L6221C [STMICROELECTRONICS]

QUAD DARLINGTON SWITCH; QUAD达林顿开关管
L6221C
型号: L6221C
厂家: ST    ST
描述:

QUAD DARLINGTON SWITCH
QUAD达林顿开关管

开关
文件: 总15页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6221C  
L6221CN/CD  
QUAD DARLINGTON SWITCH  
.
FOUR NON INVERTING INPUTS WITH  
ENABLE  
OUTPUT VOLTAGE UP TO 60 V  
OUTPUT CURRENT UP TO 1.8 A  
VERY LOW SATURATION VOLTAGE  
TTL COMPATIBLE INPUTS  
.
.
.
.
.
Multiwatt15  
INTEGRAL FAST RECIRCULATION DIODES  
Powerdip 12 + 2 + 2  
SO16 + 2 + 2  
DESCRIPTION  
The L6221 monolithicquad darlington switch is de-  
signedforhighcurrent,high voltageswitchingappli-  
cations. Each of the four switches is controlled by a  
logic input and all four are controlled by a common  
enableinput.AllinputsareTTL-compatiblefordirect  
connectionto logic circuits.  
ORDERING NUMBERS :L6221C (Powerdip 12+2+2)  
L6221CN (Multiwatt 15 )  
L6221CD (SO16+2+2)  
outputsof the same device may be paralleled.  
Three versions are available : theL6221Cmounted  
ina Powerdip12+ 2 + 2 packageand the L6221CN  
mounted in a 15--lead Multiwatt package, the  
L6221CDin SO16+2+2package.  
Eachswitch consistsofan open-collectordarlington  
transistorplus a fastdiodeforswitchingapplications  
withinductivedevice loads. The emittersof thefour-  
switches are commoned.Any numberof inputsand  
BLOCK DIAGRAM  
May 1997  
1/15  
L6221C-L6221CN-L6221CD  
THERMAL DATA  
Symbol  
Parameter  
SO20  
Powerdip Multiwatt15 Unit  
Rth j-pins  
Rth j-case  
Rth j-amb  
Thermal Resistance Junction-pins  
Thermal Resistance Junction-case  
Thermal Resistance Junction-ambient  
Max.  
Max.  
Max.  
17  
80  
14  
80  
3
35  
C/W  
°
°C/W  
C/W  
°
PIN CONNECTIONS (top views)  
OUT4  
1
2
3
4
5
6
7
8
9
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
IN4  
CLAMPB  
N.C.  
IN3  
N.C.  
ENABLE  
GND  
GND  
VS  
OUT3  
GND  
GND  
OUT2  
N.C.  
N.C.  
IN2  
CLAMPA  
OUT1  
10  
IN1  
D95IN231  
L6221C (Powerdip)  
L6221CD (SO20)  
L6221CN (Multiwatt-15)  
2/15  
L6221C-L6221CN-L6221CD  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
60  
Unit  
V
VO  
VS  
Output Voltage  
Logic Supply Voltage  
7
V
VIN , VEN Input Voltage, Enable Voltage  
VS  
IC  
IC  
IC  
Continuous Colllector Current (for each channel)  
1.8  
1.2  
A
A
for L6221CD  
Collector Peak Current (repetitive, duty cycle = 10% ton = 5ms)  
for L6221CD  
2.5  
1.7  
A
A
3.2  
2.2  
A
A
Collector Peak Current (non repetitive, t = 10 s)  
µ
for L6221CD  
Top  
Tstg  
Isub  
Ptot  
Operating Temperature Range (junction)  
Storage Temperature Range  
Output Substrate Current  
-40 to +150  
-55 to +150  
350  
C
C
°
°
mA  
Total Power Dissipation  
4.3  
20  
3.5  
1
2.3  
1
W
W
W
W
W
W
at Tpins = 90 C (powerdip)  
°
at Tcase = 90 C (multiwatt)  
°
at Tcase = 90 C (SO20)  
°
at Tamb = 70°C (powerdip)  
at Tamb = 70 C (multiwatt)  
°
at Tamb = 70°C (SO20)  
TRUTH TABLE  
Enable  
Input  
Power Out  
H
H
L
H
L
X
ON  
OFF  
OFF  
For each input : H = High level  
L = Low level  
X = Don’t care  
PIN FUNCTIONS (see block diagram)  
Name  
Function  
IN 1  
Input to Driver 1  
IN 2  
Input to Driver 2  
Output of Driver 1  
Output of Driver 2  
OUT 1  
OUT 2  
CLAMP A  
IN 3  
Diode Clamp to Driver 1 and Driver 2  
Input to Driver 3  
IN 4  
Input to Driver 4  
OUT 3  
OUT 4  
CLAMP B  
ENABLE  
VS  
Output of Driver 3  
Output of Driver 4  
Diode Clamp to Driver3 and Driver 4  
Enable Input to All Drivers  
Logic Supply Voltage  
Common Ground  
GND  
3/15  
L6221C-L6221CN-L6221CD  
ELECTRICAL CHARACTERISTICSRefer to The Test Circuit to Fig.1to Fig.9 (VS = 5V, Tamb = 25°Cunless  
otherwise specified)  
Symbol  
Parameter  
Logic Supply Voltage  
Test Condition  
Min.  
Typ.  
Max.  
Unit  
VS  
IS  
4.5  
5.5  
V
Logic Supply Current  
All outputs ON IC = 0.7A  
All outputs OFF  
20  
20  
mA  
mA  
ICEX  
Output Leakage Current  
VCE = 60V VEN = VEN  
VIN = VINL  
H
1
mA  
VCE(sat)  
Collector Emitter Saturation Voltage  
(one input on; all others inputs off).  
VS = 4.5V VIN = VINH  
EN = VEN  
V
H
IC = 1A  
1.4  
1.85  
V
V
(*) IC = 2A  
VINL, VEN  
IINL, IEN  
VINH, VEN  
L
Input Low Voltage  
0.8  
V
L
Input Low Current  
VIN = VINL VEN = VEN  
L
-100  
A
µ
H
Input High Voltage  
2
V
IINH, IEN  
IR  
H
Input High Current  
VIN = VINH VEN = VEN  
H
100  
100  
µA  
Clamp Diode Leakage Current  
VR = 60V VEN = VEN  
VIN = VINL  
H
A
µ
VF  
Clamp Diode Forward Voltage  
IF = 1A  
IF = 2A (*)  
1.8  
2.2  
V
V
td(on)  
td(off)  
Turn on Delay Time  
2
5
ms  
VP = 5V R = 10  
L
Turn off Delay Time  
VP = 5V R = 10  
s
µ
L
Logic Supply Current Variation  
VIN = 5V VEN = 5V  
150  
mA  
I
S
Iout = -500mA for Each  
Channel  
(*) Only for L6221C- L6221CN types  
4/15  
L6221C-L6221CN-L6221CD  
TEST CIRCUITS  
(X) = Referred to Multiwatt package  
X = Referred to Powerdip package  
Figure 1 : Logic supply current.  
Set VIN = 4.5V,V EN =0.8V, orV IN =0.8V, V EN = 4.5V, for I S (all outputs off)  
Set V IN = 2V, V EN =2V, for I S (all outputs on)  
Figure 2 :  
Figure 3 :  
.
Output Leakage Current  
Output Sustaining Voltage.  
VP = +60V  
5/15  
L6221C-L6221CN-L6221CD  
Figure 4 : Collector-emitter Saturation  
Figure 5 : Logic Input Characteristics.  
Voltage.  
Set S1, S2 open,VIN, VEN = 0.8V for IIN L, IEN  
Set S1, S2 open, VIN, VEN = 2V for IIN H, IEN  
Set S1, S2 close, VIN, VEN = 0.8Vfor VIN L, VEN  
Set S1, S2 close, VIN, VEN = 2V for VIN H, VEN  
L
H
L
H
Figure 6 :  
.
Figure 7 :  
Clamp Diode Forward Voltage.  
Clamp Diode Leakage Current  
VP = +60V  
6/15  
L6221C-L6221CN-L6221CD  
Figure 8 : Switching Times Test Circuit.  
Figure 9 : Switching TImes Waveforms.  
Figure 10 : Allowed Peak Collector Cur-  
rent vs. Duty Cycle for 1, 2, 3  
Figure 11 : Allowed Peak Collector Current  
vs. Duty Cycle for 1, 2, 3 or 4  
Contemporary Working Outputs  
(L6221CN).  
or 4 Contemporary Working  
.
Outputs (L6221C)  
7/15  
L6221C-L6221CN-L6221CD  
Figure 12 : Collector Saturation Voltage  
Figure 13 : Free-wheeling Diode Forward  
.
vs. Collector Current.  
Voltage vs. Diode Current  
Figure 14 : Collector Saturation Voltage  
vs. Junction Temperature  
at IC = 1A.  
Figure 15 : Free-wheeling Diode Forward  
Voltage vs. Junction Tempera-  
.
ture at IF = 1A  
Figure 16 : Saturation Voltage vs. Junc-  
Figure 17 : Free-wheeling Diode Forward  
Voltage vs. Junction Tempera-  
ture at If = 1.8A.  
tion Temperature at IC = 1.8A.  
8/15  
L6221C-L6221CN-L6221CD  
APPLICATION INFORMATION  
Figure 18.  
When inductive loads are driven by L6221C/CD, a  
zenerdiodein serieswith the integralfree-wheeling  
diodes increases the voltage across which energy  
stored in the load is discharged and therefore  
speedsthe current decay (fig. 18).  
The zener has to be chosen in such a way that  
VCLAMP is limited to 60V taking into account the  
zener’svoltagechangesdueto: spread onVZ, tem-  
perature changes,and the voltage drop due to oh-  
mic resistance.  
Moreover,the instantaneouspower mustbe limited  
in order to avoid the reverse second breakdown.  
Figure 19 : Driver for Solenoids up to 3A.  
Somecare must be taken to ensurethat the collec-  
torsare placedclose togetherto avoiddifferentcur-  
rent partitioning at turn-off.  
electricalcharacteristicsof thelogicsection(turn-on  
and turn-off delay time) and the power stages(col-  
lector saturation voltage, free-wheeling diode for-  
ward voltage).  
We suggest to put in parallel channel 1 and 4 and  
channel2 and3 as shownin figure19for thesimilar  
9/15  
L6221C-L6221CN-L6221CD  
Figure 20 : Saturation Voltage vs.  
Figure 21 : Peak Collector Current vs.  
Duty Cycle for 1 or 2 Paralleled  
Outputs Driven (L6221N).  
Collector Current.  
Figure 22 : Peak Collector Current vs.  
Duty Cycle for 1 or 2 Paralleled  
Outputs Driven (L6221CN).  
10/15  
L6221C-L6221CN-L6221CD  
MOUNTING INSTRUCTION  
The Rth j-amb of the L6221Ccan be reduced by sol-  
deringthe GND pinsto a suitablecopperareaof the  
printed circuit board (Fig. 23) or to an external  
heatsink(Fig. 24).  
ing a thickness of 35µ (1.4 mils). During soldering  
the pins temperature must not exceed 260 °C and  
the soldering time must not be longer than 12 sec-  
onds.  
The diagram of figure 25 shows the maximum dis-  
sipable power Ptot and the Rth j-amb as a functionof  
theside ” α” of two equalsquarecopperareashav-  
The externalheatsink or printed circuit copper area  
must be connected to electrical ground.  
Figure 24 :  
External Heatsink Mounting  
Example.  
Figure 23 :  
Example of P.C. Board Copper  
Area Which is Used as Heatsink.  
Figure 25 : Maximum Dissipable Power  
Figure 26 : Maximum Allowable Power  
Dissipation vs. Ambient  
Temperature.  
and Junction to Ambient Ther-  
mal Resistance vs. Side ” α”  
.
11/15  
L6221C-L6221CN-L6221CD  
MULTIWATT15 PACKAGE MECHANICAL DATA  
DIM.  
mm  
inch  
TYP.  
MIN.  
TYP.  
MAX.  
5
MIN.  
MAX.  
0.197  
0.104  
0.063  
A
B
2.65  
1.6  
C
D
1
0.039  
E
0.49  
0.66  
1.14  
17.57  
19.6  
0.55  
0.75  
1.4  
0.019  
0.026  
0.045  
0.692  
0.772  
0.022  
0.030  
0.055  
0.705  
F
G
1.27  
0.050  
0.700  
G1  
H1  
H2  
L
17.78  
17.91  
20.2  
22.6  
22.5  
18.1  
17.75  
10.9  
2.9  
0.795  
0.890  
0.886  
0.713  
0.699  
0.429  
0.114  
0.181  
0.209  
0.102  
0.102  
0.152  
22.1  
22  
0.870  
0.866  
0.695  
0.679  
0.406  
0.104  
0.165  
0.177  
0.075  
0.075  
0.144  
L1  
L2  
L3  
L4  
L7  
M
17.65  
17.25  
10.3  
2.65  
4.2  
17.5  
10.7  
0.689  
0.421  
4.3  
4.6  
0.169  
0.200  
M1  
S
4.5  
5.08  
5.3  
1.9  
2.6  
S1  
Dia1  
1.9  
2.6  
3.65  
3.85  
12/15  
L6221C-L6221CN-L6221CD  
POWERDIP16 PACKAGE MECHANICAL DATA  
DIM.  
mm  
inch  
MIN.  
0.51  
0.85  
TYP.  
MAX.  
MIN.  
0.020  
0.033  
TYP.  
MAX.  
a1  
B
b
1.40  
0.055  
0.50  
0.020  
b1  
D
E
e
0.38  
0.50  
20.0  
0.015  
0.020  
0.787  
8.80  
2.54  
0.346  
0.100  
0.700  
e3  
F
17.78  
7.10  
5.10  
0.280  
0.201  
I
L
3.30  
0.130  
Z
1.27  
0.050  
13/15  
L6221C-L6221CN-L6221CD  
SO20 PACKAGE MECHANICAL DATA  
DIM.  
mm  
inch  
TYP.  
MIN.  
TYP.  
MAX.  
2.65  
0.3  
MIN.  
MAX.  
0.104  
0.012  
0.096  
0.019  
0.013  
A
a1  
a2  
b
0.1  
0.004  
2.45  
0.49  
0.32  
0.35  
0.23  
0.014  
0.009  
b1  
C
0.5  
0.020  
c1  
D
45 (typ.)  
12.6  
10  
13.0  
0.496  
0.394  
0.512  
0.419  
E
10.65  
e
1.27  
0.050  
0.450  
e3  
F
11.43  
7.4  
0.5  
7.6  
0.291  
0.020  
0.299  
0.050  
0.030  
L
1.27  
0.75  
M
S
8 (max.)  
14/15  
L6221C-L6221CN-L6221CD  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for  
the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its  
use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously  
supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems  
without express written approval of SGS-THOMSON Microelectronics.  
1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco -  
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
15/15  

相关型号:

L6221CD

QUAD DARLINGTON SWITCH
STMICROELECTR

L6221CD013TR

2.2A 4 CHANNEL, AND GATE BASED PRPHL DRVR, PDSO20, SOP-20
STMICROELECTR

L6221CN

QUAD DARLINGTON SWITCH
STMICROELECTR

L6221C_03

QUAD DARLINGTON SWITCH
STMICROELECTR

L6221N

QUAD DARLINGTON SWITCH
STMICROELECTR

L6222

Interface IC
ETC

L6223

DMOS PROGRAMMABLE HIGH SPEED UNIPOLAR STEPPER MOTOR DRIVER
STMICROELECTR

L6225

DUAL DMOS FULL BRIDGE MOTOR DRIVER
STMICROELECTR

L6225D

DUAL DMOS FULL BRIDGE MOTOR DRIVER
STMICROELECTR

L6225DTR

DMOS DUAL FULL BRIDGE DRIVER
STMICROELECTR

L6225N

DUAL DMOS FULL BRIDGE MOTOR DRIVER
STMICROELECTR