STA516BE13TR [STMICROELECTRONICS]

HALF BRIDGE BASED PRPHL DRVR;
STA516BE13TR
型号: STA516BE13TR
厂家: ST    ST
描述:

HALF BRIDGE BASED PRPHL DRVR

驱动 接口集成电路
文件: 总20页 (文件大小:448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STA516BE  
500 W FFX digital amplifier power stage  
Datasheet - production data  
EMI compliant when used with  
recommended system design  
Automatic recovery mode after fault  
conditions  
Applications  
Home theater  
DVD receiver  
Mini / Micro Audio systems  
Description  
STA516BE is a monolithic quad half-bridge stage  
in Multipower BCD Technology. The device can  
be used as dual bridge or reconfigured, by  
connecting pin CONFIG to pins VDD, as a single  
bridge with double-current capability or as a half  
bridge (binary mode) with half-current capability.  
Features  
Output Power at 56 V supply voltage  
2 x 250 W at 10% THD + N into 6 Ω  
BTL  
A cost-effective, high fidelity audio system can be  
designed using ST chipset, including a modulator  
(e.g. STA309A or STA321) and the STA516BE.  
This system only requires a simple passive LC  
demodulation filter to deliver high-quality, high  
efficiency audio amplification with prove EMI  
compliance. The efficiency of this digital amplifier  
is greater than 90% into 8 Ω speakers, enabling  
the use of smaller power supplies and heatsinks.  
2 x 200 W at 10% THD + N into 8 Ω  
BTL  
4 x 130 W at 10% THD + N into 3 Ω SE  
4 x 100 W at 10% THD + N into 4 Ω SE  
1 x 480 W at 10% THD + N into 3 Ω  
PBTL  
1 x 380 W at 10% THD + N into 2 Ω  
PBTL  
Output Power at 52 V supply voltage  
The STA516BE has an innovative integrated  
protection system, safeguarding the device  
against different fault conditions that could  
damage the overall system.  
2 x 200 W at 10% THD + N into 6 Ω  
BTL  
4 x 100 W at 10% THD + N into 3 Ω SE  
1 x 400 W at 10% THD + N into 2 Ω  
PBTL  
Table 1: Device summary  
< 0.1% THD + N at 1 W  
Part number  
Temperature  
range  
Package  
Packing  
PSO-36 thermally enhanced package  
Minimum input / output pulse width distortion  
High efficiency power stage (> 90%) with  
190 mΩ RdsON  
STA516BE13TR  
0 to 90 °C  
PowerSO36  
EPU  
Tape and  
reel  
CMOS compatible logic inputs  
Integrated self protection circuits including  
overtemperature, undervoltage, overvoltage,  
overload, short-circuit  
April 2014  
DocID026166 Rev 1  
1/20  
www.st.com  
This is information on a product in full production.  
Contents  
STA516BE  
Contents  
1
2
3
General information ........................................................................3  
Pin description ................................................................................4  
Electrical characteristics ................................................................6  
3.1  
Test circuits.......................................................................................9  
4
5
Power supply and control sequencing ........................................10  
Technical information ...................................................................12  
5.1  
5.2  
5.3  
5.4  
5.5  
Logic interface and decode.............................................................12  
Protection circuitry...........................................................................13  
Power outputs .................................................................................13  
Parallel output / high current operation ...........................................13  
Output filtering.................................................................................13  
6
7
8
Audio application circuits.............................................................14  
Package mechanical data .............................................................16  
Revision history ............................................................................19  
2/20  
DocID026166 Rev 1  
STA516BE  
General information  
1
General information  
The STA516BE is a second generation, high performance, integrated stereo digital  
amplifier power stage with improved protection system. It is capable of driving a 6 W bridge  
tied load (BTL) at up 250 W per channel with very low noise at the output, low THD+N and  
low idle power dissipation.  
The STA516BE is available in PowerSO-36 slug up package.  
The package contains a heat slug that is located on the top side of the device for  
convenient thermal coupling to the heatsink.  
DocID026166 Rev 1  
3/20  
 
Pin description  
STA516BE  
2
Pin description  
Figure 1: Pin out  
VCC_SIGN  
VCC_SIGN  
VSS  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
SUB_GND  
OUT2B  
OUT2B  
VCC2B  
GND2B  
GND2A  
VCC2A  
OUT2A  
OUT2A  
OUT1B  
OUT1B  
VCC1B  
GND1B  
GND1A  
VCC1A  
OUT1A  
OUT1A  
N.C.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
VSS  
IN2B  
IN2A  
IN1B  
STA516BE  
IN1A  
TH_WARN  
FAULT  
TRISTATE  
PWRDN  
CONFIG  
VL  
VDD  
VDD  
GND_REG  
GND_CLEAN  
Table 2: Pin function  
Pin  
Name  
GND_SUB  
OUT2B  
VCC2B  
GND2B  
GND2A  
VCC2A  
OUT2A  
OUT1B  
Type  
PWR Substrate ground  
Output half bridge 2B  
Description  
1
2, 3  
4
O
PWR Positive supply  
PWR Negative supply  
PWR Negative supply  
PWR Positive supply  
5
6
7
8, 9  
O
O
Output half bridge 2A  
Output half bridge 1B  
10,  
11  
12  
13  
14  
15  
VCC1B  
GND1B  
GND1A  
VCC1A  
OUT1A  
PWR Positive supply  
PWR Negative supply  
PWR Negative supply  
PWR Positive supply  
16,  
17  
O
Output half bridge 1A  
18  
19  
20  
N.C.  
-
No internal connection  
GND_CLEAN PWR Logical ground  
GND_REG  
VDD  
PWR Ground for regulator VDD  
PWR 5-V regulator referred to ground  
21,  
22  
23  
24  
VL  
PWR High logical state setting voltage, VL  
CONFIG  
I
Configuration pin:  
0: normal operation  
4/20  
DocID026166 Rev 1  
 
STA516BE  
Pin description  
Pin  
Name  
PWRDN  
Type  
Description  
1: bridges in parallel (OUT1A = OUT1B, OUT2A = OUT2B (If IN1A  
= IN1B, IN2A = IN2B))  
25  
I
Standby pin:  
0: low-power mode  
1: normal operation  
26  
27  
28  
TRISTATE  
FAULT  
I
Hi-Z pin:  
0: all power amplifier outputs in high impedance state  
1: normal operation  
O
O
Fault pin advisor (open-drain device, needs pull-up resistor):  
0: fault detected (short circuit or thermal, for example)  
1: normal operation  
TH_WARN  
Thermal warning advisor (open-drain device, needs pull-up resistor):  
0: temperature of the IC >130 °C  
1: normal operation  
29  
30  
31  
32  
IN1A  
IN1B  
IN2A  
IN2B  
VSS  
I
I
I
I
Input of half bridge 1A  
Input of half bridge 1B  
Input of half bridge 2A  
Input of half bridge 2B  
33,  
34  
PWR 5-V regulator referred to +VCC  
35,  
36  
VCC_SIGN  
PWR Signal positive supply  
DocID026166 Rev 1  
5/20  
Electrical characteristics  
STA516BE  
3
Electrical characteristics  
Table 3: Absolute maximum ratings  
Symbol  
VCC_MAX  
Vmax  
Parameter  
Value  
Unit  
V
DC supply voltage (pins 4, 7, 12, 15)  
65  
Maximum voltage on pins 23 to 32  
Operating junction temperature  
Storage temperature  
5.5  
V
Tj_MAX  
Tstg  
0 to 150  
°C  
°C  
-40 to 150  
Stresses beyond those listed under “Absolute maximum ratings” make cause  
permanent damage to the device. These are stress ratings only, and functional  
operation of the device at these or any other conditions beyond those indicated  
under “Recommended operating condition” are not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. In  
the real application, power supply with nominal value rated inside recommended  
operating conditions, may experience some rising beyond the maximum operating  
condition for short time when no or very low current is sinked (amplifier in mute  
state). In this case the reliability of the device is guaranteed, provided that the  
absolute maximum rating is not exceeded.  
Table 4: Thermal data  
Symbol  
Tj-case  
Twarn  
TjSD  
Parameter  
Min  
Typ  
Max  
2.5  
Unit  
°C/W  
°C  
Thermal resistance junction to case (thermal pad)  
Thermal warning temperature  
-
-
-
-
1
130  
150  
25  
-
-
-
Thermal shut-down junction temperature  
Thermal shut-down hysteresis  
°C  
thSD  
°C  
Table 5: Recommended operating conditions  
Symbol  
VCC  
Parameter  
Min  
10  
Typ  
Max  
60  
90  
Unit  
V
Supply voltage for pins PVCCA, PVCCB  
Ambient operating temperature  
-
-
Tamb  
0
°C  
Unless otherwise stated, the test conditions for Table 6: "Electrical characteristics " below  
are VL = 3.3 V, VCC = 50 V and Tamb = 25 °C  
Table 6: Electrical characteristics  
Symbol  
Parameter  
Test conditions  
Idd = 1 A  
Min  
Typ  
Max  
Unit  
RdsON  
Power P-channel/N-  
-
190 240  
mΩ  
channel MOSFET RdsON  
Idss  
gN  
Power P-channel/N-  
channel leakage Idss  
-
-
-
-
50  
-
µA  
%
Power P-channel RdsON  
matching  
Idd = 1 A  
95  
6/20  
DocID026166 Rev 1  
 
 
STA516BE  
Electrical characteristics  
Symbol  
Parameter  
Test conditions  
Idd = 1 A  
Min  
Typ  
Max  
Unit  
gP  
Power N-channel RdsON  
matching  
95  
-
-
%
Dt_s  
Dt_d  
Low current dead time  
(static)  
see Figure 2: "Test  
circuit"  
-
10  
-
20  
50  
ns  
ns  
High current dead time  
(dynamic)  
L = 22 µH, C = 470 nF  
RL = 8 Ω, Idd = 4.5 A  
see Figure 3: "Current  
dead-time test circuit"  
-
td ON  
td OFF  
tr  
Turn-on delay time  
Turn-off delay time  
Rise time  
Resistive load  
Resistive load  
Resistive load  
-
-
-
-
-
-
100  
100  
25  
ns  
ns  
ns  
see Figure 2: "Test  
circuit"  
tf  
Fall time  
Resistive load  
-
-
-
25  
ns  
see Figure 2: "Test  
circuit"  
VIN-High  
VIN-Low  
High level input voltage  
Low level input voltage  
-
-
-
VL / 2 +  
300 mV  
V
V
-
VL / 2 -  
-
300 mV  
IIN-H  
High level input current  
Low level input current  
VIN = VL  
-
-
-
1
-
-
-
µA  
µA  
µA  
IIN-L  
VIN = 0.3 V  
VL = 3.3 V  
1
IPWRDN-H  
High level PWRDN pin  
input current  
35  
VLow  
VHigh  
IVCC-  
Low logical state voltage  
VL = 3.3 V  
0.8  
-
-
V
(pins PWRDN,  
TRISTATE) (seeTable 7:  
"Threshold switching  
voltage variation with  
voltage on pin VL")  
High logical state voltage  
VL = 3.3 V  
1.7  
V
(pins PWRDN,  
TRISTATE) (seeTable 7:  
"Threshold switching  
voltage variation with  
voltage on pin VL")  
Supply current from VCC in VPWRDN = 0 V  
-
-
-
2.4  
-
mA  
mA  
PWRDN power down  
IFAULT  
Output current on pins  
Vpin = 3.3 V  
1
FAULT, TH_WARN with  
fault condition  
IVCC-HiZ  
IVCC  
Supply current from VCC in VTRISTATE = 0 V  
tristate  
-
-
22  
70  
-
-
mA  
mA  
Supply current from VCC in Input pulse width  
operation, both channels  
switching)  
= 50% duty,  
switching frequency  
= 384 kHz,  
no LC filters  
DocID026166 Rev 1  
7/20  
Electrical characteristics  
Symbol  
STA516BE  
Parameter  
Test conditions  
Min  
8.5  
Typ  
Max  
11  
Unit  
IOCP  
Overcurrent protection  
threshold Isc (short-circuit  
current limit) (1)  
-
9.5  
A
VUVP  
VOVP  
tpw_min  
Undervoltage protection  
threshold  
-
-
-
7
-
V
Overvoltage protection  
threshold  
61  
50  
62.5  
-
V
Output minimum pulse  
width  
No load  
110  
ns  
Notes:  
(1)See specific application note number: AN1994  
Table 7: Threshold switching voltage variation with voltage on pin VL  
Voltage on pin VL, VL VLOW max VHIGH min  
Unit  
2.7  
3.3  
5.0  
1.05  
1.4  
1.65  
1.95  
2.8  
V
V
V
2.2  
Table 8: Logic truth table  
Pin  
TRISTATE  
Inputs as per Figure 3:  
"Current dead-time test  
circuit"  
Transistors as per Figure 3:  
"Current dead-time test circuit"  
Output  
mode  
INxA  
INxB  
Q1  
Off  
Q2  
Off  
Q3  
Off  
Q4  
Off  
0
x
0
0
1
1
x
0
1
0
1
Hi Z  
1
1
1
1
Off  
Off  
On  
On  
Off  
On  
Off  
On  
On  
On  
Off  
Off  
On  
Off  
On  
Off  
Dump  
Negative  
Positive  
Not used  
8/20  
DocID026166 Rev 1  
 
 
STA516BE  
Electrical characteristics  
3.1  
Test circuits  
Figure 2: Test circuit  
OUTxY  
Vcc  
(3/4)Vcc  
Low current dead time = MAX(DTr, DTf)  
(1/2)Vcc  
(1/4)Vcc  
+Vcc  
t
DTr  
DTf  
Duty cycle = 50%  
INxY  
M58  
M57  
OUTxY  
R 8  
+
-
V67 =  
vdc = Vcc/2  
gnd  
D03AU1458  
Figure 3: Current dead-time test circuit  
High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))  
+VCC  
Duty cycle=A  
Duty cycle=B  
DTout(A)  
M58  
M64  
M63  
Q1  
OUTxA  
Iout=4.5A  
Q2  
Q4  
DTin(A)  
INxA  
DTout(B)  
DTin(B)  
INxB  
Rload=8W  
C71 470nF  
OUTxB  
L67 22m  
L68 22m  
Iout=4.5A  
M57  
Q3  
C69  
470nF  
C70  
470nF  
Duty cycle A and B: Fixed to have DC output current of 4.5A in the direction shown in figure  
D00AU1162  
DocID026166 Rev 1  
9/20  
 
 
 
Power supply and control sequencing  
STA516BE  
4
Power supply and control sequencing  
To guarantee correct operation and reliability, the recommended power-on sequence as  
given below should be followed:  
Apply VCC and VL, in any order, keeping PWRDN low in this phase  
Release PWRDN from low to high, keeping TRISTATE low (until VDD and VSS are  
stable)  
Release TRISTATE from low to high  
Always maintain PWM inputs INxy < VL.  
Figure 4: Power-ON sequence  
VCC should be turned on before VL. This prevents uncontrolled current flowing through the  
internal protection diode connected between VL (logic supply) and VCC (high power supply).  
which could result in damage to the device.  
PWRDN must be released after VL is switched on. An input signal can then be sent to the  
power stage.  
10/20  
DocID026166 Rev 1  
 
STA516BE  
Power supply and control sequencing  
Figure 5: Power-OFF sequence  
DocID026166 Rev 1  
11/20  
Technical information  
STA516BE  
5
Technical information  
The STA516BE is a dual channel H-bridge that is able to deliver 200 W per channel (into  
RL = 6 W with THD = 10% and VCC = 51V) of audio output power very efficiently. It operates  
in conjunction with a pulse-width modulator driver such as the STA321 or STA309A.  
The STA516BE converts ternary, phase-shift or binary-controlled PWM signals into audio  
power at the load. It includes a logic interface, integrated bridge drivers, high efficiency  
MOSFET outputs and thermal and short-circuit protection circuitry.  
In differential mode (ternary, phase-shift or binary differential), two logic level signals per  
channel are used to control high-speed MOSFET switches to connect the speaker load to  
the input supply or to ground in a bridge configuration, according to the damped ternary  
modulation operation.  
In binary mode, both full bridge and half bridge modes are supported. The STA516BE  
includes overcurrent and thermal protection as well as an undervoltage lockout with  
automatic recovery. A thermal warning status is also provided.  
Figure 6: Block diagram of full-bridge FFX® or binary mode  
INL[1,2]  
INR[1,2]  
VL  
Logic  
OUTPL  
OUTNL  
interface  
and  
decode  
Left  
H-bridge  
PWRDN  
TRISTATE  
OUTPR  
OUTNR  
FAULT  
Protection  
Regulators  
Right  
H-bridge  
THWARN  
Figure 7: Block diagram of binary half-bridge mode  
INL[1,2]  
INR[1,2]  
VL  
LeftA  
Logic  
OUTP L  
OUTN L  
½-bridge  
interface  
and  
PWRDN  
TRISTATE  
LeftB  
decode  
½-bridge  
RightA  
½-bridge  
OUTP R  
OUTN R  
FAULT  
Protection  
Regulators  
THWARN  
RightB  
½-bridge  
5.1  
Logic interface and decode  
The STA516BE power outputs are controlled using one or two logic-level timing signals. In  
order to provide a proper logic interface, the VL input must operate at the same voltage as  
the FFX control logic supply.  
12/20  
DocID026166 Rev 1  
 
 
STA516BE  
Technical information  
5.2  
Protection circuitry  
The STA516BE includes protection circuitry for overcurrent and thermal overload  
conditions. A thermal warning pin (THWARN, pin 28, open drain MOSFET) is activated low  
when the IC temperature exceeds 130 °C, just in advance of thermal shutdown. When a  
fault condition is detected an internal fault signal immediately disables the output power  
MOSFETs, placing both H-bridges in a high-impedance state. At the same time the  
opendrain MOSFET of pin FAULT (pin 27) is switched on.  
There are two possible modes subsequent to activating a fault.  
Shutdown mode: with pins FAULT (with pull-up resistor) and TRISTATE separate, an  
activated fault disables the device, signaling a low at pin FAULT output.  
The device may subsequently be reset to normal operation by toggling pin TRISTATE  
from high to low to high using an external logic signal.  
Automatic recovery mode: This is shown in the applications circuits below where  
pins FAULT and TRISTATE are connected together to a timeconstant circuit (R59 and  
C58).  
An activated fault forces a reset on pin TRISTATE causing normal operation to  
resume following a delay determined by the time constant of the circuit.  
If the fault condition persists, the circuit operation repeats until the fault condition is  
cleared.  
An increase in the time constant of the circuit produces a longer recovery interval.  
Care must be taken in the overall system design not to exceed the protection  
thresholds under normal operation.  
5.3  
5.4  
Power outputs  
The STA516BE power and output pins are duplicated to provide a low-impedance path for  
the device bridged outputs. All duplicate power, ground and output pins must be connected  
for proper operation.  
The PWRDN or TRISTATE pin should be used to set all power MOSFETs to the  
highimpedance state during power-up until the logic power supply, VL, has settled.  
Parallel output / high current operation  
When using the FFX mode output, the STA516BE outputs can be connected in parallel in  
order to increase the output current capability to a load. In this configuration the STA516BE  
can provide up to 240 W into a 3 Ω load.  
This mode of operation is enabled with the pin CONFIG (pin 24) connected to pin VDD.  
The inputs are joined so that IN1A = IN1B, IN2A = IN2B and similarly the outputs  
OUT1A = OUT1B, OUT2A = OUT2B as shown in Figure 9: "Typical Mono-BTL (PBTL)  
configuration".  
5.5  
Output filtering  
A passive 2nd-order filter is used on the STA516BE power outputs to reconstruct the  
analog audio signal. System performance can be significantly affected by the output filter  
design and choice of passive components. A filter design for 6 or 8 Ω loads is shown in the  
application circuit of Figure 8: "Typical Audio Application circuit (dual BTL)", and for 3 or 4  
Ω loads in Figure 9: "Typical Mono-BTL (PBTL) configuration" and Figure 10: "Typical quad  
half-bridge configuration (Quad Single Ended)".  
DocID026166 Rev 1  
13/20  
 
 
 
 
Audio application circuits  
STA516BE  
6
Audio application circuits  
Figure 8: "Typical Audio Application circuit (dual BTL)" shows a stereo-BTL configuration  
capable of giving 210 W per channel into a 6 Ω load at 10% THD with VCC = 52 V. This  
result was obtained using the STA309A+STA516B demo board.  
Figure 8: Typical Audio Application circuit (dual BTL)  
+VCC  
V
CC 1A  
15  
17  
16  
C30  
1mF  
C55  
1000 mF  
IN1A  
29  
M3  
M2  
M5  
M4  
IN1A  
L18 22 mH  
V
L
23  
24  
+3.3V  
OUT1A  
OUT1A  
C20  
100nF  
CONFIG  
C52  
PWRDN  
PWRDN  
FAULT  
25  
C99  
100nF  
14  
12  
GND1A  
R98  
6
330pF  
PROTECTIONS  
R57  
10K  
R59  
10K  
27  
26  
&
C23  
470nF  
C101  
8W  
LOGIC  
VCC 1B  
R63  
20  
R100  
6
TRI-STATE  
C58  
100nF  
C31  
1mF  
100nF  
11  
10  
C21  
100nF  
TH_WAR  
IN1B  
28  
30  
OUT1B  
OUT1B  
GND1B  
TH_WAR  
L19 22 mH  
IN1B  
VDD  
VDD  
VSS  
VSS  
21  
22  
33  
34  
13  
7
REGULATORS  
V
CC 2A  
C32  
1mF  
M17  
M15  
M16  
M14  
C58  
100nF  
C53  
100nF  
L113 22 mH  
V
CC SIGN  
8
9
35  
OUT2A  
OUT2A  
C60  
100nF  
C110  
100nF  
VCC SIGN  
36  
31  
20  
19  
C109  
330pF  
C107  
100nF  
6
4
GND2A  
R103  
6
IN2A  
IN2A  
C108  
470nF  
C106  
100nF  
8W  
GND-Reg  
V
CC 2B  
R104  
20  
R102  
6
GND-Clean  
C33  
1mF  
3
2
C111  
OUT2B  
OUT2B  
GND2B  
100nF  
IN2B  
IN2B  
32  
1
L112 22 mH  
GNDSUB  
5
D00AU1148B  
Figure 9: "Typical Mono-BTL (PBTL) configuration" below shows a single-BTL configuration  
capable of giving 400 W into a 3 Ω load at 10% THD with VCC = 52 V. STA516BE can also  
drive 2 Ω speakers as single-BTL configuration, to provide up to 280 W per channel at  
10% THD with VCC = 37 V.  
Figure 10: "Typical quad half-bridge configuration (Quad Single Ended)" below shows a  
quad-SE configuration capable of giving 110 W into a 3 Ω load at 10% THD with VCC = 54  
V. STA516BE can also drive 2 Ω speakers as quad-SE configuration, to provide up to 80 W  
per channel at 10% THD with VCC = 38 V.  
All results were obtained using the STA309A+STA516B demo board. Note that a PWM  
modulator as driver is required to feed the STA516BE.  
14/20  
DocID026166 Rev 1  
 
 
STA516BE  
Audio application circuits  
Figure 9: Typical Mono-BTL (PBTL) configuration  
V
L
+3.3V  
23  
18  
N.C.  
12 mH  
100nF  
GND-Clean  
GND-Reg  
17  
16  
OUT1A  
OUT1A  
19  
20  
100nF  
FILM  
11  
10  
100nF  
X7R  
10K  
100nF  
X7R  
OUT1B  
OUT1B  
OUT2A  
OUT2A  
22 W  
1/2W  
6.2  
1/2W  
VDD  
VDD  
21  
22  
24  
680nF  
FILM  
100nF  
4W  
6.2  
1/2W  
CONFIG  
9
8
330pF  
X7R  
+36V  
+36V  
TH_WAR  
PWRDN  
FAULT  
TH_WAR  
OUT2B  
OUT2B  
28  
25  
100nF  
FILM  
3
2
nPWRDN  
12 mH  
10K  
VCC1A  
27  
26  
15  
TRI-STATE  
IN1A  
1mF  
X7R  
2200 mF  
63V  
100nF  
V
CC1B  
29  
30  
31  
32  
12  
7
IN1B  
IN1A  
IN1B  
VCC2A  
IN2A  
IN2B  
1mF  
X7R  
VSS  
VSS  
VCC2B  
33  
34  
4
14  
13  
GND1A  
GND1B  
100nF  
X7R  
VCCSIGN  
35  
100nF  
X7R  
VCCSIGN  
GNDSUB  
GND2A  
GND2B  
36  
1
6
5
Add.  
D04AU1545  
Figure 10: Typical quad half-bridge configuration (Quad Single Ended)  
+VCC  
C21  
VCC1P  
15  
IN1A  
29  
M3  
M2  
M5  
M4  
R61  
5K  
2200mF  
IN1A  
C31 820mF  
L11 22mH  
17  
16  
V
L
23  
24  
+3.3V  
OUTPL  
C71  
100nF  
CONFIG  
PWRDN  
FAULT  
R41  
20  
C91  
1mF  
4W  
OUTPL  
PWRDN  
25  
C81  
100nF  
14  
12  
PGND1P  
R51  
6
R62  
5K  
C41  
330pF  
PROTECTIONS  
R57  
10K  
R59  
10K  
27  
26  
&
LOGIC  
VCC1N  
TRI-STATE  
C58  
100nF  
C51  
1mF  
C61  
100nF  
11  
10  
R63  
5K  
TH_WAR  
IN1B  
28  
30  
OUTNL  
C32 820mF  
L12 22mH  
TH_WAR  
OUTNL  
C72  
100nF  
R42  
20  
IN1B  
C92  
1mF  
4W  
VDD  
VDD  
VSS  
VSS  
21  
22  
33  
34  
13  
7
PGND1N  
C82  
100nF  
R52  
6
R64  
5K  
C42  
330pF  
REGULATORS  
VCC2P  
M17  
M15  
M16  
M14  
R65  
5K  
C58  
100nF  
C53  
100nF  
C33 820mF  
L13 22mH  
VCCSIGN  
VCCSIGN  
8
9
35  
OUTPR  
C60  
100nF  
C73  
100nF  
R43  
20  
C93  
1mF  
4W  
36  
31  
20  
19  
OUTPR  
C83  
100nF  
6
4
PGND2P  
R53  
6
R66  
5K  
IN2A  
IN2B  
C43  
330pF  
IN2A  
GND-Reg  
VCC2N  
GND-Clean  
C52  
1mF  
C62  
100nF  
3
2
R67  
5K  
OUTNR  
C34 820mF  
L14 22mH  
IN2B  
32  
1
OUTNR  
C74  
100nF  
R44  
20  
GNDSUB  
C94  
1mF  
4W  
5
PGND2N  
C84  
100nF  
R54  
6
R68  
5K  
C44  
330pF  
D03AU1474  
For more information, refer to the application note AN1994.  
DocID026166 Rev 1  
15/20  
 
 
Package mechanical data  
STA516BE  
7
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
16/20  
DocID026166 Rev 1  
 
STA516BE  
Package mechanical data  
Figure 11: PowerSO36 exposed pad up outline drawing  
DocID026166 Rev 1  
17/20  
Package mechanical data  
STA516BE  
Max  
Table 9: PowerSO36 exposed pad up dimensions  
mm  
Symbol  
inch  
Typ  
Min  
3.25  
3.10  
Typ  
Max  
Min  
0.128  
0.122  
0.031  
-
A
-
-
-
3.43  
3.20  
1.00  
-
-
-
-
0.135  
A2  
A4  
A5  
a1  
b
0.126  
0.039  
-
0.80  
-
0.20  
0.008  
0.03  
-
-0.04  
0.38  
0.32  
16.00  
9.80  
-
0.001  
0.009  
0.009  
0.622  
0.370  
-
-
-0.002  
0.015  
0.013  
0.630  
0.386  
-
0.22  
-
-
c
0.23  
-
-
D
15.80  
-
-
D1  
D2  
E
9.40  
-
-
-
1.00  
0.039  
13.90  
-
14.50  
11.10  
2.90  
6.20  
3.20  
-
0.547  
0.429  
-
-
0.571  
0.437  
0.114  
0.244  
0.126  
-
E1  
E2  
E3  
E4  
e
10.90  
-
-
-
-
-
5.80  
-
0.228  
0.114  
-
-
2.90  
-
-
-
0.65  
0.026  
e3  
G
-
11.05  
-
-
0.435  
-
0
-
0.08  
15.90  
1.10  
1.10  
2.60  
0
-
0.003  
0.626  
0.043  
0.043  
0.102  
10 degrees  
-
H
15.50  
-
0.610  
-
-
h
-
-
-
L
0.80  
-
0.031  
0.089  
-
-
M
N
2.25  
-
-
-
-
-
-
10 degrees  
-
-
R
0.6  
-
-
0.024  
-
s
8 degrees  
-
8 degrees  
18/20  
DocID026166 Rev 1  
STA516BE  
Revision history  
8
Revision history  
Table 10: Document revision history  
Revision  
Date  
Changes  
Initial release.  
02-Apr-2014  
1
DocID026166 Rev 1  
19/20  
 
STA516BE  
Please Read Carefully  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or  
services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third  
party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR  
IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT  
LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR  
EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR  
OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS  
LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY  
REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR  
(D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE,  
THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN  
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR  
"AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN  
SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN  
AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2014 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
20/20  
DocID026166 Rev 1  

相关型号:

STA516BETR

暂无描述
STMICROELECTR

STA516B_10

65-volt, 7.5-amp, quad power half bridge
STMICROELECTR

STA517A

General Purpose Sink Driver Array
ETC

STA517B

60 V 6 A quad power half bridge
STMICROELECTR

STA517B13TR

60 V 6 A quad power half bridge
STMICROELECTR

STA518

40V 3.5A quad power half bridge
STMICROELECTR

STA51813TR

40V 3.5A quad power half bridge
STMICROELECTR

STA521A

Power Field-Effect Transistor, 7A I(D), 200V, 0.48ohm, 4-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, STA, 10 PIN
SANKEN

STA529

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR

STA529B

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR

STA529Q

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR