate with low quiescent cur-  
rent. The total no load current when the step-down con-  
verter and 2 LDOs are enabled is only 170µA.  
Applications  
The AAT3603A is available in a thermally enhanced, low-  
profile 5x5x0.8mm 36-pin TQFN package.  
GPS and PND  
Digital Cameras  
Handheld Instruments  
PDAs and Handheld Computers  
Portable Media Players  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
1
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Application  
BAT  
CHGIN  
5V from  
AC Adapter or USB Port  
+
-
1 cell  
Li+  
battery  
10µF  
To BAT  
22µF  
100k  
ADPP  
STAT  
Charger  
Control  
ISET  
TS  
CT  
10k  
ENBAT  
1.24k  
NTC  
Ref  
For BAT  
Temp sense  
100k  
100k  
To  
0.1µF  
SDA  
SCL  
BAT  
To  
BAT  
To BAT  
PVIN  
EN_TEST  
EN_HOLD  
µC  
UVLO  
1.8V  
10µF  
3.3µH  
LX  
I2C  
and  
Enable  
Control  
300mA  
VIN  
Step-down  
EN_KEY  
ON_KEY  
4.7µF  
BUCK  
Ref  
OUTBUCK  
PGND  
Enable  
RESET  
To OUT1  
EN2  
100k  
VIN  
REF  
EN3  
EN4  
EN5  
CNOISE  
AVIN2  
AVIN1  
To BAT  
To BAT  
0.01µF  
AGND  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
3.3V  
300mA  
3.3V  
150mA  
3.3V  
150mA  
1.2V  
150mA  
1.2V  
150mA  
4.7µF  
10µf  
10µf  
22µF  
4.7µF  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
2
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Pin Descriptions  
Pin #  
Symbol Function  
Similar to EN_HOLD but intended for use with the automatic tester or as a hands free enable input pin indi-  
cating hands free phone operation with a headset. It is also internally pulled to GND when floating.  
Enable for the system. EN_HOLD must be held high by the processor to maintain core power. It is internally  
pulled to GND when floating.  
Enable for the system. An internal pull-up resistor keeps the pin pulled up to an internal supply to keep the  
system off when there is no CHGIN input. Connect a normally-open pushbutton switch from this pin to GND.  
There is an internal 300ms debounce delay circuit to filter noise.  
1
EN_TEST  
EN_HOLD  
2
3
EN_KEY  
4
5
6
7
8
ON_KEY  
EN2  
EN3  
EN4  
EN5  
OUT5  
OUT4  
AVIN2  
OUT3  
OUT2  
AVIN1  
OUT1  
AGND  
CNOISE  
Buffered logic output of the EN_KEY pin with a logic signal from ground to OUT1.  
Enable for LDO2 (Internally pulled low when floating).  
Enable for LDO3 (Internally pulled low when floating).  
Enable for LDO4 (Internally pulled low when floating).  
Enable for LDO5 (Internally pulled low when floating).  
Output for LDO5 (when shut down, pulled down with 10kW).  
Output for LDO4 (when shut down, pulled down with 10kW).  
Analog voltage input. Must be tied to BAT on the PCB.  
Output for LDO3.  
9
10  
11  
12  
13  
14  
15  
16  
17  
Output for LDO2.  
Analog voltage input. Must be tied to BAT on the PCB.  
Output for LDO1  
Signal ground  
Noise Bypass pin for the internal reference voltage. Connect a 0.01µF capacitor to AGND.  
RESET is the open drain output of a 65ms reset timer. RESET is released after the 65ms timer times out.  
RESET is active low and is held low during shutdown. RESET should be tied to a 10K or larger pullup to  
OUTBUCK.  
Open Drain output. Will pull low when VCHGIN > 4.5V. When this happens, depending on the status of the  
USE_USB pin, the charge current will be reset to the default values (see Battery Charger and I2C Serial  
Interface and Programmability section)  
18  
19  
RESET  
ADPP  
20  
21  
22  
23  
LX  
PGND  
PVIN  
Step-down Buck converter switching node. Connect an inductor between this pin and the output.  
Power Ground for step-down Buck converter.  
Input power for step-down Buck converter. Must be tied to BAT.  
OUTBUCK Feedback input for the step-down Buck converter.  
24, 25  
N/C  
No Connect; do not connect anything to these pins.  
26, 27  
28, 29  
30  
BAT  
CHGIN  
ENBAT  
Connect to a Lithium Ion battery.  
Power input from either external adapter or USB port.  
Active low enable for the battery charger (Internally pulled low when floating)  
Battery Temperature Sense pin with 75µA output current. Connect the battery’s NTC resistor to this pin and  
ground.  
Charge current programming input pin (Tie a 1k to GND for maximum fast charge current). Can be used to  
monitor charge current.  
Charger Safety Timer Pin. A 0.1µF ceramic capacitor should be connected between this pin and GND. Con-  
nect directly to GND to disable the timer function.  
Battery charging status pin output. Connected internally between GND and OUT1. Used to monitor battery  
charge status.  
31  
32  
33  
34  
TS  
ISET  
CT  
STAT  
35  
36  
SDA  
SCL  
I2C serial data pin, open drain; requires a pullup resistor.  
I2C serial clock pin, open drain; requires a pullup resistor.  
The exposed thermal pad (EP) must be connected to board ground plane and Pins 16 and 21. The ground  
plane should include a large exposed copper pad under the package for thermal dissipation (see package  
outline).  
EP  
EP  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
3
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Pin Configuration  
TQFN55-36  
(Top View)  
36  
35  
34  
33  
32  
31  
30  
29  
28  
1
2
3
4
5
6
7
8
9
27  
26  
25  
24  
23  
22  
21  
20  
19  
EN_TEST  
EN_HOLD  
EN_KEY  
ON_KEY  
EN2  
BAT  
BAT  
N/C  
N/C  
OUTBUCK  
PVIN  
PGND  
LX  
EN3  
EN4  
EN5  
OUT5  
ADPP  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
4
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Absolute Maximum Ratings1  
TA = 25°C unless otherwise noted.  
Symbol  
Description  
Value  
Units  
VIN  
Input Voltage, CHGIN, BAT  
Maximum Rating  
Operating Temperature Range  
Storage Temperature Range  
Maximum Soldering Temperature (at leads, 10 sec)  
-0.3 to 6.5  
VIN + 0.3  
-40 to 85  
-65 to 150  
300  
V
V
°C  
°C  
°C  
Power and logic pins  
TA  
TS  
TLEAD  
Recommended Operating Conditions2  
Symbol  
Description  
Value  
Units  
θJA  
PD  
Thermal Resistance  
Maximum Power Dissipation  
25  
4
°C/W  
W
1. Stresses above those listed in Absolute Maximum Ratings may cause permanent damage to the device. Functional operation at conditions other than the operating conditions  
specified is not implied. Only one Absolute Maximum rating should be applied at any one time.  
2. Thermal Resistance was measured with the AAT3603A device on the 4-layer FR4 evaluation board in a thermal oven. The amount of power dissipation which will cause the  
thermal shutdown to activate will depend on the ambient temperature and the PC board layout ability to dissipate the heat. See Figures 11-14.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
5
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Electrical Characteristics1  
VIN = 5V, VBAT = 3.6V, -40°C TA +85°C, unless noted otherwise. Typical values are TA = 25°C.  
Symbol Description  
Power Supply  
Conditions  
Min  
Typ  
Max Units  
VIN  
IQ  
CHGIN Input Voltage  
Battery Standby Current  
4.5  
6
V
µA  
Buck, LDO1 + LDO2, no load  
170  
EN_TEST, EN_HOLD, EN2, EN3, EN4, EN5  
= GND; EN_KEY and VIN floating  
CHGIN rising  
CHGIN falling  
BAT rising  
ISHDN  
Battery Shutdown Current  
10.0  
4.5  
µA  
4.25  
4.15  
2.6  
2.35  
2
V
V
V
V
µA  
Under-Voltage Lockout for CHGIN  
UVLO  
IBAT  
Battery Under-Voltage Lockout  
Leakage Current from BAT Pin  
BAT falling  
VBAT = 4V, VCHGIN = 0V  
5
Startup Timers  
RESET  
Reset Timer  
Initiated when OUT1 = 90% of final value  
35  
ms  
Charger Voltage Regulation  
VBAT_REG  
VMIN  
Output Charge Voltage Regulation  
Preconditioning Voltage Threshold  
0°C TA +70°C  
4.158 4.200 4.242  
V
V
V
V
V
V
(No trickle charge option available)  
I2C Recharge Code = 00 (default)  
I2C Recharge Code = 01  
I2C Recharge Code = 10  
I2C Recharge Code = 11  
2.6  
2.8  
3.0  
4.00  
4.05  
4.10  
4.15  
VRCH  
Battery Recharge Voltage Threshold  
Charger Current Regulation  
RISET = 1.24k (for 0.8A), I2C ISET code =  
100, VBAT = 3.6V, VCHGIN = 5.0V  
I2C ISET Code = 000, VBAT = 3.6V  
Constant Current Mode, VBAT = 3.6V  
864  
85  
960  
1056  
115  
ICH_CC  
KI_SET  
ICH_PRE  
Constant-Current Mode Charge Current  
mA  
mA  
100  
800  
Charge Current Set Factor: ICH_CC/IISET  
Preconditioning Charge Current  
%
ICH_CC  
RISET = 1.24kW  
12  
I2C ISET Code = 000  
I2C Term Code = 00 (default)  
I2C Term Code = 01  
I2C Term Code = 10  
I2C Term Code = 11  
50  
5
mA  
10  
15  
20  
%
ICH_CC  
ICH_TERM  
Charge Termination Threshold Current  
Charging Devices  
W
RDS(ON)  
Charging Transistor ON Resistance  
VIN = 5V  
0.6  
0.9  
0.4  
Logic Control / Protection  
VEN_HOLD,  
VEN_KEY,  
VEN_TEST  
Input High Threshold  
Input Low Threshold  
1.4  
V
V
VADPP  
IADPP  
VSTAT  
ISTAT  
VOVP  
Output Low Voltage  
Output Pin Current Sink Capability  
Output High Voltage  
Output Pin Current Source Capability  
Over-Voltage Protection Threshold  
Pin Sinks 4mA  
0.4  
8
VOUT1  
1.5  
V
mA  
V
mA  
V
4.3  
1. Specification over the –40°C to +85°C operating temperature range is assured by design, characterization and correlation with statistical process controls.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
6
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Electrical Characteristics1  
VIN = 5V, VBAT = 3.6V, -40°C TA +85°C, unless noted otherwise. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min Typ Max Units  
Logic Control / Protection (continued)  
VOCP  
TC  
TK  
TV  
ITS  
Over-Current Protection Threshold  
Constant Current Mode Time Out  
Trickle Charge Time Out  
Constant Voltage Mode Time Out  
Current Source from TS Pin  
105  
3
TC/8  
3
%VCS  
Hours  
Hours  
Hours  
µA  
CCT = 100nF, VCHGIN = 5V  
71  
75  
79  
Falling Threshold  
Hysteresis  
Rising Threshold  
Hysteresis  
318  
331  
25  
2.39  
25  
115  
85  
100  
346  
TS1  
TS2  
TS Hot Temperature Fault  
TS Cold Temperature Fault  
mV  
2.30  
2.48  
V
mV  
°C  
°C  
°C  
TLOOP_IN  
TLOOP_OUT  
TREG  
Thermal Loop Entering Threshold  
Thermal Loop Exiting Threshold  
Thermal Loop Regulation  
Step-Down Buck Converter  
IOUTBUCK = 1mA ~ 300mA; PVIN = 2.7V ~  
4.2V  
VOUTBUCK  
Output Voltage Accuracy  
1.71  
1.80  
1.89  
V
ILIMOUTBUCK  
RDS(ON)L  
RDS(ON)H  
FOSC  
P-Channel Current Limit  
0.8  
0.8  
0.8  
1.5  
A
Ω
Ω
High Side Switch On-Resistance  
Low Side Switch On-Resistance  
Oscillator Frequency  
TA = 25°C  
MHz  
From Enable to Regulation; COUTBUCK  
=4.7µF, CNOISE = On  
TS  
Startup Time  
100  
µs  
LDO1 (3.3V)  
VOUT1  
Output Voltage Accuracy  
Output Current  
Output Current Limit  
Dropout Voltage  
Line Regulation  
Load Regulation  
AVIN = 3.7V to 4.2V, IOUT1 = 1mA ~ 300mA  
-3  
300  
+3  
%
mA  
mA  
mV  
%/V  
mV  
IOUT1  
ILIM1  
VDO1  
1000  
160  
0.07  
40  
IOUT1 = 300mA  
IOUT1 = 100mA  
IOUT1 = 0.5mA ~ 150mA  
320  
VOUT1(VOUT1VIN1  
)
VOUT1  
IOUT1 = 10mA, COUT1 = 22µF, 100Hz ~  
10KHz  
From Enable to Regulation; COUT1 = 22µF,  
CNOISE = On  
PSRR  
TS  
Power Supply Rejection Ratio  
Startup Time  
60  
dB  
µs  
175  
1. Specification over the –40°C to +85°C operating temperature range is assured by design, characterization and correlation with statistical process controls.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
7
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Electrical Characteristics1  
VIN = 5V, VBAT = 3.6V, -40°C TA +85°C, unless noted otherwise. Typical values are TA = 25°C.  
Symbol  
Description  
Conditions  
Min Typ Max Units  
LDO2, LDO3 (1.2V)  
VOUT2  
IOUT2  
ILIM2  
Output Voltage Accuracy  
Output Current  
Output Current Limit  
AVIN = 2.7V to 4.2V, IOUTX = 1mA ~ 150mA  
-3  
150  
+3  
%
mA  
mA  
1000  
0.07  
VOUT2  
(VOUT2VIN2  
/
Line Regulation  
IOUTX = 100mA  
%/V  
)
VOUT2  
PSRR  
Load Regulation  
Power Supply Rejection Ratio  
Load: 0.5mA ~ 150mA  
IOUTX = 10mA, COUTX = 4.7µF, 10 ~ 10KHz  
14  
60  
mV  
dB  
From Enable to Regulation; COUTX = 4.7µF,  
CNOISE = On  
Ts  
Startup Time  
65  
µs  
LDO4, LDO5 (3.3V)  
AVIN = 3.7V to 4.2V, IOUTX = 1mA ~  
150mA  
VOUTx  
Output Voltage Accuracy  
-3  
+3  
%
IOUTx  
ILIMx  
VDOx  
Output Current  
Output Current Limit  
Dropout Voltage  
150  
mA  
mA  
mV  
1000  
165  
IOUTX = 150mA  
IOUTX = 100mA  
VOUTx  
/
Line Regulation  
0.07  
%/V  
(VOUTxVINx  
VOUTx  
PSRR  
eN  
)
Load Regulation  
Power Supply Rejection Ratio  
Output Noise Voltage  
IOUTX = 0.5mA ~ 150mA  
IOUTX = 10mA, COUTx = 4.7µF, 10 ~ 10KHz  
IOUTX = 10mA, Power BW: 10kHz ~ 100KHz  
40  
60  
40  
mV  
dB  
µVrms  
From Enable to Regulation; COUTX = 4.7µF,  
CNOISE = On  
Ts  
Startup Time  
65  
µs  
Logic Control  
VIH  
VIL  
Enable Pin Logic High Level  
Enable Pin Logic Low Level  
For EN2, EN3, EN4 and EN5  
1.4  
V
0.4  
V
Thermal  
TSD  
Over Temperature Shutdown Threshold  
Over Temperature Shutdown Hysteresis  
140  
15  
˚C  
˚C  
THYS  
SCL, SDA (I2C Interface)  
FSCL  
TLOW  
THIGH  
THD_STA  
TSU_STA  
TSU_DTA  
TSU_STO  
Clock Frequency  
Clock Low Period  
Clock High Period  
Hold Time START Condition  
Setup Time for Repeat START  
Data Setup Time  
0
400  
KHz  
µs  
µs  
µs  
µs  
ns  
1.3  
0.6  
0.6  
0.6  
100  
0.6  
Setup Time for STOP Condition  
µs  
Bus Free Time Between STOP and  
START Condition  
TBUF  
1.3  
µs  
VIL  
VIH  
II  
Input Threshold Low  
Input Threshold High  
Input Current  
2.7V ≤ VIN ≤ 5.5V  
2.7V ≤ VIN ≤ 5.5V  
0.4  
-
1.0  
0.4  
V
V
µA  
V
1.4  
-1.0  
VOL  
Output Logic Low (SDA)  
IPULLUP = 3mA  
1. Specification over the –40°C to +85°C operating temperature range is assured by design, characterization and correlation with statistical process controls.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
8
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Basic I2C Timing Diagram  
SDA  
TSU_DAT  
TLOW  
THD_STA  
TBUF  
SCL  
THD_STA  
TSU_STA  
TSU_STO  
THIGH  
THD_DAT  
Skyworks Solutions, Inc.  
Phone [781] 376-3000  
Fax [781] 376-3100  
sales@skyworksinc.com  
www.skyworksinc.com  
9
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Characteristics—Charger  
Preconditioning Charge Current vs. Temperature  
(VBAT = 2.5V, RISET = 1.24kΩ)  
Preconditioning Threshold Voltage  
vs. Temperature  
115  
2.810  
2.808  
2.806  
VCHGIN = 6.0V  
110  
105  
100  
2.804  
VCHGIN = 5.5V  
2.802  
VCHGIN = 6.0V  
2.800  
2.798  
95  
90  
85  
80  
VCHGIN = 5.5V  
VCHGIN = 5.0V  
VCHGIN = 4.5V  
2.796  
VCHGIN = 5.0V  
VCHGIN = 4.5V  
2.794  
2.792  
2.790  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Recharge Voltage Threshold vs. Temperature  
Output Charge Voltage Regulation vs. Temperature  
(V  
set to 4.0V)  
RCH  
(End of Charge Voltage)  
4.25  
4.24  
4.23  
4.22  
4.06  
4.05  
4.04  
4.03  
4.02  
4.01  
4.00  
3.99  
3.98  
3.97  
3.96  
VCHGIN = 6.0V  
VCHGIN = 5.5V  
4.21  
4.20  
4.19  
4.18  
4.17  
4.16  
VCHGIN = 5.5V  
VCHGIN = 6.0V  
VCHGIN = 5.0V  
VCHGIN = 4.5V  
VCHGIN = 5.0V  
VCHGIN = 4.5V  
-50  
-25  
0
25  
50  
75  
100  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Temperature (°C)  
Charge Termination Threshold Current  
vs. Temperature  
Charging Current vs. Battery Voltage  
(R  
= 1.24k)  
ISET  
900  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
VCHGIN = 6.0V  
VCHGIN = 5.5V  
VCHGIN = 5.0V  
800  
700  
600  
500  
400  
300  
200  
100  
0
VCHGIN = 6.0V  
VCHGIN = 5.5V  
VCHGIN = 4.5V  
VCHGIN = 5.0V  
VCHGIN = 4.5V  
2.5  
2.9  
3.3  
3.7  
4.1  
4.5  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Battery Voltage (V)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
10  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Characteristics—Charger (continued)  
Constant Current Mode Charge Current  
Constant Current Mode Charge Current  
vs. Temperature  
vs. Input Voltage  
(RISET = 1.24kΩ)  
(V  
= 3.6V; R  
= 1.24k)  
BAT  
ISET  
900  
900  
800  
700  
600  
500  
400  
300  
880  
860  
840  
820  
800  
780  
760  
740  
720  
700  
VCHGIN = 6.0V  
VCHGIN = 4.5V  
VBAT = 3.3V  
VBAT = 4.1V  
VCHGIN = 5.5V  
VCHGIN = 5.0V  
VBAT = 3.6V  
4.5  
4.75  
5
5.25  
5.5  
5.75  
6
-50  
-25  
0
25  
50  
75  
100  
CHGIN Voltage (V)  
Temperature (°C)  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
11  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Characteristics—Step-Down Buck Converter  
Step-Down Buck Efficiency vs. Output Current  
Step-Down Buck Load Regulation  
vs. Output Current  
(V  
= 1.8V; L = 3.3µH)  
OUT  
(V  
= 1.8V; L = 3.3µH)  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
OUT  
VBAT = 2.7V  
0.5  
0.4  
VBAT = 3.6V  
VCHGIN = 5.5V  
VBAT = 4.2V  
VCHGIN = 4.5V  
VBAT = 4.2V  
0.3  
VCHGIN = 6.0V  
0.2  
0.1  
0.0  
VCHGIN = 4.5V  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
VBAT = 2.7V  
VBAT = 3.6V  
VCHGIN = 5.5V  
VCHGIN = 5.0V  
VCHGIN = 5.0V  
VCHGIN = 6.0V  
1
10  
100  
1000  
1
10  
100  
1000  
Output Current (mA)  
Output Current (mA)  
Step-Down Buck Line Regulation  
vs. CHGIN and Battery Input Voltage  
Step-Down Buck Output Voltage vs. Temperature  
(I  
= 10mA)  
OUT  
(V  
= 1.8V; L = 3.3µH)  
OUT  
1.825  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
VCHGIN = 5.0V  
0.5  
0.4  
0.3  
0.2  
0.1  
0
IOUT = 300mA  
IOUT = 200mA  
IOUT = 0.01mA  
VBAT = 3.6V  
VCHGIN = 5.5V  
VCHGIN = 6.0V  
VBAT = 2.7V  
VCHGIN = 4.5V  
IOUT = 10mA  
-0.1  
-0.2  
-0.3  
-0.4  
-0.5  
IOUT = 1mA  
IOUT = 50mA  
IOUT = 100mA  
VCHGIN  
VBAT = 4.2V  
VBAT  
4.2  
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-50  
-25  
0
25  
50  
75  
100  
Input V , V  
BAT  
(V)  
Temperature (°C)  
CHGIN  
V
Line Transient Response Step-Down Buck  
V
Line Transient Response Step-Down Buck  
BAT  
CHGIN  
(V  
= 3.5V to 4.2V; I  
= 300mA; V  
= 1.8V; C  
= 4.7µF)  
(V  
= 4.5V to 5.5V; I  
= 300mA; V  
= 1.8V; C  
= 4.7µF)  
BAT  
OUT  
OUT  
OUT  
CHGIN  
OUT  
OUT  
OUT  
1.92  
1.86  
1.88  
1.84  
1.80  
1.76  
1.84  
1.82  
1.80  
1.78  
1.76  
VO  
VO  
6.0  
5.5  
5.0  
4.5  
4.0  
4.5  
4.0  
3.5  
3.0  
V
VBAT  
CHGIN  
Time (100µs/div)  
Time (100µs/div)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
12  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Characteristics—Step-Down Buck Converter (continued)  
Load Transient Response Step-Down Buck  
(IOUTBUCK = 10mA to 100mA; VBAT = 3.6V;  
VOUT = 1.8V; COUT = 4.7µF)  
Load Transient Response Step-Down Buck  
(IOUTBUCK = 100mA to 300mA; VBAT = 3.6V;  
V
OUT = 1.8V; COUT = 4.7µF)  
2.00  
1.90  
1.80  
1.70  
1.60  
2.00  
1.90  
VO  
VO  
1.80  
1.70  
1.60  
300  
200  
100  
0
100  
IO  
IO  
50  
0
Time (100µs/div)  
Time (100µs/div)  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
13  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Characteristics—LDO1  
LDO1 Load Regulation vs. Output Current  
LDO1 Line Regulation vs. Battery Input Voltage  
(VOUT = 3.3V)  
(VOUT = 3.3V)  
1.0  
1.0  
VBAT = 4.2V  
BAT = 3.6V  
VBAT = 3.5V  
IOUT = 1mA  
OUT = 50mA  
IOUT = 100mA  
OUT = 200mA  
IOUT = 300mA  
0.8  
0.8  
V
I
0.6  
0.4  
0.6  
0.4  
I
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
1
10  
100  
1000  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
Output Current (mA)  
Input Voltage VBAT (V)  
LDO1 Output Voltage vs. Temperature  
LDO1 Dropout Characteristics  
(IOUT = 10mA)  
vs. Battery Input Voltage  
(VOUT = 3.3V)  
1.0  
0.8  
VBAT = 4.2V  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
3.265  
3.260  
V
BAT = 3.6V  
0.6  
VBAT = 3.5V  
0.4  
0.2  
0.0  
IOUT = 1mA  
OUT = 50mA  
IOUT = 100mA  
OUT = 200mA  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
I
I
IOUT = 300mA  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Input Voltage VBAT (V)  
LDO1 Dropout Voltage vs. Output Current  
Load Transient Response  
(10mA to 100mA; VBAT = 3.6V;  
VOUT = 3.3V; COUT = 22µF)  
(VOUT = 3.3V)  
200  
180  
160  
140  
120  
100  
80  
3.34  
3.32  
3.30  
3.28  
3.26  
VO  
IO  
100  
50  
0
60  
-40°C  
40  
25°C  
20  
85°C  
0
0
50  
100  
150  
200  
250  
300  
Output Current (mA)  
Time (100µs/div)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
14  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Characteristics—LDO1 (continued)  
Load Transient Response  
(100mA to 300mA; VBAT = 3.6V;  
V
OUT = 3.3V; COUT = 22µF)  
3.38  
3.34  
3.30  
3.26  
3.22  
VO  
300  
200  
100  
0
IO  
Time (100µs/div)  
Skyworks Solutions, Inc.  
Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
15  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Characteristics—LDO2  
LDO2 Load Regulation vs. Output Current  
LDO2 Line Regulation vs. Battery Input Voltage  
(VOUT = 1.2V)  
(VOUT = 1.2V)  
1.0  
1.0  
VBAT = 4.2V  
BAT = 3.6V  
VBAT = 3.0V  
IOUT = 1mA  
OUT = 50mA  
IOUT = 100mA  
OUT = 150mA  
0.8  
0.8  
0.6  
V
I
0.6  
0.4  
0.4  
I
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
1
10  
100  
1000  
2.7  
2.9  
3.1  
3.3  
3.5  
3.7  
3.9  
4.1  
4.3  
Output Current (mA)  
Input Voltage VBAT (V)  
LDO2 Output Voltage vs. Temperature  
LDO2 Dropout Voltage vs. Output Current  
(IOUT = 10mA)  
(VOUT = 1.2V)  
200  
180  
160  
140  
120  
100  
80  
1.0  
0.8  
VBAT = 4.2V  
V
BAT = 3.6V  
0.6  
VBAT = 3.0V  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
60  
-40°C  
40  
25°C  
20  
85°C  
0
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Output Current (mA)  
Load Transient Response  
(10mA to 150mA; VBAT = 3.6V;  
VOUT = 1.2V; COUT = 4.7µF)  
1.24  
1.22  
1.20  
1.18  
1.16  
VO  
150  
100  
50  
IO  
0
Time (100µs/div)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
16  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Characteristics—LDO5  
LDO5 Load Regulation vs. Output Current  
LDO5 Line Regulation vs. Battery Input Voltage  
(VOUT = 3.3V)  
(VOUT = 3.3V)  
1.0  
1.0  
VBAT = 4.2V  
BAT = 3.6V  
VBAT = 3.5V  
IOUT = 1mA  
OUT = 50mA  
IOUT = 100mA  
OUT = 150mA  
0.8  
0.8  
0.6  
V
I
0.6  
0.4  
0.4  
I
0.2  
0.2  
0.0  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
1
10  
100  
1000  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4.0  
4.1  
4.2  
Output Current (mA)  
Input Voltage VBAT (V)  
LDO5 Output Voltage vs. Temperature  
LDO5 Dropout Characteristics  
(IOUT = 10mA)  
vs. Battery Input Voltage  
(VOUT = 3.3V)  
1.0  
0.8  
VBAT = 4.2V  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.275  
3.270  
3.265  
3.260  
V
BAT = 3.6V  
0.6  
VBAT = 3.5V  
0.4  
0.2  
0.0  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
IOUT = 1mA  
OUT = 50mA  
IOUT = 100mA  
I
IOUT = 150mA  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
-50  
-25  
0
25  
50  
75  
100  
Temperature (°C)  
Input Voltage VBAT (V)  
LDO5 Dropout Voltage vs. Output Current  
Load Transient Response  
(10mA to 75mA; VBAT = 3.6V;  
VOUT = 3.3V; COUT = 4.7µF)  
(VOUT = 3.3V)  
200  
180  
160  
140  
120  
100  
80  
3.34  
3.32  
3.30  
3.28  
3.26  
VO  
100  
50  
0
60  
IO  
-40°C  
40  
25°C  
20  
85°C  
0
0
25  
50  
75  
100  
125  
150  
Output Current (mA)  
Time (100µs/div)  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
17  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Characteristics—LDO5 (continued)  
Load Transient Response  
(75mA to 150mA; VBAT = 3.6V;  
V
OUT = 3.3V; COUT = 4.7µF)  
3.38  
3.34  
3.30  
3.26  
3.22  
VO  
150  
100  
50  
IO  
0
Time (100µs/div)  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
18  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Typical Characteristics—General  
Quiescent Current vs. Input Voltage  
Start-up Sequence  
(V  
= 1.8V; L = 3.3µH)  
(V  
= 5.0V)  
OUT  
CHGIN  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
Buck  
LDO1  
LDO2  
LDO3  
LDO4  
LDO5  
-40°C  
25°C  
85°C  
VBAT  
4.2  
VCHGIN  
4.7  
0
2.7  
3.2  
3.7  
5.2  
5.7  
Input V , V  
BAT  
(V)  
Time (50µs/div)  
CHGIN  
LDO3 Output Voltage Noise  
LDO3 Output Voltage Noise  
(No Load; Power BW: 100~100KHz)  
(IOUT3 = 10mA, Power BW = 100~100KHz)  
6.00  
5.40  
4.80  
4.20  
3.60  
3.00  
2.40  
1.80  
1.20  
0.60  
0.00  
6.00  
5.40  
4.80  
4.20  
3.60  
3.00  
2.40  
1.80  
1.20  
0.60  
0.00  
100  
1000  
10000  
100000  
100  
1000  
10000  
100000  
Frequency (Hz)  
Frequency (Hz)  
LDO3 Power Supply Rejection Ratio, PSRR  
(IOUT3 = 10mA, BW = 100~100KHz)  
150  
135  
120  
105  
90  
75  
60  
45  
30  
15  
0
100  
1000  
10000  
100000  
Frequency (Hz)  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
19  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Functional Block Diagram  
CHGIN  
BAT  
ADPP  
Charger  
Control  
STAT  
ISET  
ENBAT  
TS  
CT  
Ref  
RESET  
PVIN  
SDA  
SCL  
EN_TEST  
EN_HOLD  
EN_KEY  
ON_KEY  
UVLO  
I2C  
and  
Enable  
Control  
VIN  
Ref  
LX  
BUCK  
OUTBUCK  
Enable  
PGND  
VIN  
REF  
EN2  
EN3  
EN4  
EN5  
AVIN2  
CNOISE  
AVIN1  
AGND  
Typical Power Up Sequence  
Functional Description  
The AAT3603A supports a variety of push-button or  
enable/disable schemes. A typical startup and shutdown  
process is ilustrated in Figures 1 and 2. System startup  
is initiated whenever one of the following conditions  
occurs:  
The AAT3603A is a complete power management solu-  
tion. It seamlessly integrates an intelligent, stand-alone  
CC/CV (Constant Current/Constant Voltage), linear-  
mode single-cell battery charger with one step-down  
Buck converter and five low-dropout (LDO) regulators to  
provide power from either a wall adapter or a single-cell  
Lithium Ion/Polymer battery.  
1. A push-button is used to assert EN_KEY low.  
2. A valid supply (> CHGIN UVLO) is connected to the  
charger input CHGIN.  
3. A hands-free device or headset is connected, assert-  
ing EN_TEST high.  
If only the battery is available, then the voltage regula-  
tors and converter are powered directly from the battery.  
The charger is put into sleep mode and draws less than  
1µA quiescent current.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
20  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
The startup sequence for the AAT3603A core (Buck and  
LDO1) is typically initiated by pulling the EN_KEY pin low  
with a pushbutton switch, as shown in Figure 1. The  
Buck is the first block to be turned on. When the output  
of the Buck reaches 90% of its final value, LDO1 is  
enabled. When LDO1 reaches 90% of its final value, the  
65ms RESET timer is initiated holding the microproces-  
sor in reset. When the RESET pin goes High, the µP can  
begin a power-up sequence. After the startup sequence  
has commenced, LDO2, LDO3, LDO4, and LDO5 can be  
enabled and disabled as desired using their independent  
enable pins, even while the Buck and LDO1 are still  
starting up. However, if they are shut down, then LDO2,  
LDO3, LDO4, and LDO5 cannot be enabled. The µP must  
pull the EN_HOLD signal high before the EN_KEY signal  
can be released by the push-button. This procedure  
requires that the push-button be held until the µP  
assumes control of EN_HOLD, providing protection  
against inadvertent momentary assertions of the push-  
button. Once EN_HOLD is high the startup sequence is  
complete. If the µP is unable to complete its power-up  
routine successfully before the user lets go of the push-  
button, the AAT3603A will automatically shut itself  
down. (EN_KEY and EN_HOLD are OR’d internally to  
enable the two core converters.)  
be disabled until the voltage at the CHGIN pin drops  
below the falling UVLO threshold. The EN_TEST pin can  
also be used to startup the device for test purposes or  
for hands-free operation such as when connecting a  
headset to the system.  
Typical Power Down Sequence  
If only the battery is connected and the voltage level is  
above the BAT UVLO , then the EN_KEY pin can be held  
low in order to power down the AAT3603A. The user can  
initiate a shutdown process by pressing the push-button  
a second time. Upon detecting a second assertion of  
EN_KEY (by depressing the push-button), the AAT3603A  
asserts ON_KEY to interrupt the microprocessor which  
initiates an interrupt service routine that the user  
pressed the push-button. If EN_TEST and CHGIN are  
both low, the microprocessor then initiates a power-  
down routine, the final step of which will be to de-assert  
EN_HOLD, disabling LDO2, LDO3, LDO4, and LDO5.  
When the voltage at the CHGIN pin is above the CHGIN  
UVLO, the device cannot be powered down. If the volt-  
age at the CHGIN pin is below the CHGIN UVLO, EN_KEY  
must be held high and EN_HOLD must be held low in  
order to power down the AAT3603A. If LDO2, LDO3,  
LDO4, and LDO5 have not been disabled individually  
prior to global power down, then they will be turned off  
simultaneously with the Buck.  
Alternatively, the startup sequence is automatically  
started without the pushbutton switch when the CHGIN  
pin rises above its UVLO threshold. The system cannot  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
21  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
CHGIN  
BAT  
UVLO  
Enable  
EN_KEY  
for BAT  
Push-button  
On Switch  
Regulators  
OUT1  
ON_KEY  
Micro  
Processor  
µP  
EN_HOLD  
EN_BAT  
Enable for  
Battery Charger  
EN_TEST  
Automatic  
Tester or  
Handsfree  
Operation  
Figure 1: Enable Function Detailed Schematic.  
Power Up Sequence  
Power Down Sequence  
300ms  
debounce  
delay  
EN_KEY  
ON_KEY  
EN_HOLD must be held high  
before EN_KEY can be released .  
EN_HOLD  
OUTBuck  
(Core)  
90% Regulation  
OUT1  
(PowerDigital)  
90% Regulation  
65ms  
RESET  
Figure 2: Typical Power Up/Down Sequence.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
22  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
charged cell. It also reduces the power dissipation in the  
internal series pass MOSFET when the input-output volt-  
age differential is at its highest.  
Battery Charger  
Figure 3 illustrates the entire battery charging profile  
which consists of three phases.  
1. Preconditioning Current Mode (Trickle) Charge  
2. Constant Current Mode Charge  
Constant Current Mode Charge Current  
Trickle charge continues until the battery voltage reach-  
es VMIN. At this point the battery charger begins con-  
stant-current charging. The current level default for this  
mode is programmed using a resistor from the ISET pin  
to ground. Once that resistor has been selected for the  
default charge current, then the current can be adjusted  
through I2C from a range of 40% to 180% (1.44A max)  
of the programmed default charge current. Programmed  
current can be set at a minimum of 100mA and up to a  
maximum of 1A. When the ADPP signal goes high, the  
default I2C setting of 100% is reset.  
3. Constant Voltage Mode Charge  
Battery charging commences only after the AAT3603A  
battery charger checks several conditions in order to  
maintain a safe charging environment. The system  
operation flow chart for the battery charger operation is  
shown in Figure 4. The input supply must be above the  
minimum operating voltage (UVLO) and the enable pin  
(ENBAT) must be low (it is internally pulled down). When  
the battery is connected to the BAT pin, the battery  
charger checks the condition of the battery and deter-  
mines which charging mode to apply.  
Constant Voltage Mode Charge  
Preconditioning Current Mode  
Charge Current  
Constant current charging will continue until the battery  
voltage reaches the Output Charge Voltage Regulation  
point VBAT_REG. When the battery voltage reaches the regu-  
lation voltage (VBAT_REG), the battery charger will transition  
to constant-voltage mode. VBAT_REG is factory programmed  
to 4.2V (nominal). Charging in constant-voltage mode  
will continue until the charge current has reduced to the  
end of charge termination current programmed using the  
I2C interface (5%, 10%, 15%, or 20%).  
If the battery voltage is below the preconditioning volt-  
age threshold VMIN, then the battery charger initiates  
precondition trickle charge mode and charges the bat-  
tery at 12% of the programmed constant-current mag-  
nitude. For example, if the programmed current is  
500mA, then the trickle charge current will be 60mA.  
Trickle charge is a safety precaution for a deeply dis-  
I (mA)  
V (V)  
Preconditioning  
Trickle Charge  
Phase  
Constant Current  
Charge Phase  
Constant Voltage  
Charge Phase  
Battery End of Charge  
Voltage Regulation (VBAT_REG  
)
FAST-CHARGE to  
TOP-OFF Charge  
Threshold  
Constant-Current Mode  
Charge Current (ICH_CC  
)
Charge Voltage  
Preconditioning Threshold  
Voltage (VMiN  
)
Charge Current  
Preconditioning Charge  
Current (ICH_PRE  
)
Charge Termination  
Threshold Current  
(ICH_TERM  
)
T (s)  
Trickle Charge  
Timeout  
(TK)  
Constant Current Timeout  
(TC  
Constant Voltage Timeout  
(TV  
)
)
Figure 3: Current vs. Voltage and Charger Time Profile.  
Skyworks Solutions, Inc.  
Phone [781] 376-3000  
Fax [781] 376-3100  
sales@skyworksinc.com  
www.skyworksinc.com  
23  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Enable  
Yes  
Power On Reset  
No  
Power Input  
Voltage  
VCHGIN > VUVLO  
No  
Expired  
Yes  
Charge Timer  
Control  
Fault  
Conditions Monitoring  
OV, OT,  
T < Timeout  
Shut Down  
Yes  
VTS1 < VTS< VTS2  
No  
Thermal Loop  
Current  
Reduction in  
Preconditioning  
Test  
VBAT <VMIN  
C.C. Mode  
Preconditioning  
(Trickle Charge)  
Yes  
Yes  
No  
No  
Device Thermal  
Loop Monitor  
TJ > 115ϒC  
Constant  
Current Charge  
Mode  
Recharge Test  
VBAT < VRCH  
Current Phase Test  
VBAT < VBAT_REG  
Yes  
Yes  
Yes  
No  
No  
Constant  
Voltage Charge  
Mode  
Voltage Phase Test  
ICH > ICH_TERM  
No  
Charge Completed  
Figure 4: System Operation Flow Chart for the Battery Charger.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
24  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
rent provided to charge the timing capacitor is very  
small, and this pin is susceptible to noise and changes in  
capacitance value. Therefore, the timing capacitor should  
be physically located on the printed circuit board layout  
as close as possible to the CT pin. Since the accuracy of  
the internal timer is dominated by the capacitance value,  
a 10% tolerance or better ceramic capacitor is recom-  
mended. Ceramic capacitor materials, such as X7R and  
X5R types, are a good choice for this application.  
Power Saving Mode  
After the charge cycle is complete, the battery charger  
turns off the series pass device and automatically goes  
into a power saving sleep mode. During this time, the  
series pass device will block current in both directions to  
prevent the battery from discharging through the battery  
charger.  
The battery charger will remain in sleep mode even if the  
charger source is disconnected. It will come out of sleep  
mode if either the battery terminal voltage drops below  
the VRCH threshold, the charger EN pin is recycled, or the  
charging source is reconnected. In all cases, the battery  
charger will monitor all parameters and resume charging  
in the most appropriate mode.  
Programming Charge Current (ISET)  
At initial power-on, the charge current is always set to  
100mA. The constant current mode charge level is user  
programmed with the I2C interface and a set resistor  
placed between the ISET pin and ground. The accuracy of  
the constant charge current, as well as the precondition-  
ing trickle charge current, is dominated by the tolerance  
of the set resistor. For this reason, a 1% tolerance metal  
film resistor is recommended for the set resistor function.  
The programmable constant charge current levels from  
100mA to 1A may be set by selecting the appropriate  
resistor value from Table 1, Figure 5, and Table 3. The  
ISET pin current to charging current ratio is 1 to 800. It  
is regulated to 1.25V during constant current mode  
unless changed using I2C commands. It can be used as a  
charging current monitor, based on the equation:  
Temperature Sense (TS)  
The TS pin is available to monitor the battery tempera-  
ture. Connect a 10k NTC resistor from the TS pin to  
ground. The TS pin outputs a 75µA constant current into  
the resistor and monitors the voltage to ensure that the  
battery temperature does not fall outside the limits  
depending on the temperature coefficient of the resistor  
used. When the voltage goes above 2.39V or goes below  
0.331V, the charging current will be suspended.  
Charge Safety Timer (CT)  
V
ISET  
ISET  
ICH = 800 ⋅  
R
While monitoring the charge cycle, the AAT3603A utilizes  
a charge safety timer to help identify damaged cells and  
to ensure that the cell is charged safely. Operation is as  
follows: upon initiating a charging cycle, the AAT3603A  
charges the cell at 12% of the programmed maximum  
charge until VBAT >2.8V. If the cell voltage fails to reach  
the preconditioning threshold of 2.8V (typ) before the  
safety timer expires, the cell is assumed to be damaged  
and the charge cycle terminates. If the cell voltage  
exceeds 2.8V prior to the expiration of the timer, the  
charge cycle proceeds into fast charge. There are three  
timeout periods: 1 hour for Trickle Charge mode, 3 hours  
for Constant Current mode, and 3 hours for Constant  
Voltage mode.  
During preconditioning charge, the ISET pin is regulated  
to 12% of the fast charge current ISET voltage level  
(Figure 5), but the equation stays the same. During con-  
stant voltage charge mode, the ISET pin voltage will  
slew down and be directly proportional to the battery  
current at all times.  
Constant Charging  
Current ICH_CC (mA)  
Set Resistor  
Value (kW)  
100  
200  
300  
400  
500  
600  
700  
800  
900  
1000  
10  
4.99  
3.32  
2.49  
2
1.65  
1.43  
1.24  
1.1  
The CT pin is driven by a constant current source and will  
provide a linear response to increases in the timing  
capacitor value. Thus, if the timing capacitor were to be  
doubled from the nominal 0.1µF value, the time-out  
periods would be doubled. If the programmable watch-  
dog timer function is not needed, it can be disabled by  
terminating the CT pin to ground. The CT pin should not  
be left floating or unterminated, as this will cause errors  
in the internal timing control circuit. The constant cur-  
1
Table 1: Constant Current Charge vs.  
ISET Resistor Value.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
25  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Constant Current Mode Charge Current  
vs. ISET Resistor  
ISET Voltage vs. Battery Voltage  
(CHGIN = 5.0V, R  
= 1.24k)  
ISET  
(V = 5V; V  
IN  
= 3.6V)  
BAT  
1.4  
1.2  
1
1400  
1200  
1000  
800  
600  
400  
200  
0
0.8  
0.6  
0.4  
0.2  
0
2.5  
2.9  
3.3  
3.7  
4.1  
4.5  
0.1  
1
10  
100  
ISET Resistor (k)  
Battery Voltage (V)  
Figure 5: Constant Current Mode Charge ICH_CC Setting vs. ISET Resistor  
and ISET Voltage vs. Battery Voltage.  
Reverse Battery Leakage  
CHGIN Bypass Capacitor Selection  
The AAT3603A includes internal circuitry that eliminates  
the need for series blocking diodes, reducing solution  
size and cost as well as dropout voltage relative to con-  
ventional battery chargers. When the input supply is  
removed or when CHGIN goes below the AAT3603A’s  
under voltage-lockout (UVLO) voltage, or when CHGIN  
drops below VBAT, the AAT3603A automatically reconfig-  
ures its power switches to minimize current drain from  
the battery.  
CHGIN is the power input for the AAT3603A battery  
charger. The battery charger is automatically enabled  
whenever a valid voltage is present on CHGIN. In most  
applications, CHGIN is connected to either a wall adapter  
or USB port. Under normal operation, the input of the  
charger will often be “hot-plugged” directly to a powered  
USB or wall adapter cable, and supply voltage ringing  
and overshoot may appear at the CHGIN pin. A high  
quality capacitor connected from CHGIN to GND, placed  
as close as possible to the IC, is sufficient to absorb the  
energy. Wall-adapter powered applications provide flex-  
ibility in input capacitor selection, but the USB specifica-  
tion presents limitations to input capacitance selection.  
The CHGIN bypass capacitance value must be between  
1µF and 4.7µF. Ceramic capacitors are often preferred  
for bypassing due to their small size and good surge cur-  
rent ratings, but care must be taken in applications that  
can encounter hot plug conditions as their very low ESR,  
in combination with the inductance of the cable, can cre-  
ate a high-Q filter that induces excessive ringing at the  
CHGIN pin. This ringing can couple to the output and be  
mistaken as loop instability, or the ringing may be large  
enough to damage the input itself. Although the CHGIN  
pin is designed for maximum robustness and an absolute  
maximum voltage rating of +6.5V for transients, atten-  
tion must be given to bypass techniques to ensure safe  
operation. As a result, design of the CHGIN bypass must  
take care to “de-Q” the filter. This can be accomplished  
Adapter Power Indicator (ADPP)  
This is an open drain output which will pull low when  
VCHGIN > 4.5V. When this happens the charge current will  
be reset to the default ISET values or I2C programmed  
values.  
Charge Status Output (STAT)  
The AAT3603A provides battery charging status via a  
status pin. This pin is a buffered output with a supply  
level up to the LDO1 output. The status pin can indicate  
the following conditions:  
Event Description  
STAT  
No battery charging activity  
Battery charging  
Low (to GND)  
High (to VOUT1  
)
Charging completed  
Low (to GND)  
Table 2: Charge Status Output (STAT).  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
26  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
by connecting a 1W resistor in series with a ceramic  
capacitor (as shown in Figure 6A), or by bypassing with  
a tantalum or electrolytic capacitor to utilize its higher  
ESR to dampen the ringing (as shown in Figure 6B). For  
additional protection, Zener diodes with 6V clamp volt-  
ages may also be used. In any case, it is always critical  
to evaluate voltage transients at the CHGIN pin with an  
oscilloscope to ensure safe operation.  
The AAT3603A is offered in a TQFN55-36 package which  
can provide up to 4W of power dissipation when it is  
properly bonded to a printed circuit board and has a  
maximum thermal resistance of 25°C/W. Many consider-  
ations should be taken into account when designing the  
printed circuit board layout, as well as the placement of  
the charger IC package in proximity to other heat gen-  
erating devices in a given application design. The ambi-  
ent temperature around the charger IC will also have an  
effect on the thermal limits of a battery charging applica-  
tion. The maximum limits that can be expected for a  
given ambient condition can be estimated by the follow-  
ing discussion. First, the maximum power dissipation for  
a given situation should be calculated:  
Thermal Considerations  
The actual maximum charging current is a function of  
charge adapter input voltage, the state of charge of the  
battery at the moment of charge, and the ambient tem-  
perature and the thermal impedance of the package and  
printed circuit board. The maximum programmable cur-  
rent may not be achievable under all operating param-  
eters. One issue to consider is the amount of current  
being sourced to the supply channels while the battery  
is being charged.  
(TJ(MAX) - TA)  
PD(MAX)  
=
θ
JA  
Where:  
PD(MAX) = Maximum Power Dissipation (W)  
θJA = Package Thermal Resistance (°C/W)  
TJ(MAX) = Maximum Device Junction Temperature (°C)  
[150°C]  
TA = Ambient Temperature (°C)  
CHGIN  
To USB Port or  
CHGIN  
Wall Adapter  
To USB Port or  
Wall Adapter  
1Ω  
4.7µF  
ESR > 1Ω  
1µF Ceramic  
(XR5/XR7)  
(A)  
(B)  
Figure 6: Hot Plug Requirements.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
27  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Next, the power dissipation for the charger can be cal-  
culated by the following equation:  
In general, the worst condition is when there is the  
greatest voltage drop across the charger, when battery  
voltage is charged up to just past the preconditioning  
voltage threshold and the LDOs and step-down con-  
verter are sourcing full output current.  
PD = (VCHGIN - VBAT) · ICH_CC + (VCHGIN · IOP  
)
+ (VBAT - VOUT1) · IOUT1 + (VBAT - VOUT2) · IOUT2  
+ (VBAT - VOUT3) · IOUT3 + (VBAT - VOUT4) · IOUT4  
+ (VBAT - VOUT5) · IOUT5  
For example, if 977mA is being sourced from the BAT pin  
to the LDOs and Buck channels (300mA to LDO1, 100mA  
to LDO2-5, and 277mA to the Buck; see buck efficiency  
graph for 300mA output current) with a CHGIN supply of  
5V, and the battery is being charged at 3.5V with 800mA  
charge current, then the power dissipated will be 1.84W.  
A reduction in the charge current (through I2C) may be  
necessary in addition to the reduction provided by the  
internal thermal loop of the charger itself.  
VOUTBUCK  
VBAT  
RDS(ON)H · [VBAT - VOUTBUCK  
]
2
+ IOUTBUCK · RDS(ON)L  
·
+
VBAT  
Where:  
PD = Total Power Dissipation by the Device  
VCHGIN = CHGIN Input Voltage  
VBAT = Battery Voltage at the BAT Pin  
ICH_CC = Constant Charge Current Programmed for the  
Application  
For the above example at TA = 30°C, the ICH_CC(MAX)  
1.4A.  
=
IOP = Quiescent Current Consumed by the IC for Normal  
Operation [0.5mA]  
VBAT = Load current from the BAT pin for the system  
LDOs and step-down converter  
RDS(ON)H and RDS(ON)L = On-resistance of step-down high  
and low side MOSFETs [0.8W each]  
VOUTX and IOUTX = Output voltage and load currents for  
the LDOs and step-down converter  
Thermal Overload Protection  
The AAT3603A integrates thermal overload protection  
circuitry to prevent damage resulting from excessive  
thermal stress that may be encountered under fault con-  
ditions, for example. This circuitry disables all regulators  
if the AAT3603A die temperature exceeds 140°C, and  
prevents the regulators from being enable until the die  
temperature drops by 15°C (typ).  
By substitution, we can derive the maximum charge cur-  
rent before reaching the thermal limit condition (TREG  
=
Synchronous Step-Down  
Converter (Buck)  
100°C, Thermal Loop Regulation). The maximum charge  
current is the key factor when designing battery charger  
applications.  
The AAT3603A contains a high performance 300mA,  
1.5MHz synchronous step-down converter. The step-  
down converter operates to ensure high efficiency per-  
formance over all load conditions. It requires only three  
external power components (CIN, COUT, and L). A high DC  
gain error amplifier with internal compensation controls  
the output. It provides excellent transient response and  
load/line regulation. Transient response time is typically  
less than 20µs. The converter has soft start control to  
limit inrush current and transitions to 100% duty cycle  
at drop out.  
(TREG - TA)  
- (VCHGIN · IOP) - (VCHGIN - VBAT) · IBAT  
θJA  
ICH_CC(MAX)  
=
- [(VBAT - VOUT1) · IOUT1] - (VBAT - VOUT2) · IOUT2  
- [(VBAT - VOUT3) · IOUT3] - (VBAT - VOUT4) · IOUT4  
- (VBAT - VOUT5) · IOUT5  
VOUTBUCK  
RDS(ON)H · (VBAT - VOUTBUCK)  
The step-down converter input pin PVIN should be con-  
nected to the BAT output pin. The output voltage is  
internally fixed at 1.8V. Power devices are sized for  
300mA current capability while maintaining over 90%  
efficiency at full load.  
- IOUTBUCK2 · RDS(ON)L  
·
+
VBAT  
VBAT  
VCHGIN - VBAT  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
28  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Input/Output Capacitor and Inductor  
Current Limit and  
Over-Temperature Protection  
Apart from the input capacitor that is shared with  
the LDO inputs, only a small L-C filter is required at the  
output side for the step-down converter to operate prop-  
erly. Typically, a 3.3µH inductor such as the Sumida  
CDRH2D11NP-3R3NC and a 4.7µF ceramic output capac-  
itor are recommended for low output voltage ripple and  
small component size. Ceramic capacitors with X5R or  
X7R dielectrics are highly recommended because of their  
low ESR and small temperature coefficients. A 10µF  
ceramic input capacitor is sufficient for most applica-  
tions.  
For overload conditions the peak input current is limited.  
As load impedance decreases and the output voltage  
falls closer to zero, more power is dissipated internally,  
raising the device temperature. Thermal protection com-  
pletely disables switching when internal dissipation  
becomes excessive, protecting the device from damage.  
The junction over-temperature threshold is 140°C with  
15°C of hysteresis.  
Linear LDO Regulators  
(OUT1, OUT4, and OUT5)  
Control Loop  
The advanced circuit design of the linear regulators has  
been specifically optimized for very fast start-up and  
shutdown timing. These proprietary LDOs are tailored for  
superior transient response characteristics. These traits  
are particularly important for applications which require  
fast power supply timing.  
The converter is a peak current mode step-down con-  
verter. The inner, wide bandwidth loop controls the  
inductor peak current. The inductor current is sensed  
through the P-channel MOSFET (high side) which is also  
used for short circuit and overload protection. A fixed  
slope compensation signal is added to the sensed cur-  
rent to maintain stability for duty cycles greater than  
50%. The peak current mode loop appears as a voltage  
programmed current source in parallel with the output  
capacitor.  
There are two LDO input pins, AVIN1/2, which should be  
connected to the BAT output pin. The LDO1, LDO4 and  
LDO5 outputs are initially fixed at 3.3V. The user can  
program the output voltages for those LDOs to 2.8V,  
2.85V, or 2.9V using I2C.  
The output of the voltage error amplifier programs the  
current mode loop for the necessary peak inductor cur-  
rent to force a constant output voltage for all load and  
line conditions. The voltage feedback resistive divider is  
internal and the error amplifier reference voltage is  
0.45V. The voltage loop has a high DC gain making for  
excellent DC load and line regulation. The internal volt-  
age loop compensation is located at the output of the  
transconductance voltage error amplifier.  
The high-speed turn-on capability is enabled through the  
implementation of a fast start control circuit, which  
accelerates the power up behavior of fundamental con-  
trol and feedback circuits within the LDO regulator. For  
LDO4 and LDO5, fast turn-off time response is achieved  
by an active output pull down circuit, which is enabled  
when the LDO regulator is placed in the shutdown mode.  
This active fast shutdown circuit has no adverse effect on  
normal device operation.  
Soft Start  
Input/Output Capacitors  
Soft start slowly increases the internal reference voltage  
when the input voltage or enable input is initially applied.  
It limits the current surge seen at the input and elimi-  
nates output voltage overshoot.  
The LDO regulator output has been specifically optimized  
to function with low cost, low ESR ceramic capacitors.  
However, the design will allow for operation over a wide  
range of capacitor types. The input capacitor is shared  
with all LDO inputs and the step-down converter. A 10µF  
is sufficient. A 10µF ceramic output capacitor is  
recommended for LDO 2-3; a 4.7µF ceramic output  
capacitor is recommended for LDO4-5; and a 22µF out-  
put capacitor is recommended for LDO1.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
29  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
write actions to take place, but the AAT3603A supports  
the write protocol only. Since the protocol has a dedi-  
cated bit for Read or Write access (R/W), when commu-  
nicating with AAT3603A, this bit must be set to “0.  
Current Limit and  
Over-Temperature Protection  
The regulator comes with complete short circuit and  
thermal protection. The combination of these two  
internal protection circuits gives a comprehensive safety  
system to guard against extreme adverse operating  
conditions.  
The timing diagram in Figure 7 depicts the transmission  
protocol.  
START and STOP Conditions  
I2C Serial Interface  
and Programmability  
START and STOP conditions are always generated by the  
master. Prior to initiating a START condition, both the  
SDA and SCL pin are idle mode (idle mode is when there  
is no activity on the bus and SDA and SCL are pulled to  
VCC via external resistor). As depicted in Figure 7, a  
START condition is defined to be when the master pulls  
the SDA line low and after a short period pulls the SCL  
line low. A START condition acts as a signal to all ICs that  
something is about to be transmitted on the BUS.  
Serial Interface  
Many of the features of the AAT3603A can be controlled  
via the I2C serial interface. The I2C serial interface is a  
widely used interface where it requires a master to initi-  
ate all the communications with the slave devices. The  
I2C protocol consists of 2 active wire SDA (serial data  
line) and SCL (serial clock line). Both wires are open  
drain and require an external pull up resistor to VCC (BAT  
may be used as VCC). The SDA pin serves I/O function,  
and the SCL pin controls and references the I2C bus. I2C  
protocol is a bidirectional bus which allows both read and  
A STOP condition, also shown in Figure 7, is when the  
master releases the bus and SCL changes from low to  
high followed by SDA low to high transition. The master  
does not issue an ACKNOWLEGE and releases the SCL  
and SDA pins.  
ACK from slave  
ACK from slave  
ACK from slave  
Chip  
Address  
Register  
Address  
START MSB  
LSB  
W
ACK MSB  
LSB ACK MSB  
Data  
LSB ACK STOP  
SCL  
SDA  
1
0
0
1
1
0
0
0
including R/W bit,  
Chip Address = 0x98  
Figure 7: I2C Timing Diagram.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
30  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Transferring Data  
Acknowledge Bit  
Every byte on the bus must be 8 bits long. A byte is  
always sent with a most significant bit first (see Figure  
8).  
The acknowledge bit is the ninth bit of data. It is used to  
send back a confirmation to the master that the data has  
been received properly. For acknowledge to take place,  
the MASTER must first release the SDA line, then the  
SLAVE will pull the data line low as shown in Figure 7.  
MSB  
LSB  
R/W  
Serial Programming Code  
Figure 8: Bit Order.  
After sending the chip address, the master should send  
an 8-bit data stream to select which register to program  
and then the codes that the user wishes to enter.  
The address is embedded in the first seven bits of the  
byte. The eighth bit is reserved for the direction of the  
information flow for the next byte of information. For the  
AAT3603A, this bit must be set to “0. The full 8-bit  
address including the R/W bit is 0x98 (hex) or 10011000  
in binary.  
Register 0x00:  
Timer  
RCHG1  
Not used  
LDO50  
RCHG0  
Not used  
LDO41  
CHG2  
Not used  
LDO40  
CHG1  
CHG0  
SYS  
Term1  
LDO11  
Term0  
LDO10  
Register 0x01:  
Not used  
Not used  
Register 0x02:  
LDO51  
Not used  
Not used  
Not used  
Not used  
Figure 9: Serial Programming Register Codes.  
Constant Current Charge  
Constant Current Charge  
as % of ISET Current  
CHG2  
CHG1  
CHG0  
ICH_CC  
100mA  
(fixed internally)  
0
0
0
(default)  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
1
0
1
0
1
0
1
640mA  
480mA  
320mA  
960mA  
1120mA  
1280mA  
1440mA  
80%  
60%  
40%  
120%  
140%  
160%  
180%  
Table 3: CHG Bit Setting for the Constant Current Charge Level  
(assuming ISET resistor is set to default 800mA charge current).  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
31  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Notes concerning the operation of the CHG2, CHG1 and  
CHG0 bits or ISET code:  
ISET Code 000 in Register 0x00, bits 2,3,4 = 100mA.  
If the part has been turned on by EN_KEY and CHGIN  
is disconnected then reconnected, the ISET code will  
be forced to 000 and the current will be set to  
100mA.  
The next time any I2C register is programmed (even if  
it is not for the ISET code), the ISET code will revert  
back to what it was before. For example, if the ISET  
code is set to 010 and the part was turned on with  
EN_KEY, then when CHGIN is disconnected then  
reconnected, the charger will be set to 100mA. Then  
if any other command is sent, the ISET code will  
remain 010.  
Once the part is turned on using the EN_KEY pin (and  
there is a BAT and/or CHGIN supply), and data is sent  
through I2C, the I2C codes in the registers will always  
be preserved until the part is shut down using the  
EN_HOLD (going low) or if the BAT and CHGIN supply  
are removed.  
If the part is turned on by connecting supply CHGIN  
(and not through EN_KEY), then when the CHGIN is  
removed, the part will shut down and all I2C registers  
will be cleared.  
Term1  
Term0  
Termination Current (as % of Constant Current Charge)  
0
0
1
1
0
1
0
1
5% (default)  
10%  
15%  
20%  
Table 4: Term Bit Setting for the Termination Current Level.  
RCHG1  
RCHG0  
Recharge Threshold  
0
0
1
1
0
1
0
1
4.00V (default)  
4.05V  
4.10V  
4.15V  
Table 5: RCHG Bit Setting for the Battery Charger Recharge Voltage Level.  
Timer  
Charger Watchdog Timer  
0
1
ON (default)  
OFF (and reset to zero)  
Table 6: Timer Bit Setting for the Charger Watchdog Timer.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
32  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
1. The exposed pad EP must be reliably soldered to  
PGND/AGND and multilayer GND. The exposed ther-  
mal pad should be connected to board ground plane  
and pins 2 and 16. The ground plane should include  
a large exposed copper pad under the package with  
VIAs to all board layers for thermal dissipation.  
2. The power traces, including GND traces, the LX  
traces and the VIN trace should be kept short, direct  
and wide to allow large current flow. The L1 connec-  
tion to the LX pins should be as short as possible.  
Use several via pads when routing between layers.  
3. The input capacitors (C1 and C2) should be con-  
nected as close as possible to CHGIN (Pin 28) and  
PGND (Pin 2) to get good power filtering.  
LDO11  
LDO10  
LDO1 Output Voltage  
0
0
1
1
0
1
0
1
3.30V (default)  
2.90V  
2.85V  
2.80V  
LDO41  
LDO40  
LDO4 Output Voltage  
0
0
1
1
0
1
0
1
3.30V (default)  
2.90V  
2.85V  
2.80V  
LDO51  
LDO50  
LDO5 Output Voltage  
0
0
1
1
0
1
0
1
3.30V (default)  
2.90V  
2.85V  
2.80V  
4. Keep the switching node LX away from the sensitive  
OUTBUCK feedback node.  
5. The feedback trace for the OUTBUCK pin should be  
separate from any power trace and connected as  
closely as possible to the load point. Sensing along a  
high current load trace will degrade DC load regula-  
tion.  
6. The output capacitor C4 and L1 should be connected  
as close as possible and there should not be any  
signal lines under the inductor.  
7. The resistance of the trace from the load return to  
the PGND (Pin 2) should be kept to a minimum. This  
will help to minimize any error in DC regulation due  
to differences in the potential of the internal signal  
ground and the power ground.  
Table 7: LDO Bit Setting for  
LDO Output Voltage Level.  
Layout Guidance  
Figure 10 is the schematic for the evaluation board. The  
evaluation board has extra components for easy evalua-  
tion; the actual BOM need for a system is shown in Table  
8. When laying out the PC board, the following layout  
guideline should be followed to ensure proper operation  
of the AAT3603A:  
Quantity Value  
Designator  
Footprint  
Description  
5
2
4
3
1
1
9
8
1
10µF  
22µF  
C1, C2, C3, C7, C8, C14, C15  
0603  
0805  
0603  
0402  
0402  
CDRH2D  
0402  
0402  
Capacitor, Ceramic, X5R, 6.3V, ±20%  
Capacitor, Ceramic, 20%, 6.3V, X5R  
Capacitor, Ceramic, 20%, 6.3V, X5R  
Capacitor, Ceramic, 16V, 10%, X5R  
Capacitor, Ceramic, 16V, 10%, X7R  
Inductor, Sumida CDRH2D11NP-3R3NC  
Resistor, 5%  
C9  
4.7µF  
0.1µF  
0.01µF  
3.3µH  
100K  
10K  
C4, C5, C6  
C10, C11, C12  
C13  
L1  
R5, R8, R20, R21, R22, R23, R25, R26, R27  
R17, R19, R24, R29, R31, R32, R33, R37  
R18  
Resistor, 5%  
Resistor, 1%  
1.24K  
0402  
Table 8: Minimum AAT3603A Bill of Materials.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
33  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
D1  
R30  
TP11  
J1  
BAT  
EXT PWR  
NP1K  
STAT  
1
2
4
6
8
10  
VANA  
3
5
7
9
STAT  
J1 2  
ACOK_N  
VTCXO  
INT/EXT PWR  
J10  
R32 NP 10k  
R31  
10K  
R33  
1
2
3
4
11 12  
13 14  
15 16  
17 18  
19 20  
21 22  
23 24  
25 26  
SDA  
SCL  
GND  
R1  
RESET_N  
BAT_ID  
0
TX_EN  
PWR_HOLD  
10K  
VDIG  
DATA HEADER  
TP1  
PON_N  
VCORE  
CHG_EN  
VBAT VBAT  
Header 13X2H  
TP2  
CHGIN  
J3  
VBAT  
J11  
3
U1  
2
CHGIN  
28  
27  
26  
BAT  
VCORE VRX VTX VTCXO VANA VDIG  
CHGIN  
BAT  
BAT  
1
C3  
22µF  
C1  
10µF  
VBUS/VCHG  
R2  
0
30  
29  
J4  
J5  
J6  
J 7  
J8  
J9  
ENBAT  
CHGIN  
25  
24  
14  
11  
22  
BUCK  
OUT5  
OUT4  
OUT3  
OUT2  
OUT1  
N/C  
N/C  
AVIN1  
AVIN2  
PVIN  
R34  
R36  
0
R35  
R4  
R6  
0
0
35  
36  
0
SDA  
SCL  
C16  
0
C15  
VBATT  
3
2
1
0.001µF  
C17  
EN_KEY  
EN_H OLD  
EN_T EST  
22µF  
R7 DNP  
15  
13  
12  
10  
9
OUT1  
OUT2  
OUT3  
OUT4  
OUT5  
OUT1  
OUT2  
VDIG  
OUT3  
0.001µF  
R9  
R10  
R12  
R14  
0
0
0
0
5
6
7
8
AAT3603A  
EN2  
EN3  
EN4  
EN5  
OUT4  
R5  
OUT5  
20  
23  
buckout  
LX  
100K  
R8  
L1 3.3µH  
J2  
OUTBUCK  
SDA  
SCL  
1
2
4
TP9 LX  
100K  
VTX  
3
5
7
9
C4  
4.7µF  
C5  
4.7µF  
C6  
4.7µF  
C7  
10µF  
C8  
10µF  
C9  
22µF  
TCXO_EN  
ACOK_N  
33  
32  
31  
19  
4
18  
34  
R11  
0
0
0
0
6
CT  
ADPP  
ON-KEY  
RESET  
STAT  
PON_N  
RESET_N  
STAT  
8
10  
R13  
R15  
R16  
ANA_EN  
VRX  
ISET  
TS  
11 12  
13 14  
15 16  
17 18  
19 20  
21 22  
23 24  
25 26  
BAT_I D  
17  
CNOISE  
VBUS  
VCHG  
R28  
R29  
10K  
PWR_ON  
RX_EN  
HF_PWR  
Q1  
CMPT3904  
VBATT  
16  
21  
37  
AGND  
PGND  
GND_SLUG  
C12  
R18  
0.1µF 1.24K  
4.75K  
R37  
NP  
10K  
ACOK_N RESET_N  
TP3  
R17  
10K  
TP5  
VDIG  
Header 13X2H  
R38  
R39  
0
0
C10  
C11  
C13  
0.01µF  
VCORE  
0.1µF 0.1µF  
PON_N  
TP4  
STAT  
TP6  
BAT  
VDIG  
R20  
VDIG  
VDIG  
VDIG  
R19  
10K  
R21  
100K  
R22  
100K  
R23  
100K  
100K  
J13  
J14  
J15  
1
2
3
J16  
SW1  
1
2
3
1
2
3
1
2
3
PWR_ON  
RX_EN  
TX_EN  
TCXO_EN  
ANA_EN  
PWR_ON  
RX_EN  
TX_EN  
TCXO_EN  
ANA_EN  
BAT  
VDIG  
R25  
CHGIN  
R 24  
10K  
R 27  
100K  
TP7  
TP8  
TP12  
GND  
100K  
GND GND  
J17  
J18  
J20  
1
2
3
1
2
3
1
2
3
HF_PWR  
CHG_EN  
PWR_HOLD  
HF_PWR  
PWR_HOLD  
CHG_EN  
Figure 10: AAT3603A Evaluation Kit Schematic.  
Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
34  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Ordering Information  
Package  
Part Marking1  
Part Number (Tape and Reel)2  
AAT3603AIIH-T1  
TQFN55-36  
7TXYY  
Skyworks Green™ products are compliant with  
all applicable legislation and are halogen-free.  
For additional information, refer to Skyworks  
Definition of Green™, document number  
SQ04-0074.  
Packaging Information  
TQFN55-36  
Index Area  
(D/2 x E/2)  
R = 0.1  
Detail "A"  
C = 0.3  
5.000 0.050  
3.600 0.050  
Top View  
Bottom View  
0.750 0.050  
+ 0.050  
0.200 0.050  
0.203 REF  
0.000  
- 0.000  
Side View  
0.40 BSC  
Detail "A"  
All dimensions in millimeters.  
1. XYY = assembly and date code.  
2. Sample stock is generally held on part numbers listed in BOLD.  
3. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing  
process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
35  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  
DATA SHEET  
AAT3603A  
Total Power Solution for Portable Applications  
Copyright © 2012 Skyworks Solutions, Inc. All Rights Reserved.  
Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a  
service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Sky-  
works may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no  
responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.  
No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided here-  
under, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.  
THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR  
PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES  
NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, IN-  
CLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM  
THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.  
Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or en-  
vironmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper  
use or sale.  
Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of pub-  
lished parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product  
design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.  
Skyworks, the Skyworks symbol, and “Breakthrough Simplicity” are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for  
identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.  
Skyworks Solutions, Inc.  
• Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com  
36  
202212A  
• Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • July 26, 2012  

相关型号:

AAT3603IIH-T1

Total Power Solution for Portable Applications
ANALOGICTECH

AAT3607INJ-T1

Power Supply Support Circuit, Adjustable, 6 Channel, TDFN-28
SKYWORKS

AAT3608IIC-1-T1

Power Supply Management Circuit, Adjustable, 8 Channel, TQFN-40
SKYWORKS

AAT3608IIC-1-T1

Power Management Circuit,
ANALOGICTECH

AAT3620IWO-4.2-T1

Power Supply Management Circuit, PDSO14,
SKYWORKS

AAT3663

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-4.2-1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-4.2-2

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-8.4-1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663-8.4-2

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663IWO-4.2-1-T1

1A Linear Li-Ion Battery Charger for Single and Dual Cell Applications
ANALOGICTECH

AAT3663IWO-4.2-1-T1

Power Supply Management Circuit, Adjustable, 1 Channel, PDSO14, TDFN-14
SKYWORKS