CXL1503M [SONY]

CMOS-CCD Signal Processor; CMOS , CCD信号处理器
CXL1503M
型号: CXL1503M
厂家: SONY CORPORATION    SONY CORPORATION
描述:

CMOS-CCD Signal Processor
CMOS , CCD信号处理器

消费电路 商用集成电路 光电二极管 ISM频段 CD
文件: 总9页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CXL1503M/1505M  
CMOS-CCD Signal Processor  
Description  
24 pin SOP (Plastic)  
CXL1503M/1505M are CMOS-CCD signal processors  
developed for CCD camera complementary color filter  
array processing system.  
CXL1503M 1H × 4 301.5 bit CCD delay line  
CXL1505M 1H × 4 453.5 bit CCD delay line  
Features  
Single power supply 5V  
Low power consumption  
CXL1503M 100mW (Typ.)  
CXL1505M 150mW (Typ.)  
Built-in peripheral circuits  
Built-in CDS (Correlated Double Sampling) circuit  
Function  
Clock driver  
Autobias circuit (center and black)  
Pedestal clamp circuit  
CDS circuit  
Structure  
CMOS-CCD  
Absolute Maximum Ratings (Ta = 25°C)  
Supply voltage  
VDD  
6
V
Operating temperature  
Storage temperature  
Topr –10 to +60 °C  
Tstg –55 to +150 °C  
Allowable power dissipation PD  
500  
mW  
Recommended Operating Conditions (Ta = 25°C)  
Supply voltage 5 ± 5%  
VDD  
V
Recommended Clock Conditions (Ta = 25°C)  
Item  
Clock voltage Low  
Clock voltage High  
Symbol  
VL  
Min.  
0
Typ.  
Max.  
1.0  
Unit  
V
Remarks  
VH  
VDD – 1.0  
VDD  
V
NTSC: 910fH/3  
CCIR: 908fH/3  
fCL  
fCL  
4.77  
7.16  
MHz  
MHz  
CXL1503M  
CXL1505M  
Clock frequency  
NTSC: 455fH  
CCIR: 454fH  
Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by  
any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the  
operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.  
– 1 –  
E89174A03-PS  
CXL1503M/1505M  
Block Diagram  
Pin Configuration (Top View)  
19  
18  
4
8
1
16  
17  
20  
A. B  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VSS  
IN C  
ABBL  
VDD  
IN B  
21  
ABCN  
CENTER  
TIMING GENERATOR  
DCAB  
IN A  
A. B  
BLACK  
3
ABBL  
DCAB  
3
4
23  
ABCN  
VDD  
P. D  
P. D  
5
IS  
5V  
PG GEN.  
PG GEN.  
PG GEN.  
6
IN D  
CLP  
XDL1  
XDL2  
VSS  
CDS-OUTPUT  
CIRCUIT  
CLP  
22  
24  
2
IN A  
IN B  
IN C  
IN D  
DL A  
15 OUT A  
7
8
VDD  
CDS-OUTPUT  
CIRCUIT  
CLP  
13  
OUT B  
DL B  
DL C  
DL D  
9
OUT D  
VGG  
VSS  
10  
11  
12  
OUT A  
CDS  
OUT B  
CDS-OUTPUT  
CIRCUIT  
CLP  
CLP  
11 OUT C  
OUT C  
N.C.  
PG GEN.  
CDS-OUTPUT  
CIRCUIT  
6
9
OUT D  
POTENTIAL  
CONTROL  
WAVE  
FORM  
INPUT  
SOURCE  
BIAS.  
7
5
12  
10  
14  
Pin Description  
Symbol  
1, 16, 17 VSS  
No.  
Description  
Impedance ()  
I/O  
GND  
I
2
3
IN C  
Signal input C channel  
Autobias DC output for Y signal  
5V power supply  
> 100k (at no clamp)  
2k to 20k  
ABBL  
O
O
I
4, 8, 20 VDD  
5
IS  
Input source DC output  
Signal input D channel  
Clamp pulse input  
5k  
6
IN D  
> 100k (at no clamp)  
> 100k  
7
CLP  
I
9
OUT D  
VGG  
Signal output D channel  
Gate bias DC output  
Signal output C channel  
O
O
O
O
O
O
I
50 to 500  
2k to 10k  
50 to 500  
10  
11  
12  
13  
14  
15  
18  
19  
21  
22  
23  
24  
OUT C  
N.C.  
OUT B  
CDS  
Signal output B channel  
DC output for CDS  
50 to 500  
500 to 5k  
OUT A  
XDL2  
XDL1  
ABCN  
IN A  
Signal output A channel  
Clock pulse input 2  
50 to 500  
> 100k  
Clock pulse input 1  
> 100k  
I
Autobias DC output for C signal  
Signal input A channel  
DC bias input for A and B channel  
Signal input B channel  
– 2 –  
2k to 20k  
O
I
> 100k (at no clamp)  
> 100k  
DCAB  
IN B  
I
I
> 100k (at no clamp)  
CXL1503M/1505M  
– 3 –  
CXL1503M/1505M  
Notes)  
1. Linearity testing  
For A channel and B channel, set input bias E1 to ABCN + 0.2 [V] first, and then set it to ABCN [V] and ABCN  
– 0.2 [V]. Then input a sine wave of 100kHz and 100mVp-p, and compare the three output amplitudes.  
For C channel and D channel, set input bias E1 to ABBL – 0.4 [V] first, and then set it to ABBL – 0.2 [V] and  
ABBL [V]. Then input a sine wave of 100kHz and 100mVp-p, and compare the three output amplitudes.  
The maximum output amplitude for the respective A, B, C and D channels is taken as Sout max. and the  
minimum output amplitude as Sout min. The linearity of the respective channels is defined as  
Sout max – Sout min  
Sout max + Sout min  
Lin =  
× 200 [%]  
2. Calculation of insertion gain difference  
As the max. insertion gain among A, B, C and D channels' is taken as Gmax and the min. as Gmin., the  
insertion gain difference between channels becomes:  
G = ABS (1 – 10(Gmax – Gmin) ) × 100 [%]  
20  
3. Calculation of linearity difference  
Define A channel linearity as LA, and B channel linearity as LB. We obtain the difference LAB as follows.  
LAB = LA – LB [%]  
Similarly we obtain the linearity difference LCD of C channel and D channel as follows.  
LCD = LC – LD [%]  
4. Crosstalk calculation  
We take CRTa as: A channel crosstalk value only during B channel input  
CRTb as: B channel crosstalk value only during A channel input  
CRTc as: C channel crosstalk value only during D channel input  
CRTd as: D channel crosstalk value only during C channel input  
The crosstalk value of respective channels becomes:  
Crosstalk component  
CRTa to d =  
× 100 [%]  
Each channel output value  
– 4 –  
CXL1503M/1505M  
Clock Waveform Timing  
(140)  
210ns  
(52.5)  
87.5ns  
10ns  
10ns  
90%  
90%  
50%  
10%  
XDL1  
50%  
10%  
( ) is for CXL1505M.  
(52.5)  
17.5ns  
87.5ns  
10ns  
10ns  
90%  
50%  
10%  
90%  
50%  
10%  
XDL2  
– 5 –  
CXL1503M/1505M  
Electrical Characteristics Test Circuit  
No signal  
a
c
b
100kHz, 100mVp-p sine wave  
1MHz, 100mVp-p sine wave  
5V  
5V  
SW1  
3.3k  
3.3k  
a
a
a
a
V1  
1µ  
b
b
b
b
SW7 SW6 SW5 SW4  
V4  
16V  
XDL1 XDL2  
1µ  
16V  
a
b
c
d
SW3  
19 18  
13  
17 16 15 14  
24 23  
22 21  
20  
5
×1  
×1  
LPF  
5V  
5V  
3.3k  
3.3k  
1
4
6
7
8
9
12  
2
3
10 11  
(NC)  
1µ  
16V  
1µ  
16V  
1µ  
16V  
V6  
V5  
V2  
A1  
V3  
SW2  
b
10k 10k 10k 10k  
E1  
a
VDD  
5V  
Application Circuit  
5V  
5V  
3.3k  
Input  
B
Input  
A
XDL XDL  
Output A  
Output B  
VDD  
1
2
4.7µ  
16V  
3.3k  
0.1µ 0.1µ  
16V 16V 16V  
1µ  
1µ  
16V  
100p  
21  
20  
19  
18  
13  
23  
17  
16  
15  
10  
14  
11  
24  
22  
5V  
5V  
3.3k  
3.3k  
1
4
5
6
7
8
9
12  
2
3
Output C  
Output D  
(NC)  
1µ  
16V  
1µ  
16V  
0.1µ  
16V  
0.1µ  
16V  
1µ  
16V  
100p 4.7µ  
16V  
100p 4.7µ  
16V  
Input  
C
Input CLP  
Input  
VDD  
VDD  
D
Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for  
any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.  
– 6 –  
CXL1503M/1505M  
Frequency response  
–2  
–3  
–4  
–5  
–6  
–7  
10k  
100k  
1M  
10M  
Signal frequency [Hz]  
Autobias center level vs. Supply voltage  
Autobias black level vs. Supply voltage  
3
2
3
2
1
1
4.5  
5
5.5  
4.5  
5
5.5  
VDD – Supply voltage [V]  
VDD – Supply voltage [V]  
Insertion gain vs. Supply voltage  
Linearity vs. Supply voltage  
0
10  
–2.5  
5
–5  
0
4.5  
5
5.5  
4.5  
5
5.5  
VDD – Supply voltage [V]  
VDD – Supply voltage [V]  
– 7 –  
CXL1503M/1505M  
Frequency response vs. Supply voltage  
Autobias center level vs. Ambient temperature  
0
–1  
–2  
3
2
1
0
20  
40  
60  
4.5  
5
5.5  
VDD – Supply voltage [V]  
Ta – Ambient temperature [°C]  
Autobias black level vs. Ambient temperature  
Insertion gain vs. Ambient temperature  
0
–2.5  
–5  
3
2
1
0
20  
40  
60  
0
20  
40  
60  
Ta – Ambient temperature [°C]  
Ta – Ambient temperature [°C]  
Linearity vs. Ambient temperature  
Frequency response vs. Ambient temperature  
10  
0
5
0
–1  
–2  
0
20  
40  
60  
0
20  
40  
60  
Ta – Ambient temperature [°C]  
Ta – Ambient temperature [°C]  
– 8 –  
CXL1503M/1505M  
Package Outline  
Unit: mm  
24PIN SOP (PLASTIC)  
+ 0.4  
1.85 – 0.15  
+ 0.4  
15.0 – 0.1  
0.15  
24  
13  
+ 0.2  
0.1 – 0.05  
12  
1
+ 0.1  
1.27  
0.45 ± 0.1  
0.2 – 0.05  
0.24  
M
PACKAGE STRUCTURE  
MOLDING COMPOUND  
EPOXY RESIN  
SOLDER PLATING  
LEAD TREATMENT  
LEAD MATERIAL  
PACKAGE MASS  
SONY CODE  
EIAJ CODE  
SOP-24P-L01  
SOP024-P-0300  
42/COPPER ALLOY  
0.3g  
JEDEC CODE  
– 9 –  

相关型号:

CXL1504M

CMOS-CCD 1H Delay Line for NTSC
SONY

CXL1505M

CMOS-CCD Signal Processor
SONY

CXL1506

CMOS-CCD 1H/2H Delay Line for PAL
SONY

CXL1506M

CMOS-CCD 1H/2H Delay Line for PAL
SONY

CXL1506M/N

CMOS-CCD 1H/2H Delay Line for PAL
ETC

CXL1506N

CMOS-CCD 1H/2H Delay Line for PAL
SONY

CXL1507M

Consumer Circuit, CMOS, PDSO20, 0.300 INCH, PLASTIC, SOP-20
SONY

CXL1508M

Consumer Circuit, CMOS, PDSO20, 0.300 INCH, PLASTIC, SOP-20
SONY

CXL1510M

CCD Delay Line for Multi System
SONY

CXL1511M

CCD Delay Line for PAL
SONY

CXL1512M

CCD Delay Line for NTSC
SONY

CXL1517

CMOS-CCD Signal Processor
SONY