L5953 [STMICROELECTRONICS]

MULTIPLE SWITCHING VOLTAGE REGULATOR; 多开关电压调节
L5953
型号: L5953
厂家: ST    ST
描述:

MULTIPLE SWITCHING VOLTAGE REGULATOR
多开关电压调节

开关
文件: 总24页 (文件大小:219K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L5953  
MULTIPLE SWITCHING VOLTAGE REGULATOR  
PRODUCT PREVIEW  
PWM: ADJUSTABLE 2.5/10V - 1A  
SWITCHING VOLTAGE REGULATOR  
EXTERNAL POWER MOS ABILITY FOR  
OUTPUT CURRENT ENHANCEMENT  
SYNCHRONIZATION FUNCTION  
REG1- LINEAR LOW DROP 3.3/5V - 250mA  
STBY VOLTAGE REGULATOR (LOW  
CURRENT CONSUMPTION) with RESET  
REG2- LINEAR VOLTAGE REGULATOR 1.5V  
to 3.3V EXTERNALLY ADJUSTABLE - 300mA  
MAXIMUM CURRENT  
PowerSO36  
ORDERING NUMBER: L5953  
– HSD1 & HSD2 short to gnd, open load and  
short to battery (Test mode)  
– Thermal warning  
HSD1 : 500mA HIGH SIDE DRIVER  
HSD2 : 200mA HIGH SIDE DRIVER  
SPI INTERFACE  
PROTECTIONS  
SPI DIAGNOSTICS HSD1, HSD2  
DOUBLE SWITCHING FREQUENCY SPI  
SELECTABLE  
OVERVOLTAGE PROTECTION  
INTERNAL CURRENT LIMITING  
THERMAL SHUTDOWN  
ESD  
DOUBLE INPUT LVW  
SPI FUNCTIONS  
INPUT CONTROLS  
DESCRIPTION  
The L5953 is the integration of one switching regula-  
tor, two linear voltage regulators, two low voltage  
warnings and two high side drivers. It has a stand-by  
operation mode (low current consumption) where  
only the stand-by voltage regulator plus the low volt-  
age warnings are active. The other regulators and  
high side drivers are controlled by the SPI interface.  
– Turn-on/off PWM  
– Turn-on/off REG2  
– Turn-on/off HSD1  
– Turn-on/off HSD2  
– Switching frequency selection f1- f2  
OUTPUT FUNCTIONS:  
BLOCK DIAGRAM  
S1  
W1  
S2  
W2  
VDD-LIN  
VDD-SW  
STCAP  
CT  
RES  
FGND  
REC1  
VSTBY  
ADJ  
ST-BY LINEAR VOLTAGE  
REGULATOR  
VOLTAGE WARNING  
HSD1  
3.3-5V/250mA  
HSD1  
HSD2  
PWM  
STRAP  
STEP DOWN  
REGULATOR  
2.5-10V/1A  
HSD2  
DRAINOUT  
VSW  
GATEIN  
GATEOUT  
FB  
COMP  
REC2  
VSPI  
IRQ  
LINEAR VOLTAGE  
REGULATOR  
1.5-3.3V/300mA  
SPI INTERFACE  
OSCILLATOR &  
SYNC  
SWGND  
GND  
D01AU1330A  
Q
D
S
C
VLR  
FBLR  
VIN  
SYNC  
DGND  
September 2003  
1/24  
This is preliminary information on a new product now in development. Details are subject to change without notice.  
L5953  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
-0.6 to 30  
50  
Unit  
V
V
DD  
DC Operating Supply Voltage  
Transient Supply Overvoltage (250ms)  
Supply Voltage for SPI I/O  
V
V
SPI  
-0.6 to 6  
V
I
Voltage Regulator Output Current  
Internally limited  
0 to 6  
O
V
V
Input Voltage (C,D,Q,S,SYNC)  
inlog  
RESR  
Output Capacitor Series Eq. Resistance (Linear reg.)(Allowed  
range)  
From 0.2 to 10  
T
Operating Temperature Range  
Storage Temperature Ranges  
Operative Junction Temperature  
-40 to 85  
-55 to 150  
-40 to 150  
°C  
°C  
°C  
op  
T
stg  
T
j
THERMAL DATA  
Symbol  
Parameter  
Value  
Unit  
R
Thermal Resistance Junction to Case  
1.7  
°C/W  
thj-case  
PIN CONNECTION  
1
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
FGND  
S2  
ADJ  
2
VSTBY  
VSPI  
3
S1  
4
W2  
STCAP  
FB  
5
W1  
6
RES  
CT  
COMP  
FBLR  
7
8
D
VIN  
9
C
VLR  
10  
11  
12  
13  
14  
15  
16  
17  
18  
Q
SYNC  
STRAP  
GATEOUT  
GATEIN  
VSW  
S
DGND  
IRQ  
HSD2  
VDD-LIN  
N.C.  
HSD1  
SWGND  
GND  
N.C.  
DRAINOUT  
VDD-SW  
D02AU1345A  
2/24  
L5953  
PIN FUNCTION  
Pin Number  
Pin Name  
Function  
1
FGND  
S2  
Analog Ground  
Input Voltage for LVW2  
Input Voltage for LVW1  
LVW2 Output  
2
3
S1  
4
W2  
W1  
RES  
CT  
5
LVW1 Output  
6
Reset  
7
Timing capacitor  
SPI Serial Input  
SPI Clock  
8
D
9
C
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
Q
SPI Serial Output  
SPI Chip Select  
SPI Ground  
S
DGND  
IRQ  
HSD2  
Interrupt  
HSD2 Output  
VDD-LIN  
N.C.  
Battery  
Not Connected  
HSD1 Output  
HSD1  
SWGND  
VDD-SW  
DRAINOUT  
N.C.  
Switching Ground  
PWM Battery  
Drain of the exrternal MOS  
Not Connected  
Ground  
GND  
VSW  
Source of the external MOS  
Gate of the internal MOS  
GATEIN  
GATEOUT  
STRAP  
SYNC  
VLR  
Switching Output for power mos gate  
Bootstrap  
Synchronization  
REG2 Linear Voltage Regulator Output  
REG2 Linear Voltage Regulator Input  
REG2 Linear Voltage Regulator Feedback  
PWM Compensation  
VIN  
FBLR  
COMP  
FB  
PWM Feedback  
STCAP  
VSPI  
ST-CAP  
Supply Voltage for SPI I/O  
REG1 Stand-by Linear Voltage Regulator Output  
3.3V/5V REG1 Voltage Select  
VSTBY  
ADJ  
3/24  
L5953  
ELECTRICAL CHARACTERISTCS  
( T  
= 25°C, V = 14.4V)  
DD  
amb  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
I
Quiescent current with regulators W1, W2, RES, IRQ, not active;  
100  
µA  
Q,STBY  
and High-side drivers off  
REG2, HSD1, HSD2, PWM off;  
S, C, D fixed at high/low logic  
level  
T
Thermal Shutdown Junction  
Temperature  
150  
°C  
sd  
SMPS.PWM  
T
= 25°C, V = 14.4V, V = 5V; unless otherwise specified.)  
DD o  
amb  
Vo,min  
Minimum Output Voltage  
Maximum Output Voltage  
I = 200mA  
2.4  
9.6  
2.5  
10  
2.6  
V
V
o
V
o,max  
I = 200mA  
o
10.4  
Vref,PWM Voltage Reference  
1.275  
V
V
Input Voltage Range  
Line Regulation  
V = 5V; I = 0.5A  
6
18  
100  
50  
0.5  
1
V
i
o
o
V  
I = 0.5A  
o
mV  
mV  
V
o
V  
Load Regulation  
V = 5V; I = 0.2A to 0.5A  
o o  
o
V
Dropout Voltage between Pin 19 I = 0.5A, V = 5V  
o o  
and Pin 23  
d
I = 1A, V = 5V  
V
o
o
I
Current Limit  
Efficiency  
1.5  
A
Lim  
η
f = 260kHz; I = 0.5A  
90  
86  
%
%
o
f = 400kHz; I = 0.5A  
o
SVR  
Supply Voltage Ripple Rejection  
V = 1Vrms;  
50  
dB  
i
f
= 300Hz; I = 0.4A  
ripple  
o
OSCILLATOR  
f
Swiching frequency  
Swiching frequency  
249  
384  
260  
400  
Tbd  
271  
416  
kHz  
kHz  
%
1
2
f
Voltage Stability of Switching  
Frequency  
V
= 8 to 18V  
DD  
f  
--------  
Vi  
Temperature Stability of Switching T = -40°C to 85°C  
Frequency  
Tbd  
%
j
f  
T j  
--------  
SYNC  
V
Low Input Voltage  
High Input Voltage  
Low Output Voltage  
0.8  
0.4  
V
V
V
V
IL  
V
IH  
2
4
V
OL  
V
OH  
High Output Voltage  
I
=1.5mA  
SOURCE  
4/24  
L5953  
ELECTRICAL CHARACTERISTCS (continued)  
( T = 25°C, V = 14.4V)  
amb  
Symbol  
DD  
Parameter  
Slave Sink Current  
Output Pulse Width  
REG1 - 3.3V/5V STBY LINEAR VOLTAGE REGULATOR  
Test Condition  
Min.  
Typ.  
100  
300  
Max.  
Unit  
µA  
I
SLAVE  
T
W
ns  
V
Output Voltage  
no load; ADJ pin = open  
no load; ADJ pin = VSTBY pin  
4.9  
3.20  
5
3.3  
5.1  
3.4  
V
V
STBY  
V  
Line Regulation  
Load Regulation  
no load; 7 < Vdd < 26V  
5
50  
80  
mV  
mV  
V
line  
V  
5mA < I < 250mA  
12  
load  
o
V
V
- V  
I = 100mA, V = 5V  
0.36  
0.47  
0.5  
0.65  
dropout  
STCAP  
STBY  
o
o
I = 100mA, V = 3.3V  
o
o
I
Current Limit  
Out short to GND  
300  
mA  
dB  
lim  
SVR  
Supply Voltage Rejection  
V = 1Vrms: f = 300Hz  
55  
DD  
I = 250mA  
o
REG2 - LINEAR VOLTAGE REGULATOR 1.5V to 3.3V  
V
Linear Regulator Output Voltage  
no load; 4.75 V 16V;  
1+ (R5/R6) = 2.588  
3.2  
1.45  
3.135  
4.75  
3.3  
1.5  
3.4  
1.55  
16  
V
LR  
IN  
no load; 3.135 V 16V;  
IN  
1+ (R5/R6) = 1.176  
V
Input Voltage  
I
= 150mA  
O
V
V
IN  
1.5V V 2V  
LR  
I
= 300mA  
16  
O
1.5V V 3.3V  
LR  
V  
Load Regulation  
Line Regulation  
5mA I 300mA  
12  
1
mV  
mV  
load  
O
4.75V  
V
IN  
16V; 1.5V  
16V; 1.5V  
V
V
3.3V  
3.3V  
LR  
V  
no load;  
4.75V  
line  
V
IN  
LR  
V
Voltage Reference  
Current Limit  
1.275  
V
ref,REG2  
I
Out Short to ground  
= 5Vdc, 0.5Vacpp, 300Hz  
400  
mA  
dB  
Lim  
SVR  
Supply Voltage Rejection  
V
55  
55  
IN  
I
= 300mA; 1.5V  
V
LR  
3.3V  
O
V
= 3.3Vdc, 0.5Vacpp, 300Hz  
dB  
IN  
I
= 150mA; 1.5V  
V
LR  
2V  
O
O
HSD1  
V
Saturation Voltage  
Current Limit  
I
= 0.5A  
250  
100  
mV  
mA  
mH  
sat, peak  
I
lim  
600  
L
load  
Load Inductance  
5/24  
L5953  
ELECTRICAL CHARACTERISTCS (continued)  
( T  
= 25°C, V = 14.4V)  
DD  
amb  
Symbol  
HSD2  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
V
Saturation Voltage  
I
= 0.2A  
O
250  
mV  
mA  
mH  
sat, peak  
I
lim  
Current Limit  
300  
L
load  
Load Inductance  
100  
VOLTAGE WARNING  
V
Sense Low Threshold  
1.245  
35  
1.275  
45  
1.305  
60  
V
mV  
V
st  
V
V
Sense Threshold Hysteresis  
Sense Output Low Voltage  
Sense Output Leakage  
Sense Input Current  
sth  
I = 1mA  
0.4  
10  
SL  
o
I
SH  
V
= 5V; V  
1.5V  
µA  
µA  
W
SI  
I
V =5V  
SI  
1
SI  
RESET  
V
Reset Threshold Voltage  
Reset Threhold Hysteresis  
0.95 x  
V
V
RT  
V
STBY  
V
RTH  
0.02 x  
V
STBY  
V
Reset Output Voltage  
I = 1mA  
0.4  
10  
V
RL  
o
I
Reset Output Leakage  
Delay Comparator Threshold  
V
= V  
µA  
RH  
RT  
STBY  
V
CTth  
0.5 x  
V
STBY  
V
I
Delay Comparator Threshold  
Hysteresys  
180  
mV  
µA  
CThy  
Timing Capacitor Output Source  
Current  
7.5  
CT1  
R
Timing Capacitor Output Pull-  
Down equivalent Resistor  
150  
CT2  
DIAGNOSTIC PARAMETERS  
Symbol Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
HSD1W1 High Side Driver 1 Overcurrent  
Warning activation  
0.95  
A
HSD1W2 High Side Driver 1 Open Load  
Warning activation  
HSD1 output voltage in test mode  
HSD1 in test mode  
3
V
V
A
HSD1W2 High Side Driver 1 V Short  
1.5  
0.7  
DD  
TEST  
Measure V  
-V  
Warning activation in test mode  
VDD-LIN HSD1  
HSD2W1 High Side Driver 2 Overcurrent  
Warning activation  
6/24  
L5953  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
HSD2W2 High Side Driver 2 Open Load  
Warning activation  
HSD2 output voltage in test mode  
3
V
HSD2W3 High Side Driver 2 V Short  
HSD2 in test mode  
1.5  
V
DD  
Measure V  
-V  
Warning activation in test mode  
VDD-LIN HSD1  
THW  
IRQ - Interrupt Request Pin  
IRQ-L IRQ Low voltage  
Thermal warning activation  
145  
°C  
I = 1mA  
0.4  
1
V
o
IRQ-H IRQ Leakage  
V
= 5V  
µA  
irq  
SPI INTERFACE  
Symbol  
Recommended DC Operating Voltage  
Supply Voltage for SPI I/O  
Input Parameters (Tamb = 25°C, f = 1MHz)  
Alt  
Parameter  
Test Conditions  
Min.  
Max.  
Unit  
V
SPI  
3
5.5  
V
C
Input Capacitance (D)  
8
6
pF  
pF  
ns  
IN  
IN  
C
Input Capacitance (others pins)  
Input Signal Pulse Width  
t
10  
LPF  
DC Characteristics (T  
= -40 to 85°C, V  
= 3V to 5.5V)  
amb  
SPI  
I
Input Leakage Current  
Output Leakage Current  
Input Low Voltage  
2
µA  
µA  
V
LI  
I
LO  
±2  
V
-0.3  
0.3V  
SPI  
IL  
IH  
V
Input High Voltage  
0.7  
V
V
SPI+1  
V
SPI  
V
Output Low Voltage  
Output High Voltage  
I
I
= 2mA  
0.2  
V
SPI  
V
OL  
OL  
V
OH  
= -2mA  
0.8  
V
V
OH  
SPI  
AC Characteristics (Tamb = -40 to 85°C, V  
= 3V to 5.5V  
SPI  
t
t
t
t
S Setup Time  
50  
50  
ns  
ns  
ns  
ns  
µs  
µs  
ns  
ns  
µs  
SCLH  
CLSH  
SU  
S Hold Time  
SH  
t
t
Clock High Time  
Clock Low Time  
Clock Rise Time  
Clock Fall Time  
Data In Setup Time  
Data In Hold Time  
Data In Rise Time  
200  
300  
CH  
WH  
t
t
WL  
CL  
t
t
t
1
CLCH  
CHCL  
DVCH  
CHDX  
RC  
t
1
FC  
t
t
50  
50  
DSU  
t
t
DH  
t
t
RI  
1
DLDH  
7/24  
L5953  
Symbol  
Alt  
Parameter  
Data in Fall Time  
Test Conditions  
Min.  
Max.  
Unit  
t
t
FI  
1
µs  
DHDL  
t
t
S Deselect Time  
4.5V < V < 5.5V  
SPI  
200  
250  
ns  
ns  
SHSL  
CS  
3V < V  
< 4.5V  
SPI  
t
t
Output Disable Time  
Clock Low to Output Valid  
Output Hold Time  
150  
250  
ns  
ns  
ns  
ns  
ns  
SHQZ  
DIS  
t
t
t
V
QVCL  
CLQX  
QLQH  
QHQL  
t
0
HO  
t
t
t
t
Output Rise Time  
100  
100  
RO  
FO  
Output Fall Time  
Figure 1. AC Testing Input Output WaveformsI  
0.8VSPY  
0.7VSPY  
0.3VSPY  
0.2VSPY  
D03AU1479  
Figure 2. SPI Clocking Scheme  
S
(MODE 0: CPOL=0,CPHA=0)  
C
(MODE 3: CPOL=1,CPHA=1)  
C
D
Q
MSB  
6
5
4
3
2
1
0
8/24  
L5953  
Figure 3. Output Timing  
S
C
tCH  
tCLQX  
tQVCL  
tCL  
tSHQZ  
MSB OUT  
MSB-1 OUT  
LSB OUT  
Q
tQLQH  
tQHQL  
ADDR.LSB IN  
D
(CPOL=0, CPHA=0)  
AI01070B  
Figure 4. Serial Input Timing  
tSHSL  
S
tSLCH  
tCLSH  
C
tDVCH  
tCHCL  
tCHDX  
tCLCH  
MSB IN  
LSB IN  
D
tDLDH  
tDHDL  
HIGH IMPEDANCE  
Q
AI01071  
(CPOL=0, CPHA=0)  
FUNCTIONAL DESCRIPTION  
REG1 Stand-by Regulator (Figure 5)  
The stand-by regulator output voltage can be 5V or 3.3V. It is externally selectable by means of the ADJ pin:  
- leaving the ADJ pin open, the output voltage is 5V;  
- connecting the ADJ pin to the Vstby pin the output voltage becomes 3.3V.  
This regulator is supplied by STCAP pin and provide the reset information.  
It has a current protection which limits the maximum allowable output current.  
Reset (Figure 6)  
The RES pin is an open collector that is activated (that is forced to zero) when the stand-by regulator is not in  
regulation (including thermal shutdown and faults). The indication that REG1 is in regulation is delayed by a time  
9/24  
L5953  
set up by the external capacitor CT.  
When the RES is switched on, HSD1, HSD2, REG2, PWM are turned off and until the RES is forced to zero  
only the REG1 and low Voltage Warnings are active.  
Low Voltage Warning(Figure 7)  
This circuit is able to sense two different voltages through external resistors to increase the overall flexibility.  
If S1 pin voltage is higher than Vst, the output mos M1 is off: W1 is floating and can be pulled up by an external  
resistor. If S1 pin voltage goes down and becomes lower than Vst, the mos M1 is turned on and forces W1 to  
zero. The same thing happens for S2 - W2.  
The outputs W1 and W2 can be connected together to get a single output.  
REG2 Linear Voltage Regulator (Figure 5)  
REG2 is a linear voltage regulator with a dedicated supply pin VIN. The output voltage (between 1.5V and 3.3V)  
is fixed by an external divider. It can be turned on/off by SPI. It has a current protection which limits the maximum  
allowable output current.  
High Side Drivers (Figure 8)  
Two high-side driver with charge pump controlled by SPI are available inside L5953. They are protected against  
short to ground: the short circuit potection limits the maximum output current.  
A diagnostic procedure is available to detect open load, short to battery and overcurrent.  
Open load and short to battery can be reveal only in test mode while overcurrent is active only during normal  
operationof the device. (see OPERATION -page 13  
PWM Step Down Voltage Regulator (Figure 9)  
The switching regulator inside the L5953 is a voltage control mode (also known as "direct duty cycle") Buck reg-  
ulator: the error signal coming from the error amplifier is compared with a sawtooth to set on and off times of the  
power switch.  
The feedforward control is introduced to get a quickly response to input voltage changes: the sawtooh has a  
fixed frequency and an amplitude variable with the battery voltage.  
Continuous mode operation is recommended in order to reduce the stress of the output capacitor and of the  
free-wheeling diode.  
Error amplifier and compensation network  
The error amplifier (EA) is a voltage amplifier whose non-inverting input is fixed to the reference voltage (1.275V  
bandgap voltage) and whose inverting input and output are externally available for feedback and frequency  
compensation.  
10/24  
L5953  
Figure 5. Linear regulators - Internal pin connections  
STCAP  
VREF  
POWER MOS  
VSTBY  
1.275V  
VSTBY  
CONTROLLER  
VSTBY  
ADJ  
FGND  
FBLR  
VLR  
LINEAR REGULATOR  
CONTROLLER  
POWER MOS  
VREF  
1.275V  
VIN  
D03AU1493  
Figure 6. Reset Internal pin Connection  
RES  
CT  
Vref  
2.5V/1.65V  
7.5µA  
FROM VST-BY  
Vref 1.275V  
D03AU1480  
Figure 7. Low Voltage Warning Block Diagram.  
V1  
W1  
Vref =1.275V  
S1  
+
-
M1  
V2  
W2  
Vref =1.275V  
S2  
+
-
M2  
D03AU1478  
11/24  
L5953  
Figure 8. HSD - Internal pin connections  
HSD1  
POWER  
MOS  
HSD1  
HSD1  
CONTROLLER  
VDD-LIN  
HSD2  
POWER  
MOS  
HSD2  
HSD2  
CONTROLLER  
D01AU1333  
Figure 9. PWM - Internal pin connections  
STRAP  
COMP  
FB  
ERROR AMPLIFIER  
VDD-SW  
RS2  
DRAINOUT  
CURRENT  
SENSING  
RS1  
VREF  
1.275V  
VSW  
PWM  
CONTROLLER  
POWER  
MOS  
FROM THE  
OSCILLATOR  
GATEIN  
GATEOUT  
D03AU1482  
Figure 10. SPI & IRQ Internal pin connections  
IRQ  
S
Q
SPI  
INTERFACE  
D
C
DGND  
D03AU1481  
12/24  
L5953  
SPI INTERFACE  
Signals Description (Figure 10)  
The SPI interface available inside L5953 is able to work both in Mode 0 and Mode 3.  
Serial Output (Q). The output pin is used to transfer data serially out of the L5953. Data is shifted out on the  
falling edge of the serial clock.  
Serial Input (D). The input pin is used to transfer data serially into the device. It receives instructions, address-  
es, and data to be written. Input is latched on the rising edge of the serial clock.  
Serial Clock (C). The serial clock provides the timing of the serial interface. Instructions, addresses, or data  
present at the input pin are latched on the rising edge of the clock input, while data on the Q pin changes after  
the falling edge of the clock input.  
Chip Select (S). This input is used to select the L5953. The chip is selected by a high to low transition on the  
S pin. At any time, the chip is deselected by a low to high transition on the S pin. As soon as the chip is dese-  
lected, the Q pin is at high impedance state. The pin allows multiple L5953 to share the same SPI bus. After  
power up, the chip is at the deselect state.  
SPI Input/Output are supplied by an external supply voltage VSPI while the core is supplied by the stand-by  
regulator VSTBY. The SPI is resetted by an internal signal whose buffered version is RES .  
OPERATIONS  
All instructions, addresses and data are shifted in and out of the chip MSB first. Data input (D) is sampled on  
the first rising edge of clock (C) after the chip select (S) goes low. Prior to any operation, a one-byte instruction  
code must be entered in the chip. This code is entered in the chip. This code is entered via the data input (D),  
and latched on the rising edge of the clock input (C). To enter an instruction code, the product must have been  
previously selected (S = low). Table 1 shows the instruction set and format for device operation. An invalid in-  
struction (one not contained in table 1) leaves the chip as previously selected.  
Write Enable (WREN and Write Disable (WRDI)  
The L5953 contains a write enable latch. This latch must be set prior to every WRITE operation. The WREN  
instruction will set the latch and the WRDI istruction will reset the latch. The latch is reset under all the following  
conditions:  
– Power on  
– WRDI instruction executed  
As soon as the WREN or WRDI instruction is received by the L5953, the circuit executes the instruction and  
enters a wait mode until it is deselected.  
Table 1. Instruction Set.  
Instruction  
WREN  
WRDI  
Description  
Instruction Format  
00000110  
Set Write Enable Latch  
Reset Write Enable Latch  
Write Status Register  
Read Diagnostic Register  
Read Status Register  
00000100  
WSTA  
00000010  
RDIA  
00000101  
RSTA  
00000011  
13/24  
L5953  
Table 2. Status Register.  
s15  
s14  
s13  
s12  
s11  
s10  
s9  
s8  
s7  
s6  
s5  
s4  
s3  
s2  
s1  
s0  
REG2 HSD1 HSD2 TBD TBD PWM PWM TBD TBD TBD TBD TBD TBD TBD Test START  
Freq.  
Mode DIAG  
Table 3. Status Register Description  
0
1
REG2 Linear Voltage  
s15  
Regulator off  
Regulator on  
Regulator 1.5 to 3.3V  
s14  
s13  
s12  
s11  
s10  
s9  
High Side Driver 1  
HSD1 off  
HSD2 off  
HSD1 on  
HSD2 on  
High Side Driver 2  
TBD  
TBD  
PWM switching frequency  
260kHz  
400kHz  
PWM Voltage Regulator  
PWM1 off  
PWM1 on  
s8  
TBD  
s7  
TBD  
s6  
TBD  
s5  
TBD  
s4  
TBD  
s3  
TBD  
s2  
TBD  
Test Mode  
Test Mode off  
Diagnostic off  
Test Mode on  
NOTE: in this case the bits s15 - s2 are internally  
set to 0 (regulators and high side drivers are in off  
condition)  
s1  
s0  
Diagnostic  
Starts the diagnostic procedure:  
- in Test Mode if s1=1;  
- during normal operation if s1=0  
If s1=0 and s0=1, must be s14 = 1 (HSD1 ON)  
and s13=1 (HSD2 ON)  
Table 4. Diagnostic Register.  
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
Test mode HSD1W1  
HSD1W2  
HSD1W3  
HSD2W1  
HSD2W2  
HSD2W3  
THW  
14/24  
L5953  
Table 5. Diagnostic Register Description.  
0
1
d7  
d6  
d5  
d4  
d3  
d2  
d1  
d0  
Test mode  
HSD1W1  
The Diagnostic Register is  
referred to a test performed referred to a test performed  
during the normal working  
of the L5953  
The Diagnostic Register is  
in Test mode  
If d7=0: HSD1 in normal  
condition;  
If d7=1: bit value  
meaningless  
If d7=0: HSD1 is in  
overcurrent  
If d7=1: bit value  
meaningless  
HSD1W2  
If d7=0: bit value  
meaningless;  
If d7=1: HSD1 in normal  
condition  
If d7=0: bit value  
meaningless  
If d7=1: an open load is  
present on HSD1  
HSD1W3  
If d7=0: bit value  
meaningless;  
If d7=1: HSD1 in normal  
If d7=0: bit value  
meaningless  
If d7=1: HSD1 is shorted to  
the supply voltage VDD  
condition  
HSD2W1  
If d7=0: HSD1 in normal  
condition;  
If d7=1: bit value  
If d7=0: HSD2 is in  
overcurrent;  
If d7=1: bit value  
meaningless  
meaningless  
HSD2W2  
If d7=0: bit value  
meaningless  
If d7=1: HSD2 in normal  
condition  
If d7=0: bit value  
meaningless  
If d7=1: an open load is  
present on HSD2  
HSD1W3  
If d7=0: bit value  
meaningless  
If d7=1: HSD2 in normal  
condition;  
If d7=0: bit value  
meaningless  
If d7=1: HSD1 is shorted to  
the supply voltage VDD  
Thermal Warning  
Normal condition  
Overtemperature protection  
activated(Tj>150°C)  
SUMMARY OF THE MAIN OPERATIONS  
Operation A  
Test Mode Diagnostic Procedure Start  
1) WREN instruction (Fig.11)  
2) WSTA instruction (Fig.12)  
Operation B  
Read the Diagnostic Register  
Case1: after a Test Mode Diagnostic Procedure Start  
1) RDIA instruction (Fig.13)  
2) Diagnostic Register output (Fig.13)  
NOTE: an operation B must follow an operation A. The delay between the end of the operations A to  
the start of the operations B must be longer than 100µS  
Operation C  
Write the Status Register  
15/24  
L5953  
1) WREN instruction (Fig.11)  
2) WSTA instruction (Fig.16)  
Operation D  
Read the Status Register  
1) RSTA instruction (Fig.17)  
2) Status Register output (Fig.17)  
Operation E  
Diagnostic Procedure Start  
1) WREN instruction (Fig.11)  
2) WSTA instruction (Fig.14)  
Operation F  
Read the Diagnostic Register  
Case 2: after a Diagnostic Procedure Start  
1) RDIA instruction (Fig.15)  
2) Diagnostic Register output (Fig.15)  
An operation F must follow an operation E if the pin IRQ is not activated.  
The delay between the Operation E and an Operation F must be longer than 100µs.  
To be recognized, the fault must be present without interruptions during all the delay above mentionned .  
After an Operation F, the bit s0 of the Status Register is resettled (0)  
Operation G  
Write operation disabled  
1) WRDI instruction (Table 1)  
Operation H  
Read the Diagnostic Register case 3: after an IRQ pin activation  
1) RDIA instruction (Fig. 15)  
2) Diagnostic Register Output (Fig. 15)  
The delay between the IRQ activation and an Operation F must be longer than 100µs  
Figure 11. Write Enable Latch Sequence  
S
00  
01  
02  
03  
04  
05  
06  
07  
C
CPOL=0  
CPHA=0  
D
Q
HIGH IMPEDANCE  
D03AU1483  
16/24  
L5953  
Figure 12. Test Mode Diagnostic Procedure Start (after a Write Enable Latch Sequence, Fig.11)  
CPOL=0, CPHA=0  
S
C
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
s6  
18  
s5  
19  
s4  
20  
s3  
21  
s2  
22  
s1  
23  
s0  
INSTRUCTION  
STATUS REGISTER  
s9 s8 s7  
s15 s14 s13 s12 s11 s10  
D
Q
HIGH IMPEDANCE  
D03AU1484  
Figure 13. Read the Diagnostic registerCase1: after a Test Mode diagnostic procedure start (Fig.  
12)  
CPOL=0, CPHA=0  
S
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
C
D
Q
INSTRUCTION  
DIAGNOSTIC REGISTER OUT  
d6 d5 d4 d3 d2 d1  
HIGH IMPEDANCE  
d7  
d0  
D03AU1485  
Figure 14. Diagnostic Procedure Start (after a Write Enable Latch Sequence, operation A)  
CPOL=0, CPHA=0  
S
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
s6  
18  
s5  
19  
s4  
20  
s3  
21  
s2  
22  
s1  
23  
s0  
C
INSTRUCTION  
STATUS REGISTER  
s9 s8 s7  
s15 s14 s13 s12 s11 s10  
D
Q
HIGH IMPEDANCE  
D03AU1486  
Figure 15. Read the Diagnostic RegisterCase2: during the normal working of the L5953 (after a  
Diagnostic Procedure Start, Fig.14)  
CPOL=0, CPHA=0  
S
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
C
D
Q
INSTRUCTION  
DIAGNOSTIC REGISTER OUT  
d6 d5 d4 d3 d2 d1  
HIGH IMPEDANCE  
d7  
d0  
D03AU1487  
17/24  
L5953  
Figure 16. Write the Status Register (after a Write Enable Latch Sequence, operation A)  
CPOL=0, CPHA=0  
S
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
s6  
18  
s5  
19  
s4  
20  
s3  
21  
s2  
22  
s1  
23  
s0  
C
INSTRUCTION  
STATUS REGISTER  
s9 s8 s7  
s15 s14 s13 s12 s11 s10  
D
Q
HIGH IMPEDANCE  
D03AU1488  
Figure 17. Read the Status Register  
CPOL=0, CPHA=0  
S
C
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
INSTRUCTION  
D
Q
STATUS REGISTER OUT  
s9 s8 s7 s6  
HIGH IMPEDANCE  
s15 s14 s13 s12 s11 s10  
s5  
s4  
s3  
s2  
s1  
s0  
D03AU1489  
IRQ - Interrupt Request Pin  
It is an open drain pin activated (low) every time a variation occurs in the Diagnostic Register.  
Purpose: to alert the µP that one or more warning bit of the Diagnostic Register has changed from 0 to  
1 or from 1 to 0.  
An activation of this pin puts the bit s0 of the Status Register to 1 (START DIAGNOSTIC) like an  
Operation E (Diagnostic Procedure Start). Then an Operation F has to be executed without an  
Operation E before.  
After an Operation F, the IRQ pin is disactivated, and goes to 1 if connected to a pull-up resistor.  
L5953 - Application Note  
18/24  
L5953  
Figure 18. Block and Application Diagram  
C2  
C5  
C3  
C11  
CT  
D1  
C1  
VDD  
S1  
W1  
S2  
W2  
RES  
VDD-LIN  
VDD-SW  
STCAP  
FGND  
VSTBY  
REG1  
ST-BY LINEAR VOLTAGE  
REGULATOR  
3.3-5V/250mA  
VOLTAGE WARNING  
HSD1  
C4  
ADJ  
HSD1  
HSD2  
STRAP  
PWM  
STEP DOWN  
REGULATOR  
2.5-10V/1A  
C6  
HSD2  
DRAINOUT  
VSW  
L1  
Vo  
GATEIN  
D2  
R1  
R2  
C7  
GATEOUT  
FB  
REG2  
COMP  
SWGND  
GND  
R4  
R3  
VSPI  
IRQ  
C9  
LINEAR VOLTAGE  
REGULATOR  
1.5-3.3V/300mA  
SPI INTERFACE  
OSCILLATOR &  
SYNC  
C8  
D01AU1331B  
VLR  
FBLR  
R5  
VIN  
SYNC  
DGND  
Q
D
S
C
R6  
C10  
Figure 19. Block Diagram And Application With External Power MOS  
C2  
C5  
C3  
D1  
C1  
VDD  
W2  
S1  
W1  
S2  
VDD-LIN  
VDD-SW  
STCAP CT  
RES  
FGND  
VSTBY  
REG1  
ST-BY LINEAR VOLTAGE  
REGULATOR  
VOLTAGE WARNING  
HSD1  
C4  
C6  
3.3-5V/250mA  
ADJ  
HSD1  
HSD2  
STRAP  
PWM  
STEP DOWN  
REGULATOR  
2.5-10V/1A  
HSD2  
DRAINOUT  
VSW  
L1  
Vo  
D2  
R1  
C7  
GATEIN  
GATEOUT  
FB  
M1  
R2  
REG2  
LINEAR VOLTAGE  
REGULATOR  
COMP  
VSPI  
IRQ  
SPI INTERFACE  
R4  
R3  
C9  
1.5-3.3V/300mA  
SWGND  
GND  
OSCILLATOR &  
SYNC  
C8  
D01AU1332B  
VLR  
FBLR  
R5  
VIN  
SYNC  
DGND  
Q
D
S
C
R6  
C10  
19/24  
L5953  
PART LIST on Evaluation Board  
C1 = 470  
µ
F
C2 = 220 nF  
C8 = 56nF  
C3 = 470  
µ
F
C4 = 10  
µ
F
C5 = 1  
µ
F
C6 = 100 nF  
C7 = 470  
µ
F
C9 = 2.7 nF  
C10 = 10 µF  
C11 = 4.7 nF  
ESR=65 m  
R1 = 2.2 k  
R2 = 2 x 1.5 k  
in parallel  
R3 = 10 k  
R4 = 220 k  
R5 = 3.3 k  
R6 = 1 kΩ  
L1 = 180  
µ
H
D1 = 1N4007 or  
MBR160  
D2 = MBR360  
REG1 OUTPUT VOLTAGE  
V
STBY  
V
STBY  
= 5V if pin ADJ left floating  
= 3.3V if pin ADJ is conneted to the pin V  
STBY  
Timing Capacitor  
The value for this capacitor has to be chosen according the wanted power-on delay T :  
d
ICT1 Td  
C11 = -------------------------------------------------------------  
(0.5 VSTBY) + VCTLRy  
where I  
is the source current used to charge the timing capacitor and V  
is the REG1 output voltage.  
STBY  
CT1  
Feedback resistors for REG2  
VLR  
------------------------  
Vref, REG2  
R5 = R6  
1  
where VLR is the required output voltage for REG2.  
External components for PWM regulator  
Bootstrap capacitor  
The suggested value for the bootstrap capacitor is C6 = 100nF  
Here following you find the criteria for the selection of the inductor L1, the free-wheeling diode D2, the output  
filter capacitor C7, the feedback resistor R1, R2 and the compensation network R3, C8, R4, C9 to have a Buck  
regulator working in Continuos mode. Continuous mode operation is recommended in order to reduce the stress  
of the output capacitor and of the free-wheeling diode.  
Inductor Selection  
The minimum value of the inductor L7 has to be so that the maximum inductor current ripple  
I  
is 20% to  
L,max  
30% of the maximum load current load I .The maximum ripple is present when the switching frequency is  
o,max  
minimum ( f  
) and the input voltage is maximum ( V  
) so the minimum value for the inductor L  
is :  
min  
sw,min  
in,max  
V O  
VO  
1
--------------------  
---------------- ------------------  
Lmin  
=
1 –  
IL, max  
V i, max f sw, min  
Output Capacitor Selection  
The criteria for the selection of the capacitor C7 is based on the output voltage ripple requirements. The ripple  
on the output voltage is due to a capacitive contribute, often negligible, equal to  
20/24  
L5953  
IL, max  
Vc = --------------------------------------  
8 C7 fsw, min  
and a resistive contribute given by the ESR of the capacitor and which is equal to  
V ESR = ESR IL, max  
VC fixes the value for C7 while VESR limits the ESR of the capacitor.Usually the capacitor is chosen so that  
the total ripple on the output regulated voltage Vo is equal to 1% of the value of Vo. If V  
is the maximum  
ripple  
allowed voltage ripple on Vo then it should result:  
2
Vripple  
Vc2 + VESR  
More often the minimum value of C7 is imposed by other considerations such as to get a good dynamic behav-  
iour of the output voltage in case of large load variations.  
Free-wheeling diode  
The diode must withstand an average current Id equal to Id = I ( 1- D  
)
lim  
min  
where I is the current of intervention of the short circuit protection and D  
is the minimum duty cycle. As D  
min  
lim  
min  
is vey low, the current Id can be assumed equal to I  
.
lim  
Compensation Network  
In continuous mode, the voltage controlled buck converter showes two poles due to the output LC filter and one  
zero due to the ESR of the output capacitor. The suggested compensation network introduces two zeros and  
two poles:  
– the zeros compensate the double poles of the LC filter  
– one pole compensates the zero due to ESR of the output capacitor  
– the second pole is nominally located in the origin which means an infinite gain at frequency null. In  
the reality the DC value of the closed loop gain can not be greater than the DC value of the EA open  
loop gain and the pole is located at very low frequency.  
The values for the components of the compensation network can be fixed when the inductor L1 and the output  
capacitor C7 are chosen.  
The necessary steps are following:  
1.fix the cross-over frequency f of the overall loop gain.  
C
Usually  
fc = 0.1 fsw,min  
is the minimum switching frequency  
where f  
sw,min  
2.Calculate the high frequency error amplifier gain  
Gc = 0.25 fc 2 π  
L1  
ESR  
------------  
3.Chose R3 and calculate  
L1 C7  
R3  
-----------------------  
C8 = 2  
The value for R3 has not to be very high (for example 10K  
offset current.  
) so to limit the error due to an error amplifier input  
21/24  
L5953  
4.Calculate  
R3  
Rp = --------------------------------------------  
2
L1  
------------  
------- – 1  
ESR  
C7  
VO  
------------------------  
Vref, PWM  
RA = Rp  
Rp  
R2 = --------------------------------  
Vref,PWM  
1 -----------------------  
VO  
5.Finally calculate  
and  
R4 = GC R1  
L1 C7  
-----------------------  
C9 = 2  
R4  
22/24  
L5953  
mm  
inch  
DIM.  
MIN. TYP. MAX. MIN. TYP. MAX.  
OUTLINE AND  
MECHANICAL DATA  
A
a1  
a2  
a3  
b
3.60  
0.141  
0.012  
0.130  
0.004  
0.015  
0.012  
0.630  
0.385  
0.570  
0.10  
0.30 0.004  
3.30  
0
0.10  
0
0.22  
0.23  
0.38 0.008  
0.32 0.009  
16.00 0.622  
9.80 0.370  
14.50 0.547  
c
D (1) 15.80  
D1  
E
9.40  
13.90  
e
0.65  
0.0256  
0.435  
e3  
11.05  
E1 (1) 10.90  
E2  
11.10 0.429  
2.90  
0.437  
0.114  
0.244  
0.126  
0.004  
0.626  
0.043  
0.043  
E3  
E4  
G
H
5.80  
2.90  
0
6.20 0.228  
3.20 0.114  
0.10  
0
15.50  
15.90 0.610  
1.10  
h
L
0.80  
1.10 0.031  
10°(max.)  
8 °(max.)  
N
S
PowerSO36  
(1): "D" and "E1" do not include mold flash or protrusions  
- Mold flash or protrusions shall not exceed 0.15mm (0.006 inch)  
- Critical dimensions are "a3", "E" and "G".  
N
N
a2  
A
c
a1  
e
A
DETAIL B  
lead  
E
DETAIL A  
e3  
H
DETAIL A  
D
slug  
a3  
BOTTOM VIEW  
36  
19  
E3  
B
E1  
E2  
D1  
DETAIL B  
0.35  
Gage Plane  
- C -  
SEATING PLANE  
1
1
8
S
L
G
C
M
b
0.12  
A B  
PSO36MEC  
h x 45˚  
(COPLANARITY)  
23/24  
L5953  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2003 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
24/24  

相关型号:

L5953_07

Multiple switching voltage regulator
STMICROELECTR

L5955

Multiple multifunction voltage regulator for car radio
STMICROELECTR

L5956

Multifunction voltage regulator for car radio
STMICROELECTR

L5956PD

Multifunction voltage regulator for car radio
STMICROELECTR

L5956PDTR

Multifunction voltage regulator for car radio
STMICROELECTR

L5956_11

Multifunction voltage regulator for car radio
STMICROELECTR

L5957

Multifunction voltage regulator for car radio
STMICROELECTR

L5957PD

Multifunction voltage regulator for car radio
STMICROELECTR

L5957PDTR

Multifunction voltage regulator for car radio
STMICROELECTR

L5958

Multifunction voltage regulator for car radio
STMICROELECTR

L5959

Multifunction voltage regulator for car radio
STMICROELECTR

L5961

MOST power management device (PMD)
STMICROELECTR