M24M01-A125 [STMICROELECTRONICS]

Automotive 1-Mbit serial IC bus EEPROM with 1 MHz clock;
M24M01-A125
型号: M24M01-A125
厂家: ST    ST
描述:

Automotive 1-Mbit serial IC bus EEPROM with 1 MHz clock

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器
文件: 总37页 (文件大小:628K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M24M01-A125  
Automotive 1-Mbit serial I²C bus EEPROM with 1 MHz clock  
Datasheet - production data  
Features  
2
Compatible with all I C bus modes  
– 1 MHz  
– 400 kHz  
– 100 kHz  
Memory array  
– 1 Mbit (128 Kbytes) of EEPROM  
TSSOP8 (DW)  
169 mil width  
– Page size: 256 bytes  
– Additional Write lockable page  
(Identification page)  
Extended temperature and voltage ranges  
– -40 °C to 125 °C; 2.5 V to 5.5 V  
Schmitt trigger inputs for noise filtering.  
Short Write cycle time  
– Byte Write within 4 ms  
– Page Write within 4 ms  
SO8 (MN)  
150 mil width  
Write cycle endurance  
– 4 million Write cycles at 25 °C  
– 1.2 million Write cycles at 85 °C  
– 600 k Write cycles at 125 °C  
Data retention  
– 50 years at 125 °C  
– 100 years at 25 °C  
ESD Protection (Human Body Model)  
– 4000 V  
Packages  
– RoHS compliant and halogen-free  
®
(ECOPACK 2)  
February 2014  
DocID023765 Rev 4  
1/37  
This is information on a product in full production.  
www.st.com  
 
Contents  
M24M01-A125  
Contents  
1
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Signal description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
Serial Clock (SCL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Serial Data (SDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Chip Enable (E2, E1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Control (WC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
VSS (ground) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Supply voltage (VCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3
Device operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Acknowledge bit (ACK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Identification page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4
Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1  
Write operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1.1  
4.1.2  
4.1.3  
4.1.4  
4.1.5  
Byte Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Page Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write Identification Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Lock Identification Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Minimizing Write delays by polling on ACK . . . . . . . . . . . . . . . . . . . . . . 18  
4.2  
Read operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
4.2.1  
4.2.2  
4.2.3  
4.2.4  
4.2.5  
4.2.6  
Random Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Current Address Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Sequential Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read Identification Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Read the lock status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Acknowledge in Read mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
2/37  
DocID023765 Rev 4  
M24M01-A125  
Contents  
5
Application design recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1  
Supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.1.1  
5.1.2  
5.1.3  
Operating supply voltage (V ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
CC  
Power-up conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.2  
Cycling with Error Correction Code (ECC) . . . . . . . . . . . . . . . . . . . . . . . . 24  
6
Delivery state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
DC and AC parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
7
8
9
10  
11  
DocID023765 Rev 4  
3/37  
3
List of tables  
M24M01-A125  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Signal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Address significant bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Device identification code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Cycling performance by groups of four bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Operating conditions (voltage range W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
AC measurement conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Input parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
DC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
400 kHz AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
1 MHz AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
TSSOP8 – 8-lead thin shrink small outline, package mechanical data. . . . . . . . . . . . . . . . 33  
SO8N – 8 lead plastic small outline, 150 mils body width, package data. . . . . . . . . . . . . . 34  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
4/37  
DocID023765 Rev 4  
M24M01-A125  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Logic diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
8-pin package connections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Device select code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2
I C bus protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Write mode sequences with WC = 0 (data write enabled) . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Write mode sequences with WC = 1 (data write inhibited) . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Write cycle polling flowchart using ACK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Read mode sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
AC measurement I/O waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
2
Figure 10. Maximum R  
value versus bus parasitic capacitance (C ) for an I C  
bus  
bus  
bus at maximum frequency f = 400 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
C
2
Figure 11. Maximum R  
value versus bus parasitic capacitance C ) for an I C  
bus  
bus  
bus at maximum frequency f = 1MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
C
Figure 12. AC waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Figure 13. TSSOP8 – 8-lead thin shrink small outline, package outline . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 14. SO8N – 8 lead plastic small outline, 150 mils body width, package outline . . . . . . . . . . . . 34  
DocID023765 Rev 4  
5/37  
5
Description  
M24M01-A125  
1
Description  
The M24M01-A125 is a 1-Mbit serial EEPROM Automotive grade device operating up to  
125 °C. The M24M01-A125 is compliant with the very high level of reliability defined by the  
Automotive standard AEC-Q100 grade 1.  
2
The device is accessed by a simple serial I C compatible interface running up to 1 MHz.  
The memory array is based on advanced true EEPROM technology (Electrically Erasable  
PROgrammable Memory). The M24M01-A125 is a byte-alterable memory (128 K × 8 bits)  
organized as 512 pages of 256 bytes in which the data integrity is significantly improved  
with an embedded Error Correction Code logic.  
The M24M01-A125 offers an additional Identification Page (256 bytes) in which the ST  
device identification can be read. This page can also be used to store sensitive application  
parameters which can be later permanently locked in read-only mode.  
Figure 1. Logic diagram  
7#  
%ꢇ  
%ꢅ  
(IGH VOLTAGE  
GENERATOR  
#ONTROL LOGIC  
3#,  
3$!  
)ꢆ/ SHIFT REGISTER  
$ATA  
REGISTER  
!DDRESS REGISTER  
AND COUNTER  
ꢅ PAGE  
)DENTIFICATION PAGE  
8 DECODER  
-3ꢀꢁꢂꢃꢄ6ꢅ  
6/37  
DocID023765 Rev 4  
 
 
M24M01-A125  
Description  
Table 1. Signal names  
Function  
Signal name  
Direction  
E2, E1  
Chip Enable  
Serial Data  
Serial Clock  
Write Control  
Supply voltage  
Ground  
Input  
I/O  
Input  
Input  
-
SDA  
SCL  
WC  
VCC  
VSS  
-
Figure 2. 8-pin package connections  
-ꢇꢈ-ꢁꢅ  
$5  
%ꢅ  
%ꢇ  
6
##  
7#  
3#,  
3$!  
6
33  
-3ꢅꢂꢃꢃꢀ6ꢅ  
1. DU: Don't Use (if connected, must be connected to VSS)  
2. See Section 9: Package mechanical data for package dimensions, and how to identify pin 1.  
DocID023765 Rev 4  
7/37  
36  
 
 
Signal description  
M24M01-A125  
2
Signal description  
2.1  
Serial Clock (SCL)  
The signal applied on this input is used to strobe the data available on SDA(in) and to output  
the data on SDA(out).  
2.2  
2.3  
Serial Data (SDA)  
SDA is an input/output used to transfer data in or out of the device. SDA(out) is an open  
drain output that may be wire-OR’ed with other open drain or open collector signals on the  
bus. A pull up resistor must be connected between SDA and V (Figure 10 indicates how  
CC  
to calculate the value of the pull-up resistor).  
Chip Enable (E2, E1)  
(E2,E1) input signals are used to set the value that is to be looked for on the three least  
significant bits (b3, b2) of the 7-bit device select code (see Table 2). These inputs must be  
tied to V or V , as shown in Figure 3. When not connected (left floating), these inputs  
CC  
SS  
are read as low (0).  
Figure 3. Device select code  
6
6
##  
##  
-ꢇꢈXXX  
-ꢇꢈXXX  
%
%
I
I
6
6
33  
33  
!Iꢅꢇꢉꢁꢊ  
2.4  
Write Control (WC)  
This input signal is useful for protecting the entire contents of the memory from inadvertent  
write operations. Write operations are disabled to the entire memory array when Write  
Control (WC) is driven high. Write operations are enabled when Write Control (WC) is either  
driven low or left floating.  
When Write Control (WC) is driven high, device select and address bytes are  
acknowledged, Data bytes are not acknowledged.  
8/37  
DocID023765 Rev 4  
 
 
 
 
 
 
M24M01-A125  
Signal description  
2.5  
2.6  
VSS (ground)  
V
is the reference for the V supply voltage.  
CC  
SS  
Supply voltage (VCC)  
V
is the supply voltage pin.  
CC  
DocID023765 Rev 4  
9/37  
36  
 
 
Device operation  
M24M01-A125  
3
Device operation  
2
The device supports the I C protocol (see Figure 4).  
2
The I C bus is controlled by the bus master and the device is always a slave in all  
communications.  
The device (bus master or a slave) that sends data on to the bus is defined as a transmitter;  
the device (bus master or a slave) is defined as a receiver when reading the data.  
2
Figure 4. I C bus protocol  
3#,  
3$!  
3$!  
)NPUT  
3$!  
#HANGE  
34!24  
#ONDITION  
34/0  
#ONDITION  
3#,  
3$!  
!#+  
-3"  
34!24  
#ONDITION  
3#,  
3$!  
-3"  
!#+  
34/0  
#ONDITION  
!)ꢁꢁꢃꢂꢇ"  
10/37  
DocID023765 Rev 4  
 
 
M24M01-A125  
Device operation  
3.1  
Start condition  
Start is identified by a falling edge of Serial Data (SDA) while Serial Clock (SCL) is stable in  
the high state. A Start condition must precede any data transfer instruction. The device  
continuously monitors (except during a Write cycle) Serial Data (SDA) and Serial Clock  
(SCL) for a Start condition.  
3.2  
Stop condition  
Stop is identified by a rising edge of Serial Data (SDA) while Serial Clock (SCL) is stable and  
driven high. A Stop condition terminates communication between the device and the bus  
master.  
A Stop condition at the end of a Write instruction triggers the internal Write cycle.  
3.3  
3.4  
Data input  
During data input, the device samples Serial Data (SDA) on the rising edge of Serial Clock  
(SCL). For correct device operation, Serial Data (SDA) must be stable during the rising edge  
of Serial Clock (SCL), and the Serial Data (SDA) signal must change only when Serial Clock  
(SCL) is driven low.  
Acknowledge bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,  
whether it be bus master or slave device, releases Serial Data (SDA) after sending eight bits  
th  
of data. During the 9 clock pulse period, the receiver pulls Serial Data (SDA) low to  
acknowledge the receipt of the eight data bits.  
DocID023765 Rev 4  
11/37  
36  
 
 
 
 
Device operation  
M24M01-A125  
3.5  
Device addressing  
To start communication between the bus master and the slave device, the bus master must  
initiate a Start condition. Following this, the bus master sends the device select code, as  
shown in Table 2.  
The device select code consists of a 4-bit device type identifier and a 2-bit Chip Enable  
address (E2, E1). A device select code handling any value other than 1010b (to select the  
memory) or 1011b (to select the Identification page) is not acknowledged by the memory  
device.  
2
Up to four memory devices can be connected on a single I C bus. Each one is given a  
unique 2-bit code on the Chip Enable (E2, E1) inputs. When the device select code is  
received, the memory device only responds if the Chip Enable Address is the same as the  
value decoded on the E2, E1 inputs.  
th  
The 8 bit is the Read/Write bit (RW). This bit is set to 1 for Read and 0 for Write operations.  
Table 2. Device select code  
Chip Enable  
address(2)  
Address  
bit  
Device type identifier(1)  
RW  
b7  
1
b6  
0
b5  
1
b4  
0
b3  
E2  
b2  
b1  
b0  
When accessing  
the memory  
E1  
A16  
RW  
When accessing  
the Identification  
page  
1
0
1
1
E2  
E1  
X(3)  
RW  
1. The most significant bit, b7, is sent first.  
2. E2 and E1 bits are compared with the value read on input pins E2,E1.  
3. X = don’t care.  
If a match occurs on the device select code, the corresponding memory device gives an  
th  
acknowledgment on Serial Data (SDA) during the 9 bit time. If the memory device does not  
match the device select code, it deselects itself from the bus, and goes into Standby mode.  
Once the memory device has acknowledged the device select code (Table 2), the memory  
device waits for the master to send two address bytes (most significant address byte sent  
first, followed by the least significant address byte (Table 3). The memory device responds  
to each address byte with an acknowledge bit.  
Note:  
A: significant address bit.  
X: bit is Don’t Care.  
12/37  
DocID023765 Rev 4  
 
 
M24M01-A125  
Device operation  
Table 3. Address significant bits  
Memory(1) (2)  
Identification page  
(Device type identifier = 1011b)  
(Device type identifier =  
1010b)  
Random  
Address  
Read  
Read  
Write  
Lock  
Read  
lock  
status  
Write  
Identification Identification Identification  
page  
page  
page  
Device  
Select  
bit 1  
b16  
A16  
A16  
X
X
X
X
b15  
b14  
b13  
b12  
b11  
b10  
b9  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
A15  
A14  
A13  
A12  
A11  
A10  
A9  
X
X
X
X
X
X
X
X
X
1
X
X
X
X
X
0
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
b8  
A8  
A8  
X
X
b7  
A7  
A7  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
b6  
A6  
A6  
b5  
A5  
A5  
b4  
A4  
A4  
b3  
A3  
A3  
b2  
A2  
A2  
b1  
A1  
A1  
b0  
A0  
A0  
1. A: significant address bit.  
2. X: bit is Don’t Care.  
DocID023765 Rev 4  
13/37  
36  
 
Device operation  
M24M01-A125  
3.6  
Identification page  
The M24M01-A125 offers an Identification Page (256 bytes) in addition to the 1 Mb memory.  
The Identification page contains two fields:  
Device identification code: the first three bytes are programmed by STMicroelectronics  
with the Device identification code, as shown in Table 4.  
Application parameters: the bytes after the Device identification code are available for  
application specific data.  
Note:  
If the end application does not need to read the Device identification code, this field can be  
overwritten and used to store application-specific data. Once the application-specific data  
are written in the Identification page, the whole Identification page should be permanently  
locked in Read-only mode.  
The instructions Read, Write and Lock Identification Page are detailed in Section 4:  
Instructions.  
Table 4. Device identification code  
Address in  
Content  
Value  
Identification page  
00h  
01h  
02h  
ST manufacturer code  
I2C family code  
20h  
E0h  
Memory density code  
11h (1024 Kbit)  
14/37  
DocID023765 Rev 4  
 
 
M24M01-A125  
Instructions  
4
Instructions  
4.1  
Write operations  
For a Write operation, the bus master sends a Start condition followed by a device select  
code with the R/W bit reset to 0. The device acknowledges this, as shown in Figure 5, and  
waits for the master to send two address bytes (most significant address byte sent first,  
followed by the least significant address byte (Table 3). The device responds to each  
address byte with an acknowledge bit, and then waits for the data byte.  
The 128 Kbytes (1 Mb) are addressed with 17 address bits, the 16 lower address bits being  
defined by the two address bytes and the most significant address bit (A16) being included  
in the Device Select code (see Table 2).  
When the bus master generates a Stop condition immediately after a data byte Ack bit (in  
th  
the “10 bit” time slot), either at the end of a Byte Write or a Page Write, the internal Write  
cycle t is then triggered. A Stop condition at any other time slot does not trigger the internal  
W
Write cycle.  
During the internal Write cycle, Serial Data (SDA) is disabled internally, and the device does  
not respond to any requests.  
After the successful completion of an internal Write cycle (t ), the device internal address  
W
counter is automatically incremented to point to the next byte after the last modified byte.  
If the Write Control input (WC) is driven High, the Write instruction is not executed and the  
accompanying data bytes are not acknowledged, as shown in Figure 6.  
DocID023765 Rev 4  
15/37  
36  
 
 
Instructions  
M24M01-A125  
4.1.1  
Byte Write  
After the device select code and the address bytes, the bus master sends one data byte. If  
the addressed location is Write-protected, by Write Control (WC) being driven high, the  
device replies with NoAck, and the location is not modified (see Figure 6). If, instead, the  
addressed location is not Write-protected, the device replies with Ack. The bus master  
terminates the transfer by generating a Stop condition, as shown in Figure 5.  
Figure 5. Write mode sequences with WC = 0 (data write enabled)  
7#  
!#+  
!#+  
!#+  
!#+  
"YTE 7RITE  
$EV SEL  
"YTE ADDR  
"YTE ADDR  
$ATA IN  
2ꢆ7  
7#  
!#+  
!#+  
!#+  
!#+  
0AGE 7RITE  
$EV SEL  
"YTE ADDR  
"YTE ADDR  
$ATA IN ꢅ  
$ATA IN ꢇ  
2ꢆ7  
7# ꢋCONTgDꢌ  
!#+  
!#+  
0AGE 7RITE ꢋCONTgDꢌ  
$ATA IN .  
!)ꢁꢅꢅꢁꢊD  
16/37  
DocID023765 Rev 4  
 
 
M24M01-A125  
Instructions  
4.1.2  
Page Write  
(a)  
The Page Write mode allows up to N bytes to be written in a single Write cycle, provided  
that they are all located in the same page in the memory: that is, the most significant  
memory address bits, A16/A8, are the same. If more bytes are sent than will fit up to the end  
of the page, a condition known as “roll-over” occurs. In case of roll-over, the first bytes of the  
page are overwritten.  
(a)  
The bus master sends from 1 to N bytes of data, each of which is acknowledged by the  
device if Write Control (WC) is low. If Write Control (WC) is high, the contents of the  
addressed memory location are not modified, and each data byte received by the device is  
not acknowledged, as shown in Figure 6. After each byte is transferred, the internal byte  
address counter is incremented. The transfer is terminated by the bus master generating a  
Stop condition.  
Figure 6. Write mode sequences with WC = 1 (data write inhibited)  
7#  
!#+  
!#+  
!#+  
./ !#+  
"YTE 7RITE  
$EV SEL  
"YTE ADDR  
"YTE ADDR  
$ATA IN  
2ꢆ7  
7#  
!#+  
!#+  
!#+  
./ !#+  
$ATA IN ꢇ  
0AGE 7RITE  
$EV SEL  
"YTE ADDR  
"YTE ADDR  
$ATA IN ꢅ  
2ꢆ7  
7# ꢋCONTgDꢌ  
./ !#+  
./ !#+  
0AGE 7RITE ꢋCONTgDꢌ  
$ATA IN .  
!)ꢁꢅꢅꢇꢁD  
a. N is the number of bytes in a page.  
DocID023765 Rev 4  
17/37  
36  
 
 
Instructions  
M24M01-A125  
4.1.3  
Write Identification Page  
The Identification Page (256 bytes) is an additional page which can be written and (later)  
permanently locked in Read-only mode. It is written by issuing the Write Identification Page  
instruction. This instruction uses the same protocol and format as Page Write (into memory  
array), except for the following differences:  
Device type identifier = 1011b  
Most significant address bits A16/A8 are don't care, except for address bit A10 which  
must be “0”. Least significant address bits A7/A0 define the byte location inside the  
Identification page.  
If the Identification page is locked, the data bytes transferred during the Write Identification  
Page instruction are not acknowledged (NoAck).  
4.1.4  
4.1.5  
Lock Identification Page  
The Lock Identification Page instruction (Lock ID) permanently locks the Identification page  
in Read-only mode. The Lock ID instruction is similar to Byte Write (into memory array) with  
the following specific conditions:  
Device type identifier = 1011b  
Address bit A10 must be ‘1’; all other address bits are don't care  
The data byte must be equal to the binary value xxxx xx1x, where x is don't care  
Minimizing Write delays by polling on ACK  
The maximum Write time (tw) is shown in AC characteristics tables in Section 8: DC and AC  
parameters, but the typical time is shorter. To make use of this, a polling sequence can be  
used by the bus master.  
The sequence, as shown in Figure 7, is:  
Initial condition: a Write cycle is in progress.  
Step 1: the bus master issues a Start condition followed by a device select code (the  
first byte of the new instruction).  
Step 2: if the device is busy with the internal Write cycle, no Ack will be returned and  
the bus master goes back to Step 1. If the device has terminated the internal Write  
cycle, it responds with an Ack, indicating that the device is ready to receive the second  
part of the instruction (the first byte of this instruction having been sent during Step 1).  
18/37  
DocID023765 Rev 4  
 
 
 
M24M01-A125  
Instructions  
Figure 7. Write cycle polling flowchart using ACK  
:ULWHꢀF\FOH  
LQꢀSURJUHVVꢀ  
6WDUWꢀFRQGLWLRQ  
'HYLFHꢀVHOHFW  
ZLWKꢀ5:ꢀ ꢀꢁ  
$&.  
12  
UHWXUQHG  
)LUVWꢀE\WHꢀRIꢀLQVWUXFWLRQ  
ZLWKꢀ5:ꢀ ꢀꢁꢀDOUHDG\  
GHFRGHGꢀE\ꢀWKHꢀGHYLFH  
<(6  
1H[W  
2SHUDWLRQꢀLV  
DGGUHVVLQ ꢀWKH  
PHPRU\  
12  
<(6  
6HQGꢀ$GGUHVV  
DQGꢀ5HFHLYHꢀ$&.  
5H6WDUW  
12  
<(6  
6WRS  
6WDUW&RQGLWLRQ  
'DWDꢀIRUꢀWKH  
:ULWHꢀFSHUDWLRQ  
$EVICE SELECT  
WITH 27 ꢍ ꢅ  
&RQWLQXHꢀWKH  
5DQGRPꢀ5HDGꢀRSHUDWLRQ  
&RQWLQXHꢀWKH  
:ULWHꢀRSHUDWLRQ  
!$,)GE  
DocID023765 Rev 4  
19/37  
36  
 
Instructions  
M24M01-A125  
4.2  
Read operations  
Read operations are performed independently of the state of the Write Control (WC) signal.  
After the successful completion of a Read operation, the device internal address counter is  
incremented by one, to point to the next byte address.  
Figure 8. Read mode sequences  
!#+  
./ !#+  
#URRENT  
!DDRESS  
2EAD  
$EV SEL  
$ATA OUT  
2ꢆ7  
!#+  
!#+  
!#+  
!#+  
./ !#+  
2ANDOM  
!DDRESS  
2EAD  
$EV SEL ꢎ  
"YTE ADDR  
"YTE ADDR  
$EV SEL ꢎ  
$ATA OUT  
2ꢆ7  
2ꢆ7  
!#+  
!#+  
!#+  
./ !#+  
$ATA OUT .  
3EQUENTIAL  
#URRENT  
2EAD  
$EV SEL  
$ATA OUT ꢅ  
2ꢆ7  
!#+  
2ꢆ7  
!#+  
!#+  
!#+  
2ꢆ7  
!#+  
3EQUENTIAL  
2ANDOM  
2EAD  
$EV SEL ꢎ  
"YTE ADDR  
"YTE ADDR  
$EV SEL ꢎ  
$ATA OUTꢅ  
!#+  
./ !#+  
$ATA OUT .  
!)ꢁꢅꢅꢁꢄE  
4.2.1  
Random Address Read  
The Random Address Read is a sequence composed of a truncated Write sequence (to  
define a new address pointer value, see Table 3) followed by a current Read.  
The Random Address Read sequence is therefore the sum of [Start + Device Select code  
with RW=0 + two address bytes] (without Stop condition, as shown in Figure 8)] and [Start  
condition + Device Select code with RW=1]. The memory device acknowledges the  
sequence and then outputs the contents of the addressed byte. To terminate the data  
transfer, the bus master does not acknowledge the last data byte and then issues a Stop  
condition.  
20/37  
DocID023765 Rev 4  
 
 
 
M24M01-A125  
Instructions  
4.2.2  
Current Address Read  
For the Current Address Read operation, following a Start condition, the bus master only  
sends a device select code with the R/W bit set to 1. The device acknowledges this, and  
outputs the byte pointed by the internal address counter. The counter is then incremented.  
The bus master terminates the transfer with a Stop condition, as shown in Figure 8, without  
acknowledging the byte.  
Note that the address counter value is defined by instructions accessing either the memory  
or the Identification page. When accessing the Identification page, the address counter  
value is loaded with the Identification page byte location, when accessing the memory, it is  
safer to always use the Random Address Read instruction (this instruction loads the  
address counter with the byte location to read in the memory) instead of the Current  
Address Read instruction.  
4.2.3  
Sequential Read  
A sequential Read can be used after a Current Address Read or a Random Address Read.  
After a Read instruction, the device can continue to output the next byte(s) in sequence if  
the bus master sends additional clock pulses and if the bus master does acknowledge each  
transmitted data byte. To terminate the stream of bytes, the bus master must not  
acknowledge the last byte, and must generate a Stop condition, as shown in Figure 8.  
The sequential read is controlled with the device internal address counter which is  
automatically incremented after each byte output. After the last memory address, the  
address counter “rolls-over”, and the device continues to output data from memory address  
00h.  
4.2.4  
4.2.5  
Read Identification Page  
The Identification Page can be read by issuing a Read Identification Page instruction. This  
instruction uses the same protocol and format as the Random Address Read (from memory  
array) with device type identifier defined as 1011b. The most significant address bits A16/A8  
are don't care and the least significant address bits A7/A0 define the byte location inside the  
Identification page. The number of bytes to read in the ID page must not exceed the page  
boundary.  
Read the lock status  
The locked/unlocked status of the Identification page can be checked by transmitting a  
specific truncated command [Identification Page Write instruction + one data byte] to the  
device. The device returns an acknowledge bit after the data byte if the Identification page is  
unlocked, otherwise a NoAck bit if the Identification page is locked.  
Right after this, it is recommended to transmit to the device a Start condition followed by a  
Stop condition, so that:  
Start: the truncated command is not executed because the Start condition resets the  
device internal logic,  
Stop: the device is then set back into Standby mode by the Stop condition.  
DocID023765 Rev 4  
21/37  
36  
 
 
 
 
Instructions  
M24M01-A125  
4.2.6  
Acknowledge in Read mode  
For all Read instructions, the device waits, after each byte sent out, for an acknowledgment  
during the 9th bit time. If the bus master does not send the Acknowledge (the master drives  
SDA high during the 9th bit time), the device terminates the data transfer and enters its  
Standby mode.  
22/37  
DocID023765 Rev 4  
 
M24M01-A125  
Application design recommendations  
5
Application design recommendations  
5.1  
Supply voltage  
5.1.1  
Operating supply voltage (V  
)
CC  
Prior to selecting the memory and issuing instructions to it, a valid and stable V voltage  
CC  
within the specified [V (min), V (max)] range must be applied (see Table 7).  
CC  
CC  
This voltage must remain stable and valid until the end of the transmission of the instruction  
and, for a Write instruction, until the completion of the internal Write cycle (t ). In order to  
W
secure a stable DC supply voltage, it is recommended to decouple the V line with a  
CC  
suitable capacitor (usually of the order of 10 nF to 100 nF) close to the V /V package  
CC SS  
pins.  
5.1.2  
Power-up conditions  
When the power supply is turned on, the V voltage has to rise continuously from 0 V up to  
CC  
the minimum V operating voltage defined in Table 7.  
CC  
In order to prevent inadvertent write operations during power-up, a power-on-reset (POR)  
circuit is included.  
At power-up, the device does not respond to any instruction until V reaches the internal  
CC  
threshold voltage (this threshold is defined in the DC characteristic Table 10 as V  
).  
RES  
When V passes over the POR threshold, the device is reset and in the following state:  
CC  
in the Standby power mode  
deselected  
As soon as the V voltage has reached a stable value within the [V (min), V (max)]  
CC  
CC  
CC  
range (defined in Table 7), the device is ready for operation.  
5.1.3  
Power-down  
During power-down (continuous decrease in the V supply voltage below the minimum  
CC  
V
operating voltage defined in Table 7), the device must be in Standby power mode (that  
CC  
is after a STOP condition or after the completion of the Write cycle t if an internal Write  
W
cycle is in progress).  
DocID023765 Rev 4  
23/37  
36  
 
 
 
 
 
Application design recommendations  
M24M01-A125  
5.2  
Cycling with Error Correction Code (ECC)  
The Error Correction Code (ECC) is an internal logic function which is transparent for the  
2
I C communication protocol.  
(b)  
The ECC logic is implemented on each group of four EEPROM bytes . Inside a group, if a  
single bit out of the four bytes happens to be erroneous during a Read operation, the ECC  
detects this bit and replaces it with the correct value. The read reliability is therefore much  
improved.  
Even if the ECC function is performed on groups of four bytes, a single byte can be  
written/cycled independently. In this case, the ECC function also writes/cycles the three  
(b)  
other bytes located in the same group . As a consequence, the maximum cycling budget is  
defined at group level and the cycling can be distributed over the 4 bytes of the group: the  
sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain  
below the maximum value defined in Table 6.  
Example 1: maximum cycling limit reached with 1 million cycles per byte  
Each byte of a group can be equally cycled 1 million times (at 25 °C) so that the group  
cycling budget is 4 million cycles.  
Example 2: maximum cycling limit reached with unequal byte cycling  
Inside a group, byte0 can be cycled 2 million times, byte1 can be cycled 1 million times,  
byte2 and byte3 can be cycled 500,000 times, so that the group cycling budget is 4 million  
cycles.  
b. A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer.  
DocID023765 Rev 4  
24/37  
 
M24M01-A125  
Delivery state  
6
Delivery state  
The device is delivered as follows:  
The memory array is set to all 1s (each byte = FFh).  
Identification page: the first three bytes define the Device identification code (value  
defined in Table 4). The content of the following bytes is Don’t Care.  
7
Maximum rating  
Stressing the device outside the ratings listed in Table 5 may cause permanent damage to  
the device. These are stress ratings only, and operation of the device at these, or any other  
conditions outside those indicated in the operating sections of this specification, is not  
implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 5. Absolute maximum ratings  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Ambient operating temperature  
Storage temperature  
–40  
–65  
130  
150  
°C  
°C  
°C  
V
TSTG  
TLEAD  
VIO  
Lead temperature during soldering  
Input or output range  
see note (1)  
–0.50  
6.5  
5
IOL  
DC output current (SDA = 0)  
-
–0.50  
-
mA  
V
VCC  
Supply voltage  
6.5  
4000  
VESD  
Electrostatic pulse (Human Body model)(2)  
V
1. Compliant with JEDEC Standard J-STD-020D (for small body, Sn-Pb or Pb-free assembly), the ST  
ECOPACK® 7191395 specification, and the European directive on Restrictions of Hazardous Substances  
(RoHS directive 2011/65/EUof July 2011).  
2. Positive and negative pulses applied on pin pairs, according to AEC-Q100-002 (compliant with JEDEC Std  
JESD22-A114, C1=100 pF, R1=1500 Ω, R2=500 Ω).  
DocID023765 Rev 4  
25/37  
36  
 
 
 
DC and AC parameters  
M24M01-A125  
8
DC and AC parameters  
This section summarizes the operating and measurement conditions, and the DC and AC  
characteristics of the device.  
Table 6. Cycling performance by groups of four bytes  
Symbol  
Parameter  
Test condition  
Min.  
Max.  
Unit  
TA 25 °C, 2.5 V < VCC < 5.5 V  
Write cycle endurance(1) TA = 85 °C, 2.5 V < VCC < 5.5 V  
-
-
-
4,000,000  
1,200,000  
600,000  
Write  
Ncycle  
cycle(2)  
TA = 125 °C, 2.5 V < VCC < 5.5 V  
1. The Write cycle endurance is defined for groups of four data bytes located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3] where  
N is an integer, or for the status register byte (refer also to Section 5.2: Cycling with Error Correction Code (ECC)). The  
Write cycle endurance is defined by characterization and qualification.  
2. A Write cycle is executed when either a Page Write, a Byte Write, a Write Identification Page or a Lock Identification Page  
instruction is decoded. When using those Write instructions, refer also to Section 5.2: Cycling with Error Correction Code  
(ECC).  
Table 7. Operating conditions (voltage range W)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
VCC  
TA  
Supply voltage  
Ambient operating temperature  
2.5  
5.5  
V
–40  
125  
°C  
Table 8. AC measurement conditions  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Cbus  
Load capacitance  
100  
pF  
ns  
V
-
-
-
SCL input rise/fall time, SDA input fall time  
Input levels  
-
50  
0.2 VCC to 0.8 VCC  
0.3 VCC to 0.7 VCC  
Input and output timing reference levels  
V
26/37  
DocID023765 Rev 4  
 
 
 
 
M24M01-A125  
DC and AC parameters  
Figure 9. AC measurement I/O waveform  
)NPUT VOLTAGE LEVELS  
)NPUT AND OUTPUT  
4IMING REFERENCE LEVELS  
ꢁꢏꢉ6  
##  
##  
ꢁꢏꢃ6  
##  
ꢁꢏꢀ6  
##  
ꢁꢏꢇ6  
-3ꢅꢂꢃꢃꢈ6ꢅ  
Table 9. Input parameters  
Symbol  
Parameter(1)  
Test condition  
Min. Max. Unit  
CIN  
CIN  
ZL  
Input capacitance (SDA)  
-
-
-
8
6
-
pF  
pF  
kΩ  
kΩ  
Input capacitance (other pins)  
-
VIN < 0.3 VCC  
VIN > 0.7 VCC  
30  
500  
Input impedance (E2, E1, WC)(2)  
ZH  
-
1. Characterized only, not tested in production.  
2. E2, E1 input impedance when the memory is selected (after a Start condition).  
DocID023765 Rev 4  
27/37  
36  
 
 
DC and AC parameters  
M24M01-A125  
Table 10. DC characteristics  
Test conditions (in addition to  
Symbol  
Parameter  
Min.  
Max.  
Unit  
those in Table 7 and Table 8)  
Input leakage current  
(SCL, SDA, E2, E1)  
VIN = VSS or VCC,  
device in Standby mode  
ILI  
-
-
± 2  
± 2  
µA  
µA  
SDA in Hi-Z, external voltage  
applied on SDA: VSS or VCC  
ILO  
Output leakage current  
fC = 400 kHz, VCC = 5.5 V  
fC = 400 kHz, VCC = 2.5 V  
fC = 1 MHz, VCC = 5.5 V  
fC = 1 MHz, VCC = 2.5 V  
During tW  
-
-
-
-
-
2
2
2
2
2
mA  
mA  
mA  
mA  
mA  
ICC  
Supply current (Read)  
Supply current (Write)  
ICC0  
Device not selected(1), t° = 85 °C  
VIN = VSS or VCC , VCC = 2.5 V  
-
-
-
-
2
3
µA  
µA  
µA  
µA  
Device not selected(1), t° = 85 °C,  
VIN = VSS or VCC, VCC = 5.5 V  
ICC1  
Standby supply current  
Device not selected(1), t° = 125 °C,  
VIN = VSS or VCC, VCC = 2.5 V  
15  
20  
Device not selected(1), t° = 125 °C,  
VIN = VSS or VCC, VCC = 5.5 V  
VIL  
VIH  
Input low voltage (SCL, SDA, WC)  
Input high voltage (SCL, SDA)  
Input high voltage (WC, E2, E1)  
-
-
-
–0.45  
0.3 VCC  
6.5  
V
V
V
0.7 VCC  
0.7 VCC VCC +0.6  
I
OL = 2.1 mA, VCC = 2.5 V or  
VOL  
Output low voltage  
-
0.4  
1.5  
V
V
IOL = 3 mA, VCC = 5.5 V  
(2)  
VRES  
Internal reset threshold voltage  
-
0.5  
1. The device is not selected after power-up, after a Read instruction (after the Stop condition), or after the completion of the  
internal write cycle tW (tW is triggered by the correct decoding of a Write instruction).  
2. Characterized only, not 100% tested.  
28/37  
DocID023765 Rev 4  
 
M24M01-A125  
DC and AC parameters  
Table 11. 400 kHz AC characteristics  
Parameter(1)  
Symbol  
Alt.  
Min.  
Max.  
Unit  
fC  
fSCL  
tHIGH  
tLOW  
tF  
Clock frequency  
-
400  
kHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tCLCH  
Clock pulse width high  
Clock pulse width low  
SDA (out) fall time(3)  
Input signal rise time  
Input signal fall time  
600  
1300  
-
-
(2)  
tQL1QL2  
tXH1XH2  
tXL1XL2  
tDXCX  
20  
120  
(4)  
(4)  
tR  
(4)  
(4)  
tF  
tSU:DAT Data in set up time  
tHD:DAT Data in hold time  
100  
0
-
tCLDX  
-
(5)  
tCLQX  
tDH  
tAA  
Data out hold time  
100  
-
-
(6)  
tCLQV  
Clock low to next data valid (access time)  
900  
tCHDL  
tDLCL  
tCHDH  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition set up time  
600  
600  
600  
-
-
-
Time between Stop condition and next Start  
condition  
tDHDL  
tBUF  
1300  
-
ns  
(7)(2)  
tWLDL  
tSU:WC WC set up time (before the Start condition)  
tHD:WC WC hold time (after the Stop condition)  
0
1
-
-
-
µs  
µs  
(8)(2)  
tDHWH  
tW  
tWR  
-
Write time  
4
ms  
Pulse width ignored (input filter on SCL and  
SDA) - single glitch  
(2)  
tNS  
-
80  
ns  
1. Test conditions (in addition to those in Table 7 and Table 8).  
2. Characterized value, not tested in production.  
3. With CL = 10 pF.  
4. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the  
I²C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when  
f
C < 400 kHz.  
5. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
6. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3VCC or  
0.7VCC, assuming that Rbus × Cbus time constant is within the values specified in Figure 10.  
7. WC=0 set up time condition to enable the execution of a WRITE command.  
8. WC=0 hold time condition to enable the execution of a WRITE command.  
DocID023765 Rev 4  
29/37  
36  
 
DC and AC parameters  
Symbol  
M24M01-A125  
Table 12. 1 MHz AC characteristics  
Parameter(1)  
Alt.  
Min.  
Max.  
Unit  
fC  
fSCL  
Clock frequency  
0
1
-
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCHCL  
tHIGH Clock pulse width high  
260  
tCLCH  
tLOW  
tR  
Clock pulse width low  
Input signal rise time  
Input signal fall time  
SDA (out) fall time  
400  
-
(2)  
(2)  
tXH1XH2  
tXL1XL2  
(2)  
(2)  
tF  
(3)  
tQL1QL2  
tF  
-
120  
tDXCX  
tCLDX  
tSU:DAT Data in setup time  
tHD:DAT Data in hold time  
50  
0
-
-
(4)  
tCLQX  
tDH  
tAA  
Data out hold time  
100  
-
-
(5)  
tCLQV  
Clock low to next data valid (access time)  
450  
tCHDL  
tDLCL  
tCHDH  
tSU:STA Start condition setup time  
tHD:STA Start condition hold time  
tSU:STO Stop condition setup time  
250  
250  
250  
-
-
-
Time between Stop condition and next Start  
condition  
tDHDL  
tBUF  
500  
-
-
ns  
µs  
µs  
ms  
ns  
(6) (3)  
tWLDL  
tSU:WC WC set up time (before the Start condition)  
tHD:WC WC hold time (after the Stop condition)  
0
1
-
(7)  
tDHWH  
-
(3)  
tW  
tWR  
-
Write time  
4
80  
Pulse width ignored (input filter on SCL and  
SDA)  
(3)  
tNS  
-
1. Test conditions (in addition to those in Table 7 and Table 8).  
2. There is no min. or max. values for the input signal rise and fall times. However, it is recommended by the  
I²C specification that the input signal rise and fall times be more than 20 ns and less than 120 ns when  
fC < 1 MHz.  
3. Characterized only, not tested in production.  
4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or  
rising edge of SDA.  
5. tCLQV is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 VCC or  
0.7 VCC, assuming that the Rbus × Cbus time constant is within the values specified in Figure 11.  
6. WC=0 set up time condition to enable the execution of a WRITE command.  
7. WC=0 hold time condition to enable the execution of a WRITE command.  
30/37  
DocID023765 Rev 4  
 
M24M01-A125  
DC and AC parameters  
2
Figure 10. Maximum R  
value versus bus parasitic capacitance (C ) for an I C  
bus  
bus  
bus at maximum frequency f = 400 kHz  
C
ꢅꢁꢁ  
4HE 2  
X # TIME CONSTANT  
BUS  
BUS  
MUST BE BELOW THE ꢈꢁꢁ NS  
TIME CONSTANT LINE REPRESENTED  
ON THE LEFTꢏ  
6
##  
ꢅꢁ  
2
BUS  
(ERE 2  
BUS  
§ # ꢍ ꢅꢇꢁ NS  
BUS  
ꢈ K½  
3#,  
3$!  
)£# BUS  
MASTER  
-ꢇꢈXXX  
ꢀꢁ P&  
#
BUS  
ꢅꢁ  
ꢅꢁꢁ  
"US LINE CAPACITOR ꢋP&ꢌ  
ꢅꢁꢁꢁ  
AIꢅꢈꢃꢂꢊB  
2
Figure 11. Maximum R  
value versus bus parasitic capacitance C ) for an I C  
bus  
bus  
bus at maximum frequency f = 1MHz  
C
6
ꢁ  
##  
2
BUS  
4HE 2  
§ #  
TIME CONSTANT  
BUS  
BUS  
MUST BE BELOW THE ꢅꢄꢁ NS  
TIME CONSTANT LINE REPRESENTED  
ON THE LEFTꢏ  
3#,  
3$!  
)£# BUS  
MASTER  
ꢅꢁ  
-ꢇꢈXXX  
(EREꢑ  
#
§
BUS  
ꢍ ꢅꢇꢁ NS  
#
2
BUS  
BUS  
ꢅꢁ  
ꢀꢁ  
"US LINE CAPACITOR ꢋP&ꢌ  
ꢅꢁꢁ  
-3ꢅꢂꢃꢈꢄ6ꢅ  
DocID023765 Rev 4  
31/37  
36  
 
 
DC and AC parameters  
M24M01-A125  
Figure 12. AC waveforms  
^ƚĂƌƚ  
ĐŽŶĚŝƚŝŽŶ  
^ƚĂƌƚ  
ĐŽŶĚŝƚŝŽŶ  
^ƚŽƉ  
ĐŽŶĚŝƚŝŽŶ  
ƚy>ϭy>Ϯ  
ƚꢀ,ꢀ>  
ƚꢀ>ꢀ,  
ƚy,ϭy,Ϯ  
^ꢀ>  
ƚꢁ>ꢀ>  
ƚy>ϭy>Ϯ  
^ꢁꢂꢃ/Ŷ  
tꢀ  
^ꢁꢂ  
/ŶƉƵƚ  
ƚꢀ,ꢁ>  
ƚt>ꢁ>  
ƚꢀ>ꢁy  
ƚꢁyꢀ,  
^ꢁꢂ  
ꢀŚĂŶŐĞ  
ƚy,ϭy,Ϯ  
ƚꢀ,ꢁ,  
ƚꢁ,ꢁ>  
ƚꢁ,t,  
^ƚŽƉ  
ĐŽŶĚŝƚŝŽŶ  
^ƚĂƌƚ  
ĐŽŶĚŝƚŝŽŶ  
^ꢀ>  
^ꢁꢂꢃ/Ŷ  
ƚt  
tƌŝƚĞꢃĐLJĐůĞ  
ƚꢀ,ꢁ,  
ƚꢀ,ꢁ>  
ƚꢀ,ꢀ>  
^ꢀ>  
ƚꢀ>Ys  
ƚꢀ>Yy  
ꢁĂƚĂꢃǀĂůŝĚ  
ƚY>ϭY>Ϯ  
ꢁĂƚĂꢃǀĂůŝĚ  
^ꢁꢂꢃKƵƚ  
ꢂ/ϬϬϳϵϱŝ  
32/37  
DocID023765 Rev 4  
 
M24M01-A125  
Package mechanical data  
9
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Figure 13. TSSOP8 – 8-lead thin shrink small outline, package outline  
1. Drawing is not to scale.  
Table 13. TSSOP8 – 8-lead thin shrink small outline, package mechanical data  
millimeters  
Min.  
inches(1)  
Symbol  
Typ.  
Max.  
Typ.  
Min.  
Max.  
A
A1  
A2  
b
-
-
1.200  
0.150  
1.050  
0.300  
0.200  
0.100  
3.100  
-
-
-
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.0039  
0.1220  
-
-
0.050  
0.800  
0.190  
0.090  
-
0.0020  
0.0315  
0.0075  
0.0035  
-
1.000  
-
0.0394  
-
c
-
-
CP  
D
-
-
3.000  
0.650  
6.400  
4.400  
0.600  
1.000  
-
2.900  
-
0.1181  
0.0256  
0.2520  
0.1732  
0.0236  
0.0394  
-
0.1142  
-
e
E
6.200  
4.300  
0.450  
-
6.600  
4.500  
0.750  
-
0.2441  
0.1693  
0.0177  
-
0.2598  
0.1772  
0.0295  
-
E1  
L
L1  
α
0°  
8°  
0°  
8°  
1. Values in inches are converted from mm and rounded to four decimal digits.  
DocID023765 Rev 4  
33/37  
36  
 
 
 
Package mechanical data  
M24M01-A125  
Figure 14. SO8N – 8 lead plastic small outline, 150 mils body width, package outline  
Kꢀ[ꢀꢄꢇƒ  
$ꢈ  
$
F
FFF  
E
H
ꢁꢉꢈꢇꢀPP  
*$8*(ꢀ3/$1(  
'
N
(ꢂ  
(
/
$ꢂ  
/ꢂ  
62ꢆ$  
1. Drawing is not to scale.  
Table 14. SO8N – 8 lead plastic small outline, 150 mils body width, package data  
millimeters  
Min  
inches (1)  
Symbol  
Typ  
Max  
Typ  
Min  
Max  
A
-
-
1.750  
0.250  
-
-
-
0.0689  
0.0098  
-
A1  
A2  
b
-
0.100  
1.250  
0.280  
0.170  
-
-
0.0039  
0.0492  
0.0110  
0.0067  
-
-
-
-
0.480  
0.230  
0.100  
5.000  
6.200  
4.000  
-
-
0.0189  
0.0091  
0.0039  
0.1969  
0.2441  
0.1575  
-
c
-
-
ccc  
D
-
-
4.900  
6.000  
3.900  
1.270  
-
4.800  
5.800  
3.800  
-
0.1929  
0.2362  
0.1535  
0.0500  
-
0.1890  
0.2283  
0.1496  
-
E
E1  
e
h
0.250  
0°  
0.500  
8°  
0.0098  
0°  
0.0197  
8°  
k
-
-
L
-
0.400  
-
1.270  
-
-
0.0157  
-
0.0500  
-
L1  
1.040  
0.0409  
1. Values in inches are converted from mm and rounded to four decimal digits.  
34/37  
DocID023765 Rev 4  
 
 
M24M01-A125  
Part numbering  
10  
Part numbering  
Table 15. Ordering information scheme  
Example:  
M24M01-D  
W
MN 3  
T
P /K  
Device type  
M24 = I2C serial access EEPROM  
Device function  
M01-D = 1 Mbit (128 K x 8 bits) plus identification page  
Operating voltage  
W = VCC = 2.5 V to 5.5 V  
Package  
MN = SO8 (150 mil width)(1)  
DW = TSSOP8 (169 mil width)(1)  
Device grade  
3 = -40 to 125 °C. Device tested with high reliability certified flow(2)  
Option  
blank = standard packing  
T = Tape and reel packing  
Plating technology  
P = ECOPACK® (RoHS compliant)  
Process  
/K = Manufacturing technology code  
1. RoHS-compliant and halogen-free (ECOPACK2®)  
2. The high reliability certified flow (HRCF) is described in quality note QNEE9801. Please ask your nearest  
ST sales office for a copy.  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of the devices, please contact your nearest ST sales office.  
DocID023765 Rev 4  
35/37  
36  
 
 
Revision history  
M24M01-A125  
11  
Revision history  
Table 16. Document revision history  
Changes  
Date  
Revision  
24-Jan-2013  
1
Initial release.  
Document reformatted.  
Document status changed from “Target specification” to “Preliminary  
data”.  
Updated:  
Section 3.6: Identification page  
27-May-2013  
2
– Note (1) under Table 5: Absolute maximum ratings  
– ICC ,VIL and VOL values in Table 10: DC characteristics  
– Package information in Table 15: Ordering information scheme  
Removed information related to UFDFPN8 (MLP8) package.  
Document status changed from “Preliminary data” to “Production  
data”.  
19-Aug-2013  
04-Feb-2014  
3
4
Updated “VOL” row in Table 10: DC characteristics.  
Changed Data retention from "40 years at 55 °C" to "50 years at  
125 °C" in Features.  
36/37  
DocID023765 Rev 4  
 
 
M24M01-A125  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE  
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)  
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS  
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT  
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS  
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY  
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE  
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2014 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
DocID023765 Rev 4  
37/37  
37  
 

相关型号:

M24M01-DF

1 Mbit串行I2C总线EEPROM
STMICROELECTR

M24M01-DFCS6TP/A

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFCT6P/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFCT6TP/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFDW6P/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DFMN6TP/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DF_12

1-Mbit serial I²C bus EEPROM
STMICROELECTR

M24M01-DRCS6TP/K

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DRCT6P/K

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DRDW6P/A

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DRDW6TP/A

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR

M24M01-DRDW6TP/B

I2C/2-WIRE SERIAL EEPROM
STMICROELECTR