M69AW048BL70ZB8F [STMICROELECTRONICS]

2MX16 STANDARD SRAM, 70ns, PBGA48, 6 X 8 MM, 0.75 MM PITCH, TFBGA-48;
M69AW048BL70ZB8F
型号: M69AW048BL70ZB8F
厂家: ST    ST
描述:

2MX16 STANDARD SRAM, 70ns, PBGA48, 6 X 8 MM, 0.75 MM PITCH, TFBGA-48

存储 静态存储器
文件: 总29页 (文件大小:429K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
M69AW048B  
32 Mbit (2M x16) 3V Asynchronous PSRAM  
FEATURES SUMMARY  
SUPPLY VOLTAGE: 2.7 to 3.3V  
ACCESS TIMES: 70ns  
Figure 1. Package  
LOW STANDBY CURRENT: 100µA  
DEEP POWER-DOWN CURRENT: 10µA  
BYTE CONTROL: UB/LB  
PROGRAMMABLE PARTIAL ARRAY  
COMPATIBLE WITH STANDARD LPSRAM  
TRI-STATE COMMON I/O  
8 WORD PAGE ACCESS CAPABILITY: 18ns  
WIDE OPERATING TEMPERATURE  
– TA = –30 to +85°C  
FBGA  
TFBGA48 (ZB)  
6x8 mm  
POWER-DOWN MODES  
– Deep Power-Down  
– 4 Mbit Partial Array Refresh  
– 8 Mbit Partial Array Refresh  
– 16 Mbit Partial Array Refresh  
November 2004  
1/29  
M69AW048B  
TABLE OF CONTENTS  
FEATURES SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Figure 1. Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
SUMMARY DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 2. Logic Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Table 1. Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. TFBGA Connections (Top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
SIGNAL DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Address Inputs (A0-A20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Data Inputs/Outputs (DQ8-DQ15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Data Inputs/Outputs (DQ0-DQ7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Chip Enable (E1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Chip Enable (E2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Output Enable (G). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Write Enable (W). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Upper Byte Enable (UB).. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Lower Byte Enable (LB). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
VCC Supply Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
VSS Ground. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 4. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Standby Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-down Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description of Power-Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Power-Down Program Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Table 2. Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 3. Power-Down Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Table 4. Power-Down Program Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 5. Power-Down Configuration Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Table 6. Power-Down Configuration Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
MAXIMUM RATING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Table 7. Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
DC and AC PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Table 8. Operating and AC Measurement Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 5. AC Measurement I/O Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Figure 6. AC Measurement Load Circuit. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2/29  
M69AW048B  
Table 9. Capacitance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 10. DC Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Table 11. Read Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Figure 7. Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 8. Output Enable Controlled, Read Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 9. UB/LB Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 10.Page Address and Chip Enable Controlled, Read Mode AC Waveforms . . . . . . . . . . . . 16  
Figure 11.Random and Page Address Controlled, Read Mode AC Waveforms . . . . . . . . . . . . . . . 17  
Table 12. Write Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 12.Chip Enable Controlled, Write AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 13.Write Enable Controlled, Write AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 14.Write Enable and UB/LB Controlled, Write AC Waveforms 1 . . . . . . . . . . . . . . . . . . . . . 20  
Figure 15.Write Enable and UB/LB Controlled, Write AC Waveforms 2 . . . . . . . . . . . . . . . . . . . . . 20  
Figure 16.Write Enable and LB/UB Controlled, Write AC Waveforms 3 . . . . . . . . . . . . . . . . . . . . . 21  
Figure 17.Write Enable and LB/UB Controlled, Write AC Waveforms 4 . . . . . . . . . . . . . . . . . . . . . 21  
Figure 18.Chip Enable Controlled, Read Followed by Write Mode AC Waveforms . . . . . . . . . . . . 22  
Figure 19.E1, W, G Controlled, Read and Write Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . 22  
Figure 20.Output Enable and Write Enable Controlled, Read and Write Mode AC Waveforms . . . 23  
Figure 21.Output Enable, Write Enable and UB/LB Controlled, Read and Write Mode AC Waveforms  
23  
Table 13. Standby/Power-Down Mode AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 22.Power Down Program AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 23.Power-Down Mode AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 24.Power-Up Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 25.Standby Mode Entry AC Waveforms, After Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
PACKAGE MECHANICAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 26.TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Outline, Bottom View . . . . 26  
Table 14. TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data. . . . . . . . 26  
PART NUMBERING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 15. Ordering Information Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
REVISION HISTORY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 16. Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3/29  
M69AW048B  
SUMMARY DESCRIPTION  
The M69AW048B is a 32 Mbit (33,554,432 bit)  
CMOS memory, organized as 2,097,152 words by  
16 bits, and is supplied by a single 2.7V to 3.3V  
supply voltage range.  
M69AW048B is a member of STMicroelectronics  
PSRAM memory family. These devices are manu-  
factured using dynamic random access memory  
cells, to minimize the cell size, and maximize the  
amount of memory that can be implemented in a  
given area.  
However, through the use of internal control logic,  
the device is fully static in its operation, requiring  
no external clocks or timing strobes, and has a  
standard Asynchronous SRAM Interface.  
The internal control logic of the M69AW048B han-  
dles the periodic refresh cycle, automatically, and  
without user involvement.  
Write cycles can be performed on a single byte by  
using Upper Byte Enable (UB) and Lower Byte En-  
able (LB).  
The device can be put into standby mode using  
Chip Enable (E1) or in Power-Down mode by us-  
ing Chip Enable (E2).  
The device features various kinds of Power-Down  
modes for power saving as a user configurable op-  
tion:  
The Partial Array Refresh (PAR) performs a  
limited refresh of the part of the PSRAM array  
(4 Mbits, 8 Mbits, 16Mbits) that contains  
essential data.  
Deep Power-Down mode: this mode achieves  
a very low current consumption by halting all  
the internal activities. Since the refresh  
circuitry is halted, the duration of the power-  
down should be less than the maximum period  
for refresh.  
Figure 2. Logic Diagram  
Table 1. Signal Names  
A0-A20  
Address Input  
DQ0-DQ15  
Data Input/Output  
Chip Enable, Power Down  
Output Enable  
V
CC  
E1, E2  
G
21  
16  
A0-A20  
DQ0-DQ15  
W
Write Enable  
W
E1  
E2  
G
UB  
LB  
Upper Byte Enable  
Lower Byte Enable  
Supply Voltage  
Ground  
M69AW048B  
V
CC  
V
SS  
UB  
LB  
Not Connected  
(no internal connection)  
NC  
V
SS  
AI05844c  
4/29  
M69AW048B  
Figure 3. TFBGA Connections (Top view through package)  
1
2
3
4
5
6
A2  
E1  
E2  
A
B
C
D
E
F
LB  
G
A0  
A3  
A1  
A4  
A6  
DQ8  
DQ9  
DQ0  
DQ2  
UB  
A5  
DQ10  
DQ11  
DQ12  
DQ13  
A19  
DQ1  
DQ3  
DQ4  
DQ5  
W
A7  
V
A17  
NC  
A14  
A12  
A9  
V
SS  
CC  
V
A16  
A15  
A13  
A10  
V
CC  
SS  
DQ14  
DQ15  
A18  
DQ6  
DQ7  
A20  
G
H
A8  
A11  
AI07242  
5/29  
M69AW048B  
SIGNAL DESCRIPTIONS  
See Figure 2., Logic Diagram, and Table  
1., Signal Names, for a brief overview of the sig-  
nals connected to this device.  
Address Inputs (A0-A20). The Address Inputs  
select the cells in the memory array to access dur-  
ing Read and Write operations.  
these, Deep Power-Down mode, is the lowest  
power mode.  
Output Enable (G). The Output Enable, G, pro-  
vides a high speed tri-state control, allowing fast  
read/write cycles to be achieved with the common  
I/O data bus.  
Data Inputs/Outputs (DQ8-DQ15). The Upper  
Byte Data Inputs/Outputs carry the data to or from  
the upper part of the selected address during a  
Write or Read operation, when Upper Byte Enable  
(UB) is driven Low.  
Write Enable (W). The Write Enable, W, controls  
the Bus Write operation of the memory’s Com-  
mand Interface.  
Upper Byte Enable (UB). The Upper Byte En-  
able, UB, gates the data on the Upper Byte Data  
Inputs/Outputs (DQ8-DQ15) to or from the upper  
part of the selected address during a Write or  
Read operation.  
Lower Byte Enable (LB). The Lower Byte En-  
able, LB, gates the data on the Lower Byte Data  
Inputs/Outputs (DQ0-DQ7) to or from the lower  
part of the selected address during a Write or  
Read operation.  
Data Inputs/Outputs (DQ0-DQ7). The  
Lower  
Byte Data Inputs/Outputs carry the data to or from  
the lower part of the selected address during a  
Write or Read operation, when Lower Byte Enable  
(LB) is driven Low.  
Chip Enable (E1). When asserted (Low), the  
Chip Enable, E1, activates the memory state ma-  
chine, address buffers and decoders, allowing  
Read and Write operations to be performed. When  
de-asserted (High), all other pins are ignored, and  
the device is put, automatically, in low-power  
Standby mode.  
VCC Supply Voltage. The VCC Supply Voltage  
supplies the power for all operations (Read, Write,  
etc.) and for driving the refresh logic, even when  
the device is not being accessed.  
Chip Enable (E2). The Chip Enable, E2, puts the  
device in Power-down mode (Deep Power-Down,  
PAR and Standby) when it is driven Low. One of  
V
SS Ground. The VSS Ground is the reference for  
all voltage measurements.  
6/29  
M69AW048B  
Figure 4. Block Diagram  
ARBITRATION  
LOGIC  
INTERNAL  
CLOCK  
REFRESH  
GENERATOR  
CONTROLLER  
DYNAMIC  
MEMORY  
ARRAY  
ADDRESS  
DQ0-DQ7  
INPUT/OUTPUT  
BUFFER  
E1  
E2  
G
DQ8-DQ15  
COLUMN  
DECODER  
CONTROL  
LOGIC  
W
LB  
UB  
ADDRESS  
V
POWER  
CONTROLLER  
CC  
V
SS  
AI07221b  
7/29  
M69AW048B  
OPERATION  
Operational modes are determined by device con-  
trol inputs W, E1, E2, LB and UB as summarized  
in the Operating Modes table (see Table  
2., Operating Modes).  
See Figures 12, 13, 14, 15, 16 and 17 and Table  
12., Write Mode AC Characteristics, for details of  
when the outputs become valid.  
Standby Mode  
The device is in Standby mode when:  
Power-Up Sequence  
Chip Enable (E1) is High and  
Chip Enable (E2) is High  
Because the internal control logic of the  
M69AW048B needs to be initialized, the following  
Power-Up procedure must be followed before the  
memory is used:  
The input/output buffers and the decoding/control  
logic are switched off, but the dynamic array con-  
tinues to be refreshed. In this mode, the memory  
current consumption, ISB, is reduced, and the data  
remains valid.  
See Figures 17 and Table 13., Standby/Power-  
Down Mode AC Characteristics, for details of  
when the outputs become valid.  
Apply power and wait for VCC to stabilize,  
Wait 300µs while driving both Chip Enable  
signals (E1 and E2) High.  
See also Figure 24. for details on the Power-Up  
AC waveforms.  
Read Mode  
Power-down Modes  
The device is in Read mode when:  
Description of Power-Down Modes. The  
M69AW048B has four Power-down modes, Deep  
Power-Down, 4 Mbit Partial Array Refresh, 8 Mbit  
Partial Array Refresh, and 16 Mbit Partial Array  
Refresh (see Table 4. and Figure 22.).  
These can be entered using a series of read and  
write operations. Each mode has following fea-  
tures. The default state is Deep Power-Down and  
it is the lowest power consumption but all data will  
be lost once E2 is brought Low for Power-down.  
No sequence is required to put the device in Deep  
Power-Down mode after Power-up.  
Write Enable (W) is High and  
Output Enable (G) Low and  
the two Chip Enable signals are asserted  
(E1 is Low, and E2 is High).  
The time taken to enter Read mode (tELQV, tGLQV  
or tBLQV) depends on which of the above signals  
was the last to reach the appropriate level.  
Data out (DQ15-DQ0) may be indeterminate dur-  
ing tELQX, tGLQX and tBLQX but data will always be  
valid during tAVQV. See Figures 7, 8, 9, 10 and 11  
and Table 11., Read Mode AC Characteristics, for  
details of when the outputs become valid.  
The device is in one of the Power-down modes  
when:  
Write Mode  
Chip Enable (E2) is Low  
The device is in Write mode when  
All the device logic is switched off and all internal  
operations are suspended. This gives the lowest  
power consumption. In this operating mode, no re-  
fresh is performed, and data is lost if the duration  
is longer than 10ns. This mode is useful for those  
applications where the data contents are no longer  
needed, and can be lost, but where reduced cur-  
rent consumption is of major importance.  
Power-Down Program Sequence. The Power-  
Down Program sequence is used to program the  
Power-Down Configuration. It requires a total of  
six read and write operations, with specific ad-  
dresses and data. Between each read or write op-  
eration the device must be in Standby mode.  
Table 4. shows the sequence. In the first cycle, the  
Byte at the highest memory address (MSB) is read.  
In the second and third cycles, the data (RDa) read  
by first cycle are written back. If the third cycle is  
written into a different address, the sequence is  
aborted, and the data written by the third cycle is  
valid as in a normal write operation. In the fourth  
and fifth cycles, the Power-Down Configuration  
data is written. The data of the fourth cycle must be  
Write Enable (W) is Low and  
Chip Enable (E1) is Low and E2 is High  
at least one of Upper Byte Enable (UB)  
and Lower Byte Enable (LB) is Low.  
The Write cycle begins just after the event (the fall-  
ing edge) that causes the last of these conditions  
to become true (tAVWL or tAVEL or tAVBL).  
The Write cycle is terminated by the rising edge of  
Write Enable (W) or Chip Enable (E1), whichever  
occurs first.  
If the device is in Write mode (Chip Enable (E1) is  
Low, Output Enable (G) is Low, Upper Byte En-  
able (UB) and/or Lower Byte Enable (LB) is Low,  
then Write Enable (W) will return the outputs to  
high impedance within tWHDZ of its rising edge.  
Care must be taken to avoid bus contention in this  
type of operation. Data input must be valid for tD-  
VWH before the rising edge of Write Enable (W), or  
for tDVEH before the rising edge of Chip Enable  
(E1), whichever occurs first, and remain valid for  
tBHDZ, WHDZ, tEHDZ.  
t
8/29  
M69AW048B  
set to ‘0000h’, and the data of the fifth cycle is the  
Power-Down Configuration data (see Table  
5., Power-Down Configuration Data). If the fourth  
cycle is written into a different address, the se-  
quence is aborted. In the last cycle, a read is made  
from the specific Power-Down Configuration ad-  
dress (see Table 6., Power-Down Configuration  
Addresses). The Power-Down Configuration data  
and address must correspond, otherwise the se-  
quence is aborted.  
When this sequence is performed to take the de-  
vice from one PAR mode to another, the write data  
may be lost. So, if a PAR mode is used, this se-  
quence should be performed prior to any normal  
read or write operations.  
Table 2. Operating Modes  
Operation  
E1  
E2  
W
G
LB  
UB  
DQ0-DQ7  
DQ8-DQ15  
Power  
V
V
Standby (I  
)
SB  
Standby (Deselected)  
X
X
X
X
Hi-Z  
Hi-Z  
IH  
IH  
Power-Down  
(I  
(2)  
I
V
X
X
X
X
X
Hi-Z  
Hi-Z  
CCPD, CCP4,  
IL  
Power-Down  
I
I
)
CCP8, CCP16  
(1)  
V
V
V
V
V
V
Hi-Z  
Data Output  
Data Input  
Hi-Z  
Hi-Z  
Hi-Z  
Output Disable  
IL  
IH  
IH  
IH  
IL  
IH  
IH  
No Read  
(1)  
V
IL  
V
V
V
V
V
V
Active (I  
Active (I  
)
)
IH  
IL  
IL  
IH  
CC  
CC  
Lower Byte Read  
(1)  
V
IL  
V
V
V
V
V
V
Hi-Z  
IH  
IL  
IL  
IH  
IH  
IL  
IH  
Lower Byte Write  
V
IL  
V
V
V
V
No Write  
Hi-Z  
Output Disable  
IH  
IH  
IH  
(1)  
V
IL  
V
V
V
V
V
Active (I  
Active (I  
Active (I  
Active (I  
)
)
)
)
Hi-Z  
Data Output  
Data Input  
Data Output  
Data Input  
IH  
IH  
IL  
IH  
IL  
CC  
CC  
CC  
CC  
Upper Byte Read  
(1)  
V
IL  
V
V
V
V
Hi-Z  
IH  
IL  
IH  
IH  
IL  
Upper Byte Write  
(1)  
V
IL  
V
V
V
IL  
V
V
Data Output  
Data Input  
IH  
IH  
IL  
IL  
Word Read  
(3)  
(1)  
V
IL  
V
V
V
V
IH  
IL  
V
IL  
IL  
Word Write  
IH  
Note: X = V or V .  
IH  
IL  
1. Should not be kept in this logic condition for a period longer than 1µs.  
2. Power-Down mode can be entered from Standby state and all DQ pins are in High-Z state. The Power-Down current and data re-  
tention depend on the selection of Power-Down programming.  
3. G can be V during the Write operation if the following conditions are satisfied:  
IL  
a. Write pulse is initiated by E1 (E1 Controlled Write timing), or cycle time of the previous operation cycle is satisfied;  
b. G stays V during the entire Write cycle.  
IL  
Table 3. Power-Down Modes  
Mode  
Data Retention  
No  
Retention Address  
N/A  
Deep Power-Down (Default)  
4Mb PAR  
8Mb PAR  
16Mb PAR  
4 Mbit  
00000h – 3FFFFh  
00000h – 7FFFFh  
00000h – FFFFFh  
8 Mbit  
16 Mbit  
9/29  
M69AW048B  
Table 4. Power-Down Program Sequence  
Cycle #  
1st  
Operation  
Read  
Address  
1FFFFFh (MSB)  
1FFFFFh  
Data  
Read Data (RDa)  
RDa  
2nd  
3rd  
Write  
Write  
1FFFFFh  
RDa  
4th  
Write  
1FFFFFh  
0000h  
(1)  
5th  
Write  
1FFFFFh  
PDC Data  
(1)  
6th  
Read  
Read Data (RDb)  
PDC Address  
Note: 1. PDC Power-Down Configuration.  
Table 5. Power-Down Configuration Data  
Power-Down Configuration Data  
Power-Down Modes  
DQ15–DQ9  
DQ8-DQ2  
DQ1  
DQ0  
Deep Power-Down  
(default)  
0
0
1
1
4Mb PAR  
8Mb PAR  
16Mb PAR  
0
0
0
0
0
0
1
0
0
0
1
0
Table 6. Power-Down Configuration Addresses  
Power-Down Configuration Addresses  
Power-Down Modes  
A20  
A19  
A18–A0  
Binary  
Deep Power-Down  
(default)  
1
1
1
1FFFFFh  
4Mb PAR  
8Mb PAR  
16Mb PAR  
0
1
0
1
0
0
1
1
1
0FFFFFh  
17FFFFh  
07FFFFh  
10/29  
M69AW048B  
MAXIMUM RATING  
Stressing the device above the rating listed in the  
Absolute Maximum Ratings table may cause per-  
manent damage to the device. Exposure to Abso-  
lute Maximum Rating conditions for extended  
periods may affect device reliability. These are  
stress ratings only and operation of the device at  
these or any other conditions above those indicat-  
ed in the Operating sections of this specification is  
not implied. Refer also to the STMicroelectronics  
SURE Program and other relevant quality docu-  
ments.  
Table 7. Absolute Maximum Ratings  
Symbol  
Parameter  
Min  
–50  
–30  
–55  
–0.5  
–0.5  
Max  
50  
Unit  
mA  
°C  
°C  
V
I
O
Output Current  
T
A
Ambient Operating Temperature  
Storage Temperature  
85  
T
125  
3.6  
3.6  
STG  
V
CC  
Core Supply Voltage  
V
IO  
Input or Output Voltage  
V
11/29  
M69AW048B  
DC AND AC PARAMETERS  
This section summarizes the operating measure-  
ment conditions, and the DC and AC characteris-  
tics of the device. The parameters in the DC and  
AC characteristics Tables that follow, are derived  
from tests performed under the Measurement  
Conditions summarized in Table 8., Operating and  
AC Measurement Conditions. Designers should  
check that the operating conditions in their circuit  
match the operating conditions when relying on  
the quoted parameters.  
Table 8. Operating and AC Measurement Conditions  
M69AW048B  
Parameter  
70  
Unit  
Min  
Max  
3.3  
85  
1
2.7  
V
°C  
pF  
V
Supply Voltage  
CC  
Ambient Operating Temperature  
–30  
Load Capacitance (C )  
50  
50  
L
Output Circuit Protection Resistance (R )  
1
V
Input Pulse Voltages  
0
V
CC  
V
CC  
/2  
Input and Output Timing Ref. Voltages  
V
V
RL  
= 0.3V ; V = 0.7V  
CC RH CC  
Output Transition Timing Ref. Voltages  
V
2
Input Transition Time (tτ) between V and  
IL  
5
ns  
V
IH  
Note: 1. All voltages are referenced to V  
.
SS  
2. The Input Transition Time used in AC measurements is 5ns. For other input transition times, see Table 8.  
Figure 5. AC Measurement I/O Waveform  
Figure 6. AC Measurement Load Circuit  
V
/2  
CC  
I/O Timing Reference Voltage  
R
1
V
CC  
V
/2  
CC  
DEVICE  
UNDER  
TEST  
OUT  
0V  
C
L
Output Timing Reference Voltage  
V
CC  
0.7V  
0.3V  
CC  
CC  
0V  
AI04831  
C
includes JIG capacitance  
L
AI07222c  
12/29  
M69AW048B  
Table 9. Capacitance  
Symbol  
Test  
Condition  
Parameter  
Min  
Max  
Unit  
C
V
= 0V  
= 0V  
Input Capacitance on all pins (except DQ)  
Output Capacitance  
5
8
pF  
pF  
IN  
IN  
C
V
OUT  
OUT  
Table 10. DC Characteristics  
Symbol  
Parameter  
Test Condition  
Min  
Max  
Unit  
t
/ t  
=
RC WC  
V
= 3.3V,  
= V or V ,  
IH IL  
CC  
I
30  
mA  
CC1  
minimum  
V
IN  
V
Active Current  
CC  
CC  
E1 = V and E2 = V ,  
IL  
IH  
t
/ t  
1 µs  
=
RC WC  
I
3
mA  
mA  
CC2  
I
= 0mA  
OUT  
V
= 3.3V,  
CC  
V
= V or V ,  
IH IL  
E1 = V and E2 = V ,  
IN  
I
V
Page Read Current  
Power Down Current  
10  
CC3  
IL  
IH  
I
= 0mA, t  
= min.  
OUT  
PRC  
Deep  
Power-  
Down  
I
10  
µA  
CCPD  
V
= 3.3V,  
= V or V ,  
IH IL  
CC  
V
CC  
V
I
IN  
4 Mb PAR  
8 Mb PAR  
16 Mb PAR  
40  
50  
65  
1
µA  
µA  
µA  
µA  
µA  
CCP4  
E2 0.2V  
I
CCP8  
I
CCP16  
I
LI  
0V V V  
IN CC  
Input Leakage Current  
Output Leakage Current  
–1  
–1  
I
0V V  
V  
OUT CC  
1
LO  
V
= 3.3V,  
CC  
I
SB  
V 0.2V or V V –0.2V,  
IN IN CC  
Standby Supply Current CMOS  
100  
µA  
E1 = E2 V –0.2V  
CC  
(1)  
0.8V  
V
+ 0.2  
CC  
Input High Voltage  
Input Low Voltage  
V
V
V
CC  
IH  
(2)  
0.2V  
–0.3  
2.4  
V
CC  
IL  
V
V
CC  
= 2.7V, I = –0.5mA  
Output High Voltage  
Output Low Voltage  
V
V
OH  
OH  
V
I
OL  
= 1mA  
0.4  
OL  
Note: 1. Maximum DC voltage on input and I/O pins is V + 0.2V.  
CC  
During voltage transitions, input may positive overshoot to V + 1.0V for a period of up to 5ns.  
CC  
2. Minimum DC voltage on input or I/O pins is –0.3V.  
During voltage transitions, input may positive overshoot to V + 1.0V for a period of up to 5ns.  
SS  
13/29  
M69AW048B  
Table 11. Read Mode AC Characteristics  
M69AW048B  
Symbol  
Alt.  
Parameter  
Unit  
Min  
Max  
(1,2)  
t
Address Valid Time  
70  
25  
1000  
ns  
ns  
t
RC  
AVAX  
(1,6,7)  
t
Page Read Cycle Time  
1000  
1000  
t
t
PRC  
AVAX2  
(1,6,7)  
t
Page Read Cycle Time  
25  
–5  
10  
ns  
ns  
ns  
ns  
PRC  
AVEH2  
t
t
t
Address Valid to Chip Enable Low  
Address Valid to Output Enable Low  
Address Valid to Output Valid  
AVEL  
ASC  
t
AVGL  
ASO  
(3,5)  
(3,6)  
(5,8)  
(6,8)  
(3)  
t
70  
18  
10  
10  
t
AA  
AVQV  
t
Page Address Access Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
PAA  
AVQV2  
t
Address Invalid Time  
t
AX  
AXAV  
t
Page Address Invalid Time  
t
AXP  
AXAV2  
t
t
Data hold from address change  
Upper/Lower Byte Enable High to Output Transition  
Upper/Lower Byte Enable High to Output Hi-Z  
Upper/Lower Byte Enable Low to Output Valid  
Upper/Lower Byte Enable Low to Output Transition  
Chip Enable High to Address Invalid  
Chip Enable High to Chip Enable Low  
Chip Enable High to Output Transition  
Chip Enable High to Output Hi-Z  
Read Cycle Time  
3
3
t
OH  
AXQX  
BHQX  
BHQZ  
(3)  
(4)  
(3)  
(4)  
(9)  
t
t
OH  
t
20  
30  
BHZ  
t
t
BA  
BLQV  
BLQX  
t
0
–5  
15  
3
t
BLZ  
t
t
CHAH  
EHAX  
t
t
EHEL  
CP  
(3)  
(4)  
t
t
t
OH  
EHQX  
t
20  
1000  
1000  
70  
CHZ  
EHQZ  
(1,2)  
(1,2)  
(3)  
t
70  
70  
t
RC  
ELAX  
t
Read Cycle Time  
t
RC  
ELEH  
t
Chip Enable Low to Output Valid  
Chip Enable Low to Output Transition  
Output Enable High to Address Invalid  
Output Data Hold Time  
t
CE  
ELQV  
(4)  
t
3
–5  
3
t
CLZ  
ELQX  
t
t
OHAH  
GHAX  
(3)  
t
t
OH  
GHQX  
(4)  
(3)  
(4)  
t
Output Enable High to Output Hi-Z  
Output Enable Low to Output Valid  
Output Enable Low to Output Transition  
20  
40  
t
OHZ  
GHQZ  
t
t
t
OE  
GLQV  
GLQX  
t
0
OLZ  
Note: 1. Maximum value is applicable if E1 is kept Low without change of address input of A3 to A20. If needed by system operation, please  
contact your local ST representative for relaxation of the 1000ns limitation.  
2. Address should not be changed within minimum Read Cycle Time.  
3. The output load 50pF with 50termination to V *0.5 V.  
CC  
4. The output load 5pF without any other load.  
5. Applicable to A3 to A20 when E1 is kept Low.  
6. Applicable only to A0, A1 and A2 when E1 is kept Low for the page address access.  
7. In case Page Read Cycle is continued with keeping E1 stays Low, E1 must be brought to High within 4µs. In other words, Page  
Read Cycle must be closed within 4µs.  
8. Applicable when at least two of address inputs among applicable are switched from previous state.  
9. Minimum Read Cycle TIme and minimum Page Read Cycle Time must be satisfied.  
14/29  
M69AW048B  
Figure 7. Read Mode AC Waveforms  
tELEH  
A0-A20  
ADDRESS VALID  
VALID  
tAVEL  
tAVEL  
tEHAX  
tELQV  
E1  
tEHEL  
tGLQV  
tBLQV  
tEHQZ  
tGHQZ  
tBHQZ  
G
LB, UB  
tBLQX  
tGLQX  
tEHQX  
tELQX  
DQ0-DQ15  
VALID DATA OUTPUT  
AI08986  
Note: E2 = High, W = High.  
Figure 8. Output Enable Controlled, Read Mode AC Waveforms  
tAXAV  
tAVAX  
tAVAX  
ADDRESS VALID  
tAVQV tAXAV  
A0-A20  
ADDRESS VALID  
tAVQV  
tAXAV  
E1  
G
tGLQV  
tGHAX  
tAVGL  
tGHQX  
tGHQZ  
UB, LB  
tGLQX  
tAXQX  
DATA  
OUT  
DQ0-DQ15  
DATA OUT  
AI08987  
Note: Write Enable (W) = High, E2 = High.  
15/29  
M69AW048B  
Figure 9. UB/LB Controlled, Read Mode AC Waveforms  
tAXAV  
A0-A20  
tAVAX  
tAXAV  
ADDRESS VALID  
tAVQV  
Low  
E1  
LB  
tBLQV  
tBLQV  
tBHQZ  
tBHQZ  
tBLQV  
UB  
tBLQX  
tBHQX  
tBLQX  
tBHQX  
DQ0-DQ7  
VALID DATA OUT  
VALID DATA OUT  
tBHQZ  
tBHQX  
tBLQX  
DQ8-DQ15  
VALID DATA OUTPUT  
ai08990  
Note: E1 = Low, E2 = High, G = Low, W = High.  
Figure 10. Page Address and Chip Enable Controlled, Read Mode AC Waveforms  
tELEH  
A20-A3  
A2-A0  
ADDRESS VALID  
tAVAX2  
tAVAX2  
tAVAX  
tAVEH  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS VALID  
ADDRESS VALID  
tAVQV2  
tAXAV2  
tAVQV2  
tAVEL  
tAVQV  
tELAX  
tAVQV2  
tEHAX  
tAXAV2  
tAXAV2  
E
tEHQZ  
tELQV  
G
LB, UB  
DQ0-DQ15  
tELQX  
tAXQX  
tAXQX  
tAXQX  
tEHQX  
VALID DATA  
OUTPUT  
VALID DATA  
OUTPUT  
VALID DATA  
OUTPUT  
VALID DATA  
OUTPUT  
AI08991  
Note: Write Enable (W) = High, E2 = High.  
16/29  
M69AW048B  
Figure 11. Random and Page Address Controlled, Read Mode AC Waveforms  
tAXAV  
tAVAX  
tAVAX  
tAXAV  
A20-A3  
ADDRESS VALID  
ADDRESS VALID  
tAXAV2  
tAXAV  
tAVAX2  
tAXAV2  
tAVAX  
tAVAX  
tAVAX2  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
ADDRESS  
VALID  
A2-A0  
tAVQV  
Low  
tAVQV2  
tAVQV  
tAVQV2  
E
G
tGLQV  
tBLQV  
LB, UB  
tGLQX  
tBLQX  
tAXQX  
tAXQX  
tAXQX  
tAXQX  
DATA  
OUT  
(Normal Access)  
DATA  
OUT  
(Page Access)  
DATA  
OUT  
(Normal Access)  
DATA  
OUT  
(Page Access)  
DQ0-DQ15  
AI08992  
Note: E2 = High.  
17/29  
M69AW048B  
Table 12. Write Mode AC Characteristics  
M69AW048B  
Symbol  
Alt.  
Parameter  
Unit  
Min  
Max  
(1,2)  
t
Write Cycle Time  
70  
0
1000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
WC  
AVAX  
(2)  
t
Address Valid to LB, UB Low  
Address Valid to Chip Enable Low  
Address Valid to Write Enable Low  
Address Invalid Time for Write  
LB, UB High to Address Transition  
LB, UB High to Input High-Z  
t
t
AS  
AVBL  
AVEL  
(2)  
(2)  
(5)  
(4)  
t
0
AS  
t
0
t
AS  
AVWL  
t
10  
t
AXW  
AXAV  
t
15  
0
1000  
t
BR  
BHAX  
t
t
BHDZ  
DH  
(3)  
t
LB, UB Low to LB, UB High  
45  
t
BW  
BLBH  
t
t
BWO  
LB, UB Low to LB, UB High for Page Access  
LB, UB Low to Write Enable High  
Input Valid to LB, UB High  
20  
45  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
BLBH2  
(3)  
t
t
BW  
BLWH  
t
t
DVBH  
DS  
t
t
Input Valid to Chip Enable High  
Input Valid to Write Enable High  
DVEH  
DS  
t
t
DVWH  
DS  
(4)  
t
Chip Enable High to Address Transition  
Chip Enable High to Input High-Z  
15  
0
ns  
ns  
ns  
t
WRC  
EHAX  
t
t
EHDZ  
DH  
t
t
Chip Enable High to Chip Enable Low  
15  
EHEL  
CP  
(1,2)  
(3)  
t
Write Cycle Time  
70  
45  
0
1000  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
WC  
ELAX  
t
Chip Enable Low to Chip Enable High  
Output Enable High to Address Valid  
Output Enable High to Chip Enable Low  
Output Enable High to Output Hi-Z  
Write Enable High to Address Transition  
Write Enable High to Input High-Z  
Write Enable Low to LB, UB High  
Write Enable Low to Write Enable High  
t
CW  
ELEH  
(7)  
(6)  
(4)  
(4)  
t
t
OES  
GHAV  
t
–5  
t
OHCL  
GHEL  
t
20  
t
OHZ  
GHDZ  
t
15  
0
1000  
t
WR  
WHAX  
t
t
WHDZ  
DH  
(3)  
t
45  
45  
t
WP  
WLBH  
WLWH  
(3)  
t
t
WP  
Note: 1. Maximum value is applicable if E1 is kept Low without any address change. If needed by system operation, please contact your  
local ST representative for relaxation of the 1000ns limitation.  
2. Minimum value must be equal to or greater than the sum of write pulse (t  
WHAX  
3. Write pulse is defined from the falling edge of E1, W, or LB/UB, whichever occurs last.  
, t  
or t  
) and write recovery time (t  
,
ELEH WLBH  
BLBH  
EHAX  
t
or t  
).  
BHAX  
4. Write recovery is defined from Write pulse is defined from the rising edge of E1, W, or LB/UB, whichever occurs first.  
5. Applicable to any address change when E1 stays Low.  
6. If G is Low after minimum t  
, the read cycle is initiated. In other words, G must be brought High within 5ns after E1 is brought  
GHEL  
Low. Once the read cycle is initiated, new write pulse should be input after minimum Read Cycle Time is met.  
7. If G is Low after new address input, the read cycle is initiated. In other words, G must be brought High at the same time or before  
new address valid. Once the read cycle is initiated, new write pulse should be input after minimum Read Cycle Time is met.  
18/29  
M69AW048B  
Figure 12. Chip Enable Controlled, Write AC Waveforms  
tELAX  
A0-A20  
ADDRESS VALID  
ADDRESS VALID  
tEHAX  
tWHAX  
tBHAX  
tAVEL  
tAVWL  
tAVBL  
tELEH  
tWLWH  
tBLWH  
tAVEL  
E1  
tAVWL  
W
tAVBL  
LB, UB  
tGHEL  
G
tDVEH  
tDVWH  
tDVBH  
tEHDZ  
tWHDZ  
tBHDZ  
DQ0-DQ15  
VALID DATA INPUT  
ai08993  
Note: E2 = High.  
Figure 13. Write Enable Controlled, Write AC Waveforms  
tAVAX  
tAVAX  
tAXAV  
A0-A20  
ADDRESS VALID  
ADDRESS VALID  
tWHAX  
tWLWH  
E1  
W
Low  
tAVWL  
tAVWL  
tWLWH  
tWHAX  
LB, UB  
G
tGHAV  
tDVWH  
tGHDZ  
tWHDX  
tDVWH  
tWHDZ  
VALID DATA  
INPUT  
VALID DATA  
INPUT  
DQ0-DQ15  
AI08994b  
Note: E2 = High.  
19/29  
M69AW048B  
Figure 14. Write Enable and UB/LB Controlled, Write AC Waveforms 1  
tAVAX  
tAVAX  
A0-A20  
E1  
ADDRESS VALID  
ADDRESS VALID  
tAXAV  
Low  
tAVWL  
tWLBH  
tAVWL  
tWLBH  
tBHAX  
W
tBHAX  
LB  
UB  
tDVBH  
tBHDZ  
VALID DATA  
INPUT  
DQ0-DQ7  
tDVBH  
tBHDZ  
VALID DATA  
INPUT  
DQ8-DQ15  
AI08995b  
Note: E2 = High.  
Figure 15. Write Enable and UB/LB Controlled, Write AC Waveforms 2  
tAXAV  
tAVAX  
tAVAX  
A0-A20  
E1  
ADDRESS VALID  
ADDRESS VALID  
tAXAV  
Low  
tAVBL  
tBLWH  
tBLWH  
tWHAX  
W
tWHAX  
LB  
tAVBL  
UB  
tDVWH  
tWHDZ  
VALID DATA  
INPUT  
DQ0-DQ7  
tDVWH  
tWHDZ  
VALID DATA  
INPUT  
DQ8-DQ15  
AI08996b  
Note: E2 = High.  
20/29  
M69AW048B  
Figure 16. Write Enable and LB/UB Controlled, Write AC Waveforms 3  
tAVAX  
tAVAX  
tAXAV  
A0-A20  
E1  
ADDRESS VALID  
ADDRESS VALID  
tAXAV  
Low  
tAVBL  
tBLBH  
tBLBH  
tBHAX  
W
tBHAX  
LB  
tAVBL  
UB  
tDVBH  
tBHDZ  
VALID DATA  
INPUT  
DQ0-DQ7  
tBVWH  
tBHDZ  
VALID DATA  
INPUT  
DQ8-DQ15  
AI08997b  
Note: E2 = High.  
Figure 17. Write Enable and LB/UB Controlled, Write AC Waveforms 4  
tAXAV  
tAVAX  
tAVAX  
A0-A20  
E1  
ADDRESS VALID  
ADDRESS VALID  
tAXAV  
Low  
W
tBHAX  
tBLBH  
tAVBL  
tAVBL  
tBLBH  
tBHAX  
LB  
tBLBH2  
tDVBH  
tAVBL  
tDVBH  
tBHDZ  
tBHAX  
tBHDZ  
VALID DATA  
INPUT  
VALID DATA  
INPUT  
DQ0-DQ7  
UB  
tBHAX  
tBLBH  
tBLBH2  
tBLBH  
tAVBL  
tDVBH  
tBHDZ tDVBH  
tBHDZ  
VALID DATA  
INPUT  
VALID DATA  
INPUT  
DQ8-DQ15  
AI08998b  
Note: E2 = High.  
21/29  
M69AW048B  
Figure 18. Chip Enable Controlled, Read Followed by Write Mode AC Waveforms  
tELAX  
tELAX(read)  
A0-A20  
WRITE ADDRESS  
READ ADDRESS  
tAVEL  
(read)  
tEHAX  
(read)  
tAVEL  
tEHAX  
tEHAX(read)  
E1  
W
tEHEL  
tELEH  
tEHEL  
tELQV  
UB, LB  
G
tGHEL  
tEHQZ  
tEHQX  
tELQX  
tDVEH  
tEHDZ  
tEHQX  
READ DATA  
OUTPUT  
WRITE DATA  
INPUT  
READ DATA  
OUTPUT  
DQ0-DQ15  
ai08999b  
Note: Write address is valid from either E1 or W of last falling edge.  
Figure 19. E1, W, G Controlled, Read and Write Mode AC Waveforms  
tELAX  
tELAX(read)  
READ ADDRESS  
tAVEL  
A0-A20  
WRITE ADDRESS  
tEHAX  
(read)  
tAVEL  
tWHAX  
tEHAX(read)  
(read)  
E1  
W
tEHEL  
tELEH  
tEHEL  
tELQV  
tWLWH  
UB, LB  
G
tGHEL  
tGHQV  
tEHQZ  
tEHQX  
tGLQX  
tWHDZ  
tGHQX  
tDVWH  
READ DATA  
OUTPUT  
WRITE DATA  
INPUT  
READ DATA  
OUTPUT  
DQ0-DQ15  
ai09400b  
Note: G can be Low fixed in write operation under E1 control read-write-read operation.  
22/29  
M69AW048B  
Figure 20. Output Enable and Write Enable Controlled, Read and Write Mode AC Waveforms  
tAXAV  
tAVAX  
tAVAX(read)  
A0-A20  
WRITE ADDRESS  
READ ADDRESS  
tAXAV  
tAVQV  
E1  
W
Low  
tWLWH  
tWHAX  
tAVWL  
UB, LB  
G
tAVGL  
tGLQV  
tGHQZ  
tGLQX  
tWHDZ  
tGHQZ  
tGHQX  
tGHQX  
DATA  
tDVWH  
DATA  
IN  
DATA  
OUT  
DQ0-DQ15  
OUT  
ai09401b  
Note: E1 can be tied to Low for W and G controlled operation.  
When E1 is tied to Low, output is exclusively controlled by G.  
Figure 21. Output Enable, Write Enable and UB/LB Controlled, Read and Write Mode AC  
Waveforms  
tAXAV  
tAVAX  
tAVAX(read)  
A0-A20  
WRITE ADDRESS  
READ ADDRESS  
tAXAV  
tAVQV  
E1  
W
Low  
tAVBL  
tBLBH  
tBHAX  
tBLQV  
UB, LB  
G
tAVGL  
tBHQZ  
tBHQX  
tBHQZ  
tBHQX  
tBLQX  
tBHDZ  
tDVBH  
DATA  
OUT  
DATA  
IN  
DATA  
OUT  
DQ0-DQ15  
ai09402b  
Note: E1 can be tied to Low for W and G controlled operation.  
When E1 is tied to Low, output is exclusively controlled by G.  
23/29  
M69AW048B  
Table 13. Standby/Power-Down Mode AC Characteristics  
M69AW048B  
Symbol  
Alt.  
Parameter  
Unit  
Min  
Max  
t
t
CSP  
E2 Low Setup Time for Power Down Entry  
E2 Low Hold Time after Power Down Entry  
10  
70  
ns  
ns  
CLEX  
t
t
C2LP  
EXCH  
E1 High Hold Time following E2 High after Power-  
Down Exit (Deep Power-Down Mode only)  
(1)  
t
300  
1
µs  
µs  
µs  
t
CHH  
EHEV  
E1 High Hold Time following E2 High after Power-  
Down Exit (not in Deep Power-Down Mode)  
(2)  
t
t
CHHP  
CHEL  
E1 High Setup Time following E2 High after Power-  
Down Exit  
t
t
0
EHCH  
CHS  
t
t
E1 High to G Invalid Time for Standby Entry  
E1 High to W Invalid Time for Standby Entry  
Input Transition Time  
10  
10  
1
ns  
ns  
ns  
EHGL  
CHOX  
CHWX  
tτ  
(3)  
t
t
EHWL  
(4)  
25  
tτ  
Note: 1. Applicable also to Power-up.  
2. Applicable when 4Mb, 8Mb and 16Mb PAR mode is programmed  
3. Some data might be written into any address location if t  
(min) is not satisfied.  
EHWL  
4. The Input Transition Time (tτ) at AC testing is 5ns as shown below. If actual tτ is longer than 5ns, it may violate AC specification of  
some timing parameters.  
Figure 22. Power Down Program AC Waveforms  
tAVAX  
2
2
2
2
2
3
PDCADD  
A0-A20  
E1  
MSB  
MSB  
tAXAV  
MSB  
MSB  
MSB  
4
tAXAVL  
G
W
LB, UB  
4
DQ0-DQ15  
RDa  
RDa  
Cycle 2  
RDa  
00  
Cycle 4  
PDCD  
Cycle 5  
RDb  
Cycle 6  
Cycle 1  
Cycle 3  
AI07225c  
Note: 1. E2 = High.  
2. All address inputs must be High from Cycle 1 to Cycle 5.  
3. PDCADD stands for Power-Down Configuration Address. It must be compliant with the format specified in Table 6 otherwise the  
data programmed during the Power-Down Program sequence may be incorrect.  
4. PDCDAT stands for Power-Down Configuration Data. It must be compliant with the format specified in Table 5 otherwise the data  
programmed during the Power-Down Program sequence may be incorrect.  
5. t  
after the end of Cycle 6, the Power Down Program is completed and the device returns to normal operation.  
EHEL  
24/29  
M69AW048B  
Figure 23. Power-Down Mode AC Waveforms  
E1  
tEHCH  
tCHEL  
E2  
tCLEX  
tEXCH  
DQ0-D15  
Hi-Z  
Power-Down Power-Down Mode Power-Down  
AI09403  
Entry  
Exit  
Figure 24. Power-Up Mode AC Waveforms  
E1  
E2  
tEHEL  
VDDmin  
VDD  
AI09404  
Figure 25. Standby Mode Entry AC Waveforms, After Read  
E1  
tEHGL  
tEHWL  
G
W
Read Active  
Standby  
Write Active  
Standby  
AI09405  
Note: E2 = High.  
25/29  
M69AW048B  
PACKAGE MECHANICAL  
Figure 26. TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Outline, Bottom View  
D
D1  
FD  
FE  
SD  
SE  
BALL "A1"  
E
E1  
ddd  
e
e
b
A
A2  
A1  
BGA-Z26  
Note: Drawing is not to scale.  
Table 14. TFBGA48 6x8mm - 6x8 ball array, 0.75 mm pitch, Package Mechanical Data  
millimeters  
Min  
inches  
Min  
Symbol  
Typ  
Max  
Typ  
Max  
A
A1  
A2  
b
1.200  
0.0472  
0.260  
0.0102  
0.900  
0.0354  
0.350  
5.900  
0.450  
0.0138  
0.2323  
0.0177  
D
6.000  
3.750  
6.100  
0.2362  
0.1476  
0.2402  
D1  
ddd  
E
0.100  
0.0039  
8.000  
5.250  
0.750  
1.125  
1.375  
0.375  
0.375  
7.900  
8.100  
0.3150  
0.2067  
0.0295  
0.0443  
0.0541  
0.0148  
0.0148  
0.3110  
0.3189  
E1  
e
FD  
FE  
SD  
SE  
26/29  
M69AW048B  
PART NUMBERING  
Table 15. Ordering Information Scheme  
Example:  
M69AW048 B  
L
70 ZB  
8
Device Type  
M69 = PSRAM  
Mode  
A = Asynchronous  
Operating Voltage  
W = 2.7 to 3.3V  
Array Organization  
048 = 32 Mbit (2M x16)  
Option 1  
B = 2 Chip Enable  
Option 2  
L = Low Leakage  
Speed Class  
70= 70 ns  
Package  
ZB = TFBGA48, 0.75mm pitch  
Operative Temperature  
8 = –30 to 85 °C  
The notation used for the device number is as shown in Table 15.. For a list of available options (speed,  
package, etc.) or for further information on any aspect of this device, please contact your nearest STMi-  
croelectronics Sales Office.  
27/29  
M69AW048B  
REVISION HISTORY  
Table 16. Document Revision History  
Date  
Version  
-01  
Revision Details  
07-Oct-2002  
10-Mar-2003  
First Issue  
2.0  
Document completely revised  
Data Key and Address Key renamed Power-Down Configuration data and Power-Down  
Configuration Address respectively. Sleep mode renamed Deep Power-Down mode.  
I
removed and I renamed I  
in Table 10., DC Characteristics.  
CCS  
PD  
CCPD  
Partial mode renamed Partial Array Refresh.  
Table 12. Write Mode AC Characteristics: t  
9-Mar-2004  
3.0  
added and Note 2 updated.  
GHDZ  
t
changed to t  
in Figure 13.Write Enable Controlled, Write AC Waveforms.  
GHQZ  
GHDZ  
AC Waveforms converted to ST standard.  
t
, t , t changed into t , t  
, t  
in Table 11., Read Mode AC  
ELQZ GLQZ BLQZ  
ELQX GLQX BLQX  
21-Sep-2004  
15-Nov-2004  
4.0  
5.0  
Characteristics.  
V
value updated in Table 10., DC Characteristics.  
OH  
28/29  
M69AW048B  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
29/29  

相关型号:

M69KB048BD70W8F

2MX16 PSEUDO STATIC RAM, 70ns, UUC, ROHS COMPLIANT, WAFER
STMICROELECTR

M69KB048BD70W8T

2MX16 PSEUDO STATIC RAM, 70ns, UUC, WAFER
STMICROELECTR

M69KB048BD70ZA8F

2MX16 PSEUDO STATIC RAM, 70ns, BGA71, 7 X 11 MM, 0.80 MM PITCH, ROHS COMPLIANT, FBGA-71
STMICROELECTR

M69KB048BD70ZA8T

2MX16 PSEUDO STATIC RAM, 70ns, BGA71, 7 X 11 MM, 0.80 MM PITCH, FBGA-71
STMICROELECTR

M69KB096AA

64 Mbit (4M x16) 1.8V Supply, 80MHz Clock Rate, Burst PSRAM
STMICROELECTR

M69KB096AA70CW8

64 Mbit (4M x16) 1.8V Supply, 80MHz Clock Rate, Burst PSRAM
STMICROELECTR

M69KB096AA85AW8

64 Mbit (4M x16) 1.8V Supply, 80MHz Clock Rate, Burst PSRAM
STMICROELECTR

M69KB096AB

64 Mbit (4Mb x 16), 104MHz Clock Rate, 1.8V Supply, Bare Die, Burst PSRAM
STMICROELECTR

M69KB096AB70CW8

4MX16 PSEUDO STATIC RAM, 70ns, UUC, WAFER
STMICROELECTR

M69KB096AB70DW8

4MX16 PSEUDO STATIC RAM, 70ns, UUC, WAFER
STMICROELECTR

M69KB096AB80CW8

64 Mbit (4Mb x 16), 104MHz Clock Rate, 1.8V Supply, Bare Die, Burst PSRAM
STMICROELECTR

M69KB096AB80DW8

64 Mbit (4Mb x 16), 104MHz Clock Rate, 1.8V Supply, Bare Die, Burst PSRAM
STMICROELECTR