ST75C50 [STMICROELECTRONICS]

14.4kbps DATA, 14.4kbps FAX, MODEM-DATA/FAX/VOICE, PQFP160, PLASTIC, QFP-160;
ST75C50
型号: ST75C50
厂家: ST    ST
描述:

14.4kbps DATA, 14.4kbps FAX, MODEM-DATA/FAX/VOICE, PQFP160, PLASTIC, QFP-160

电信 电信集成电路
文件: 总55页 (文件大小:1082K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ST75C50  
V.32bis/V.17 HIGH SPEED MODEM DATAPUMP  
ADVANCE DATA  
.
.
2 AND 4 -WIRE FULL DUPLEX OPERATION  
V.32BIS, V.17, V.33, V.32, V.29, V.27ter,  
V.22BIS, V.22, V.21, V.23, BELL212A,103  
GROUP 3 FAX AT 14400, 12000, 9600, 7200,  
4800, 2400BPS  
PARALLEL/SERIAL SYNCHRONOUS DATA  
HANDLING  
DIGITAL FAR AND NEAR END ECHO CAN-  
CELLATION SUPPORTING A DELAY OF 2  
SATELLITE HOPS (1.6 seconds) AND PHASE  
ROLL UP TO 10Hz  
.
.
.
TQFP44  
(Plastic Quad Flat Pack)  
.
.
.
.
.
.
.
AUTODIAL AND AUTOANSWER  
COMPLETE HANDSHAKE MANAGEMENT  
WIDE DYNAMIC RANGE (> 48dB)  
COMPROMISE TRANSIT EQUALIZER  
AUTOMATIC ADAPTIVE EQUALIZER  
VOICE MODE (A LAW)  
ENHANCED PROGRAMMABLE TONE DE-  
TECTOR (INCLUDING DTMF)  
AUTO MODE  
MULTILEVEL OPERATING SOFTWARE  
PQFP80  
(Plastic Quad Flat Pack)  
.
.
.
.
CCITT V.54 SIGNALLING  
ANCILLARY CONVERTERS FOR EYE PAT-  
TERN MONITORING  
.
VERSATILE INTERFACES  
PARALLEL 64x8 DUAL PORT RAM  
SYNCHRONOUS SERIAL I/O  
AUXILLIARY PARALLEL I/O  
.
CALLER ID DEMODULATION  
PROGRAMMABLE HOST MCU INTERRUPT  
RATE  
SIMPLE CUSTOMISATION / EXTENSION OF  
FUNCTIONALITY  
LOW PROFILE TQFP PACKAGE OPTION  
MONOPACKAGE DATAPUMP OPTION  
.
.
PQFP160  
(Plastic Quad Flat Pack)  
.
.
ORDERING INFORMATION  
Sales Type  
Function  
Package  
PQFP 160  
TQFP 44  
PLCC 44  
TQFP 80  
PQFP 80  
PQFP 160  
PQFP 160  
BOARD  
ST75C50  
Monopackage Datapump  
ST7543 CQFP  
ST7543 CNF  
Mafe  
Mafe  
ST75C500 CQFP  
ST75C500 PQFP  
ST75C500 EQFP  
ST18933 PQFP  
ST75C50 DEMOI  
STI8933 EMU-PC  
Romed DSP  
Romed DSP  
Romed DSP with access to external additional memory  
Customisable DSP  
Modem  
PC Software Developement Tool  
PC BOARD  
1/55  
December 1993  
This is advance information on a new product now in development or undergoing evaluation. Detailsare subject to change without notice.  
ST75C50  
SUMMARY  
Page  
I.  
GENERAL DESCRIPTION................................................. ........................... ..................  
4
II.  
PIN CONNECTIONS......................................................... ...............................................  
4
4
5
5
6
7
II.1  
II.2  
II.3  
II.4  
II.5  
ST7543 TOP VIEW (PQFP44)........................... ........................................................... ...  
ST75C500CQFPTOP VIEW (TQFP80)............................ ...............................................  
ST75C500PQFP TOP VIEW (PQFP80)............................ ........................... ....................  
ST18933 TOP VIEW (PQFP160).......................................... ........................... ................  
ST75C50 TOP VIEW (PQFP160)........................................... ........................... ..............  
III.  
PIN DESCRIPTION..................................................................... .................................. ...  
HOST INTERFACE.................................. ........................... .............................................  
SERIAL INTERFACE........................................... ................................ ........................... .  
ANALOG INTERFACE..................................... ........................... .....................................  
EYE PATTERN INTERFACE.............................................. ........................... ..................  
CLOCK INTERFACE ......................................... ........................... .................................. .  
AUXILIARY INTERFACE........................... ........................... ........................... ................  
MISCELLANEOUS..................................... ........................... ........................... ................  
INTERCONNECTION...................................... ........................... ................................ .....  
8
8
8
8
8
9
9
9
9
III.1  
III.2  
III.3  
III.4  
III.5  
III.6  
III.7  
III.8  
III.9  
III.10  
III.11  
MEMORY INTERFACE.............................. ........................... ........................... ................ 10  
BOUNDARY SCAN INTERFACE...................................... ........................... .................... 10  
OPEN VERSION INTERFACE.............................................. ........................... ................ 10  
IV.  
ELECTRICAL SPECIFICATIONS .................................... ........................... .................... 11  
MAXIMUM RATINGS (referenced to GND) ................................................... .................. 11  
DC CHARACTERISTICS.................................................. ........................... .................... 11  
IV.1  
IV.2  
IV.2.1  
IV.2.2  
IV.2.3  
Power Supply And Common Mode Voltage............................ ........................... .............. 11  
Digital Interface ............................... .................................. ........................... .................... 11  
Analog Interface.......................... ........................... ................................ .......................... 11  
IV.3  
IV.3.1  
IV.3.2  
AC ELECTRICAL CHARACTERISTICS....................................... .................................. . 12  
Dual Port Ram Host Read-cycle Timing.............................................. ........................... .. 12  
Dual Port Ram Host Write-cycle Timing................................................... ........................ 13  
V.  
FUNCTIONAL DESCRIPTION ................................................. ........................... ............ 14  
SYSTEM ARCHITECTURE ............................... ........................... .................................. . 14  
CHIP SET INTERCONNECT CIRCUITRY.............................. ........................... .............. 14  
V.1  
V.2  
V.3  
OPERATION.............................................. ........................... ........................................... 14  
Modes ........................................................ ........................... ........................... ................ 14  
Transmitter Description ............................ ........................... ........................... .................. 14  
Echo Canceller Description............................ ........................... ........................... ............ 14  
Receiver Description..................................................................... .................................. . 14  
Tone GeneratorDescription......................................................................... .................... 14  
Tone Detector Description ........................... ........................... ........................... .............. 14  
DTMF Detector Description............................................................................ .................. 14  
Voice Mode Description ................................. .................................................... .............. 14  
Analog Loop Back Test Mode ............................ ........................... .................................. . 14  
V.3.1  
V.3.2  
V.3.3  
V.3.4  
V.3.5  
V.3.6  
V.3.7  
V.3.8  
V.3.9  
V.3.10 Digital Loop Back Test Mode .......................................... ................................................. 14  
V.3.11 Sleep Power Mode........................................................ ........................... ........................ 15  
2/55  
ST75C50  
V.4  
MODEM INTERFACE............................................ .................................. ........................ 15  
Analog Interface.......................... ........................... ................................ .......................... 15  
Host Interface......................................... ........................... ........................... .................... 15  
Memory Interface ............................................. ........................... .................................. ... 15  
Auxiliary Parallel Interface.......................... ........................... ........................... ................ 15  
Auxiliary Serial Interface.............................. .................................. ........................... ........ 15  
V.4.1  
V.4.2  
V.4.3  
V.4.4  
V.4.5  
VI.  
USER INTERFACE..................................................................... .................................. ... 15  
VI.1  
DUAL PORT RAM DESCRIPTION........................................................ .......................... 15  
VI.1.1  
Mapping .................................. .................................................... .................................. ... 15  
Command Area ................................................ .................................. .......................... 15  
Report Area............................................ ........................... ........................... ................ 15  
Status Area.......................... ........................... ........................... ................................ ... 15  
Optional Status Area ..................................................... ........................... .................... 15  
Bulk Delay Exchange Area.............................................. ........................... .................. 15  
Data Buffer Area..................................... .................................................... .................. 16  
Interruptions ............................................. ........................... ............................................. 16  
Host Interface Summary .................................. ........................... .................................. ... 16  
VI.1.1.1  
VI.1.1.2  
VI.1.1.3  
VI.1.1.4  
VI.1.1.5  
VI.1.1.6  
VI.1.2  
VI.1.3  
VI.2  
VI.2.1  
COMMAND SET .......................................... ........................... ........................... .............. 17  
Command Set Summary............................ ........................... ........................... ................ 17  
OperationalControl Commands........................................ ........................................... 17  
Data Communication Commands ................................. ........................... .................... 17  
Digital Loop Back Commands......................................... ........................... .................. 17  
Memory Handling Commands................................................... .................................. . 17  
Configuration Control Commands................................. ........................... .................... 18  
Mafe Control Commands .................................................... ......................................... 18  
Tone Generation Commands........................... .................................. .......................... 18  
Command Set Short Form................................... .................................. .......................... 19  
VI.2.1.1  
VI.2.1.2  
VI.2.1.3  
VI.2.1.4  
VI.2.1.5  
VI.2.1.6  
VI.2.1.7  
VI.2.2  
VI.3  
VI.3.1  
VI.3.2  
STATUS - REPORTS............................................. ........................... ........................... .... 19  
Status....................................................... ........................... ........................... .................. 19  
Reports........................................ ........................... .................................. ........................ 19  
VI.4  
DATA EXCHANGES............................................ .................................. .......................... 19  
Synchronous Mode ...................................... .................................................... ................ 20  
Transmit ................................ ........................... ................................ ........................... . 20  
Receive ................................... ........................... ................................ .......................... 20  
HDLC Mode ............................................... .................................................... .................. 20  
Serial Exchanges ............................ ................................ ........................... ...................... 20  
VI.4.1  
VI.4.1.1  
VI.4.1.2  
VI.4.2  
VI.4.3  
APPENDIX  
A.  
B.  
C.  
D.  
E.  
F.  
G.  
H.  
COMMAND SET DESCRIPTION.................................. ........................... ........................ 21  
STATUS DESCRIPTION.................................................. ........................... ..................... 37  
TYPICAL BER PERFORMANCES............................................ ........................... ............ 41  
DEFAULT CALL PROGRESS TONE DETECTORS................................. ....................... 41  
DEFAULT ANSWER TONE DETECTORS................................................ ...................... 42  
ELECTRICAL SCHEMATICS..................................... ........................... ........................... 42  
TONE DETECTOR .................................... ........................... ........................... ................ 46  
BUFFER OPERATIONS .......................... ........................... ............................................. 50  
PACKAGE MECHANICAL DATA .............................. ........................... ......................................... 52  
3/55  
ST75C50  
I - GENERAL DESCRIPTION  
This highly integrated modem consists of 2 chips,  
the first being a dedicated DSP (ST75C500), the  
second being the ST7543 MAFE. Emphasis has  
been put on performance and size/power con-  
sumption for portable applications.The chipset is  
supplied in either single package or two package  
form.  
specific modes of operation can be added and  
easily updated.Code development is made simple  
via a slot in PC development card and is fully  
supported by SGS-THOMSON (STI8933 PC-  
EMU).  
The voice mode allows for implementation of en-  
hanced telephony functions such as answering  
machines. Incoming samples from the line are  
PCM-A-law coded and are writteninto the dualport  
RAM. The outgoing samples are decompressed  
using the same A-law and are output to the tele-  
phone line.  
This product gives a high performance modem  
conformant to CCITT recommendations V.32bis,  
V.17, V.33, V.32, V.29, V.27ter, V.22bis, V.22, V.21  
and V.23. Also Bell 212Aand 103.  
As a data modem the ST75C50 can operate at  
14400, 12000, 9600, 7200, 4800, 2400, 1200, 300  
or 75 bits per second as standard. As a fax, the  
ST75C50 fully supports group 3 sendand receive  
speeds of 14400, 12000, 9600, 7200, 4800 and  
2400 bits per second.  
The modem standard products are packaged in  
either a 160 pin plastic quad flatpack or two flat-  
packs for low profile applications (one 44 pin and  
the other 80 pin).  
For customer specific code requiring access to  
external memory, a 160 pin flatpack containing the  
DSP anda 44pin flatpackcontainingthe MAFE are  
also available (type numbers ST18933 and  
ST7543 respectively).  
Programmable features allow the product to be  
tailored to a wide range of high speed modem  
requirements.Inaddition, to add to the flexibility of  
this product,thecustomer can develop,ona similar  
hardware platform to the standard product, pro-  
prietry code for ROMing into the memory of the  
DSP. If required, ability to access external memory  
of upto 64K x 32 is given such that customer  
Further information on the DSP (STI8933) and  
MAFE (ST7543) can be found in the relevant  
datasheets  
II - PIN CONNECTIONS  
II.1 - ST7543CQFPTop View (TQFP44)  
44 43 42 41 40 39 38 37 36 35 3 4  
1
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
TxD1  
TxD0  
AGNDT  
VCM  
2
FSX  
3
AVDD  
BCLKX  
EYEY  
4
RxA2  
RxA1  
AGNDR  
5
6
DGND2  
DVDD2  
MAFE  
7
V
REFP  
V
REFN  
EYEX  
8
9
RxCLK  
RxHSCLK  
RxSYNC  
TEST3  
TEST1  
NRESET  
10  
11  
12 13 14 15 16 17 18 1 9 20 21 22  
4/55  
ST75C50  
II.2 - ST75C500CQFPTop View (TQFP80)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61  
1
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
SD2  
SD1  
VDD IN3  
BCLKR2  
BCLKX2  
VSS OUT3  
2
3
SD0  
4
SA6  
5
SA5  
VDD  
OUT3  
6
SA4  
DR2  
7
SA3  
DX2  
8
SA2  
P0  
9
VSS ROM  
VDD IN2  
VSS IN2  
SA1  
P1  
10  
11  
12  
13  
14  
15  
16  
13  
14  
15  
16  
VDD RAM  
VDD PER  
VSS CLK  
VDD CORE  
P2  
DSP  
SA0  
SCS  
SR/W  
P3  
SDS  
BE0  
SDTACK  
VSS OUT2  
SINTR  
HALT - NOP  
BE1  
BS0  
RESET  
VSS CORE  
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
II.3 - ST75C500PQFPTop View (PQFP80)  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
VSS OUT1  
SD3  
1
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
BCLK1  
2
VSS IN3  
VDD IN3  
BCLKR2  
BCLKX2  
VSS OUT3  
VDD OUT3  
DR2  
SD2  
3
SD1  
4
SD0  
5
SA6  
6
SA5  
7
SA4  
8
SA3  
9
DX2  
SA2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
P0  
VSS ROM  
VDD IN2  
VSS IN2  
SA1  
P1  
VDD RAM  
VDD PER  
VSS CLK  
VDD CORE  
P2  
DSP  
SA0  
SCS  
SR/W  
SDS  
P3  
BE0  
SDTACK  
VSS OUT2  
SINTR  
HALT - NOP  
MCI  
BE1  
BS0  
RESET  
VSS CORE  
EXTAL  
XTAL  
RDYS  
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
5/55  
ST75C50  
II.4 - ST18933PQFPTop View (PQFP160)  
160159158157156155154153152151150149148147146145144143142141140139138137136135134133132131130129128127126125124123122121  
1
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
SA2  
SA1  
P3  
2
P2  
3
SA0  
P1  
4
SD7  
P0  
5
SD6  
BE0  
6
SD5  
BE1  
7
SD4  
BS0  
8
SD3  
LP  
9
SD2  
RESET  
HALT  
NOP  
LPACK  
CS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
SD1  
SD0  
SCS  
SR/W  
SDS  
SDTACK  
SINTR  
IA15  
IA14  
IA13  
IA12  
IA11  
IA10  
IA9  
XTAL  
EXTAL  
WR  
RD  
INCYCLE  
CLKOUT  
VSS OUT  
VDD PER  
VSS CLK  
VDD CORE  
VDD OUT  
A15  
DSP  
(for Custom Option)  
98  
97  
IA8  
96  
IA7  
95  
IA6  
A14  
94  
IA5  
A13  
93  
IA4  
A12  
92  
IA3  
A11  
91  
IA2  
A10  
90  
IA1  
A9  
89  
IA0  
A8  
88  
VDD IN  
VSS IN  
VDD OUT  
VSS OUT  
ID31  
ID30  
ID29  
ID28  
A7  
87  
A6  
86  
A5  
85  
A4  
84  
A3  
83  
A2  
82  
A1  
81  
A0  
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
6/55  
ST75C50  
II.5 - ST75C50 Top View (PQFP160)  
160 159 158 157 156 155154 153 152 151 150 149 148 147 146 145 144143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121  
1
120  
NC  
NC  
NC  
NC  
2
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
NC  
3
XTAL11  
XTAL10  
XTAL2  
TxSCLK  
DVDD3  
DGND3  
TxCLK  
TxHSCLK  
TxSYNC  
TxRCLK  
RxRCLK  
NC  
4
NC  
BCLKR2  
VSS  
5
6
7
VDD  
VSS  
8
9
NC  
NC  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
VSS  
VDD  
MPMC  
SA6  
SA5  
SA4  
SA3  
SA2  
SA1  
SA0  
SD7  
SD6  
SD5  
SD4  
SD3  
SD2  
NC  
RxSYNC  
RxHSCLK  
RxCLK  
EYEX  
DVDD2  
DGND2  
EYEY  
DATAPUMP MONOPACKAGE  
98  
BCLKX  
FSX  
97  
96  
TxDO  
95  
TxDI  
94  
SD1  
SD0  
DX1  
DR1  
FS1  
BCLK1  
P3  
93  
92  
SCS  
SR/W  
SDS  
SDTACK  
SINTR  
VDD  
91  
90  
89  
P2  
88  
P1  
87  
P0  
86  
VSS  
BE0  
BE1  
NC  
85  
VDD  
84  
VSS  
83  
NC  
NC  
NC  
82  
NC  
81  
NC  
NC  
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80  
7/55  
ST75C50  
III - PIN DESCRIPTION  
III.1 - Host Interface  
The exchanges with the control processor proceed through a 64 Bytes DUAL port RAM shared between  
the DSP and the Host. The pins associated with this interface are :  
Pin Name Type  
Description  
SD0..SD7  
I/O  
System Data Bus. 8-bit data bus used for asynchronous exchanges between the DSP and the  
Host through the DUAL port RAM.  
SA0..SA6  
SDS  
I
I
System address bus. 7-bit address bus for DUAL port RAM.  
System Data Strobe. Active low. Synchronizes all the exchanges.  
System Read/Write  
SR/W  
I
SCS  
I
System Chip Select. Active low  
SDTACK  
SINTR  
O
O
System bus Data Acknowledge. Active low.  
System Interrupt Request. Active low. This signal is asserted by the DSP and negated by the  
Host.  
RESET  
I
I
Reset Active low  
RING/BS0  
Ring detect signal : awakens data-pump from its sleep mode.  
III.2 - Serial Interface  
The transmit and receive synchronous data exchanges between the DSP and microprocessor can pass  
via the Simplified Synchronous Serial Interface. Two pins are allowed for the data :  
Pin Name Type  
Description  
Description  
DR2  
DX2  
O
I
Synchronous Data Output  
Synchronous Data Input  
III.3 - Analog Interface  
Pin Name Type  
TXA1  
TXA2  
RXA1  
RXA2  
VCM  
O
O
I
Transmit Analog Output 1  
Transmit Analog Output 2  
Receive Analog Input 1  
I
Receive Analog Input 2  
I
Analog Common Voltage (nominal +2.5V)  
Analog Negative Reference  
Analog Positive Reference  
VREFN  
VREFP  
O
O
III.4 - Eye Pattern Interface  
A simplified dual 8-bit DAC is provided for eye pattern display.  
Pin Name Type  
Description  
EYEX  
EYEY  
O
O
Analog Output for Constellation Display. (X AXIS)  
Analog Output for Constellation Display. (Y AXIS)  
8/55  
ST75C50  
III.5 - Clock Interface  
A complete set of bit and baud clocks are provided to allow the implementationof all the modem functions :  
Pin Name Type  
Description  
TxSCLK  
I
Transmit Terminal Clock. This signal is used to synchronize the Transmit bit Clock with an  
external Transmit bit Clock. When not used this pin must be grounded or disabled by software  
TxCLK  
TxRCLK  
RxCLK  
O
O
O
O
Transmit bit Clock  
Transmit Baud Clock. (Default 2400 Hz)  
Receive bit Clock  
RxRCLK  
Receive Baud Clock. (Default value 2400 Hz)  
In FSK mode TxCLK is 7200 Hz, RxCLKis 9600 Hz.  
III.6 - Auxiliary Interface  
A set of auxiliary signals are provided to simplify the DAA Interface. This is made by a three line General  
Purpose Parallel Input/Output.  
Pin Name Type  
Description  
PO  
P1  
P2  
I/O  
I/O  
I/O  
Parallel Input/Output 0  
Parallel Input/Output 1  
Parallel Input/Output 2  
III.7 - Miscellaneous  
Pin Name Type  
Description  
XTAL  
EXTAL  
O
I
Internal oscillator Output. Left open if not used.  
Internal oscillator Input, or External Clock  
EXTAL Divide by 2  
CLKOUT  
0
Pin Name Type Description  
XTAL10  
XTAL11  
XTAL2  
I
I
MAFE oscillator input  
MAFE oscillator input . Must be connected to XTAL10.  
MAFE oscillator output  
O
Note : The nominal external clock frequency of the DSP is 36.864MHz. The nominal external clock frequency of the MAFE is 18.432MHz  
with a precision better than ±5.10-5 (and is output from the DSP on the CLKOUT Pin in the ST75C50 chipset).  
When in Sleep Mode the CLKOUT clock is not available  
III.8 - Interconnection  
A set of signals is use for interconnection between the DSP and the Analog Front End. Refer to the  
correspondingappendix for the complete Electrical Schematics.  
Pin Name  
Description  
DSP  
P3  
MAFE  
NRESET Reset of the Analog Front End  
BCLKR Receive Serial I/O Clock  
BCLK0  
FS0  
FSR  
RXDI  
RXDO  
Receive Serial I/O Frame Synchro  
Receive Serial I/O Input  
DX0  
DR0  
Receive Serial I/O Output  
BCLK1  
FS1  
BCLKX Transmit Serial I/O Clock  
FSX  
TXDI  
TXDO  
Transmit Serial I/O Frame Synchro  
DX1  
Transmit Serial I/O Input  
Transmit Serial I/O Output  
DR1  
BCLKX2 RXCLK Receive Bit Clock  
BCLKR2 TXCLK Transmit Bit Clock  
BE0  
BE1  
RXRCLK Receive Baud Clock  
TXRCLK Transmit Baud Clock  
9/55  
ST75C50  
Sections III. 9, 10 and 11 relate to the ST18933 for customer specific code.  
III.9 - Memory Interface  
A set of Digital signals is needed if using a 8K*8 (100ns access time) for Bulk Delay.  
Pin Name Type  
Description  
A0..A15  
D0..D15  
CS  
O
I/O  
O
Address Bus (up to 64K)  
Data Bus  
Chip Select, Active when the DSP Access the Bulk Delay  
Write, Active low  
WR  
O
RD  
O
Read, Active low  
III.10 - Boundary Scan Interface  
A set of 13 signals are dedicated for Testing the DSP. These signals can be used in a development phase,  
associated with SGS-THOMSON ST18932 Boundary Scan Development Tools, to Debug the application  
Hardware and Software. If not used the correspondinginput signals must be grounded.  
Pin Name Type  
Description  
SCIN  
SCCLK  
SCOUT  
BOS  
I
I
Scan Data Input  
Scan Clock  
O
I
Scan Data Output  
Begin of Scan Control  
End of Scan  
EOS  
I
MC0..MC2  
SBACK  
MCI  
I
Mode Control  
O
O
O
Software Breakpoint Acknowledge  
Multicycle Instruction  
Ready to Scan Flag  
RDYS  
III.11 - Open Version Interface  
The ST18933 DSP 160 pin chip allows the use of an external program memory. This memory can be a  
ROM Memory (25ns access time) or a RAM Memory (25ns access time) that can be downloaded, via the  
DUAL Port Ram, by the host processor (refer to the ST18933 data sheet).  
Pin Name Type  
Description  
ID0..ID31  
IA0..IA15  
EPM  
I/O  
O
O
O
I
Instruction Data Bus  
Instruction Address Bus  
Extenal Memory Select, Active low  
Extenal Memory Write, Active low  
WPM  
MP/MC  
Select Internal ROM Program (MP/MC = 0) or External ROM/RAM Program (MP/MC = 1)  
10/55  
ST75C50  
IV. - ELECTRICAL SPECIFICATIONS  
Unless otherwise noted, electrical characteristics are specified over the operatingrange. Typical value are  
given for VDD = +5V and Tamb = 25oC and for nominal crystal frequency of 36.864 MHz.  
IV.1 - Maximum Ratings (referenced to GND)  
Symbol  
VDD  
VI, VIN  
II, IIN  
IO  
Parameter  
Value  
-0.3, +7.0  
-0.3, VDD + 0.3  
± 1  
Unit  
V
DC Supply Voltage  
Digital or Analog Input Voltage  
Digital or Analog Input Current  
Digital Output Current  
V
mA  
mA  
mA  
oC  
± 20  
IOUT  
TA  
Analog Output Current  
± 10  
Operating Temperature  
0, +70  
Tstg  
Storage Temperature (plastic)  
Maximum Power Dissipation  
-40, +125  
oC  
Ptot  
mW  
Stresses above those hereby listed may cause damage to the device. The ratings are stress related only and functional operation of the device  
in conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability. Standard MOS circuits handling procedure should be used to avoid possible damage to the  
device.  
IV.2 - DC Characteristics  
V
DD = 5V ± 5%, GND = 0V, TA = 0 to 70oC (Unless otherwise specified).  
IV.2.1 POWER SUPPLY AND COMMON MODE VOLTAGE  
Symbol  
VDD  
Parameter  
Min.  
Typ.  
5
Max.  
Unit  
V
Supply Voltage  
Supply Current  
4.75  
5.25  
IDD  
130  
mA  
mA  
V
IDD-LP  
VCM  
Supply Current in Low Power Mode  
Common Mode Voltage  
VDD/2 -5%  
VDD/2  
VDD/2 +5%  
IV.2.2 - DIGITAL INTERFACE  
All digital pins except XTAL pins.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
V
VIL  
VIH  
II  
Low Level Input Voltage  
High Level Input Voltage  
-0.3  
2.2  
-10  
2.8  
0.8  
V
Input Current VI = VDD or VI = GND  
High Level Output Voltage (ILOAD = 2mA)  
Low Level Output Voltage (ILOAD = 2mA)  
Three State Input Leakage Current (GND < VO < VDD  
Input Capacitance  
0
+10  
µA  
V
VOH  
VOL  
IOZ  
CIN  
0.4  
50  
V
)
-50  
0
5
µA  
pF  
IV.2.3 - ANALOG INTERFACE  
Symbol  
Parameter  
Min.  
Typ.  
2.50  
200  
Max.  
Unit  
V
VREF  
Differential Reference Voltage Output = VREFP - VREFN  
VREF Temperature Coefficient  
2.40  
-300  
200  
2.60  
Tempco  
VCMO-IN  
VDIF-IN  
ppm /°C  
mV  
Input Common Mode Offset V = (RXA1+RXA2)/2 - VCM  
Differential Input Voltage RXA1 - RXA2  
300  
2 Vref  
200  
Vpp  
mV  
VCMO-OUT  
VDIF-OUT  
VOFF-OUT  
Output Common Mode Voltage Offset = (TXA1+TXA2)/2 - VCM  
Differential Output Voltage TXA1 - TXA2  
2 Vref  
100  
Vpp  
mV  
Differential Output DC Offset (TXA1 - TXA2)  
-100  
11/55  
ST75C50  
Symbol  
Rin  
Parameter  
Min.  
Typ.  
Max.  
Unit  
k  
Input resistance RXAx  
Output resistance  
100  
Rout  
TXAx  
EYEx  
TXAx  
EYEx  
TXAx  
EYEx  
20  
50  
kΩ  
kΩ  
MΩ  
pF  
pF  
V
RL  
CL  
Load resistance  
10  
1
Load capacitance  
Output voltage EYEx  
50  
50  
Vout  
GND  
VDD  
IV.3 - AC Electrical Characteristics  
IV.3.1 - DUAL PORT RAM HOST READ-CYCLE TIMING  
Figure 1  
SAD [0 .. 6]  
SR/W  
Valid Address  
5
1
SDS  
3
6
SD [0 .. 7]  
SDTACK  
Valid Data  
7
2
4
Number  
Description  
Min.  
Typ.  
Max.  
Unit  
ns  
1
2
3
4
5
6
7
Address, SR/W, SCS setup time  
SDTACK Acknowledge  
SDTACK prepositionment time  
Data Strobe delay  
5
235(1)  
30  
ns  
ns  
50(2)  
ns  
Address Hold time  
0
0
0
ns  
Data Hold time  
ns  
SDTACK Hold time  
10  
ns  
Notes : (1) this value is given for a DSP Cycle time of 56ns. For different Cycle Time tc this value is 4 * tc + 10 ns.  
(2) if the application does not use the SDTACK signal, the minimum SDS low state must be 300ns (or 5 * tc).  
12/55  
ST75C50  
IV.3.2 - DUAL PORT RAM HOST WRITE-CYCLE TIMING  
Figure 2  
SAD [0 .. 6]  
Valid Address  
SR/W  
14  
10  
SDS  
13  
15  
SD [0 .. 7]  
SDTACK  
SINTR  
Valid Data  
16  
11  
12  
17  
Number  
10  
Description  
Min.  
Typ.  
Max.  
Unit  
ns  
Address, SR/W, SCS setup time  
SDTACK Acknowledge  
Data Strobe Delay  
5
11  
235(1) ns  
12  
50(2)  
10  
0
ns  
ns  
ns  
ns  
13  
Data Setup Time  
14  
Address Hold time  
15  
Data Hold time  
0
16  
SDTACK Hold time  
SINTR Clear Delay  
0
10  
66(3)  
ns  
ns  
17  
0
Notes : (1) this value is given for a DSP Cycle time of 56ns. For different Cycle Time tc this value is 4 * tc + 10 ns.  
(2) if the application does not use the SDTACK signal, the minimum SDS low state must be 300ns (or 5 * tc).  
(3) the maximum value is tc + 10ns.  
13/55  
ST75C50  
V - FUNCTIONAL DESCRIPTION  
V.1 - System Architecture  
by virtue of the MAFE architecture. The far end  
echo requires either an external low cost 8kx8-  
100ns memory (for the customisable product  
STI8933),or the allocationof an equivalentamount  
of RAM in the controller memory space. It also  
sustains up to 10Hz of frequency offset on the far  
end echopath without degradationof performance.  
The system is based on a two-chip set. The first  
chip is the ST75C500 dedicated DSP handling all  
the signal processing routines for transmission,  
reception and echo cancellation on modem sig-  
nals. It also holds the tone generators and detec-  
tors. Alternatelythe ST18933 DSP is available for  
customer specific operations. The second chip is  
the ST7543delta-sigmaMAFE, which performsthe  
AD/DA conversions as well as the signal pre or  
post-filtering, and the sampling interpolation on the  
echo cancellationpath.  
V.3.4 - RECEIVER DESCRIPTION  
The receiver section handles complex signals and  
uses a fractionally spaced complex equalizer. It is  
able to cope with distant modem frequency drifts  
up to 10-4 as specified in the CCITT recommenda-  
tions. It also compensates for phase jitter at multi-  
ple and simultaneous frequencies.  
The chipset allows thedesignof acompleteV32bis  
data-pump without any external component. A ver-  
satile dual port RAM allows an easy interface with  
most popular micro-controllers.  
V.3.5 - TONE GENERATOR DESCRIPTION  
Four tonescan be simultaneouslygenerated bythe  
ST75C50. The tones are determined by their fre-  
quencies and by the output amplitude level. A set  
of specific command is also available for DTMF  
generation (using two of the four generators avail-  
able).  
V.2 - Chip Set Interconnect Circuitry  
Please refer to appendixF for a detailed schematic  
of the chip set interconnect circuitry.  
V.3 - Operation  
V.3.1 - MODES  
V.3.6 - TONE DETECTOR DESCRIPTION  
16 tones can be simultaneously detected by the  
ST75C50. Each of the tones to be detected is  
defined by the coefficients of a 4th order program-  
mable IIR. Detection thresholds are also program-  
mable from -45dBm up to -10dBm.  
The modemimplementationisfullycompatible with  
many popular CCITT and Bell recommendations.  
The modulation can be either Trellis Coded Modu-  
lation (TCM) as in V.33 14400, 12000, V.32bis  
14400, 12000, 9600, 7200, V.32 9600 bps rates,  
Quadrature Amplitude Modulation (QAM) as in  
V.32bis 4800, V.32 9600, 4800, V.22bis2400, Dif-  
ferential Phase Shift Keying (DPSK) as in V.22  
1200, Bell212A1200 bpsrates, or FrequencyShift  
Keying (FSK) as in V.21, V.23 and Bell 103 modes.  
Both the bit rate and the trellis options are deter-  
mined during the initial modem handshake se-  
quence. V.29, V.27ter and V.17 are also available  
for FAX transmission. Other modes of operation  
include tone and DTMF detection or generation  
and speech mode.  
V.3.7 - DTMF DETECTOR DESCRIPTION  
A DTMF detector is included In the ST75C50, it  
permits detection of valid DTMF digits. A valid  
DTMF digit is defined as a dual tone with total  
power higher than -35dBm, duration greater than  
40ms and differential amplitude within 8dB (posi-  
tive or negative).  
V.3.8 - VOICE MODE DESCRIPTION  
The ST75C50 voice mode allows the implementa-  
tion of enhanced telephony functions such as an-  
swering machines. Incoming samples from the line  
are PCM-A-law coded and are written into the dual  
port RAM. The outgoing samples are decom-  
pressedusing thesame A-lawand are outputto the  
telephone line.  
V.3.2 - TRANSMITTER DESCRIPTION  
The signal pulses are shaped in a dedicated filter  
combined with a compromise transmit equalizer  
suitedfor transmissionover stronglydistortedlines.  
3 different compromise equalizers are available  
and can be selected by software. User defined  
transmit equalizers can be downloaded in the DSP  
RAM.  
V.3.9 - ANALOG LOOP BACK TEST MODE  
In any transmission standard and any data format,  
the ST75C50 can be configured for analog loop  
back test.  
V.3.3 - ECHO CANCELLER DESCRIPTION  
V.3.10 - DIGITALLOOP BACK TEST MODE  
These loop back modes comply with the test loop  
2 of the CCITT V.54 recommendation for V.32 and  
V.32bis. For V.22 and V.22 bis thedigital loop back  
modes comply with these recommendations.  
The echo cancellerconsists of a near end and a far  
end echo canceller. Both are fractionally spaced  
and achieve a high cancellation of the echo paths.  
The receive signal reconstruction is purely digital  
14/55  
ST75C50  
V.3.11 - SLEEP POWER MODE  
- the command area,  
- the report area,  
- the status area,  
- the bulk delay exchange area,  
- the data buffer areas,  
Sleep state can be entered using a host command.  
Activating thereset signalor ring interruptwill wake  
up the data-pump. When in sleep mode, the dual  
port RAM is unavailable and the clocks are dis-  
abled. When the pump wakes up it issues an  
interruption IT5 when ready to operate.  
VI.1.1 - MAPPING  
VI.1.1.1 - Command Area  
V.4 - Modem Interface  
V.4.1 - ANALOG INTERFACE  
The command area is located from $00 to $04.  
Address $00 holds the command byte COMSYS,  
and the four next locations hold the parameters  
COMPAR[0..3]. The command parameters must  
be entered before the command word is issued.  
Once the command has been entered, the com-  
mand byte is reset and an acknowledge report is  
issued. A new command should not be issued  
before theacknowledgecounterCOMACKisincre-  
mented. The command exchangerate has a maxi-  
mum of 2400 Hz.  
The modem designermust provide a proper hybrid  
interface to the ST75C50. An example of hybrid  
design isgiven inappendix.The inputsand outputs  
of the MAFE are differential, thus achieving better  
noise immunity.  
V.4.2 - HOST INTERFACE  
The host interface is seen by the micro as a 64x8  
RAM (Motorola bus), with additional registers ac-  
cessible throughan 7-bit address space.This RAM  
can be used for data transmission using the SE-  
RIAL command.  
VI.1.1.2 - Report Area  
The report area is located from address $05 to  
address $07. Location $05 holds the acknowledge  
counter COMACK. Each time a command is ac-  
knowledged, the report bytes COMREP[0..1] (if  
any) are written by the ST75C50 into locations $06  
and $07, and the content of COMACK is incre-  
mented. This counterallows an acuratemonitoring  
of the command processing by the ST75C50.  
V.4.3 - MEMORY INTERFACE  
In customapplication using the STI8933 an exter-  
nal bus givesaccess to a 8Kx8 100nsRAM for Bulk  
delay storage. External total data space is 48K.  
V.4.4 - AUXILIARYPARALLEL INTERFACE  
The auxiliaryparallel interface is a generalpurpose  
3-bit parallel interface, which carries various sig-  
nals, used by the controller and the analog part of  
the modem. Each pin can be independently pro-  
grammed for input or output.  
VI.1.1.3 - Status Area  
The statusareais located from address$08to $0A.  
The error status word SYSERR is located at ad-  
dress $08. This error status word is updatedeach  
time an error conditionoccurs. An optionalinterrup-  
tion IT0 may be triggered as well in the case of an  
error condition. Location $09 and $0A holds the  
general status bytes STATUS[0..1]. The meaning  
of the bits depends of the mode of operation, and  
is described in Appendix B. The third byte at ad-  
dress $0B holds the QualityMonitor byte STAQUA.  
V.4.5 - AUXILIARYSERIAL INTERFACE  
The auxilliary serial interface is a serial synchro-  
nous I/O, which carries the bit data flow. When  
required, asynchronous serial mode can be  
achieved by adding the TS7538 Async/Sync con-  
verter.  
V.4.6 - EXE PATTERN CONVERTERS  
The output from these two D to A converters pro-  
vides direct display of the constellation.  
VI.1.1.4 - OptionalStatus Area  
The user can program (through the DOSR com-  
mand) the three locations STAOPT[0..2] of the  
Optional Status Area ($0C to $0E) for the real time  
monitoring of four arbitrary memory locations.  
VI - USER INTERFACE  
VI.1 - Dual Port Ram Description  
VI.1.1.5 - Bulk Delay Exchange Area  
This area is reserved for V.32 / V.32bis storage of  
Far Endechocanceller symbols. Refer to Appendix  
H and application note.  
This area has two sub-sections :a flagging section  
($0F to $13) and a bulk data area ($14 to $1B).  
Location $0F holds the bulk data buffer status  
SYMSTA. Locations $10 and $11 (resp. $12 and  
$13) contain a pointer to the bulk data buffer SY-  
The dual port RAM is the standard interface be-  
tween the controller and the ST75C50, for either  
commands or data. This memory is addressed  
through a7-bit addressbus.Thelocationsfrom$00  
to $3F are RAM locations,while locations from $40  
to $50 are control registers dedicated to the inter-  
rupt handling.  
Several functional area are defined in the dual port  
RAM ,namely :  
15/55  
ST75C50  
MADR[0..1] (resp. SYMADT[0..1]), in the controller  
space, which should receive (resp. send) the next  
group of 8 delayed symbols. The ST75C50 man-  
ages thus an area of 4k bytes in a circular address-  
ing mode inside the controller memory space. The  
buffer SYMBUF[0..7] containing the symbols re-  
ceived or sent to the controller is located from $14  
to $1B.  
IT5 Power Down Mode : the ST75C50 has been  
awakened by a low level on the BS0/RING  
Pin. The host has to reset the ST75C50 by  
the RESET signal.  
IT6 Command Acknowledge : the ST75C50 has  
read the last command entered by the host,  
incremented the command counter  
COMACK, and is ready for a new command.  
VI.1.1.6 - Data Buffer Area  
VI.1.3 - HOST INTERFACE SUMMARY  
The Data Buffer Area is shared by a Data Buffer  
Status Area (from $1C to $1F) and a Data Area  
(from $20 to $3F). The data area is made of two  
double 8-byte buffers. Each of the four buffers is  
attached to a Status byte. The meaning of the  
status byte depends on the selected mode.  
Address  
(hex)  
Size  
Description  
Mnemonic  
(Byte)  
COMMAND AREA  
$00  
Command  
1
4
COMSYS  
COMPAR[0..3]  
$01-$04 Command  
Parameters  
REPORT AREA  
VI.1.2 - INTERRUPTIONS  
$05  
Acknowledge  
Counter  
1
2
COMACK  
The controller can generate 7 interrupts to the  
ST75C50, and the ST75C50 can generate 7 inter-  
rupts for the controller. The interrupt handling is  
made with a set of registers located from $40 to  
$50.  
$06-$07 Report  
COMREP[0..1]  
STATUS AREA  
$08  
$09  
$0B  
Error Status  
1
2
1
3
SYSERR  
General Status  
Quality Monitor  
STATUS[0..1]  
STAQUA  
The interruptionsgeneratedby the ST75C50come  
from seven different sources. Once the ST75C50  
rises an interrupt, a signal is sent to the controller.  
The controllerhas then to process theinterrupt and  
clear it. The interrupt source can be examined in  
the Interrupt Source Register ITSCRC located at  
$50. According to this status byte, the interrupt  
source can be determined.Then, writing at one of  
the memory location $40 to $46 (Reset Interrupt  
Registers ITREST[0..6]) will reset the correspond-  
ing interrupt (and thus acknowledge it). These  
seven sources of interruptions can be masked  
globally or individually using the Interrupt Mask  
Register ITMASK located at $4F.  
$0C-$0E Optional Report  
STAOPT[0..2]  
BULK DELAY AREA  
$OF  
Symbol Buffer  
Status  
1
2
2
8
SYMSTA  
$10-$11 Symbol Rx  
SYMADR[0..1]  
SYMADT[0..1]  
SYMBUF[0..7]  
Buffer Pointer  
$12-$13 Symbol Tx  
Buffer Pointer  
$14-$1B Symbol Buffer  
DATA AREA  
$1C  
$25  
$2E  
$37  
Data Rx Buffer 0  
Status  
1
1
1
1
DTRBS0  
DTRBS1  
DTTBS0  
DTTBS1  
Data Rx Buffer 1  
Status  
Data Tx Buffer 0  
Status  
The 7 series interrupt sources are :  
IT0 Error/Warning: an error hasoccurred and the  
error code is availablein the error status byte  
SYSERR. This byte can be selectively  
cleared by the CSE command.  
IT1 Bulk Delay : the bulk delay buffer requires an  
action from the controller, for emptying it and  
for filling it with symbols.  
Data Tx Buffer 1  
Status  
$1D-$24 Data Rx Buffer 0  
$26-$2D Data Rx Buffer 1  
$2F-$36 Data Tx Buffer 0  
$38-$3F Data Tx Buffer 1  
8
8
8
8
DTRBF0[0..7]  
DTRBF1[0..7]  
DTTBF0[0..7]  
DTTBF1[0..7]  
IT2 Tx Buffer : each time the ST75C50 frees a  
buffer, this interrupt is generated.  
IT3 Rx Buffer : each time the ST75C50 has filled  
a buffer, this interrupt is generated.  
IT4 Status Byte : the modem status byte has  
changed and has to be checked by the  
controller.  
INTERRUPT AREA  
$40-$46 Reset Interrupt  
7
1
1
ITREST[0..6]  
ITMASK  
Register  
$4F  
$50  
Interrupt Mask  
Registe  
Interrupt Source  
Register  
ITSRCR  
16/55  
ST75C50  
VI.2 - Command Set  
CSE  
Clear Status Error. Selectively clears the  
Error status byte SYSERR. Parametric  
command.  
The Command Set has the following attractive  
features :  
- user friendly with easy to remember mnemonics.  
- possibility of straight forward expansion with new  
commands to suit specific customer require-  
ments.  
SETGN Set gain. This command sets the global  
gain factor, which is used for the transmit  
samples. Parametric command.  
STOP FAX Stop. Stop FAX half duplex  
transmitter. Non parametric command.  
- easy upgrade of existing software using previous  
modem based SGS-THOMSON products.  
SYNC FAX Synchronize. Start/Stop of FAX half  
duplex receiver. Parametric command.  
The command set has been designed to provide  
the necessary functional control on the ST75C50.  
Each command is classified accordingto its syntax  
and the presence/absence of parameters. In the  
case of a parametric command, parameters must  
first be written into the dual port RAM before the  
command is issued. Acknowledge and error report  
is issued for each command entered.  
VI.2.1.2 - Data Communication Commands  
XMIT  
Transmit data. Enable/disables the  
transmission of data. After a XMIT  
command, according to the selected  
mode (either serial or parallel), the  
ST75C50sendsthedata containedeither  
in its dual port RAM or fed through the  
serial I/O. Parametric command.  
VI.2.1 - COMMAND SET SUMMARY  
SERIAL Enables/disables the Data Serial Mode.  
This command selects the data source,  
i.e. either parallel or serial. The parallel  
mode uses a part of the dual port RAM as  
a double buffer.The serial modeuses the  
serial synchronous I/O. Parametric  
command.  
VI.2.1.1 - Operational Control Commands  
INIT  
Initialize. Initialize the modem chipset. Set  
all parameters to their default values and  
wait for commands of the control  
processor. Non parametric command.  
Identify. Return the product identification  
code. Non parametric command.  
IDT  
VI.2.1.3 - Digital Loop Back Commands  
SLEEP Turn to Sleep Power Mode. The modem  
engine issues a control signal to the  
MAFE in order to switch to Sleep Power  
Mode, then switches itself into Sleep  
Power Mode. Non parametric command.  
V54  
V.54 Digital Loop Back. Enables/Disables  
the transmission and reception of V.54  
patterns. This command must be used  
only in V.32 bis or V.32 mode. Parametric  
command.  
HSHK Handshake. Begins the handshake  
sequence. The modem chipset carries all  
the steps de fined in the CCITT  
recommendations. A status report  
indicates tothe controlprocessorthe state  
of the handshakeand the final negotiated  
transmission bit rate. This command only  
applies to modes where a handshake  
sequence is defined. A CONF command  
must have been issued prior to the use of  
HSHK. Non parametric command.  
RTRA Retrain. Start sending the retrain  
sequence as specified in the CCITT  
recommendation. This command only  
applies to modes where a retrain  
sequence is defined. In V.32bis, this  
comman d also initiates the rate  
nego tiation sequence. Parametric  
command.  
V22L2 V.2 2/V.22 bis Digital Loop Back.  
Enables/Disables the transmission and  
reception of V.22 Loop 2 patterns. This  
command must be used only in V.22 bis  
or V.22 mode. Parametric command.  
VI.2.1.4 - Memory Handling Commands  
MW  
Memory Write. This command is used to  
write an arbitrary 16-bit value into the  
writable memory location currently  
specified by a parameter. Parametric  
command.  
MR  
Memory Read. This command allows the  
controller to read any of the ERAM or  
CROM (internal and external DSP  
memory spaces) locations without  
interrupting the processor. Parametric  
command.  
17/55  
ST75C50  
CR  
ComplexRead. This command allowsthe  
PPS  
Parallel Port Set. This command allows  
the modification of the parallel port  
configuration. Each of the four bits of this  
port canbeprogrammedeither as an input  
or an output. Parametric command.  
Parallel Port Read. This command reads  
the value of the 4-bit parallel port. The  
value is read whetherit is an input or not.  
Non parametric command.  
Parallel Port Write. This command writes  
a 4-bit value into the parallel port. The bits  
are maskedaccording totheir input/output  
status. Parametric command.  
controllerto read at thesame timethereal  
and imaginary part of a complex value  
stored in a double ERAM or CROM  
location. This feature is very interesting  
for eye patternsoftware controlas well as  
for equalization monitoring. This  
command insures that the real and  
imaginary part are sampled in the  
memory at the same time (integrity).  
Parametric command.  
PPR  
PPW  
VI. 2.1.5 - ConfigurationControl Commands  
CONF Configures. Thiscommand configuresthe  
modem chipset for data transmission and  
handshake procedures (if any) in any of  
the supported modes. The transmission  
parameters are set to their default values  
and can be modified with the MODC  
command. This command also defines  
the parameters in the case of an  
automatic standard recognition and the  
boundaries of the speed negotiation.  
Parametric command.  
MODC Modify Configuration. This command  
allows modification of part of the  
parameters set up by the CONF  
command. Parametric command.  
BULK Define Symbol Bulk Management. This  
command selects the dual port RAM  
symbol management,allowing removal of  
all external RAM directly connectedto the  
DSP. Parametric command.  
VI.2.1.6 - MAFE Control Commands  
WMR Write MAFE register. Causes the DSP to  
write a parameter into a MAFE register.  
Parametric command.  
VI.2.1.7 - Tone Generation Commands  
TONE Select Tone. Progra ms t he tone  
generator(s) for the desired default  
tone(s). Additional mnemonics provide  
quick programming of DTMF tones or  
other currently used tones. Parametric  
command.  
DEFT Define Tone. Programs the tone  
generator(s) for arbitrary tone synthesis.  
Parametric command.  
TGEN Tone Generator Control. Enables or  
disables the tone generator(s).  
Parametric command.  
IV.2.1.8 Tone Detection Commands  
DOSR Define Optional Status report. This  
command allow the modification of the  
optionalstatus report located in the status  
area of the dual port RAM. One can thus  
select a particular parameter to be  
monitored during all modes of operation.  
Parametric command.  
TDRC Read coefficients of tone detection cell.  
Parametric command.  
TDWC Write coefficients of tone detection cell.  
Parametric command.  
TDRW Read wiring of tone detection cell.  
Parametric command.  
TDWW Write wiring to tone detection cell.  
Parametric command.  
DSIT  
Define Status Interrupt. This command  
allows the programmation of the status  
word bit that will generate an Interrupt to  
the controller. Parametric command.  
TDZ  
Clear the values of tone detection cell.  
Parametric command.  
18/55  
ST75C50  
VI.2.2 - COMMAND SET SHORT FORM  
JSR  
Call a low level Subroutine. Call an  
internal subroutine with one parameter.  
Mnemonic Value  
planation  
0X06 INITialization  
0X14 IDenTify  
INIT  
IDT  
VI.3 - Status - Reports  
VI.3.1 - STATUS  
SLEEP  
HSHK  
RTRA  
CSE  
0X03 SLEEP mode  
0X04 HandSHaKe  
The ST75C50 has a dedicated status reporting  
area located in its dual port RAM. This allows a  
continuous monitoring of the status variables with-  
out interrupting the DSP.  
0X05 ReTRAin  
0X08 Clear Status Error  
0X02 SET GaiN  
SETGN  
XMIT  
SERIAL  
MW  
The first status byte gives the error status. Issuing  
of an error status can be also flagged by a mask-  
able interrupt for the controller. The signification of  
the error codes is given in Annexe B.  
0X01 Receive/TransMIT data  
0X07 SERIAL mode  
0X12 Memory Write  
0X10 Memory Read  
0X11 Complex Read  
0X20 CONFigure  
The second and third status bytes give the general  
status of the modem. This two byte status can  
generate, when a change occurs, an interrupt to  
the controller; each bit of that two byte word can be  
masked independently.  
MR  
CR  
CONF  
MODC  
BULK  
0X21 MODify Configuration  
The fourth byte gives, in real time,a measure of the  
reception quality. This information may be used by  
the controllerfor retrain purpose.  
0X22 Define symbol BULK  
management  
DOSR  
DSIT  
0X0A Define Optional Status Report  
0X13 Define Status word InTerrupt  
0X15 Parallel Port Set  
Three other locations are dedicated for custom  
status reporting. This status includes, for example,  
the handshake phase, the negotiated data rate,  
and other items described in Annexe B. The con-  
troller can program the ST75C50 for a real time  
monitoring of any of its internal RAM location. High  
byte or low byte of any word can thusbe monitored.  
PPS  
PPR  
0X16 Parallel Port Read  
PPW  
0X17 Parallel Port Write  
WMR  
TONE  
DEFT  
TGEN  
TDRC  
TDWC  
TDRW  
TDWW  
TDZ  
0X0B Write Mafe Register  
0X0C select TONE  
VI.3.2 - REPORTS  
0X0E DEFine Tone  
The ST75C50 features an acknowledge and report  
facility. The acknowledge of a command is moni-  
tored by a counter COMACK located in the dual  
port RAM. Each time a command is executed from  
the command area, the ST75C50 will increment  
this counter. For instance, when a MR (Memory  
Read) command is issued, the data is first written  
in the report area, and the counter is incremented  
afterwards.Thiswayof processinginsuresthe data  
integrity as well as an additional synchronization  
between the controller and the data pump.  
0X0D Tone GENerator control  
0X1A Tone Detect Read Coefficient  
0X1C Tone Detect Write Coefficient  
0X1B Tone Detect Read Wiring  
0X1D Tone Detect Write Wiring  
0X1E Tone Detect Zero cell  
0X23 Enable/Disable V.54  
0X24 Enable/Disable V.22 Loop2  
0X25 FAX STOP Transmitter  
0X26 FAX SYNChronize Receiver  
V54  
V22L2  
STOP  
SYNC  
V.4 - Data Exchanges  
The ST75C50 accepts two kinds of data ex-  
changes : Parallel synchonous through the DUAL  
RAM or SERIALsynchronous. Detailed description  
of the Data Buffer Exchange modes of operationis  
available in Annex G.  
VI.2.2.1 - Miscellaneous Commands  
(for ST18933 with Custom Code)  
CALL Call a Subroutine. Call a Subroutine with  
one parameter.  
19/55  
ST75C50  
VI.4.1 - PARALLEL DATA MODE  
VI.4.1.1 - Transmit  
VI.4.1.2 - Receive  
The controller should take care of releasing the Rx  
buffers before the Data Carrier Detect goes true.  
This is made by writing the correct status word in  
the Rx Buffer Status 0 and 1. The ST75C50 then  
fills the first buffer, and once filled sets the status  
word withthe number of bits received. It then takes  
control of the second buffer and operates in the  
same way. The controller must check the status of  
the buffersand empty them. Once the data is read,  
the controllermust release the usedbuffer and wait  
for the next buffer to be full. Interruptsare available  
for an additionalflagging of these events.  
The controller must first fill at least the first buffer  
of data (Tx Buffer 0) with the bits to be transmitted.  
In order to perform this operation, the controller  
must first check the Tx Buffer 0 status word  
DTTBS0. If this buffer is empty, the controller fills  
the data buffer locations (up to 64 bits), and then  
writes in DTTBS0 the number of bits contained in  
the buffer. The controller can then either proceed  
with the second buffer or initiate the transmission  
with a XMIT command.  
The ST75C50 copies the contents of the data  
buffer and then clears the buffer status word in  
order to make it again available.The numberof bits  
specified by the status word is then queued for  
transmission. The process goes on with the two  
buffers until an XMIT command stops thetransmis-  
sion. After the finishing XMIT command has been  
issued, the last buffers are emptied by the  
ST75C50.  
Error occurs when both buffers are declared full,  
and incoming bits still arrive from the line.  
Synchronous Data Buffer Exchanges are de-  
scribed in Annex H.  
VI.4.3 - SERIAL EXCHANGES  
The second mode of operation for data exchanges  
is the Serial Synchronous Mode. In this mode, the  
data I/O is made through a pair of dedicated hard-  
ware pins. Asynchronous mode of operation and  
full implementation of the V.14 recommendation  
can be achieved with the use of the TS7538  
Async/sync converter.  
Error occurs when both buffersare empty while the  
transmit bit queue is also empty. Error is signalled  
with an interruption to the controller through the  
SYSERR register.  
20/55  
ST75C50  
APPENDIX A : COMMAND SET DESCRIPTION  
Commands are presented according to the following form :  
COMMAND - Command name meaning  
Opcode : hexadecimal digit  
X
X
X
X
X
X
X
X
Synopsis  
Short description of the functions performed by the command  
Parameters  
Field Byte Pos. Value  
Definition  
Name  
X
a..b  
Explanation of the parameter  
Default value  
xx *  
Field :  
Byte :  
Pos. :  
Name of the addressed bit field.  
Index (or address in the dual port RAM) of the parameter byte (from 1 to 4).  
Bit field position inside the parameter byte. Can either be a single position (from 0 to 7, 0 being  
LSB) or a range.  
Value : Possible values for the bit (resp. bit field). range means all values are allowded. A value preceded  
by a star means a default value. Values are expressed either under the form of a bit string, or  
under hexadecimal format.  
Command :  
BULK - Enable Symbol Management  
Opcode : 22  
0
0
1
0
0
0
1
0
Synopsis  
BULK allows the use of the DUAL RAM symbol area. This additional task into host firmware is only needed  
in V.32/V.32bismode. Using this command allows the removal of all external RAM connected to the DSP  
local bus. This mode of operation is mandatory with the single chip ST75C50 package and 80 pin package.  
In this command the user sets the virtual memory base address and the top memory address (the base  
address must be on a 8 byte boudary and the top address on a 8 byte boudary - 1 eg : 0x67FF).  
Parameters  
Field  
Byte Pos. Value  
Definition  
BA_ADDR_L  
BA_ADDR_H  
TO_ADDR_L  
TO_ADDR_H  
1
2
3
4
0..7  
0..7  
0..7  
0..7  
Low byte of the base address  
High byte of the base address  
Low byte of the top memory address  
High byte of the top memory address  
21/55  
ST75C50  
CALL - Call a subroutine  
Opcode : 19  
0
0
0
1
1
0
0
1
Synopis  
For use with custom code in the STI8933 only  
CALL allows to execute a part of the DSP firmware with a specific argument.  
Parameters  
Field  
Byte Pos. Value  
Definition  
C_ADDR_L  
C_ADDR_H  
C_DATA_L  
C_DATA_H  
1
2
3
4
0..7  
0..7  
0..7  
0..7  
Low byte of the call address  
High byte of the call address  
Low byte of the argument  
High byte of the argument  
CONF - Configure for operations  
Opcode : 20  
0
0
1
0
0
0
0
0
Synopsis  
CONF allows the complete definition of the modem operation. It also defines the speed boundariesin the  
case of a negotiated rate.  
Parameters  
Field  
Byte Pos. Value  
Definition  
CONF_TX  
1
1..0  
00*  
01  
10  
11  
DTMF Tone  
reserved  
Audio : transmit speech signal  
Modem : transmit data signal  
CONF_RX  
1
3..2  
00*  
01  
10  
11  
Tone detection  
DTMF detection  
Audio : receive speech signal  
Modem : receive data signal  
CONF_ALOO P  
CONF_PSTN  
CONF_AO  
1
1
1
4
5
6
0
1
normal mode  
Analog loop back mode  
0
1
PSTN  
Leased line  
0
1
Answer mode  
Originate mode  
22/55  
ST75C50  
Parameters (continued)  
Field  
Byte Pos. Value  
Definition  
CONF_MODE  
2
5..0  
0
1
2
3
4
5
6
7
8
9
A
B
C
Automode  
Bell 103  
Bell 212A  
V.21  
V.23  
V.22  
V.22bis  
V.27ter  
V.29  
V.17  
V.32  
V.32bis  
V.33  
CONF_TX EQ  
2
7..6  
00  
01  
10  
11  
Flat Tx equalizer  
TX equalizer #1  
Tx equalizer #2  
Reserved  
(1/2 of M1020)  
(1/2 of M1040)  
CONF_QAM  
CONF_TCM  
CONF_300  
3
3
3
3
3
3
3
4
4
4
0
1
2
4
5
6
7
0
1
2
0
1
QAM/DPSK only (Automode)  
FSK allowed (Automode)  
0
1
Trellis coding not allowed  
Trellis coding allowed  
0
1
300 bps speed not allowed  
300 bps speed allowed  
CONF_1200  
CONF_2400  
CONF_4800  
CONF_7200  
CONF_9600  
CONF_12000  
CONF_14400  
0
1
1200 bps speed not allowed  
1200 bps speed allowed  
0
1
2400 bps speed not allowed  
2400 bps speed allowed  
0
1
4800 bps speed not allowed  
4800 bps speed allowed  
0
1
7200 bps speed not allowed  
7200 bps speed allowed  
0
1
9600 bps speed not allowed  
9600 bps speed allowed  
0
1
12000 bps speed not allowed  
12000 bps speed allowed  
0
1
14400 bps speed not allowed  
14400 bps speed allowed  
Notes :  
1) When receiving the CONF command the modem will reset all the MODC parameters to their default values.  
2) The valid combinations of CONF_TX and CONF_RX are defined in the following table, associated with the number of tone  
detector cells running at the same time:  
RX / TX  
TONE  
TONE/DTMF  
MODEM  
not allowed  
not allowed  
2
AUDIO  
16  
16  
DTMF  
4
not allowed  
16  
4
not allowed  
16  
MODEM  
AUDIO  
not allowed  
When in modem mode the number of tone detectors allowed is set to 2 if using the SERIAL link and 0 if  
using the parallel data management (either Tx or Rx).  
23/55  
ST75C50  
CR - Complex read  
Opcode : 11  
0
0
0
1
0
0
0
1
Synopsis  
CR allows the reading of a complex parameter. The parameter specifies the parameter address (for the  
real part : the imaginary part is next location). CR returns the high byte value of both real and imaginary  
part of the addressed complex parameter.  
Parameters  
Field  
Byte Pos. Value  
Definition  
CR_ADDR_L  
CR_ADDR_H  
1
2
7..0  
7..0  
Low byte of the 16-bit address  
High byte of the 16-bit address  
CSE - Clear error status  
Opcode : 08  
0
0
0
0
1
0
0
0
Synopsis  
CSE is used to clear the ST75C50 error status SYSERR byte. It is also used as an acknowledge to the  
error condition handler.  
Parameters  
Field  
Byte Pos. Value  
0..7  
Definition  
ERR_MASK  
1
Error mask . See report appendix for detailed meaning.  
DEFT - Define arbitrary tone  
Opcode : 0E  
0
0
0
0
1
1
1
0
Synopsis  
DEFT programs one of the fourtone generatorfor arbitrarytone generation.Theparameteristhe frequency  
of the generated tone in Hertz between 0 and 3600 Hz (expressed in hexadecimal). Frequency above the  
half of the transmit sampling clock will be aliased.  
Parameters : Example 1000 Hz is represented by 03E8  
Field  
Byte Pos. Value  
Definition  
Index of the tone generator (0..3)  
TONE_GEN_SL  
TONE_FREQ_L  
TONE_FREQ_H  
TONE_SCALE  
1
2
3
4
1..0  
7..0  
7..0  
7..0  
Low byte of the frequency  
High byte of the frequency (internally masked with 0F)  
Amplitude scaling factor (high byte) FF gives the Maximum Amplitude.  
24/55  
ST75C50  
DOSR - Define optional status report  
Opcode : 0A  
0
0
0
0
1
0
1
0
Synopsis  
DOSR specifiesthe address of the parameters to be monitored in the 3 locations STAOPT[0..2] of the dual  
port RAM. It also specifies the assignment of the parameter inside the 3 locations.  
Parameters  
Field  
Byte Pos. Value  
Definition  
STA_OPT_ASS  
STA_OPT_ADL  
STA_OPT_ADH  
STA_OPT_HL  
1
2
3
3
0..2  
0..7  
0..3  
7
Index of the STAOPT array  
Low byte of parameter address  
High byte of parameter address  
0
1
Select low byte of parameter  
Select high byte of parameter  
DSIT - Define status interrupt  
Opcode : 13  
0
0
0
1
0
0
1
1
Synopsis  
DSIT specifies the bit mask used with the STATUS[0] or STATUS[1] byte to generate an interrupt IT4 to  
controller. Each time a bit change will append in the general status words, assuming the corresponding bit  
mask will be set, an interrupt will be generated.  
Parameters  
Field  
Byte Pos. Value  
Definition  
Select status word 0 Bit Mask pattern  
Select Status word 1 Bit Mask pattern  
STA_IT_MSK0  
STA_IT_MSK1  
1
2
0..7  
0..7  
Note : The default IT status is 0X3F for STATUS [0] and 0XFF for STATUS [1].  
HSHK - Handshake  
Opcode : 04  
0
0
0
0
0
1
0
0
Synopsis  
HSHK is used to command the ST75C50 to begin the handshake sequence processing. The progress of  
the handshakeis reported to the control processor.  
Parameters : non parametric command  
25/55  
ST75C50  
IDT - Identify  
Opcode : 14  
0
0
0
1
0
1
0
0
Synopsis  
IDT returns the ST75C50 Harware and Software release number.  
Parameters : non parametric command  
Bits 15 to 12 represent the product identity number. For the 75C50 this is 0  
Bits 11 to 4 represent the product software release  
Bits 3 to 0 represent the software sub release  
INIT - Initialization  
Opcode : 06  
0
0
0
0
0
1
1
0
Synopsis  
INIT forces the ST75C50 to reset all parameters to their default conditions and restart operations.  
Parameters : non parametric command  
Note: This command makes a software reset of the ST75C50 and so cannot have the regular handshake protocol. It does not increment  
the COMACK, nor generate an Interrupt.  
JSR - Call a low level subroutine  
(For use with custom code in the STI8933 only)  
Opcode : 18  
0
0
0
1
1
0
0
0
Synopsis  
JSR allows execution of DSP firmware with specific argument.  
Parameters  
Field  
Byte Pos. Value  
Definition  
C_ADDR_L  
C_ADDR_H  
C_DATA_L  
C_DATA_H  
1
2
3
4
0..7  
0..7  
0..7  
0..7  
Low byte of the call address  
High byte of the call address  
Low byte of the argument  
High byte of the argument  
26/55  
ST75C50  
MR - Memory read  
Opcode : 10  
0
0
0
1
0
0
0
0
Synopsis  
MR allowsthe reading of a 16-bit parameter. The parameter specifies the parameter address.  
Parameters  
Field  
Byte Pos. Value  
Definition  
MR_ADDR_L  
MR_ADDR_H  
1
2
7..0  
7..0  
Low byte of the 16-bit address  
High byte of the 16-bit address  
MODC - Modify configuration  
Opcode : 21  
0
0
1
0
0
0
0
1
Synopsis  
MODC allows modification of the configuration for special purposes. This command can also apply when  
in data mode.  
Parameters  
Field  
Byte Pos. Value  
Definition  
MODC_V22G  
2
3..4  
00*  
01  
10  
No guard tone  
1800 Hz guard tone  
550 Hz guard tone  
MODC_FPT  
2
2
2
2
2
2..3  
4
00*  
10  
No echo protection tone (FAX only) V29, V27, V33, V17  
Long echo protection tone (180ms)  
MODC_NOT A  
0*  
Generate answer tone for handshake (ANSWER MODE)  
Wait answer tone (ORIGINATE MODE)  
4
Do not wait answer tone (ORIGINATE MODE)  
Do not generate answer tone (ANSWER MODE)  
1
MODC_NOSA  
MODC_NOQA  
6
0*  
1
Cut answer tone when receiving AA (V.32b)  
Continue answer tone  
7
0*  
1
Enable V.32 bis handshake on quality  
Disable handshake on quality  
27/55  
ST75C50  
MW - Memory write  
Opcode : 12  
0
0
0
1
0
0
1
0
Synopsis  
MW allows the writing of a 16-bit parameter. The parameter specifies the address, as well as the value, to  
be transferred.  
Parameters  
Field  
Byte Pos. Value  
Definition  
MW_ADDR_L  
MW_ADDR_H  
MW_VALUE_L  
MW_VALUE_H  
1
2
3
4
7..0  
7..0  
7..0  
7..0  
Low byte of the 16-bit address  
High byte of the 16-bit address  
Low byte of the 16-bit value  
High byte of the 16-bit value  
PPR - Read parallel port  
Opcode : 16  
0
0
0
1
0
1
1
0
Synopsis  
Read parallel port. The values of the 4-bit parallel port is read, whether the port is configured in input or in  
output.  
Parameters : non parametric command  
PPS - Parallel port set  
Opcode : 15  
0
0
0
1
0
1
0
1
Synopsis  
Configure parallel port. Each of the 4 pins of the parallel port can be either programmed for input or for  
output.  
Parameters  
Field  
PP_IO0  
Byte Pos. Value  
Definition  
1
1
1
1
0
1
2
3
0*  
1
Pin 0 programmed as input  
Pin 0 programmed as output  
PP_IO1  
PP_IO2  
PP_IO3  
0*  
1
Pin 1 programmed as input  
Pin 1 programmed as output  
0*  
1
Pin 2 programmed as input  
Pin 2 programmed as output  
0
1*  
Pin 3 programmed as input  
Pin 3 programmed as output  
Note: Pin 3 is reserved for MAFE control and therefore must be programmed as an output.  
28/55  
ST75C50  
PPW - Parallel port write  
Opcode : 17  
0
0
0
1
0
1
1
1
Synopsis  
Write to the parallel port. This operation will be effective only if the bits are programmed as outputs.  
Parameters  
Field  
PP_VAL0  
PP_VAL1  
PP_VAL2  
PP_VAL3  
Byte Pos. Value  
Definition  
1
1
1
1
0
1
2
3
Pin 0 logical value  
Pin 1 logical value  
Pin 2 logical value  
1
Pin 3 logical value must be set to 1  
RTRA - Retrain  
Opcode : 05  
0
0
0
0
0
1
0
1
Synopsis  
RTRAis usedto force theST75C50 toinitiatea retrain sequenceon thechannel. The parameter determines  
the target speed for the retrain.  
Parameters  
Field  
Byte Pos. Value  
Definition  
RTRA_NEGO  
1
1
1
1
1
1
2
2
2
0
1
4
5
6
7
0
1
2
0
1
Retrain (V.22bis, V.32, V.32bis)  
Rate Negotiation (V.22bis, V.32bis)  
RTRA_NEGO  
RTRA_1200  
RTRA_2400  
RTRA_4800  
RTRA_7200  
RTRA_9600  
RTRA_12000  
RTRA_14400  
1
0
Trellis coding enabled  
Trellis coding not enabled  
0
1
1200 bps speed not allowed  
1200 bps speed allowed  
0
1
2400 bps speed not allowed  
2400 bps speed allowed  
0
1
4800 bps speed not allowed  
4800 bps speed allowed  
0
1
7200 bps speed not allowed  
7200 bps speed allowed  
0
1
9600 bps speed not allowed  
9600 bps speed allowed  
0
1
12000 bps speed not allowed  
12000 bps speed allowed  
0
1
14400 bps speed not allowed  
14400 bps speed allowed  
29/55  
ST75C50  
SERIAL - Select serial or parallel mode  
Opcode : 07  
0
0
0
0
0
1
1
1
Synopsis  
SERIAL defines the data path, i.e. either serial or parallel.  
Parameters  
Field  
Byte Pos. Value  
Definition  
TX_SDATA  
1
0
0*  
1
Use parallel link for Tx data  
Use serial link for Tx data  
RX_SDATA  
1
1
0*  
1
Use only serial link for Rx data  
Use also parallel link for Rx data  
Note : The received bits always go to output pin DX2, even when the Rx_SDATA bit is set.  
SETGN - Set output gain  
Opcode : 02  
0
0
0
0
0
0
1
0
Synopsis  
SETGN is a command which sets the scaling factor of the transmit samples. It is used for setting the output  
level or for setting the level of the tone generators. The gain value is given in the form of a 2’s complement  
16-bit value.  
eg :  
7FFF  
4000  
2000  
0
0dB  
-6dB  
-12 dB  
mute  
Parameters  
Field  
GAIN_L  
Byte Pos.  
Value  
Definition  
1
2
7..0  
7..0  
range FF* Low byte of the 16-bit gain value  
range 7F* Hight byte of the 16-bit gain value  
GAIN_H  
SLEEP - Turn to sleep mode  
Opcode : 03  
0
0
0
0
0
0
1
1
Synopsis  
SLEEP is used to force the ST75C50 to turn to sleep mode.  
Parameters : non parametric command  
Note: When receiving this command the ST75C50 will stop processing and so cannot have the regular handshake protocol. It does not  
increment the COMACK, nor generate an Interrupt. Anegative level on the RING Pin will awaken the ST75C50, generate an IT5  
Power Down Interrupt and execute a Software Reset (idem init).  
30/55  
ST75C50  
STOP - FAX stop transmitter  
Opcode : 25  
0
0
1
0
0
1
0
1
Synopsis  
STOP is used, in FAX modes, to force the ST75C50 to turn-off the transmitter in accordance with the  
corresponding CCITT V33/V17/V29/V27recommendation.  
Parameters : non parametric command  
Note: When receiving this command the ST75C50 will stop sending regular data. In parallel mode this command must be preceded by a  
XMIT stop command. After receiving the STOP command the ST75C50 will wait until all the transmit buffers are sent commencing  
with the stop sequence.  
SYNC - FAX synchronize the receiver  
Opcode : 26  
0
0
1
0
0
1
1
0
Synopsis  
SYNC is used, in FAX modes, to force the ST75C50 to start/stop the receiver in accordance with the  
corresponding CCITT V33/V17/V29/V27recommendation.  
As soon as the ST75C50 receives the SYNC start command it sets its receiver to detect the FAX  
synchronization signal.  
This commdand is the equivalentHSHK command for the receiver.  
Parameters  
Field  
Byte Pos. Value  
Definition  
RX_SYNC  
1
0
0*  
1
Stop receiver  
Start receiver synchronization  
TDRC - Tone detector read coefficient  
Opcode : 1A  
0
0
0
1
1
0
1
0
Synopsis  
TDRC read one coefficient of the selected tone detector cell.  
Parameters  
Field  
TD_CELL  
Byte Pos. Value  
Definition  
1
2
0..3  
0..7  
0..F  
Tone detector cell number  
TD_C_ADDR  
0..B  
10  
20  
Biquad coefficient  
Energy coefficient  
Static level  
other Reserved  
The command answer is : low byte of coefficient followed by high byte of coefficient  
31/55  
ST75C50  
TDRW - Tone detector read wiring  
Opcode : 1B  
0
0
0
1
1
0
1
1
Synopsis  
TDRW read wiring of the selected tone detector cell.  
Parameters  
Field  
TD_CELL  
Byte Pos. Value  
Definition  
1
2
0..3  
0
0..F  
Tone detector cell number  
TD_W_ADDR  
0
1
Biquad and energy input  
Comparator inputs  
other Reserved  
The command answer is :  
a) if TD_W_ADDR = 0 :  
- first byte is the node number of signal connected to biquadraticfilter input,  
- second byte is the node number of the signal connected to the energy estimator input.  
b) if TD_W_ADDR = 1 :  
- first byte is the node number of signal connected to comparator negative input,  
- second byte is the node number of the signal connected to the comparator positive input.  
TDWC - Tone detector write coefficient  
Opcode : 1C  
0
0
0
1
1
1
0
0
Synopsis  
TDWC write one coefficientof the selected tone detector cell.  
Parameters  
Field  
TD_CELL  
Byte Pos. Value  
Definition  
1
2
0..3  
0..7  
0..F  
Tone detector cell number  
TD_C_ADDR  
0..B  
10  
Biquad coefficient  
Energy coefficient  
Static level  
20  
TD_COEFL  
TD_COEFH  
3
4
0..7  
0..7  
Low byte of coefficient  
High byte of coefficient  
32/55  
ST75C50  
TDWW - Tone detector write wiring  
Opcode : 1D  
0
0
0
1
1
1
0
1
Synopsis  
TDWW write wiring of the selected tone detector cell.  
Parameters  
Field  
TD_CELL  
Byte Pos. Value  
Definition  
1
2
0..3  
0
0..F  
Tone detector cell number  
TD_W_ADDR  
0
1
Biquad and energy input  
Comparator inputs  
if TD_W_ADDR = 0 (select biquad and energy inputs)  
Field  
TD_W_ERN  
TD_W_BIQ  
Byte Pos. Value  
Definition  
Definition  
3
4
0..3F Energy estimator signal input  
0..3F Biquad filter signal input  
if TD_W_ADDR = 1 (select comparator inputs)  
Field  
TD_W_CN  
TD_W_CP  
Byte Pos. Value  
3
4
0..3F Negative comparator signal input  
0..3F Positive comparator signal input  
TDZ - Tone detector clear cell  
Opcode : 1E  
0
0
0
1
1
1
1
0
Synopsis  
TDZ clearsallinternalvariables of oneTonedetectorcellincludingfilterlocal variablesandenergyestimator.  
This command must be sent after changing coefficients of a cell to avoid instability.  
Parameters  
Field  
Byte Pos. Value  
0..3 0..F  
Definition  
TD_CELL  
1
Tone detector cell number  
33/55  
ST75C50  
TGEN - Enable/disable tone generators  
Opcode : 0D  
0
0
0
0
1
1
0
1
Synopsis  
TGEN causes the ST75C50 to enable or disable the four tone generators.  
Parameters  
Field  
Byte Pos. Value  
Definition  
TONE_0_ENA  
1
1
1
1
0
1
2
3
0*  
1
Generator #0 disabled  
Generator #0 enabled  
TONE_1_ENA  
TONE_2_ENA  
TONE_3_ENA  
0*  
1
Generator #1 disabled  
Generator #1 enabled  
0*  
1
Generator #2 disabled  
Generator #2 enabled  
0*  
1
Generator #3 disabled  
Generator #3 enabled  
TONE - Predefined tones  
Opcode : 0C  
0
0
0
0
1
1
0
0
Synopsis  
TONE programs the tone generatorsfor the predefinedtones. The tone generators #0 and eventually#1  
are reprogrammed with this command. Eventualy the tone generator #0 and #1 are enabled. Using an  
argument not in the following table will disable tone generator #0 and #1.  
Parameters  
Field  
Byte Pos. Value  
Definition  
TONE_SELECT  
1
5..0  
0
1
DTMF 0 (941 & 1336 Hz)  
DTMF 1 (697 & 1209 Hz)  
DTMF 2 (697 & 1336 Hz)  
DTMF 3 (697 & 1477 Hz)  
DTMF 4 (770 & 1209 Hz)  
DTMF 5 (770 & 1336 Hz)  
DTMF 6 (770 & 1477 Hz)  
DTMF 7 (852 & 1209 Hz)  
DTMF 8 (852 & 1336 Hz)  
DTMF 9 (852 & 1477 Hz)  
DTMF A (697 & 1633 Hz)  
DTMF B (770 & 1633 Hz)  
DTMF C (852 & 1633 Hz)  
DTMF D (941 & 1633 Hz)  
DTMF * (941 & 1209 Hz)  
DTMF # (941 & 1477 Hz)  
Answer Tone (2100 Hz)  
Answer Tone (1650 Hz)  
Answer Tone (2225 Hz)  
Tone (1300 Hz)  
2
3
4
5
6
7
8
9
A
B
C
D
E
F
10*  
11  
12  
13  
34/55  
ST75C50  
V22L2 - V22 loop 2 generator/detector  
Opcode : 24  
0
0
1
0
0
1
0
0
Synopsis  
V22L2 selects the transmission and detection of V.22/V.22bispatternsrequired for remote digital loop back  
as definedin the CCITT specification. The STA_V22L bit in the STA_LOOPoptional status word will follow  
the detectionof the receiver setting. This command must only be used in V.22 or V.22bis modes.  
Note that the STA_V22Abit (alternate ”1010” or ”0101”) in the STA_LOOPis always active.  
Parameters  
Field  
Byte Pos. Value  
Definition  
V22L2_TX  
1
0..1  
00*  
01  
10  
11  
Data mode  
Transmit unscrambled ”1”  
Transmit scrambled ”1”  
Transmit scrambled ”1010”  
V22L2_RX  
2
0
0*  
1
Detect unscrambled ”1”  
Detect scrambled ”1”  
V54 - Generator/detector  
Opcode : 23  
0
0
1
0
0
0
1
1
Synopsis  
V.54 selects thetransmission anddetectionof V.54patternsrequiredfor remote digital loop back as defined  
in the CCITT specification. The STA_V54D bit in the STA_LOOP optional status word will follow the  
detection of the receiver setting. This command must only be used in V.32 or V.32bis modes.  
When the transmit generator completes the required pattern it will continue to send the same sequence  
and set the STA_V54E bit in the STA_LOOP.  
Parameters  
Field  
V54_TX  
Byte Pos. Value  
Definition  
1
0..1  
00*  
01  
10  
11  
Data mode  
Transmit 2048 V54 scrambled ”0”  
Transmit 1948 V54 scrambled ”1”  
Transmit 8192 V54 scrambled ”1”  
V54_RX  
2
0..1  
00*  
01  
10  
11  
No V54 detection  
Reserved  
Detect 256 V54 scrambled ”0”  
Detect 256 V54 scrambled ”1”  
35/55  
ST75C50  
XMIT - Start/stop transmission  
Opcode : 01  
0
0
0
0
0
0
0
1
Synopsis  
XMIT enables or disables the transmission of the data according to the selected mode (serial or parallel).  
Parameters  
Field  
Byte Pos. Value  
Definition  
TX_START  
1
0
0
1
Stop transmission  
Start transmission  
WMR - Write MAFE Register  
Opcode : 11  
0
0
0
1
0
0
0
1
Synopsis  
WMR allows the writing of a 8-bit parameter into one of the ST7543 MAFE chip register.  
Parameters  
Field  
Byte Pos. Value  
Definition  
MWR_DATA  
MWR_ADDR  
MWR_RXTX  
1
2
3
0..7  
0..1  
0..7  
Byte od data  
Byte of the 2-bit address  
0
<> 0  
Acess Tx Register  
Access Rx Register  
This command must be used to lock the Transmit clock on an external clock or the received clock :  
WMR D8 02 00  
WMR F8 02 00  
WMR C0 02 00  
Tx Clock locked on TxSCLK input Pin.  
Tx Clock locked on Rx Clock.  
Tx Clock free running  
36/55  
ST75C50  
APPENDIX B : STATUS DESCRIPTION  
This appendixis dedicated to the ST75C50 report-  
ing features.In the followingsections are explained  
the commandacknowledge process and the report  
and status definitions.  
nary part. The CR command insures that the real  
and imaginary parts of the desired complex value  
are sampled internally at the same time. The ad-  
dress given in the parameter field of CR is the  
address of the real part.  
I - COMMAND ACKNOWLEDGE AND REPORT  
I.1 - Command Acknowledge Process  
The ST75C50 features an acknowledge process  
based on a counter COMACK. On power-on reset,  
this counter’s value is set to 0. Each time a com-  
mand is executed, the acknowledge counter CO-  
MACK is incremented. This allows a precise  
monitoring of the command entered and avoids  
command collision.  
I.2.2 - MR/TDRC/IDT COMMAND/IDT  
The report issued by the MR/TDRC command is  
followings the same rules as the CR. The report  
meaning is :  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0 COMREP[0]  
D15 D14 D13 D12 D11 D10 D9  
D8 OMREP[1]  
D15..D0 is the 16-bit value required by the  
MR/TDRC command.  
The acknowledge counter is incremented as soon  
as the command has been properly executed. Fur-  
thermore, the ST75C50 resets the value of the  
COMSYS register. The interruption IT6 is raised  
just after the counter is incremented.  
I.2.3 - PPR COMMAND  
The PPR command issues the following report :  
0
0
0
0
PP3 PP2 PP1 PP0 COMREP[0]  
PP0..PP3 are the values read on the 4 pins of the  
parallel port. The result doesn’t take into acccount  
the fact that those pins are input or output pins.  
In the case of a memory reading command (CR,  
MR or PPR), the process is slightly different. The  
command entered is executed, the report area is  
then filled and the acknowledge counter is incre-  
mented afterwards. This insures that the controller  
reads the value corresponding to its request. Fig-  
ure B1 gives a flowchart of the command acknow-  
ledge process.  
II - ERROR STATUS  
The error status is changed each time an error  
occurs or an important change in the data pump  
state occurs. Several events are flagged by the  
SYSERR byte. They can only be cleared by the  
CSE command.  
I.2 - Reports Specification  
The report section of the Dual Port RAM is dedi-  
cated to memoryreading. In responseto a CR,MR,  
IDT or PPR command, the value to be read is  
transferred to the Report registers COMREP[0..1].  
The meaning of the SYSERR byte is :  
SYSERR  
Field  
Pos.  
Meaning when set  
ERR_TX  
0
Tx buffer underflow or improper  
buffer status  
I.2.1 - CR COMMAND  
Issuing a CR command causes the ST75C50 to  
dump a specificmemory location in complex mode.  
This instruction is particularly useful for equalizer  
state analysis or for software eye-pattern display.  
The report area has this meaning :  
ERR_RX  
1
2
RX buffer overflow or improper  
buffer status  
ERR_SYM  
Symbol buffer synchronization  
error  
ERR_IOCD  
ERR_IPRM  
3
4
Incorrect opcode  
Incorrect parameter for current  
command  
RP7 RP6 RP5 RP4 RP3 RP2 RP1 RP0 COMREP[0]  
IP7 IP6 IP5 IP4 IP3 IP2 IP1 IP0 COMREP[1]  
Reserved  
Reserved  
ERR_RTK  
5
6
7
Reserved for future use  
Reserved for future use  
Real time kernel error  
RP7..RP0 is the MSB part of the 16-bit value of the  
real part and IP7..IP0 is the MSB part of the imagi-  
37/55  
ST75C50  
III - GENERAL STATUS  
The general status is made of two bytes. The first is dedicated to the CCITT circuit monitoring, as well as  
some line-side information. The second byte is dedicated to the pump state.  
Each status word, when changing, can generatean IT4 interrupt. Usingthe DSIT commandallows the user  
to selectively mask the relevant bits. The default values for the mask are 0X3F for STATUS [0] and 0XFF  
for STATUS [1].  
STATUS[0]  
Field  
Pos.  
Meaning when set  
STA_109  
0
CCITT circuit 109 on / DCD : when set indicates that valid data are received, when reset the  
data are clamped to constant mark.  
STA_107  
STA_106  
1
2
CCITT circuit 107 on / DSR  
CCITT circuit 106 on / CTS : when set indicates that the training sequence has been  
completed and that any data at TxD (serial Mode) or in the Tx Buffer (paralle Mode) will be  
transmitted.  
STA_RING  
3
Ring detected : when set a ring signal (from 15Hz to 68Hz) is present at the RING Pin. Note  
that the precise frequency can be read in the DSP RAM.  
STA_CPT0  
STA_CPT1  
STA_CPT10  
STA_109F  
4
5
6
7
Call progress tone detector #0 triggered  
Call progress tone detector #1 triggered  
Band 0 higher in level then band 1  
(Low Pass)  
(Hi Pass)  
(Low > Hi)  
Fast Carrier Detect : this signal reflect the carrier energy received on the line according with  
the carrier detect threshold and hysteresis  
STATUS[1]  
Field  
Pos.  
Value  
Meaning  
STA_H  
1..0  
00  
01  
10  
Not in handshake mode  
Handshake in progress  
Handshake timeout  
STA_AT  
3..2  
4
00  
10  
11  
No answer tone detected  
Bell answer tone detected  
CCITT answer tone detected/or AA detected  
STA_RTRN  
0
1
No remote retrain detected V.32/V.22b  
Remote retrain detected  
STA_SYNC  
STA_RNEG  
4
5
1
FAX : synchronization in Progress  
0
1
No remote rate negotiation detected (V.32b)  
Remote rate negotiation detected  
STA_CLR  
6
7
0
1
No cleardown detected  
Cleardown detected  
STA_DTMF  
0
1
DTMF digit not detected (DTMF Rx mode)  
DTMF digit detected  
IV - QUALITY STATUS  
The STAQUA byte monitors an evaluation of the line quality. It is updated once per baud and its value  
ranges from 127 (perfect quality) to 0 (terrible quality). This provides valuable information about the safety  
of the transmission (error sensitivity). The Quality Indicator is LSB adjusted.  
STAQUA  
Field  
STA_Q  
Pos.  
6..0  
7
Value  
Meaning  
0..127 Quality index  
Reserved  
Reserved for future use  
38/55  
ST75C50  
V - OPTIONAL STATUS  
The ST75C50 allows the host to monitor 3 memory locations inside the memory spaces of the DSP. Those  
locations are updated once per baud. On Power-on Reset, default locations are preprogrammed for the  
STAOPT[0..2] bytes. The meaning of this default setting is :  
STAOPT[0..2]  
Field  
Byte Pos.  
Meaning  
NEG_MODE  
LOOP_STA  
HDSK_PHA  
0
1
2
7..0 Negotiated speed mode (see below)  
7..0 Test loops status (see below)  
7..0 Handshake phase (range 0..255)  
After configurating the ST75C50 in a Modem mode, by sending a CONF command the default STAOPT  
are preprogrammed to :  
Default STAOPT[0..2] after a CONF Modem Command  
Field  
Byte Pos.  
Meaning  
NEG_MODE  
LOOP_STA  
HDSK_PHA  
0
1
2
0..7 Negotiated speed mode (see below)  
0..7 Test loops status (see below)  
0..7 Handshake phase (range 0..255)  
The NEG_MODEbyte indicates the issue of the rate negotiation. Its meaning is :  
NEG_MODE  
Field  
Pos.  
Value  
Definition  
NEG_PRG  
0
0
1
Negotiation in progress  
Negotiation completed  
NEG_SPEED  
4..1  
0
1
2
3
4
5
6
7
8
F
Negotiated speed is 300bps  
Reserved  
Negotiated speed is 1200bps  
Negotiated speed is 2400bps  
Negotiated speed is 4800bps  
Negotiated speed is 7200bps  
Negotiated speed is 9600bps  
Negotiated speed is 12000bps  
Negotiated speed is 14400bps  
Negotiation failed  
NEG_TREL  
NEG_MODU  
NEG_STD  
5
6
7
0
1
Negotiated mode is not trellis coded  
Negotiated mode is trellis coded  
1
0
Negotiated mode is FSK  
Negotiated mode is QAM/DPSK  
0
1
CCITT Std.  
Bell Std. (103 or 212A)  
The loop status byte provides valuable information about the loop status, for V.22 and V.54 loops. This  
status byte must be used in accordance with the V22L2 or V54 commands. Its meaning is :  
STA_LOOP  
Field  
Pos.  
0
Meaning when set  
V.54 pattern detected : when set, a 256 bit V.54 pattern has been received.  
V.54 pattern completed : when set, the transmit V.54 pattern is completed.  
V.22bis alternate ”0101” or ”1010” detected (typically 53ms)  
V.22bis loop pattern detected (typically 13ms)  
STA_V54D  
STA_V54E  
STA_V22A  
STA_V22L  
Reserved  
1
2
3
7..4  
Reserved for future use  
39/55  
ST75C50  
Figure B1  
BEGIN  
Yes  
No  
COMSYS = 0  
Yes  
No  
COMMAND  
EXIST  
CLEAR ANSWER  
Invalid Parameter  
EXECUTE  
COMMANDE  
COPY ANSWER  
INTO COMREP  
SET SYSERR  
ERR_IPRM  
SET SYSERR  
ERR_IOCD  
ASSERT  
INTERRUPT IT0  
ASSERT  
INTERRUPT IT0  
INCREMENT  
COMACK  
CLEAR COMSYS  
ASSERT  
INTERRUPT IT6  
END  
40/55  
ST75C50  
APPENDIX C : TYPICAL BER PERFORMANCES  
This appendix shows the typical Bit Error Rate curves obtained on lines Flat and US3002, using a TAS  
Series II equipmentand a V.56 AGC. Samplesize is 107 bit.  
Figure C1 : Typical V32bis BER performances  
BER  
-1  
10  
-2  
10  
-3  
10  
-4  
10  
-5  
10  
-6  
10  
-7  
10  
13  
15  
17  
19  
21  
23  
25  
27  
29  
SNR  
APPENDIX D : DEFAULT CALL PROGRESS TONE DETECTORS  
Figure D1 : Call Progress Tone Detector Band 0  
Figure D2 : Call Progress Tone Detector Band 1  
10  
10  
0
0
Always On  
Always On  
Always Off  
-10  
Always Off  
-10  
d
d
-20  
-20  
B
B
m
m
-30  
-30  
-40  
-40  
-50  
-50  
300 400 500  
600 700  
800 900 1000  
300 400 500 600 700 800 900 1000  
Hz  
Hz  
41/55  
ST75C50  
APPENDIX E : DEFAULT ANSWER TONE DETECTORS  
Figure E1 : 2100HzAnswer Tone Detector  
10  
0
-10  
d
B
-20  
m
Always On  
Always Off  
-30  
-40  
-50  
1950  
2050  
2150  
2250  
2350  
Hz  
APPENDIX F : ELECTRICAL SCHEMATICS  
This appendix contains the following schematics :  
- example of hybrid line design  
- chip interconnect circuitry required in the case of  
- interconnect circuitry required for the use of the  
serial link (TS7538) as well as a bulk delay  
memory.  
the minimal configuration  
- emulation using external program memory  
Figure F1 : Typical line interface  
22k  
100pF  
2 x R  
5
1.2kΩ  
7
13.2kΩ  
22kΩ  
4
8
RxA2  
2
3
1
TxA1  
VCM  
TxA2  
6
R1  
300Ω  
2.2nF  
(note c)  
R
R2  
VCM  
680pF  
2.2nF  
(note c)  
R
5
6
300Ω  
7
R1  
4
8
2
3
1
RxA1  
13.2kΩ  
22kΩ  
1.2k  
2 x R  
TIP  
100pF  
RING  
22kΩ  
Notes : a) All resistors are 1% tolerance  
b) The receive gain is defined by : G = (1 + R1/R2)  
c) Capacitor close to RxA1 and RxA2  
42/55  
ST75C50  
Figure F2  
R x C  
S C R x H  
Y N R x S  
2 L A X T  
1 1 L X T A  
0 1 L X T A  
T E S E N R  
3 T S T E  
C
C
R x R  
T x C  
C
T x H S  
2 T S T E  
C N Y T x S  
T x R C  
T x S  
1 T S T E  
C
0
T X D  
T X D  
1
1
D R  
D X  
A 0  
A 1  
A 2  
I
X K L B C  
F S  
1 K L B C  
X
1
F S  
A 3  
A 4  
A 5  
A 6  
A 7  
D 0 R X  
D I R X  
0
0
0
D R  
D X  
R L K B C  
C B L K  
F S  
F S R  
0
A 8  
A 9  
T
S E R E  
0
1
2
3
4
5
A 1  
A 1  
A 1  
A 1  
A 1  
A 1  
L P  
K C A L P  
N O P  
43/55  
ST75C50  
Figure F3  
R x C  
X T A L 2  
L 1 1 X T A  
L 1 0 X T A  
S E T N R E  
T E S T  
C
R x H S  
R x S Y N  
R x R C  
C
C T x  
3
2
1
C S H T x  
N C x S T Y  
C R T x  
x S T C  
T E S T  
T E S T  
T X D 0  
T X D I  
A 0  
A 1  
A 2  
A 3  
A 4  
A 5  
A 6  
A 7  
A 8  
A 9  
D R 1  
D X 1  
A 0  
A 1  
A 2  
A 3  
A 4  
K X B C L  
F S X  
B C L K 1  
F S 1  
R X D 0  
D R 0  
D X  
R X D I  
C B L K R  
F S R  
A 5  
A 6  
A 7  
0
0
B C L K  
F S 0  
A 8  
A 9  
R E S E T  
A 1 0  
A 1 0  
L P  
A 1 1  
A 1 2  
A 1 3  
A 1 4  
A 1 5  
A 1 1  
L P A C K  
A 1 2  
A 1 3  
A 1 4  
A 1 5  
N O P  
44/55  
ST75C50  
Figure F4  
O E  
W E  
C S  
C S  
2
1
A 1 2  
A 1 1  
1 2 I A  
1 1 I A  
A 1 0  
A 9  
1 0 I A  
9
8
I A  
I A  
A 8  
A 7  
7
6
I D  
I D  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
7
6
5
4
3
2
1
0
I A  
I A  
I A  
I A  
I A  
I A  
I A  
I A  
A 6  
A 5  
I D 5  
I D 4  
I D  
A 4  
A 3  
3
1
I D 2  
I D  
A 2  
A 1  
A 0  
I D 0  
O E  
W E  
C S  
C S  
O E  
W E  
C S  
C S  
2
1
2
1
2 1 I A  
1 1 I A  
2
1
A 1  
A 1  
0 1 I A  
A 1 2  
A 1 1  
0
A 1  
A 9  
1 2 I A  
1 1 I A  
9 I A  
8 I A  
A 1 0  
A 9  
A 8  
A 7  
7 I A  
6 I A  
5 I A  
4 I A  
I D 7  
I D 6  
1 0 I A  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
9
8
I A  
I A  
A 8  
A 7  
A 6  
A 5  
7
6
I D  
I D  
I D 5  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
7
6
5
I A  
I A  
I A  
I D 4  
I D 3  
A 6  
A 5  
A 4  
A 3  
I D 5  
I D 4  
I D  
3 I A  
2 I A  
1 I A  
0 I A  
I D 2  
I D 1  
A 4  
A 3  
A 2  
A 1  
A 0  
3
1
4
I A  
I D 2  
I D  
3
2
1
0
I A  
I A  
I A  
I A  
I D 0  
A 2  
A 1  
A 0  
I D 0  
O E  
W E  
C S  
C S  
2
1
2 1 I A  
1 1 I A  
2
1
A 1  
A 1  
0 1 I A  
9 I A  
8 I A  
0
A 1  
A 9  
A 8  
A 7  
I D 7  
I D 6  
7 I A  
6 I A  
5 I A  
4 I A  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
A 6  
A 5  
I D 5  
I D 4  
I D 3  
A 4  
A 3  
3 I A  
2 I A  
1 I A  
0 I A  
1 0 I D  
I D 0 1  
I D 2  
I D 2  
I D 1  
I D 0  
A 2  
A 1  
A 0  
2
I D  
I D  
3
4
I D 3  
4
5
I D  
5
6
I D  
6
7
I D  
I D  
I D  
I D 7  
O E  
W E  
C S  
C S  
8
9
I D  
I D  
8
9
I D  
I D  
1 0 I D  
2
1
1 0 I D  
1 1 I D  
1 2 I D  
I D 1 1  
1 2 I D  
1 3 I D  
1 3 I D  
2 1 I A  
1 1 I A  
1 4 I D  
1 5 I D  
2
1
A 1  
A 1  
I D 1 4  
1 5 I D  
0 1 I A  
1 6 I D  
0
A 1  
A 9  
I D 1 6  
I D 1 7  
9 I A  
8 I A  
1 7 I D  
1 8 I D  
A 8  
A 7  
1 8 I D  
7 I A  
6 I A  
5 I A  
4 I A  
I D 7  
I D 6  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
D 1  
D 0  
1 9 I D  
2 0 I D  
I D 1 9  
A 6  
A 5  
2 0 I D  
2 1 I D  
I D 5  
I D 4  
I D 3  
2 1 I D  
2 2 I D  
2 3 I D  
A 4  
A 3  
I D 2 2  
3 I A  
2 I A  
1 I A  
0 I A  
2 3 I D  
I D 2  
I D 1  
2 4 I D  
A 2  
A 1  
A 0  
2 4 I D  
2 5 I D  
2 6 I D  
I D 2 5  
2 6 I D  
I D 2 7  
I D 2 8  
2 9 I D  
I D 0  
2 7 I D  
A 0  
A 0  
2 8 I D  
2 9 I D  
A 1  
A 1  
3 0 I D  
3 1 I D  
O E  
W E  
C S  
C S  
A 2  
I D 3 0  
I D 3 1  
A 2  
A 3  
A 3  
A 4  
A 4  
A 5  
A 5  
A 6  
A 6  
A 7  
A 7  
D R 1  
D X 1  
B C L K 1  
2
1
F S 1  
D R 0  
2 1 I A  
1 1 I A  
2
1
A 1  
A 1  
A 8  
A 8  
D X 0  
0 1 I A  
A 9  
A 9  
0
A 1  
A 9  
B C L K 0  
F S 0  
R E S E T  
9 I A  
8 I A  
A 1 0  
0
1
2
3
4
5
A 1  
A 1  
A 1  
A 1  
A 1  
A 1  
A 8  
A 7  
A 1 1  
A 1 2  
A 1 3  
A 1 4  
A 1 5  
7 I A  
6 I A  
5 I A  
4 I A  
I D 7  
I D 6  
D 7  
D 6  
D 5  
D 4  
D 3  
D 2  
A 6  
A 5  
L P  
I D 5  
I D 4  
I D 3  
L P A C K  
A 4  
A 3  
3 I A  
2 I A  
1 I A  
0 I A  
I D 2  
I D 1  
I D 0  
N O P  
A 2  
A 1  
A 0  
D 1  
D 0  
45/55  
ST75C50  
APPENDIX G  
I - TONE DETECTORS  
I.1 - Overview  
mand.  
While in FAX half duplex receive IDLE mode a set  
of 8 cells allows to implement customized hand-  
shake short sequences.  
The general purpose TS75C50/51/52 tone detec-  
tor block is a powerful module that covers a lot of  
applications :  
- Call progress tone detection, fully programmable  
for all different countries  
- DTMF detection  
- High level handshake for all main modem stand-  
I.2.1 - BIQUADRATIC FILTERS (see Figure G1)  
Each biquadratic filter is a double regular section  
that can perform any transfer function with 4 poles  
and 4 zeros. This routine is run on a sample basis.  
The corresponding transfer function is :  
ards  
C5 + 2 C3 z1 + 2 C4 z2  
- FAX, voice, data automaticdetection  
- Call waitingdetection,whileinvoice or datamode  
Out  
Input  
= C0  
1 2 C1 z1 2 C2 z2  
CB + 2 C9 z1 + 2 CA z2  
z1  
I.2 - Description  
C6  
1  
1 2 C7 z 2 C8 z2  
The tonedetectorblockis a set of 16 identicalcells.  
Each cell is composedof a doublebiquadraticfilter,  
a powerestimator section, a static level and a level  
comparator.  
Note : All coefficients are coded on 16 bits 2’s complement in the  
range +1, -1 (Q15). To avoid the possibility of overflow the  
user must check that the internal node must not be higher  
that 0.5 (in Q15 representation).  
Each biquadratic filter, power estimator and static  
level can be programmed using a complete set of  
commands (TDRC, TDRW, TDWC, TDWW, TDZ).  
I.2.2 - POWER ESTIMATION (see Figure G2)  
The power estimation cell is needed to measure  
the amplitude of the different tones. It is run on a  
sample basis.  
The wiring between the different cells can be de-  
fined by the user using the command allowing a  
wide range of applications.  
The corresponding transfer function is :  
P1  
Out = | Input | z-1  
The 16 comparator outputs give, on a baud basis,  
the information into a two 8 bits word TONEDET0  
(for cells number 0 to 7) and TONEDET1 (for cells  
number 8 to F). These TONEDET variables can be  
accessed using a MR command or, more easily,  
monitored on a baud basis using the DOSR com-  
1 − (1 P1) z1  
Note : To deal with the high dynamic range of the analog front end,  
the computation loop of the power estimation is run with 32  
bits accuracy. The output and input of that cell are however  
16 bit words (Q15).  
Figure G1 : Biquadratic IIR Filter  
-1  
IN  
C0  
C5  
C6  
CB  
OUT  
Z
2
2
-1  
-1  
Z
Z
Z
Z
C1  
C2  
C3  
C7  
C8  
C9  
-1  
-1  
C4  
CA  
46/55  
ST75C50  
Figure G2 : Power Estimator  
The user specifies the inputs of the filters, power  
and comparators. At least one input must come  
from the RxSig (node 01, 02 or 03). It is mandatory  
to connect all unused cell input to the groundsignal  
(node 00).  
OUT  
IN  
+
-1  
ABS(.)  
P1  
Z
-1  
Z
III - EXAMPLE (see Figure G5)  
Hereunder is an example of programming a single  
tone detector (using cell #3) and a complex differ-  
ential tone detector (using cell #4 and #5).  
I.2.3 - STATIC LEVEL  
Asingle thresholdlevel is associated with eachcell.  
It can be use to compare the output of a power  
estimation with an absolute value.  
The bit 3 of the TONEDET variable willbe triggered  
each time the energy of that filtered signal is higher  
than static level number 3.  
I.2.4 - COMPARATOR  
The bit 4 of the TONEDET variable will be on each  
time a receive signal has energy higher than the  
static level number 4. The bit 5 will be ononly when  
the filtered (filter section 4 and5) received signal is  
higher than the energy of the wideband signal  
number 4 ; this prevents triggering on noise.  
The comparator computes on a baud basis, the  
difference of the signal on its positive input and its  
negative input. If the result is higher that zero it set  
the corresponding bit in the TONEDET[0..1] word  
if not it clears this bit.  
I.2.5 - WIRING  
Program cell #3 :  
The user must specify the connection(wiring) be-  
tween the input/output of the filter, the input/output  
of the power estimator, the output of the static  
levels and the two inputs of the comparators.  
TDWW  
03  
00  
13  
01  
Connect received signal to filter and filter to  
energy  
TDWW  
03  
01  
33  
23  
The outputs signal have an absolute address :  
Connect level to comparator negative input  
and energy to positive input  
Node Address  
Signal  
Address  
Description  
Name  
Program cell #4 and #5 :  
Ground  
00  
01  
Signal always equal to 0000  
TDWW  
Connect received signal to filter and energy  
TDWW 04 01 34 24  
Connect level to comparator negative input  
and energy to positive input  
04  
00  
01  
01  
RxSig  
Receive signal from the  
analog front end, (after echo-  
substraction in V.32 mode)  
RxSig2  
RxSig4  
02  
Receive signal multiplied by 2  
Receive signal multiplied by 4  
Reserved  
03  
TDWW  
05  
00  
15  
14  
04..0F  
10..1F  
Connect filter #4 output to filter and filter to  
energy  
Filter [0..F]  
Biquadratic filter outputs  
Power estimator outputs  
Static levels  
TDWW  
05  
01  
24  
25  
Power [0..F] 20..2F  
Level [0..F] 30..3F  
Connect wideband energy to negative input  
and energy to positive input  
47/55  
ST75C50  
Figure G3 : Tone Detector Wiring Address (first half)  
BIQUADRATIC  
FILTER  
#0  
@10  
@20  
@30  
POWER  
#0  
COMP.  
#0  
LEVEL #0  
BIQUADRATIC @11  
@21  
@31  
POWER  
#1  
FILTER  
#1  
COMP.  
#1  
LEVEL #1  
BIQUADRATIC @12  
@22  
@32  
POWER  
#2  
FILTER  
#2  
COMP.  
#2  
LEVEL #2  
@00  
D0  
D1  
D2  
D3  
D4  
BIQUADRATIC  
FILTER  
#3  
@13  
@14  
@15  
@16  
@17  
@23  
@33  
GROUND  
POWER  
#3  
COMP.  
#3  
LEVEL #3  
@01  
@02  
@03  
RX SIGNAL  
BIQUADRATIC  
@24  
@34  
POWER  
#4  
FILTER  
#4  
COMP.  
#4  
D5  
D6  
D7  
2
2
LEVEL #4  
BIQUADRATIC  
@25  
@35  
POWER  
#5  
TONEDET0  
FILTER  
#5  
COMP.  
#5  
LEVEL #5  
BIQUADRATIC  
@26  
@36  
POWER  
#6  
FILTER  
#6  
COMP.  
#6  
LEVEL #6  
BIQUADRATIC  
@27  
@37  
POWER  
#7  
FILTER  
#7  
COMP.  
#7  
LEVEL #7  
48/55  
ST75C50  
Figure G4 : Tone Detector Wiring Address (second half)  
BIQUADRATIC  
FILTER  
@18  
@28  
@38  
POWER  
#8  
#18  
COMP.  
#8  
LEVEL #8  
BIQUADRATIC @19  
@29  
@39  
POWER  
#9  
FILTER  
#19  
COMP.  
#9  
LEVEL #9  
BIQUADRATIC  
FILTER  
@1A  
@1B  
@2A  
@3A  
POWER  
#A  
#A  
COMP.  
#A  
LEVEL #A  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
BIQUADRATIC  
FILTER  
#B  
@2B  
@3B  
POWER  
#B  
COMP.  
#B  
LEVEL #B  
BIQUADRATIC @1C  
@2C  
@3C  
POWER  
#C  
FILTER  
#C  
COMP.  
#C  
LEVEL #C  
BIQUADRATIC @1D  
@2D  
@3D  
POWER  
#D  
TONEDET1  
FILTER  
#D  
COMP.  
#D  
LEVEL #D  
BIQUADRATIC @1E  
@2E  
@3E  
POWER  
#E  
FILTER  
#E  
COMP.  
#E  
LEVEL #E  
BIQUADRATIC  
FILTER  
#F  
@1F  
@2F  
@3F  
POWER  
#F  
COMP.  
#F  
LEVEL #F  
Figure G5 : Wiring Example  
@00  
@13  
@14  
@15  
BIQUADRATIC  
FILTER  
#3  
@23  
POWER  
#3  
GROUND  
COMP.  
#3  
@33  
LEVEL #3  
@01  
RX SIGNAL  
@24  
@34  
BIQUADRATIC  
FILTER  
#4  
POWER  
#4  
D3  
D4  
@02  
@03  
COMP.  
#4  
2
2
LEVEL #4  
D5  
@25  
@35  
BIQUADRATIC  
FILTER  
#5  
TONEDET0  
POWER  
#5  
COMP.  
#5  
LEVEL #5  
49/55  
ST75C50  
APPENDIX H : BUFFER OPERATIONS  
I - INTRODUCTION  
number of valid bytes to be transmitted (up to 8 per  
buffer).  
This appendixis dedicatedto the buffer operations,  
either the data buffers, used either in data ex-  
changes or the symbol buffer operationsdedicated  
to bulk delay management.  
The first part is oriented towards a functional de-  
scription of the buffer operations, while the second  
section is more oriented towards the management  
of the buffers.  
Each time the transmit expander has emptied a  
buffer, the IT2 interrupt is raised.  
Figure H2 : Tx Buffer Schematics  
IT2  
ERR_Tx  
TRANSMITTER  
STATUS DATA  
clear  
TO TRANSMITTER  
II - RECEIVE OPERATIONS OVERVIEW  
Tx_BUFF_STATUS  
Figure H1 describes the receive data flow.  
TRANSMIT  
EXPANDER  
Figure H1 : Rx Buffer Schematics  
Tx_BUFF_DATA  
IT3  
RECEIVER  
STATUS  
ERR_Rx  
TRANSMIT FORMAT  
RECEIVE  
Rx_BUFF_STATUS  
Rx_BUFF_DATA  
DATA TO  
TRANSMITTER  
TxD  
SERIALIN  
MUX  
RECEIVE  
COMPANDER  
DATA FROM  
RECEIVER  
TxCLK  
IV - BUFFER STATUS AND FORMAT  
DESCRIPTION  
RECEIVE FORMAT  
SERIAL OUT  
RxD  
RxCLK  
The following section describes the meaning and  
use of the buffer status words.  
The ST75C50 uses parallel synchronous data.  
8 bit words are synchronously available in the  
receive buffers. The buffer status holds the num-  
bers of valid bytes received.  
Each time the receive compander has filled up a  
new buffer, it sets the corresponding flag with the  
proper status then generatesthe IT3 interrupt. The  
availability of the buffers is tested just before start-  
ing to fill them. This means that the host must not  
perform any buffer operation on the data part while  
the statusremains 0.  
IV.1 - Transmit buffer  
The transmit buffer status words are DTTBS0 and  
DTTBS1 (see the Host Interface Summary section  
in the main document) and are more likely to be  
seen as control words. These flags must be set by  
the host and are reset by the ST75C50. The data  
buffer exchanges being synchronized through  
these status words, an improper setting will trigger  
the error Err_Tx in the error status SYSERR. A  
value of 0 for DTTBS0 or DTTBS1 means that the  
corresponding buffers are empty : this value is  
written by the ST75C50. The unused bits of  
DTTBSx must be set to 0 by the host.  
III - TRANSMIT OPERATIONS OVERVIEW  
Figure H2 describes the transmit data flow.  
Field  
BUFF_LENG 3..0  
Pos. Val.  
8..1  
Description  
Number of valid bytes  
in the buffer  
The ST75C50 uses parallel synchronous data.  
8 bit words are synchronously read from the trans-  
mit buffers. The transmit status buffer holds the  
50/55  
ST75C50  
IV.2 - Receive buffer  
symbols needed are 1.5 2400 (3600 bytes). If we  
say that the base address is, for example,  
0x4230 the top address must be 0x503F  
(= 0x4230 + 3600 - 1).  
According to the current round trip delay, the  
ST75C50 computes the address of the symbols  
required for the far end echo computation. This  
address is computed (as the previous one) accord-  
ing to a circular addressing scheme inside the  
base .. top address space.  
The symbol bufferstatus SYSSTAis then set to FF  
and theIT1 interrupt israised. The hostshould then  
perform the following operations in sequence :  
1) read the address SYMADR[0..1] of the target  
location for the symbols,  
The receive buffer status words are DTRBS0 and  
DTRBS1 (see the Host Interface Summary section  
in the main document). These flags are set by the  
ST75C50 and must be reset by the host. The data  
buffer exchanges being synchronized through  
these status words, an improper resetting will trig-  
ger theerror Err_Rx in the error status SYSERR. A  
value of 0 for DTRBS0 or DTRBS1 means that the  
corresponding buffers are empty : this value must  
be written by the host.  
Field  
Pos. Val.  
Description  
8..1 Number of valid bytes  
in the buffer  
BUFF_LENG  
3..0  
2) read SYMBU[0..7], the corresponding  
symbols, and store them at the addressed  
lolcation (8 symbols),  
3) read the addressSYMADT[0..1] ofthe symbols  
required by the ST75C50,  
V - DATA BUFFER MANAGEMENT  
In the transmit path, the data buffer exchanges  
should always begin with the filling of buffer 0, then  
with the update of the buffer 0 status word. The  
initiation ofthedata exchangesis initiatedthen with  
the XMIT command.  
4) fetch the required 8 symbols and store them in  
the SYMBUF[0..7] array,  
5) write the proper status word (00) in SYMSTA.  
VI - BULK DELAY MANAGEMENT  
The ST75C50 meanwhilepools for the status word  
to be 00, then stores the symbols inside its own  
memory space for processing and sets the status  
word to its idle value FF.  
The processing of the bulk delay uses a simplified  
buffer exchange scheme. Each time the ST75C50  
has internally buffered enough symbols, it writes  
them inside the symbol buffer area, then computes  
the address inside the host space where these  
symbols should be written. This address is a rela-  
tive address inside the host data space, allowing  
thus the host to dispose this area themost conven-  
ient way. The target address is located in the SY-  
MADR[0..1] registers under a 16-bit form.  
These addresses must be defined by the user  
using the BULK command. It can be any valid 16  
bit number assuming th e base addre ss  
(BA_ADDR) is on a 8 byte boudary and the top  
address (TO_ADDR) is higher and on a 8 byte  
boundary minus 1.  
VI.1 - Status Word  
The status word SYSSTA can have the following  
values :  
Field  
Pos.  
Val.  
Description  
SYSTA  
7..0  
00  
Symbol buffer owned by  
the DSP  
Symbol buffer owned by  
the host  
FF  
VI.2 - Interrupt  
Each time a symbol buffer is processed by the  
ST75C50 an IT1 interrupt is generated. The host  
has an 8 symbols time (3.3ms) to process this  
interrupt otherwise an error occurs that will be  
signaled into the SYSERR bit 2 ERR_SYM.  
Eg : if we want to be able to cancel a 2 satellites  
Round trip delay we must have a bulk delay bigger  
than 2 times 560ms, lets say 1.5 seconds. The  
51/55  
ST75C50  
PACKAGE MECHANICAL DATA  
44 PINS - PLASTIC QUAD FLAT PACK (THIN)  
A
A2  
A1  
e
11  
1
12  
44  
22  
34  
23  
33  
C
E2  
E1  
E
K
Millimeters  
Typ.  
Inches  
Typ.  
Dimensions  
Min.  
Max.  
Min.  
Max.  
A
A1  
A2  
B
1.60  
0.063  
0.25  
1.40  
0.01  
1.35  
0.35  
1.45  
0.50  
0.053  
0.014  
0.055  
0.057  
0.020  
0.007  
0.640  
0.555  
C
0.17  
D
15.75  
13.90  
16.00  
14.00  
10.00  
1.00  
16.25  
14.10  
0.620  
0.547  
0.630  
0.551  
0.394  
0.039  
0.630  
0.551  
0.394  
0.063  
D1  
D2  
e
E
15.75  
13.90  
16.00  
14.00  
10.00  
1.60  
16.25  
14.10  
0.620  
0.547  
0.640  
0.555  
E1  
E2  
F
K
0o (min.), 7o (max.)  
0.75 0.018  
L
0.45  
0.60  
0.024  
0.030  
52/55  
ST75C50  
PACKAGE MECHANICAL DATA (continued)  
80 PINS - PLASTIC QUAD FLAT PACK (THIN)  
A
A2  
A1  
B
PIN 1  
80  
61  
IDENTIFICATION  
1
60  
20  
41  
C
21  
40  
E3  
E1  
E
Gage plane  
0.25 mm  
K
mm  
inches  
Typ  
Dim.  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
B
1.60  
0.15  
1.45  
0.38  
0.20  
0.063  
0.006  
0.057  
0.014  
0.008  
0.05  
1.35  
0.22  
0.09  
0.002  
0.053  
0.010  
0.004  
1.40  
0.32  
0.055  
0.012  
C
D
16.00  
14.00  
12.35  
0.80  
0.630  
0.551  
0.486  
0.0314  
0.630  
0.551  
0.486  
0.024  
0.039  
D1  
D3  
e
E
16.00  
14.00  
12.35  
0.60  
E1  
E3  
L
0.45  
0.75  
0.020  
0.030  
L1  
K
1.00  
0o (min.), 7o (max.)  
53/55  
ST75C50  
PACKAGE MECHANICAL DATA (continued)  
80 PINS - PLASTIC QUAD FLAT PACK  
A
A2  
B
A1  
PIN 1  
80  
65  
IDENTIFICATION  
1
61  
24  
41  
C
25  
40  
E3  
E1  
E
Gage plane  
0.25 mm  
K
mm  
inches  
Typ  
Dim.  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
B
3.40  
0.134  
0.25  
2.55  
0.010  
0.100  
0.011  
0.005  
0.903  
0.785  
2.80  
3.05  
0.45  
0.110  
0.120  
0.018  
0.009  
0.923  
0.789  
0.30  
C
0.13  
0.23  
D
22.95  
19.90  
23.20  
20.00  
18.40  
0.80  
23.45  
20.10  
0.913  
0.787  
0.724  
0.0314  
0.677  
0.551  
0.472  
0.031  
0.063  
D1  
D3  
e
E
16.95  
13.90  
17.20  
14.00  
12.00  
0.80  
17.45  
14.10  
0.667  
0.547  
0.687  
0.555  
E1  
E3  
L
0.65  
0.95  
0.026  
0.037  
L1  
K
1.60  
0o (min.), 7o (max.)  
54/55  
ST75C50  
PACKAGE MECHANICAL DATA (continued)  
160 PINS - PLASTIC QUAD FLAT PACK  
mm  
inches  
Typ  
Dim.  
Min  
Typ  
Max  
Min  
Max  
A
A1  
A2  
B
4.07  
0.160  
0.25  
3.17  
0.010  
0.125  
0.008  
1.218  
1.098  
3.42  
3.67  
0.38  
0.135  
0.145  
0.015  
1.238  
1.106  
0.22  
D
30.95  
27.90  
31.20  
28.00  
25.35  
0.65  
31.45  
28.10  
1.228  
1.102  
0.998  
0.0256  
1.228  
1.102  
0.998  
0.031  
0.063  
D1  
D3  
e
E
30.95  
27.90  
31.20  
28.00  
25.35  
0.80  
31.45  
28.10  
1.218  
1.098  
1.238  
1.106  
E1  
E3  
L
0.65  
0.95  
0.026  
0.037  
L1  
K
1.60  
0o (min.), 7o (max.)  
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility  
for the consequences of use of suchinformation nor for any infringement of patents or other rights of third parties which may result  
from its use. No licence is granted by implication or otherwiseunder anypatent or patent rights of SGS-THOMSON Microelectronics.  
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all  
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life  
support devices or systems without express written approval of SGS-THOMSON Microelectronics.  
1993 SGS-THOMSON Microelectronics - All Rights Reserved  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco  
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - United Kingdom - U.S.A.  
55/55  

相关型号:

ST75C501CQFP

14.4kbps FAX, MODEM, PQFP80, PLASTIC, TQFP-80
STMICROELECTR

ST75C502CQFP

DSP For MODEM
ETC

ST75C520

HIGH SPEED FAX MODEM DATA PUMP
STMICROELECTR

ST75C520PQFP

HIGH SPEED FAX MODEM DATA PUMP
STMICROELECTR

ST75C52PQFP

DSP For MODEM
ETC

ST75C530

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C530FP-A

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C530PQFP

Telecommunication IC
ETC

ST75C530TQFP

暂无描述
STMICROELECTR

ST75C540

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C540FP-A

SUPER INTEGRATED DEVICESWITH DSP, AFE & MEMORIES FORTELEPHONY,MODEM, FAXOVERINTERNET& POTSLINES
STMICROELECTR

ST75C540PQFP

Telecommunication IC
ETC