SMP80MC [STMICROELECTRONICS]

TRISIL FOR TELECOM EQUIPMENT PROTECTION; TRISIL电信设备保护
SMP80MC
型号: SMP80MC
厂家: ST    ST
描述:

TRISIL FOR TELECOM EQUIPMENT PROTECTION
TRISIL电信设备保护

电信
文件: 总9页 (文件大小:88K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SMP80MC  
®
TRISIL™ FOR TELECOM EQUIPMENT PROTECTION  
FEATURES  
Bidirectional crowbar protection  
Voltage: range from 120V to 270V  
Low VBO / VR ratio  
Micro capacitance equal to 12pF @ 50V  
Low leakage current : IR = 2µA max  
Holding current: IH = 150 mA min  
Repetitive peak pulse current :  
IPP = 80 A (10/1000µs)  
SMB  
MAIN APPLICATIONS  
Any sensitive equipment requiring protection  
(JEDEC DO-214AA)  
against lightning strikes and power crossing:  
Table 1: Order Codes  
Terminals (phone, fax, modem...) and central  
office equipment  
Part Number  
SMP80MC-120  
SMP80MC-140  
SMP80MC-160  
SMP80MC-200  
SMP80MC-230  
SMP80MC-270  
Marking  
TP12  
TP14  
TP16  
TP20  
TP23  
TP27  
DESCRIPTION  
The SMP80MC is a series of micro capacitance  
transient surge arrestors designed for the protec-  
tion of high debit rate communication equipment  
on CPE side. Its micro capacitance avoids any dis-  
tortion of the signal and is compatible with digital  
transmission like ADSL2 and ADSL2+.  
BENEFITS  
Trisils are not subject to ageing and provide a fail  
safe mode in short circuit for a better protection.  
They are used to help equipment to meet main  
standards such as UL1950, IEC950 / CSA C22.2  
and UL1459. They have UL94 V0 approved resin.  
SMB package is JEDEC registered (DO-214AA).  
Trisils comply with the following standards GR-  
1089 Core, ITU-T-K20/K21, VDE0433, VDE0878,  
IEC61000-4-5 and FCC part 68.  
Figure 1: Schematic Diagram  
TM: TRISIL is a trademark of STMicroelectronics.  
June 2005  
REV. 3  
1/9  
SMP80MC  
Table 2: In compliances with the following standards  
Peak Surge  
Waveform  
Required  
peak current  
(A)  
Minimum serial  
resistor to meet  
standard ()  
Current  
waveform  
STANDARD  
Voltage  
(V)  
Voltage  
GR-1089 Core  
First level  
2500  
1000  
2/10 µs  
10/1000 µs  
500  
100  
2/10 µs  
10/1000 µs  
5
2.5  
GR-1089 Core  
Second level  
5000  
1500  
2/10 µs  
500  
100  
2/10 µs  
2/10 µs  
5/310 µs  
10  
0
GR-1089 Core  
Intra-building  
2/10 µs  
10/700 µs  
1/60 ns  
6000  
1500  
150  
37.5  
10  
0
ITU-T-K20/K21  
ITU-T-K20  
(IEC61000-4-2)  
8000  
15000  
ESD contact discharge  
ESD air discharge  
0
0
4000  
2000  
100  
0
0
VDE0433  
VDE0878  
10/700 µs  
1.2/50 µs  
5/310 µs  
50  
4000  
2000  
100  
0
0
1/20 µs  
50  
4000  
4000  
10/700 µs  
1.2/50 µs  
100  
100  
5/310 µs  
8/20 µs  
0
0
IEC61000-4-5  
FCC Part 68, lightning  
surge type A  
1500  
800  
10/160 µs  
10/560 µs  
200  
100  
10/160 µs  
10/560 µs  
2.5  
0
FCC Part 68, lightning  
surge type B  
1000  
9/720 µs  
25  
5/320 µs  
0
Table 3: Absolute Ratings (Tamb = 25°C)  
Symbol  
Parameter  
Value  
Unit  
IPP  
Repetitive peak pulse current (see figure 2)  
10/1000 µs  
8/20 µs  
80  
A
200  
100  
120  
150  
200  
250  
10/560 µs  
5/310 µs  
10/160 µs  
1/20 µs  
2/10 µs  
IFS  
Fail-safe mode : maximum current (note 1)  
8/20 µs  
5
kA  
A
ITSM  
Non repetitive surge peak on-state current (sinusoidal)  
I2t value for fusing  
t = 0.2 s  
t = 1 s  
t = 2 s  
t = 15 mn  
14  
8
6.5  
2
I2t  
A2s  
t = 16.6 ms  
t = 20 ms  
7.5  
7.8  
Tstg  
Tj  
Storage temperature range  
-55 to 150  
150  
°C  
°C  
Maximum junction temperature  
TL  
Maximum lead temperature for soldering during 10 s.  
260  
Note 1: in fail safe mode, the device acts as a short circuit  
2/9  
SMP80MC  
Table 4: Thermal Resistances  
Symbol  
Parameter  
Junction to ambient (with recommended footprint)  
Junction to leads  
Value  
100  
20  
Unit  
°C/W  
°C/W  
Rth(j-a)  
Rth(j-l)  
Table 5: Electrical Characteristics (Tamb = 25°C)  
Symbol  
VRM  
VBR  
VBO  
IRM  
IPP  
Parameter  
Stand-off voltage  
Breakdown voltage  
Breakover voltage  
Leakage current  
Peak pulse current  
Breakover current  
Holding current  
IBO  
IH  
VR  
Continuous reverse voltage  
Leakage current at VR  
Capacitance  
IR  
C
Dynamic  
VBO  
Static  
BO @ IBO  
IRM @ VRM  
IR @ VR  
IH  
min.  
C
C
V
max.  
note1  
max.  
note 2  
V
max. max.  
note 3  
typ.  
typ.  
Types  
max.  
note 4 note 5 note 6  
µA  
2
V
µA  
5
V
V
mA  
mA  
pF  
12  
pF  
25  
SMP80MC-120  
SMP80MC-140  
SMP80MC-160  
SMP80MC-200  
SMP80MC-230  
SMP80MC-270  
108  
126  
144  
180  
207  
243  
120  
140  
160  
200  
230  
270  
155  
180  
205  
255  
295  
345  
155  
180  
205  
255  
295  
345  
800  
150  
Note 1: I measured at V guarantee V min VR  
BR  
R
R
Note 2: see functional test circuit 1  
Note 3: see test circuit 2  
Note 4: see functional holding current test circuit 3  
Note 5: V = 50V bias, V =1V, F=1MHz  
R
RMS  
=1V, F=1MHz  
Note 6: V = 2V bias, V  
R
RMS  
3/9  
SMP80MC  
Figure 2: Pulse waveform  
Figure 3: Non repetitive surge peak on-state  
current versus overload duration  
I
(A)  
TSM  
Repetitive peak pulse current  
tr = rise time (µs)  
% I  
40  
35  
30  
25  
20  
15  
10  
5
PP  
F=50Hz  
Tj initial = 25°C  
tp = pulse duration time (µs)  
100  
50  
0
t(s)  
t
t
0
t
p
r
1.E-02  
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
Figure 4: On-state voltage versus on-state  
current (typical values)  
Figure 5: Relative variation of holding current  
versus junction temperature  
I (A)  
T
IH[Tj] / IH[Tj=25°C]  
2.0  
100  
Tj=25°C  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
Tj(°C)  
V (V)  
T
0.0  
10  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
0
1
2
3
4
5
6
7
8
Figure 6: Relative variation of breakover  
voltage versus junction temperature  
Figure 7: Relative variation of leakage current  
versus junction temperature (typical values)  
V
BO  
[Tj] / V [Tj=25°C]  
I [Tj] / I [Tj=25°C]  
BO  
R
R
1.08  
1.07  
1.06  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
0.97  
0.96  
0.95  
0.94  
1.E+03  
1.E+02  
1.E+01  
1.E+00  
VR=243V  
Tj(°C)  
Tj(°C)  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130  
25  
50  
75  
100  
125  
4/9  
SMP80MC  
Figure 8: Variation of thermal impedance  
junction to ambient versus pulse duration  
(Printed circuit board FR4, SCu=35µm,  
recommended pad layout)  
Figure 9: Relative variation of junction  
capacitance versus reverse voltage applied  
(typical values)  
Z
/R  
C [V ] / C [V =2V]  
R R  
th(j-a) th(j-a)  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0.0  
F =1MHz  
VOSC = 1VRMS  
Tj = 25°C  
tp(s)  
V (V)  
R
1.E-02  
1.E-01  
1.E+00  
1.E+01  
1.E+02  
1.E+03  
1
10  
100  
1000  
Figure 10: Test circuit 1 for dynamic IBO and VBO parameters  
100 V / µs, di/dt < 10 A / µs, Ipp = 80A  
2  
45 Ω  
83 Ω  
0.36 nF  
46 µH  
10 µF  
U
66 Ω  
470 Ω  
KeyTek 'System 2' generator with PN246I module  
1 kV / µs, di/dt < 10 A / µs, Ipp = 10 A  
46 µH  
26 µH  
60 µF  
250 Ω  
47 Ω  
U
12 Ω  
KeyTek 'System 2' generator with PN246I module  
5/9  
SMP80MC  
Figure 11: Test circuit 2 for IBO and VBO parameters  
K
ton = 20ms  
R1 = 140  
R2 = 240Ω  
220V 50Hz  
VBO  
measurement  
DUT  
Vout  
1/4  
IBO  
measurement  
TEST PROCEDURE  
Pulse test duration (tp = 20ms):  
for Bidirectional devices = Switch K is closed  
for Unidirectional devices = Switch K is open  
V
selection:  
OUT  
Device with V < 200V V  
= 250 V  
= 480 V  
, R1 = 140Ω  
, R2 = 240Ω  
BO  
OUT  
RMS  
Device with V 200V V  
BO  
OUT  
RMS  
Figure 12: Test circuit 3 for dynamic IH parameter  
R
Surge  
generator  
V
= - 48 V  
BAT  
D.U.T  
This is a GO-NOGO test which allows to confirm the holding current (I ) level in a  
H
functional test circuit.  
TEST PROCEDURE  
1/ Adjust the current level at the I value by short circuiting the AK of the D.U.T.  
H
2/ Fire the D.U.T. with a surge current I  
=
PP  
10A, 10/1000µs.  
3/ The D.U.T. will come back off-state within 50ms maximum.  
6/9  
SMP80MC  
Figure 13: Ordering Information Scheme  
Trisil Surface Mount  
SMP 80 MC - xxx  
Repetitive Peak Pulse Current  
80 = 80A  
Capacitance  
MC = Micro Capacitance  
Voltage  
270 = 270V  
Figure 14: SMB Package Mechanical Data  
DIMENSIONS  
E1  
REF.  
Millimeters  
Inches  
Min.  
Max.  
2.45  
0.20  
2.20  
0.41  
5.60  
4.60  
3.95  
1.60  
Min.  
0.075  
0.002  
0.077  
0.006  
0.201  
0.159  
0.130  
0.030  
Max.  
0.096  
0.008  
0.087  
0.016  
0.220  
0.181  
0.156  
0.063  
D
A1  
A2  
b
1.90  
0.05  
1.95  
0.15  
5.10  
4.05  
3.30  
0.75  
E
c
E
A1  
E1  
D
A2  
C
L
b
L
Figure 15: Foot Print Dimensions (in millimeters)  
2.3  
1.52  
2.75  
1.52  
7/9  
SMP80MC  
Table 6: Ordering Information  
Part Number  
SMP80MC-120  
SMP80MC-140  
SMP80MC-160  
SMP80MC-200  
SMP80MC-230  
SMP80MC-270  
Marking  
Package  
Weight  
Base qty  
Delivery mode  
TP12  
TP14  
TP16  
TP20  
TP23  
TP27  
SMB  
0.11 g  
2500  
Tape & reel  
Table 7: Revision History  
Date  
Revision  
Description of Changes  
September-2001  
11-May-2005  
20-Jun-2005  
1
2
3
First issue.  
New types introduction.  
Qualification of new types  
8/9  
SMP80MC  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2005 STMicroelectronics - All rights reserved  
STMicroelectronics group of compagnies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
9/9  

相关型号:

SMP80MC-120

TRISIL FOR TELECOM EQUIPMENT PROTECTION
STMICROELECTR

SMP80MC-140

TRISIL FOR TELECOM EQUIPMENT PROTECTION
STMICROELECTR

SMP80MC-160

TRISIL FOR TELECOM EQUIPMENT PROTECTION
STMICROELECTR

SMP80MC-200

TRISIL FOR TELECOM EQUIPMENT PROTECTION
STMICROELECTR

SMP80MC-230

TRISIL FOR TELECOM EQUIPMENT PROTECTION
STMICROELECTR

SMP80MC-270

TELECOM EQUIPMENT PROTECTION TRISIL
STMICROELECTR

SMP80MC-320

TRISIL for telecom equipment protection
STMICROELECTR

SMP80MC_07

TRISIL for telecom equipment protection
STMICROELECTR

SMP8200

Voltage 200 V 8 Amp Surface Mount Schottky Barrier Rectifiers
SECOS

SMP8N50

Transistor
VISHAY

SMP8N50F

Power Field-Effect Transistor, 8A I(D), 500V, 0.85ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-220AB
VISHAY

SMP900G-JP

P.I.N. PHOTODIODE
SEME-LAB