L6227Q_09 [STMICROELECTRONICS]

DMOS dual full bridge driver with PWM current controller; 与PWM电流控制器双DMOS全桥驱动器
L6227Q_09
型号: L6227Q_09
厂家: ST    ST
描述:

DMOS dual full bridge driver with PWM current controller
与PWM电流控制器双DMOS全桥驱动器

驱动器 控制器
文件: 总27页 (文件大小:386K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6227Q  
DMOS dual full bridge driver  
with PWM current controller  
Features  
Operating supply voltage from 8 to 52 V  
2.8 A output peak current (1.4 A DC)  
R  
0.73 typ. value @ TJ = 25 °C  
DS(on)  
Operating frequency up to 100 kHz  
Non dissipative overcurrent protection  
VFQFPN32 5 mm x 5 mm  
Dual independent constant t  
PWM current  
OFF  
Description  
controllers  
Slow decay synchronous rectification  
Cross conduction protection  
Thermal shutdown  
The L6227Q is a DMOS dual full bridge designed  
for motor control applications, realized in  
BCDmultipower technology, which combines  
isolated DMOS power transistors with CMOS and  
bipolar circuits on the same chip. The device also  
includes two independent constant off time PWM  
current controllers that performs the chopping  
regulation. Available in VQFPN32 5 mm x 5 mm  
package, the L6227Q features a non-dissipative  
overcurrent protection on the high side power  
MOSFETs and thermal shutdown.  
Under voltage lockout  
Integrated fast free wheeling diodes  
Applications  
Bipolar stepper motor  
Dual or quad DC motor  
Figure 1.  
Block diagram  
VBOOT  
VCP  
VBOOT  
VSA  
VBOOT  
VBOOT  
CHARGE  
PUMP  
OVER  
CURRENT  
DETECTION  
OCDA  
OUT1A  
OUT2A  
10V  
10V  
THERMAL  
PROTECTION  
ENA  
IN1A  
IN2A  
GATE  
LOGIC  
SENSEA  
PWM  
VOLTAGE  
REGULATOR  
+
-
ONE SHOT  
MONOSTABLE  
MASKING  
TIME  
VREFA  
RCA  
SENSE  
COMPARATOR  
10V  
5V  
BRIDGE A  
V
SB  
OVER  
OUT1B  
OUT2B  
SENSEB  
VREFB  
RCB  
CURRENT  
DETECTION  
OCDB  
GATE  
LOGIC  
ENB  
IN1B  
IN2B  
BRIDGE B  
D99IN1085A  
January 2009  
Rev 3  
1/27  
www.st.com  
27  
Contents  
L6227Q  
Contents  
1
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1.1  
1.2  
1.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
2
3
4
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
4.7  
Power stages and charge pump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Logic inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PWM current control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Slow decay mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Non-dissipative overcurrent protection . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Thermal protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Output current capability and IC power dissipation . . . . . . . . . . . . . . 21  
Thermal management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
6
7
8
9
10  
2/27  
L6227Q  
Electrical data  
1
Electrical data  
1.1  
Absolute maximum ratings  
Table 1.  
Absolute maximum ratings  
Parameter  
Symbol  
Parameter  
Value  
Unit  
VS  
Supply voltage  
V
=
=
VSB = VS  
60  
V
SA  
SA  
Differential voltage between  
V
V
VSB = VS = 60 V;  
VOD  
VSA, OUT1A, OUT2A, SENSEA and  
VSB, OUT1B, OUT2B, SENSEB  
60  
V
= VSENSEB = GND  
SENSEA  
VBOOT  
Bootstrap peak voltage  
V
=
VSB = VS  
VS + 10  
V
SA  
VIN,VEN  
Input and enable voltage range  
-0.3 to +7  
-0.3 to +7  
-0.3 to +7  
-1 to +4  
V
V
V
V
Voltage range at pins VREFA and  
VREFB  
VREFA, VREFB  
VRCA, VRCB Voltage range at pins RCA and RCB  
VSENSEA,  
VSENSEB  
Voltage range at pins SENSEA and  
SENSEB  
Pulsed supply current (for each VS  
pin), internally limited by the  
overcurrent protection  
V
=
VSB = VS;  
SA  
IS(peak)  
3.55  
A
tPULSE < 1 ms  
IS  
RMS supply current (for each VS pin)  
V
=
VSB = VS  
1.4  
A
SA  
Storage and operating temperature  
range  
Tstg, TOP  
-40 to 150  
°C  
1.2  
Recommended operating conditions  
Table 2.  
Symbol  
Recommended operating conditions  
Parameter  
Supply voltage  
Parameter  
Min  
Max  
Unit  
VS  
V
=
=
VSB = VS  
8
52  
V
SA  
SA  
Differential voltage between  
V
V
VSB = VS;  
VOD  
VSA, OUT1A, OUT2A, SENSEA and  
VSB, OUT1B, OUT2B, SENSEB  
52  
V
V
= V  
SENSEB  
SENSEA  
Voltage range at pins VREFA and  
VREFB  
VREFA, VREFB  
-0.1  
5
(pulsed tW < trr)  
(DC)  
-6  
-1  
6
1
VSENSEA,  
VSENSEB  
Voltage range at pins SENSEA and  
SENSEB  
V
V
IOUT  
TJ  
RMS output current  
1.4  
+125  
100  
A
Operating junction temperature  
Switching frequency  
-25  
°C  
fsw  
kHz  
3/27  
Electrical data  
L6227Q  
1.3  
Thermal data  
Table 3.  
Symbol  
Thermal data  
Parameter  
Thermal resistance junction-ambient max (1)  
Value  
Unit  
Rth(JA)  
.
42  
°C/W  
1. Mounted on a double-layer FR4 PCB with a dissipating copper surface of 0.5 cm2 on the top side plus 6  
cm2 ground layer connected through 18 via holes (9 below the IC).  
4/27  
L6227Q  
Pin connection  
2
Pin connection  
Figure 2.  
Pin connection (top view)  
Note:  
1
2
The pins 2 to 8 are connected to die PAD  
The die PAD must be connected to GND pin  
5/27  
Pin connection  
L6227Q  
Table 4.  
N°  
Pin description  
Pin  
Type  
Function  
1, 21  
9
GND  
GND  
Signal ground terminals.  
OUT1B  
Power output Bridge B output 1.  
RC network pin. A parallel RC network connected between this pin and  
ground sets the current controller OFF-time of the bridge B.  
11  
12  
RCB  
RC pin  
Bridge B source pin. This pin must be connected to power ground through a  
sensing power resistor.  
SENSEB Power supply  
13  
14  
IN1B  
IN2B  
Logic input Bridge B input 1  
Logic input Bridge B input 2  
Bridge B current controller reference voltage.  
Do not leave this pin open or connect to GND.  
15  
VREFB  
Analog input  
Bridge B enable. LOW logic level switches OFF all power MOSFETs of bridge  
B. This pin is also connected to the collector of the overcurrent and thermal  
protection transistor to implement over current protection.  
16  
ENB  
Logic input (1)  
If not used, it has to be connected to +5 V through a resistor.  
Supply  
voltage  
Bootstrap voltage needed for driving the upper power MOSFETs of both  
bridge A and Bridge B.  
17  
19  
20  
VBOOT  
OUT2B  
VSB  
Power output Bridge B output 2.  
Bridge B power supply voltage. It must be connected to the supply voltage  
together with pin VSA.  
Powersupply  
Power supply  
Bridge A power supply voltage. It must be connected to the supply voltage  
together with pin VSB.  
22  
VSA  
23  
24  
OUT2A  
VCP  
Power output Bridge A output 2.  
Output  
Charge pump oscillator output.  
Bridge A enable. LOW logic level switches OFF all power MOSFETs of bridge  
A. This pin is also connected to the collector of the overcurrent and thermal  
protection transistor to implement over current protection.  
25  
ENA  
Logic input (1)  
If not used, it has to be connected to +5 V through a resistor.  
Bridge A current controller reference voltage.  
Do not leave this pin open or connect to GND.  
26  
VREFA  
Analog input  
27  
28  
IN1A  
IN2A  
Logic input Bridge A logic input 1.  
Logic input Bridge A logic input 2.  
Bridge A source pin. This pin must be connected to power ground through a  
sensing power resistor.  
29  
SENSEA Power supply  
RC network pin. A parallel RC network connected between this pin and  
ground sets the current controller OFF-time of the bridge A.  
30  
31  
RCA  
RC pin  
OUT1A  
Power output Bridge A output 1.  
1. Also connected at the output drain of the over current and thermal protection MOSFET. Therefore, it has to be driven  
putting in series a resistor with a value in the range of 2.2 k- 180 k, recommended 100 k.  
6/27  
L6227Q  
Electrical characteristics  
3
Electrical characteristics  
Table 5.  
Symbol  
Electrical characteristics (T = 25 °C, Vs = 48 V, unless otherwise specified)  
A
Parameter  
Test condition  
Min Typ Max Unit  
VSth(ON) Turn-on threshold  
VSth(OFF) Turn-off threshold  
5.8  
5
6.3  
5.5  
6.8  
6
V
V
All Bridges OFF;  
TJ = -25 °C to 125 °C (1)  
IS  
Quiescent supply current  
Thermal shutdown temperature  
5
10  
mA  
TJ(OFF)  
165  
°C  
Output DMOS transistors  
TJ = 25 °C  
TJ =125 ° C (1)  
1.47 1.69  
2.35 2.7  
2
High-side + low-side switch ON  
resistance  
R
DS(on)  
IDSS  
EN = Low; OUT = VS  
EN = Low; OUT = GND  
mA  
mA  
Leakage current  
-0.3  
Source drain diodes  
VSD  
trr  
Forward ON voltage  
ISD = 1.4 A, EN = LOW  
If = 1.4 A  
1.15 1.3  
300  
V
Reverse recovery time  
Forward recovery time  
ns  
ns  
tfr  
200  
Logic input  
VIL  
VIH  
Low level logic input voltage  
High level logic input voltage  
Low level logic input current  
High level logic input current  
Turn-on input threshold  
-0.3  
2
0.8  
7
V
V
IIL  
GND logic input voltage  
7 V logic input voltage  
-10  
µA  
µA  
V
IIH  
10  
Vth(ON)  
Vth(OFF)  
Vth(HYS)  
1.8  
1.3  
2.0  
Turn-off input threshold  
0.8  
V
Input threshold hysteresis  
0.25 0.5  
V
Switching characteristics  
tD(on)EN  
Enable to out turn ON delay time (2)  
ILOAD =1.4 A, resistive load  
500  
1.9  
40  
800  
250  
ns  
µs  
ILOAD =1.4 A, resistive load  
(dead time included)  
tD(on)IN  
Input to out turn ON delay time  
tRISE  
tD(off)EN  
tD(off)IN  
tFALL  
tdt  
Output rise time(2)  
ILOAD =1.4 A, resistive load  
ILOAD =1.4 A, resistive load  
ILOAD =1.4 A, resistive load  
ILOAD =1.4 A, resistive load  
ns  
ns  
Enable to out turn OFF delay time (2)  
Input to out turn OFF delay time  
Output fall time (2)  
500 800 1000  
500 800 1000  
ns  
40  
250  
ns  
Dead time protection  
0.5  
1
µs  
fCP  
Charge pump frequency  
-25 °C < TJ < 125 °C  
0.6  
1
MHz  
7/27  
Electrical characteristics  
L6227Q  
Table 5.  
Symbol  
Electrical characteristics (continued) (T = 25 °C, Vs = 48 V, unless otherwise specified)  
A
Parameter  
Test condition  
Min Typ Max Unit  
PWM comparator and monostable  
IRCA, RCB  
Voffset  
tPROP  
tBLANK  
tON(MIN)  
I
Source current at pins RCA and RCB  
Offset voltage on sense comparator  
Turn OFF propagation delay (3)  
Internal blanking time on SENSE pins  
Minimum on time  
VRCA = VRCB = 2.5 V  
VREFA, VREFB = 0.5 V  
3.5  
5.5  
5
mA  
mV  
ns  
500  
1
µs  
2.5  
13  
61  
3
µs  
R
OFF = 20 k; COFF = 1 nF  
OFF = 100 k; COFF = 1 nF  
µs  
tOFF  
PWM recirculation time  
R
µs  
Input bias current at pins VREFA and  
VREFB  
IBIAS  
10  
µA  
Over current protection  
Input supply overcurrent protection  
ISOVER  
TJ = -25 °C to 125 °C (1)  
2.8  
A
threshold  
ROPDR  
Open drain ON resistance  
I = 4 mA  
40  
60  
ns  
ns  
tOCD(ON) OCD turn-on delay time (4)  
tOCD(OFF) OCD turn-off delay time (4)  
I = 4 mA; CEN < 100 pF  
I = 4 mA; CEN < 100 pF  
200  
100  
1. Tested at 25 °C in a restricted range and guaranteed by characterization.  
2. See Figure 3 on page 9  
3. Measured applying a voltage of 1 V to pin SENSE and a voltage drop from 2 V to 0 V to pin VREF.  
4. See Figure 4 on page 9  
8/27  
L6227Q  
Electrical characteristics  
Figure 3.  
Switching characteristic definition  
EN  
Vth(ON)  
Vth(OFF)  
t
IOUT  
90%  
10%  
t
D01IN1316  
tFALL  
tRISE  
tD(OFF)EN  
tD(ON)EN  
Figure 4.  
Overcurrent detection timing definition  
I
OUT  
I
SOVER  
ON  
BRIDGE  
OFF  
V
EN  
90%  
10%  
D02IN1399  
t
t
OCD(OFF)  
OCD(ON)  
9/27  
Circuit description  
L6227Q  
4
Circuit description  
4.1  
Power stages and charge pump  
The L6227Q integrates two independent power MOS Full Bridges. Each power MOS has an  
R
= 0.73 (typical value @ 25 °C), with intrinsic fast freewheeling diode. Cross  
DS(on)  
conduction protection is achieved using a dead time (td = 1 µs typical) between the switch  
off and switch on of two power MOS in one leg of a bridge.  
Using N-channel power MOS for the upper transistors in the bridge requires a gate drive  
voltage above the power supply voltage. The bootstrapped (VBOOT) supply is obtained  
through an internal oscillator and few external components to realize a charge pump circuit  
as shown in Figure 5. The oscillator output (VCP) is a square wave at 600 kHz (typical) with  
10 V amplitude. Recommended values/part numbers for the charge pump circuit are shown  
in Table 6.  
Table 6.  
Charge pump external components values  
Component  
Value  
CBOOT  
CP  
220 nF  
10 nF  
D1  
1N4148  
1N4148  
D2  
Figure 5.  
Charge pump circuit  
VS  
D1  
D2  
CBOOT  
CP  
D01IN1328  
VCP  
VBOOT  
VS VS  
A B  
10/27  
L6227Q  
Circuit description  
4.2  
Logic inputs  
Pins IN1 , IN2 , IN1 and IN2 are TTL/CMOS and microcontroller compatible logic inputs.  
A
B
B
B
The internal structure is shown in Figure 6. Typical value for turn-on and turn-off thresholds  
are respectively Vthon = 1.8 V and Vthoff = 1.3 V.  
Pins EN and EN have identical input structure with the exception that the drains of the  
A
B
Overcurrent and thermal protection MOSFETs (one for the bridge A and one for the  
bridge B) are also connected to these pins. Due to these connections some care needs to  
be taken in driving these pins. The EN and EN inputs may be driven in one of two  
A
B
configurations as shown in Figure 7 or Figure 8. If driven by an open drain (collector)  
structure, a pull-up resistor R and a capacitor C are connected as shown in Figure 7. If  
EN  
EN  
the driver is a standard push-pull structure the resistor REN and the capacitor CEN are  
connected as shown in Figure 8. The resistor REN should be chosen in the range from  
2.2 kto 180 k. Recommended values for REN and CEN are respectively 100 kand 5.6 nF.  
More information on selecting the values is found in the overcurrent protection section.  
Figure 6.  
Logic inputs internal structure  
5V  
ESD  
PROTECTION  
D01IN1329  
Figure 7.  
ENA and ENB pins open collector driving  
5V  
5V  
REN  
OPEN  
COLLECTOR  
OUTPUT  
EN  
CEN  
ESD  
PROTECTION  
D01IN1330  
Figure 8.  
ENA and ENB pins push-pull driving  
5V  
REN  
EN  
PUSH-PULL  
OUTPUT  
CEN  
ESD  
PROTECTION  
D01IN1331  
11/27  
Circuit description  
L6227Q  
4.3  
Truth table  
Table 7.  
Truth table  
Inputs  
Outputs  
Description (1)  
EN  
IN1  
IN2  
OUT1  
OUT2  
L
X (2)  
L
X
L
High Z (3)  
GND  
High Z  
GND  
Disable  
H
H
H
H
Brake mode (lower path)  
Forward  
H
L
Vs  
GND (Vs)  
L
H
H
GND (Vs) (4)  
Vs  
Vs  
Reverse  
H
Vs  
Brake mode (upper path)  
1. Valid only in case of load connected between OUT1 and OUT2  
2. X = don't care  
3. High Z = high impedance output  
4. GND (Vs) = GND during Ton, Vs during Toff  
4.4  
PWM current control  
The L6227Q includes a constant off time PWM current controller for each of the two bridges.  
The current control circuit senses the bridge current by sensing the voltage drop across an  
external sense resistor connected between the source of the two lower power MOS  
transistors and ground, as shown in Figure 9. As the current in the load builds up the voltage  
across the sense resistor increases proportionally. When the voltage drop across the sense  
resistor becomes greater than the voltage at the reference input (VREFA or VREFB) the  
sense comparator triggers the monostable switching the low-side MOS off. The low-side  
MOS remain off for the time set by the monostable and the motor current recirculates in the  
upper path. When the monostable times out the bridge will again turn on. Since the internal  
dead time, used to prevent cross conduction in the bridge, delays the turn on of the power  
MOS, the effective off time is the sum of the monostable time plus the dead time.  
Figure 9.  
PWM current controller simplified schematic  
12/27  
L6227Q  
Circuit description  
Figure 10 shows the typical operating waveforms of the output current, the voltage drop  
across the sensing resistor, the RC pin voltage and the status of the bridge. Immediately  
after the low-side power MOS turns on, a high peak current flows through the sensing  
resistor due to the reverse recovery of the freewheeling diodes. The L6227Q provides a 1 µs  
blanking time tBLANK that inhibits the comparator output so that this current spike cannot  
prematurely re-trigger the monostable.  
Figure 10. Output current regulation waveforms  
I
OUT  
V
REF  
R
SENSE  
t
t
t
OFF  
OFF  
ON  
1µs t  
1µs t  
BLANK  
V
BLANK  
SENSE  
V
REF  
Slow Decay  
Slow Decay  
0
t
t
V
RC  
RCRISE  
RCRISE  
5V  
2.5V  
t
t
RCFALL  
RCFALL  
1µs t  
1µs t  
DT  
DT  
ON  
SYNCHRONOUS OR QUASI  
SYNCHRONOUS RECTIFICATION  
OFF  
B
C
D
A
B
C
D
D01IN1334  
Figure 11 shows the magnitude of the off time t  
versus C  
and R  
values. It can be  
OFF  
OFF  
OFF  
approximately calculated from the equations:  
t
t
= 0.6 · R  
· C  
RCFALL  
OFF OFF  
= t  
+ t = 0.6 · R  
· C  
+ t  
OFF DT  
OFF  
RCFALL  
DT  
OFF  
where R  
and C  
are the external component values and t is the internally generated  
OFF DT  
OFF  
Dead Time with:  
20 kR  
0.47 nF C  
100 kΩ  
100 nF  
OFF  
OFF  
t
= 1 µs (typical value)  
DT  
Therefore:  
t
t
= 6.6 µs  
= 6 ms  
OFF(MIN)  
OFF(MAX)  
13/27  
Circuit description  
These values allow a sufficient range of t  
L6227Q  
to implement the drive circuit for most motors.  
OFF  
The capacitor value chosen for C  
also affects the rise time t  
of the voltage at the  
RCRISE  
OFF  
pin R  
. The rise time t  
will only be an issue if the capacitor is not completely  
COFF  
RCRISE  
charged before the next time the monostable is triggered. Therefore, the on time t , which  
ON  
depends by motors and supply parameters, has to be bigger than t  
for allowing a  
RCRISE  
good current regulation by the PWM stage. Furthermore, the on time t can not be smaller  
ON  
than the minimum on time t  
.
ON(MIN)  
t
t
ON >tON(MIN) = 2.5µs  
ON >tTCRISE tDT
t
= 600 · C  
OFF  
RCRISE  
Figure 12 on page 15 shows the lower limit for the on time t for having a good PWM  
ON  
current regulation capacity. It has to be said that tON is always bigger than t  
because  
ON(MIN)  
the device imposes this condition, but it can be smaller than t  
- t . In this last case  
RCRISE DT  
the device continues to work but the off time t  
is not more constant.  
OFF  
So, small C  
value gives more flexibility for the applications (allows smaller on time and,  
OFF  
therefore, higher switching frequency), but, the smaller is the value for C , the more  
OFF  
influential will be the noises on the circuit performance.  
Figure 11. t  
versus C  
and R  
OFF  
OFF OFF  
4
.
1 10  
= 100kΩ  
Roff  
3
.
1 10  
= 47k  
Roff  
= 20k  
Roff  
100  
10  
1
0.1  
1
10  
100  
Coff [nF]  
14/27  
L6227Q  
Circuit description  
Figure 12. Area where t can vary maintaining the PWM regulation  
ON  
100  
10  
1
1.5µs (typ. value)  
0.1  
1
10  
100  
Coff [nF]  
4.5  
Slow decay mode  
Figure 13 shows the operation of the bridge in the slow decay mode. At the start of the off  
time, the lower power MOS is switched off and the current recirculates around the upper half  
of the bridge. Since the voltage across the coil is low, the current decays slowly. After the  
dead time the upper power MOS is operated in the synchronous rectification mode. When  
the monostable times out, the lower power MOS is turned on again after some delay set by  
the dead time to prevent cross conduction.  
Figure 13. Slow decay mode output stage configurations  
15/27  
Circuit description  
L6227Q  
4.6  
Non-dissipative overcurrent protection  
The L6227Q integrates an overcurrent detection circuit (OCD). This circuit provides  
protection against a short circuit to ground or between two phases of the bridge. With this  
internal over current detection, the external current sense resistor normally used and its  
associated power dissipation are eliminated. Figure 14 shows a simplified schematic of the  
overcurrent detection circuit.  
To implement the over current detection, a sensing element that delivers a small but precise  
fraction of the output current is implemented with each high side power MOS. Since this  
current is a small fraction of the output current there is very little additional power  
dissipation. This current is compared with an internal reference current I . When the  
REF  
output current in one bridge reaches the detection threshold (typically 2.8 A) the relative  
OCD comparator signals a fault condition. When a fault condition is detected, the EN pin is  
pulled below the turn off threshold (1.3 V typical) by an internal open drain MOS with a pull  
down capability of 4 mA. By using an external R-C on the EN pin, the off time before  
recovering normal operation can be easily programmed by means of the accurate  
thresholds of the logic inputs.  
Figure 14. Overcurrent protection simplified schematic  
OUT1A VSA OUT2A  
POWER SENSE  
1 cell  
HIGH SIDE DMOSs OF  
THE BRIDGE A  
I1A  
I2A  
POWER SENSE  
1 cell  
POWER DMOS  
n cells  
POWER DMOS  
n cells  
TO GATE  
LOGIC  
+
µC or LOGIC  
I1A / n  
I2A / n  
OCD  
COMPARATOR  
VDD  
(I1A+I2A) / n  
IREF  
REN  
CEN  
.
.
EN  
INTERNAL  
OPEN-DRAIN  
RDS(ON)  
40TYP.  
OVER TEMPERATURE  
FROM THE  
BRIDGE B  
OCD  
COMPARATOR  
D01IN1337  
Figure 15 shows the overcurrent detection operation. The disable time t  
before  
DISABLE  
recovering normal operation can be easily programmed by means of the accurate  
thresholds of the logic inputs. It is affected whether by C and R values and its  
EN  
EN  
magnitude is reported in Figure 16. The delay time t  
before turning off the bridge when  
DELAY  
an overcurrent has been detected depends only by C value. Its magnitude is reported in  
EN  
Figure 17.  
C
is also used for providing immunity to pin EN against fast transient noises. Therefore  
EN  
the value of C should be chosen as big as possible according to the maximum tolerable  
EN  
delay time and the R value should be chosen according to the desired disable time.  
EN  
The resistor R should be chosen in the range from 2.2 kto 180 k. Recommended  
EN  
values for R and C are respectively 100 kand 5.6 nF that allow obtaining 200 µs  
EN  
EN  
disable time.  
16/27  
L6227Q  
Circuit description  
Figure 15. Overcurrent protection waveforms  
I
OUT  
I
SOVER  
V
EN  
V
DD  
V
th(ON)  
V
th(OFF)  
V
EN(LOW)  
ON  
OCD  
OFF  
ON  
BRIDGE  
OFF  
t
t
DELAY  
DISABLE  
t
t
t
t
t
OCD(ON)  
EN(FALL)  
OCD(OFF)  
EN(RISE)  
D(ON)EN  
D02IN1400  
t
D(OFF)EN  
Figure 16. t  
versus C and R (V = 5 V)  
EN EN DD  
DISABLE  
R EN = 220 k  
R EN = 100 k  
3
.
R EN = 47 k  
R EN = 33 k  
1 10  
R EN = 10 k  
100  
10  
1
1
10  
100  
C E N [nF]  
17/27  
Circuit description  
Figure 17. t  
L6227Q  
versus C (V = 5 V)  
DELAY  
EN  
DD  
10  
1
0.1  
1
10  
100  
Cen [nF]  
4.7  
Thermal protection  
In addition to the ovecurrent protection, the L6227Q integrates a thermal protection for  
preventing the device destruction in case of junction over temperature. It works sensing the  
die temperature by means of a sensible element integrated in the die. The device switch-off  
when the junction temperature reaches 165 °C (typ. value) with 15 °C hysteresis (typ.  
value).  
18/27  
L6227Q  
Application information  
5
Application information  
A typical application using L6227Q is shown in Figure 18. Typical component values for the  
application are shown in Table 8. A high quality ceramic capacitor in the range of 100 to  
200 nF should be placed between the power pins (VS and VS ) and ground near the  
A
B
L6227Q to improve the high frequency filtering on the power supply and reduce high  
frequency transients generated by the switching. The capacitors connected from the EN  
A
and EN inputs to ground set the shut down time for the bridge A and bridge B respectively  
B
when an over current is detected (see overcurrent protection). The two current sensing  
inputs (SENSE and SENSE ) should be connected to the sensing resistors with a trace  
A
B
length as short as possible in the layout. The sense resistors should be non-inductive  
resistors to minimize the dI/dt transients across the resistor. To increase noise immunity,  
unused logic pins (except EN and EN ) are best connected to 5 V (high logic level) or GND  
A
B
(low logic level) (see pin description). It is recommended to keep power ground and signal  
ground separated on PCB.  
Table 8.  
Component values for typical application  
Component  
Value  
C1  
C2  
100 µF  
100 nF  
1 nF  
CA  
CB  
1 nF  
CBOOT  
CP  
220 nF  
10 nF  
5.6 nF  
5.6 nF  
68 nF  
68 nF  
1N4148  
1N4148  
39 kΩ  
39 kΩ  
100 kΩ  
100 kΩ  
0.6 Ω  
CENA  
CENB  
CREFA  
CREFB  
D1  
D2  
RA  
RB  
RENA  
RENB  
RSENSEA  
RSENSEB  
0.6 Ω  
19/27  
Application information  
Figure 18. Typical application  
L6227Q  
Note:  
To reduce the IC thermal resistance, therefore improve the dissipation path, the NC pins can  
be connected to GND.  
20/27  
L6227Q  
Output current capability and IC power dissipation  
6
Output current capability and IC power dissipation  
In Figure 19 and Figure 20 are shown the approximate relation between the output current  
and the IC power dissipation using PWM current control driving two loads, for two different  
driving types:  
One full bridge ON at a time (Figure 19) in which only one load at a time is  
energized.  
Two full bridges ON at the same time (Figure 20) in which two loads at the same  
time are energized.  
For a given output current and driving type the power dissipated by the IC can be easily  
evaluated, in order to establish which package should be used and how large must be the  
on-board copper dissipating area to guarantee a safe operating junction temperature  
(125 °C maximum).  
Figure 19. IC power dissipation vs output current with one full bridge ON at a time  
ONE FULL BRIDGE ON AT A TIME  
10  
IA  
IOUT  
8
IB  
6
PD [W]  
IOUT  
4
2
0
Test Conditions:  
Supply Voltage = 24V  
No PWM  
0 0.25 0.5 0.75 1 1.25 1.5  
fSW = 30 kHz (slow decay)  
IOUT [A]  
Figure 20. IC power dissipation versus output current with two full bridges ON at the  
same time  
TWO FULL BRIDGES ON AT THE SAME TIME  
10  
IA  
IOUT  
8
IB  
6
IOUT  
PD [W]  
4
2
0
Test Conditions:  
Supply Voltage =24V  
No PWM  
fSW = 30kHz (slow decay)  
0 0.25 0.5 0.75 1 1.25 1.5  
IOUT [A]  
21/27  
Thermal management  
L6227Q  
7
Thermal management  
In most applications the power dissipation in the IC is the main factor that sets the maximum  
current that can be delivered by the device in a safe operating condition. Therefore, it has to  
be taken into account very carefully. Besides the available space on the PCB, the right  
package should be chosen considering the power dissipation. Heat sinking can be achieved  
using copper on the PCB with proper area and thickness. For instance, using a VFQFPN32L  
5x5 package the typical Rth(JA) is about 42 °C/W when mounted on a double-layer FR4  
2
2
PCB with a dissipating copper surface of 0.5 cm on the top side plus 6 cm ground layer  
connected through 18 via holes (9 below the IC).  
22/27  
L6227Q  
Package mechanical data  
8
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
Table 9.  
VFQFPN32 5x5x1.0 pitch 0.50  
Dim.  
Databook (mm)  
Typ  
Min  
Max  
A
b
0.80  
0.18  
0.165  
4.85  
3.00  
1.10  
4.85  
4.20  
0.60  
0.85  
0.25  
0.175  
5.00  
3.10  
1.20  
5.00  
4.30  
0.70  
0.50  
0.40  
0.95  
0.30  
0.185  
5.15  
3.20  
1.30  
5.15  
4.40  
0.80  
b1  
D
D2  
D3  
E
E2  
E3  
e
L
0.30  
0.50  
0.08  
ddd  
Note:  
1
2
VFQFPN stands for thermally enhanced very thin profile fine pitch quad flat package no  
lead. Very thin profile: 0.80 < A = 1.00 mm.  
Details of terminal 1 are optional but must be located on the top surface of the package by  
using either a mold or marked features.  
23/27  
Package mechanical data  
Figure 21. Package dimensions  
L6227Q  
24/27  
L6227Q  
Order codes  
9
Order codes  
Table 10. Order code  
Order code  
Package  
Packaging  
Tube  
L6227Q  
VFQFPN32 5 x 5 x 1.0 mm  
25/27  
Revision history  
L6227Q  
10  
Revision history  
Table 11. Document revision history  
Date  
Revision  
Changes  
07-Dec-2007  
1
First release  
Updated: Figure 18 on page 20  
Added: Note 1 on page 4  
10-Jun-2008  
28-Jan-2009  
2
3
Updated value in Table 3: Thermal data on page 4  
26/27  
L6227Q  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2009 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
27/27  

相关型号:

L6228

DMOS DRIVER FOR BIPOLAR STEPPER MOTOR
STMICROELECTR

L6228D

DMOS DRIVER FOR BIPOLAR STEPPER MOTOR
STMICROELECTR

L6228DTR

DMOS DRIVER FOR BIPOLAR STEPPER MOTOR
STMICROELECTR

L6228N

DMOS DRIVER FOR BIPOLAR STEPPER MOTOR
STMICROELECTR

L6228PD

DMOS DRIVER FOR BIPOLAR STEPPER MOTOR
STMICROELECTR

L6228PDTR

DMOS driver for bipolar stepper motor
STMICROELECTR

L6228Q

DMOS driver for bipolar stepper motor
STMICROELECTR

L6228QTR

DMOS driver for bipolar stepper motor
STMICROELECTR

L6228Q_10

DMOS driver for bipolar stepper motor
STMICROELECTR

L6229

DMOS DRIVER FOR THREE-PHASE BRUSHLESS DC MOTOR
STMICROELECTR

L6229D

DMOS DRIVER FOR THREE-PHASE BRUSHLESS DC MOTOR
STMICROELECTR

L6229DP

BRUSHLESS DC MOTOR CONTROLLER
STMICROELECTR