L6392AN [STMICROELECTRONICS]

SWITCHING CONTROLLER, 260kHz SWITCHING FREQ-MAX, PDIP16, ROHS COMPLIANT, DIP-16;
L6392AN
型号: L6392AN
厂家: ST    ST
描述:

SWITCHING CONTROLLER, 260kHz SWITCHING FREQ-MAX, PDIP16, ROHS COMPLIANT, DIP-16

驱动器
文件: 总19页 (文件大小:439K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
L6392  
High-voltage high and low side driver  
Preliminary Data  
Features  
High voltage rail up to 600 V  
dV/dt immunity ꢀ0 V/nsec in full temperature  
range  
Driver current capability:  
– 270 mA source  
DIP-14  
SO-14  
– 430 mA sink  
Switching times 7ꢀ/3ꢀ nsec rise/fall with 1 nF  
Description  
load  
3.3 V, ꢀ V TTL/CMOS inputs with hysteresis  
Integrated bootstrap diode  
The L6392 is a high-voltage device, manufactured  
with the BCD “OFF-LINE" technology. It has a  
monolitich half-bridge gate driver for N-channel  
Power MOSFET or IGBT.  
Operational amplifier for advanced current  
sensing  
The high side (floating) section is designed to  
stand a voltage rail up to 600 V. The logic inputs  
are CMOS/TTL compatible down to 3.3 V for easy  
of interfacing microcont roller/DSP  
Adjustable dead-time  
Interlocking function  
Compact and simplified layout  
Bill of material reduction  
Flexible, easy and fast design  
The IC embeds an op amp suitable for advanced  
current sensing in applications such as field  
oriented motor control.  
Application  
Table 1.  
Device summary  
Order codes  
Package  
Packaging  
L6392  
L6392D  
DIP-14  
SO-14  
SO-14  
Tube  
Tube  
L6392D013TR  
Tape and reel  
March 2008  
Rev 2  
1/19  
This is preliminary information on a new product now in development or undergoing evaluation.  
Details are subject to change without notice.  
www.st.com  
19  
Contents  
L6392  
Contents  
1
2
3
4
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Truth table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Electrical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4.1  
4.2  
4.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
5
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
ꢀ.1  
ꢀ.2  
AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6
7
8
Waveforms definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Bootstrap driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
8.1  
CBOOT selection and charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
10  
2/19  
L6392  
Block diagram  
1
Block diagram  
Figure 1.  
Block diagram  
BOOTSTRAP DRIVER  
FLOATING STRUCTURE  
VCC  
BOOT  
HVG  
4
14  
13  
from LVG  
UV  
DETECTION  
UV  
DETECTION  
HVG  
DRIVER  
S
R
HIN  
3
LEVEL  
SHIFTER  
LOGIC  
5V  
SHOOT  
THROUGH  
PREVENTION  
OUT  
LVG  
12  
10  
LIN  
SD  
1
VCC  
LVG  
DRIVER  
2
7
5
GND  
DT  
DEAD  
TIME  
VCC  
OP+  
OP-  
8
9
OPAMP  
OPOUT  
+
-
6
3/19  
Pin connection  
L6392  
2
Pin connection  
Figure 2.  
Pins connection (top view)  
1
2
3
4
5
6
7
14  
13  
LIN  
SD  
BOOT  
HVG  
OUT  
NC  
12  
11  
10  
9
HIN  
VCC  
LVG  
OP-  
DT  
OPOUT  
GND  
8
OP+  
Table 2.  
Pin description  
Pin N#  
Pin name  
Type  
Function  
1
2
LIN  
SD (1)  
HIN  
I
I
Low side driver logic input (active low)  
Shut down logic input (active low)  
High side driver logic input (active high)  
Lower section supply voltage  
Dead time setting  
3
I
4
VCC  
P
I
DT  
6
OPOUT  
GND  
OP+  
O
P
I
Opamp output  
7
Ground  
8
Opamp non inverting input  
Opamp inverting input  
9
OP-  
I
10  
11  
12  
13  
14  
LVG (1)  
O
Low side driver output  
NC  
Not connected  
OUT  
P
O
P
High side (floating) common voltage  
High side driver output  
HVG (1)  
BOOT  
Bootstrapped supply voltage  
1. The circuit guarantees less than 1 V on the LVG and HVG pins (@ Isink = 10 mA), with VCC > 3 V. This  
allows to omitting the "bleeder" resistor connected between the gate and the source of the external  
MOSFET normally used to hold the pin low; the gate driver assures low impedance also in SD condition.  
4/19  
L6392  
Truth table  
3
Truth table  
Table 3.  
Truth table  
Inputs  
LIN  
Outputs  
SD  
HIN  
LVG  
HVG  
L
H
H
H
H
X
L
X
L
L
H
L
L
L
L
L
L
L
H
L
H
L
H
H
H
Note:  
X: don’t care  
ꢀ/19  
Electrical data  
L6392  
4
Electrical data  
4.1  
Absolute maximum ratings  
Table 4.  
Absolute maximum rating  
Symbol  
Parameter  
Value  
Unit  
Vout  
VCC  
Vop+  
Vop-  
Vboot  
Vhvg  
VIvg  
Vi  
Output voltage  
Vboot -21 to Vboot +0.3  
- 0.3 to + 21  
-0.3 to VCC +0.3  
-0.3 to VCC +0.3  
VCC - 0.3 to 620  
Vout - 0.3 to Vboot + 0.3  
-0.3 to VCC + 0.3  
-0.3 to 1ꢀ  
V
V
Supply voltage  
Opamp non-inverting input  
Opamp inverting input  
Floating supply voltage  
High side gate output voltage  
Low side gate output voltage  
Logic input voltage  
V
V
V
V
V
V
dVout/dt Allowed output slew rate  
ꢀ0  
V/ns  
mW  
°C  
°C  
Ptot  
TJ  
Total power dissipation (TA= 8ꢀ °C)  
TBD  
Junction temperature  
Storage temperature  
1ꢀ0  
Tstg  
-ꢀ0 to 1ꢀ0  
Note:  
ESD immunity for pins 12, 13 and 14 is guaranteed up to TBD (Human Body Model)  
4.2  
Thermal data  
Table 5.  
Symbol  
Thermal data  
Parameter  
Thermal resistance junction to ambient  
SO-14  
DIP-14  
Unit  
Rth(JA)  
16ꢀ  
100  
°C/W  
4.3  
Recommended operating conditions  
Table 6.  
Symbol Pin  
Vout  
Recommended operating conditions  
Parameter Test condition  
Min  
Max  
Unit  
12 Output voltage (1)  
14 Floating supply voltage (1)  
Switching frequency  
ꢀ80  
TBD  
800  
TBD  
12ꢀ  
V
V
(2)  
VBS  
TBD  
fsw  
HVG, LVG load CL = 1nF  
kHz  
V
VCC  
4
Supply voltage  
TBD  
-40  
T
Junction temperature  
°C  
J
1. If the condition TBDV< Vboot - Vout < TBD V and Vboot < TBD V are guaranteed, Vout can range from TBD V  
to ꢀ80 V.  
2. VBS = Vboot -Vout  
6/19  
L6392  
Electrical characteristics  
5
Electrical characteristics  
5.1  
AC operation  
Table 7.  
Symbol  
AC operation electrical characteristics (V = 15V; T =+25 °C)  
CC J  
Pin  
Parameter  
Test condition  
Min  
Typ  
Max Unit  
High/low side driver turn-  
on propagation delay  
ton  
toff  
tsd  
12ꢀ  
ns  
Vout = 0 V  
1 vs 10  
3 vs 13  
Vboot = Vcc  
High/low side driver turn-  
off propagation delay  
CL = 1nF  
12ꢀ  
12ꢀ  
ns  
ns  
Vi = 0 to 3.3 V  
See Figure 3 on page 7  
2 vs Shut down to high/low  
10, 13 side propagation delay  
Delay matching, HS and  
LS turn-on/off  
MT  
40  
ns  
Rdt=0; CL=1 nF; CDT =100 nF  
Rdt=37 k;CL=1 nF;CDT=100 nF  
Rdt=136 k;CL=1 nF;CDT=100 nF  
Rdt=260 k;CL=1 nF;CDT=100 nF  
0.1ꢀ  
0.ꢀ  
1.ꢀ  
2.8  
µs  
µs  
µs  
µs  
dt  
Dead time setting range  
Matching dead time  
Rdt=0 ; CL=1 nF; CDT =100 nF  
Rdt=37 k;CL=1 nF;CDT=100 nF  
Rdt=136 k;CL=1 nF;CDT=100 nF  
Rdt=26 0k;CL=1 nF;CDT=100 nF  
60  
ns  
ns  
ns  
ns  
TBD  
TBD  
TBD  
MDT  
tr  
tf  
Rise time  
Fall time  
CL = 1 nF  
CL = 1 nF  
7ꢀ  
3ꢀ  
ns  
ns  
10, 13  
Figure 3.  
Timing characteristics  
50%  
50%  
LIN  
tr  
tr  
tr  
tf  
tf  
tf  
90%  
90%  
90%  
90%  
10%  
10%  
10%  
10%  
10%  
10%  
LVG  
ton  
toff  
50%  
50%  
HIN  
90%  
HVG  
ton  
toff  
50%  
50%  
SD  
90%  
LVG/HVG  
ton  
toff  
7/19  
Electrical characteristics  
L6392  
5.2  
DC operation  
Table 8.  
Symbol  
DC operation electrical characteristics (V = 15 V;T = +25 °C)  
CC J  
Pin  
Parameter  
Test condition  
Min  
Typ  
Max Unit  
Low supply voltage section  
Vcc_hys  
Vcc UV hysteresis  
700  
1400  
11.8  
mV  
V
Vcc UV turn ON  
threshold  
Vcc_thON  
Vcc UV turn OFF  
threshold  
Vcc_thOFF  
10.4  
V
VCC = 10 V  
SD = ꢀV; LIN = ꢀV;  
HIN = GND;  
Undervoltage quiescent  
supply current  
4
Iqccu  
110  
150  
µA  
RDT = 0 ;  
OP + = GND; OP - = ꢀ V  
VCC = 1ꢀ V  
SD = ꢀ V; LIN = ꢀ V;  
HIN = GND;  
Iqcc  
Quiescent current  
680  
1060 µA  
RDT = 0 ;  
OP + = GND; OP - = ꢀ V  
Bootstrapped supply voltage section  
VBS_hys  
VBS UV hysteresis  
700  
1400  
11.6  
mV  
V
VBS UV turn ON  
threshold  
VBS_thON  
V
BS UV turn OFF  
VBS_thOFF  
10.2  
70  
V
threshold  
VBS = 10 V  
14  
SD = ꢀ V; LIN and HIN = ꢀ V;  
RDT = 0 ;  
OP + = GND; OP - = ꢀ V  
Undervoltage VBS  
quiescent current  
IQBSU  
110  
210  
µA  
µA  
VBS = 1ꢀ V  
SD = ꢀ V; LIN and HIN = ꢀ V;  
RDT = 0 ;  
IQBS  
VBS quiescent current  
150  
OP + = GND; OP - = ꢀ V  
8/19  
L6392  
Electrical characteristics  
Table 8.  
Symbol  
DC operation electrical characteristics (V = 15 V;T = +25 °C)  
CC J  
Pin  
Parameter  
Test condition  
Min  
Typ  
Max Unit  
High voltage leakage  
current  
ILK  
Vhvg = Vout = Vboot = 600 V  
10  
µA  
Bootstrap driver on  
resistance (1)  
Rdson  
LVG ON  
120  
Driving buffers section  
High/low side source  
short circuit current  
Iso  
Vi= Vih (tp < 10 ms)  
Vi= Vil (tp < 10 ms)  
270  
430  
mA  
mA  
10, 13  
High/low side sink short  
circuit current  
Isi  
Logic inputs  
Vil  
Low level logic threshold  
voltage  
0.83  
V
1, 2, 3  
High level logic threshold  
voltage  
Vih  
IHINh  
IHINl  
ILINh  
ILINl  
ISDh  
ISDl  
2.21  
V
HIN logic “1” input bias  
current  
HIN = 1ꢀ V  
HIN = 0 V  
LIN = 0 V  
LIN = 1ꢀ V  
SD = 1ꢀ V  
SD = 0 V  
17ꢀ  
6
260  
1
µA  
µA  
µA  
µA  
µA  
µA  
3
1
2
HIN logic “0” input bias  
current  
LIN logic “1” input bias  
current  
40  
1
LIN logic “0” input bias  
current  
SD logic “1” input bias  
current  
30  
100  
1
SD logic “0” input bias  
current  
1. RDSon is tested in the following way:  
DSon = [(VCC - VCBOOT1) - (VCC - VCBOOT2)] / [I1(VCC,VCBOOT1) - I2(VCC,VCBOOT2)] where I1 is pin 16 current when  
VCBOOT = VCBOOT1, I2 when VCBOOT = VCBOOT2  
R
9/19  
Electrical characteristics  
L6392  
Unit  
Table 9.  
Symbol  
OPAMP characteristics (V = 15 V, T = +25 °C)  
CC  
J
Pin  
Parameter  
Test condition  
Min  
Typ  
Max  
VO = TBD;  
0 < Vicm < VCC -TBD  
Vio  
Iib  
Input offset voltage  
3
mV  
nA  
8, 9 Input bias current (1)  
1ꢀ  
200  
Input common mode voltage  
range  
VCC -  
TBD  
Vicm  
0
Output voltage swing - low  
level  
VOL  
VOH  
Isink = 3.ꢀ mA, RL = 2 kΩ  
180  
14.3  
30  
360  
mV  
V
Output voltage swing - high Isource = 3.ꢀ mA,  
level  
13.ꢀ  
16  
RL = 2 kΩ  
6
Source,  
mA  
mA  
V/µs  
Vid = TBD; Vo = TBD  
Io  
Output short circuit current  
Sink  
ꢀ0  
80  
Vid = TBD; Vo = TBD  
Vi = TBD; RL = 2 k;  
CL = TBD; unity gain  
SR  
Slew rate  
2.ꢀ  
3.8  
GBWP  
Avd  
Gain bandwith product  
Vo = TBD; RL = 2 kΩ  
TBD  
9ꢀ  
MHz  
dB  
Large signal voltage gain  
8ꢀ  
80  
SRV  
Power supply rejection ratio vs Vcc  
8ꢀ  
dB  
Common mode rejection  
ratio  
CMRR  
100  
dB  
1. The direction of input current is out of the IC.  
10/19  
L6392  
6
Waveforms definitions  
Waveforms definitions  
Figure 4.  
Dead time - timing waveforms  
LIN  
HIN  
CONTROL SIGNAL EDGES  
OVERLAPPED:  
INTERLOCKING + DEAD TIME  
LVG  
HVG  
DT  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
LIN  
HIN  
CONTROL SIGNALS EDGES  
SYNCHRONOUS (*):  
DEAD TIME  
LVG  
HVG  
DT  
DT  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
LIN  
HIN  
CONTROL SIGNALS EDGES  
NOT OVERLAPPED,  
BUT INSIDE THE DEAD TIME:  
DEAD TIME  
LVG  
HVG  
DT  
DT  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
LIN  
HIN  
CONTROL SIGNALS EDGES  
NOT OVERLAPPED,  
OUTSIDE THE DEAD TIME:  
DIRECT DRIVING  
LVG  
HVG  
DT  
DT  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
gate driver outputs OFF  
(HALF-BRIDGE TRI-STATE)  
(*) HIN and LIN can be connected togheter and driven by just one control signal  
11/19  
Typical application diagram  
L6392  
7
Typical application diagram  
Figure 5.  
Application diagram  
BOOTSTRAP DRIVER  
FLOATING STRUCTURE  
VCC  
BOOT  
HVG  
4
14  
13  
from LVG  
UV  
DETECTION  
UV  
DETECTION  
Cboot  
H.V.  
HVG  
DRIVER  
S
R
HIN  
3
LEVEL  
SHIFTER  
LOGIC  
5V  
SHOOT  
THROUGH  
PREVENTION  
OUT  
LVG  
12  
10  
LIN  
SD  
1
TO LOAD  
VCC  
LVG  
DRIVER  
2
SD  
LATCH  
7
5
GND  
DT  
DEAD  
TIME  
OPAMP  
OP+  
OP-  
8
9
OPOUT  
+
-
6
12/19  
L6392  
Bootstrap driver  
8
Bootstrap driver  
A bootstrap circuitry is needed to supply the high voltage section. This function is normally  
accomplished by a high voltage fast recovery diode (Figure 6 a). In the L6392 a patented  
integrated structure replaces the external diode. It is realized by a high voltage DMOS,  
driven synchronously with the low side driver (LVG), with diode in series, as shown in  
Figure 6 b.  
An internal charge pump (Figure 6 b) provides the DMOS driving voltage.  
8.1  
CBOOT selection and charging  
To choose the proper CBOOT value the external MOS can be seen as an equivalent  
capacitor. This capacitor CEXT is related to the MOS total gate charge:  
Qgate  
CEXT = -------------  
Vgate  
The ratio between the capacitors CEXT and CBOOT is proportional to the cyclical voltage loss.  
It has to be:  
C
>>> C  
EXT  
BOOT  
e.g.: if Qgate is 30 nC and Vgate is 10 V, CEXT is 3 nF. With CBOOT = 100 nF the drop would be  
300 mV.  
If HVG has to be supplied for a long time, the CBOOT selection has to take into account also  
the leakage and quiescent losses.  
e.g.: HVG steady state consumption is lower than 200 µA, so if HVG TON is ꢀ ms, CBOOT has  
to supply 1 µC to CEXT. This charge on a 1µF capacitor means a voltage drop of 1 V.  
The internal bootstrap driver gives agreat advantage: the external fast recovery diode can  
be avoided (it usually has great leakage current).  
This structure can work only if VOUT is close to GND (or lower) and in the meanwhile the  
LVG is on. The charging time (Tcharge ) of the CBOOT is the time in which both conditions are  
fulfilled and it has to be long enough to charge the capacitor.  
The bootstrap driver introduces a voltage drop due to the DMOS RDSON (typical value:  
120 ). At low frequency this drop can be neglected. Anyway increasing the frequency it  
must be taken in to account.  
The following equation is useful to compute the drop on the bootstrap DMOS:  
Qgate  
------------------  
Rdson  
Vdrop = IchargeRdson Vdrop  
=
Tcharge  
where Qgate is the gate charge of the external power MOS, Rdson is the on resistance of the  
bootstrap DMOS, and Tcharge is the charging time of the bootstrap capacitor.  
13/19  
Bootstrap driver  
For example: using a power MOS with a total gate charge of 30 nC the drop on the  
L6392  
bootstrap DMOS is about 1 V, if the Tcharge is ꢀ µs. In fact:  
30nC  
µs  
--------------  
120Ω ∼ 0.7V  
Vdrop  
=
V
drop has to be taken into account when the voltage drop on CBOOT is calculated: if this drop  
is too high, or the circuit topology doesn’t allow a sufficient charging time, an external diode  
can be used.  
Figure 6.  
Bootstrap driver  
DBOOT  
VS  
BOOT  
H.V.  
BOOT  
H.V.  
VS  
HVG  
LVG  
HVG  
LVG  
CBOOT  
CBOOT  
VOUT  
VOUT  
TO LOAD  
TO LOAD  
D99IN1067  
a
b
14/19  
L6392  
Package mechanical data  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in ECOPACK®  
packages. These packages have a lead-free second level interconnect . The category of  
second level interconnect is marked on the package and on the inner box label, in  
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering  
conditions are also marked on the inner box label. ECOPACK is an ST trademark.  
ECOPACK specifications are available at: www.st.com  
1ꢀ/19  
Package mechanical data  
Figure 7. DIP-14 mechanical data and package dimensions  
L6392  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN. TYP. MAX.  
a1  
B
b
0.ꢀ1  
0.020  
1.39  
1.6ꢀ 0.0ꢀꢀ  
0.06ꢀ  
0.ꢀ  
0.020  
0.010  
b1  
D
E
e
0.2ꢀ  
20  
0.787  
8.ꢀ  
2.ꢀ4  
1ꢀ.24  
0.33ꢀ  
0.100  
0.600  
e3  
F
7.1  
ꢀ.1  
0.280  
I
0.201  
L
3.3  
0.130  
Z
1.27  
2.ꢀ4 0.0ꢀ0  
0.100  
16/19  
L6392  
Package mechanical data  
SO-14 mechanical data and package dimensions  
Figure 8.  
mm  
inch  
DIM.  
OUTLINE AND  
MECHANICAL DATA  
MIN. TYP. MAX. MIN.  
TYP. MAX.  
0.069  
A
A1  
A2  
B
1.3ꢀ  
0.10  
1.10  
0.33  
0.19  
8.ꢀꢀ  
1.7ꢀ 0.0ꢀ3  
0.30 0.004  
1.6ꢀ 0.043  
0.ꢀ1 0.013  
0.2ꢀ 0.007  
8.7ꢀ 0.337  
0.012  
0.06ꢀ  
0.020  
C
0.01  
(1)  
0.344  
D
E
e
3.80  
4.0  
0.1ꢀ0  
0.1ꢀ7  
0.0ꢀ0  
1.27  
H
ꢀ.8  
6.20 0.228  
0.ꢀ0 0.01  
0.244  
h
0.2ꢀ  
0.40  
0.02  
L
1.27 0.016  
0° (min.), 8° (max.)  
0.10  
0.0ꢀ0  
k
ddd  
0.004  
(1) “D” dimension does not include mold flash, protusions or gate  
burrs. Mold flash, protusions or gate burrs shall not exceed  
0.1ꢀmm per side.  
0016019 D  
17/19  
Revision history  
L6392  
10  
Revision history  
Table 10. Document revision history  
Date  
Revision  
Changes  
29-Feb-2008  
18-Mar-2008  
1
2
Initial release  
Cover page updated  
18/19  
L6392  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2008 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
19/19  

相关型号:

L6392D

High-voltage high and low side driver
STMICROELECTR

L6392D013TR

High-voltage high and low side driver
STMICROELECTR

L6392DTR

暂无描述
STMICROELECTR

L6392N

High voltage high and low-side driver
STMICROELECTR

L6392_10

High-voltage high and low side driver
STMICROELECTR

L6393

Half-bridge gate driver
STMICROELECTR

L6393D

Half-bridge gate driver
STMICROELECTR

L6393D013TR

Half-bridge gate driver
STMICROELECTR

L6393N

Half bridge gate driver
STMICROELECTR

L6393_10

Half-bridge gate driver
STMICROELECTR

L6398

High voltage high and low side driver
STMICROELECTR

L6398D

High voltage high and low side driver
STMICROELECTR