STA516B_10 [STMICROELECTRONICS]

65-volt, 7.5-amp, quad power half bridge; 65伏, 7.5安培,四电源半桥
STA516B_10
型号: STA516B_10
厂家: ST    ST
描述:

65-volt, 7.5-amp, quad power half bridge
65伏, 7.5安培,四电源半桥

文件: 总17页 (文件大小:212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STA516B  
65-volt, 7.5-amp, quad power half bridge  
Features  
! Low input/output pulse-width distortion  
! 200 mR  
complementary DMOS output  
dsON  
stage  
! CMOS-compatible logic inputs  
! Thermal protection  
! Thermal warning output  
! Undervoltage protection  
PowerSO36 package  
with exposed pad up  
Description  
STA516B is a monolithic quad half-bridge stage in  
Multipower BCD Technology. The device can be  
used as dual bridge or reconfigured, by  
connecting pin CONFIG to pins VDD, as a single  
bridge with double-current capability or as a half  
bridge (binary mode) with half-current capability.  
The input pins have a threshold proportional to  
the voltage on pin VL.  
The STA516B is aimed at audio amplifiers in Hi-Fi  
applications, such as home theatre systems,  
active speakers and docking stations.  
The device is intended for the output stage of a  
stereo all-digital high-efficiency amplifier. It is  
capable of delivering 200 W + 200 W into 6-Ω  
It comes in a 36-pin PowerSO package with  
exposed pad up (EPU).  
loads with THD = 10% at V = 51 V or, in single  
CC  
BTL configuration, 400 W into a 3-load with  
THD = 10% at V = 52 V.  
CC  
Table 1.  
Order code  
STA516B  
STA516B13TR  
Device summary  
Temperature range  
0 to 90 °C  
0 to 90 °C  
Package  
Packaging  
PowerSO36 EPU  
PowerSO36 EPU  
Tube  
Tape and reel  
November 2010  
Doc ID 13183 Rev 4  
1/17  
www.st.com  
17  
Introduction  
STA516B  
1
Introduction  
The STA516B is a high performance quad half-bridge amplifier with the capability to drive up  
(a)  
to 220 W  
stereo into 3- to 8-ohm speakers from a single 50 V supply.  
It offers the highest flexibility since it can be configured as a stereo-BTL, as a mono-BTL or  
as four channels of single-ended outputs to fit different application requirements.  
It provides remarkably high levels of efficiency when driven by the FFX-patented 3-state  
pulse-width modulator embedded in STMs digital audio processors .  
The device is self-protected by design. Overcurrent, overtemperature, under- and  
overvoltage protection are provided with an automatic recovery feature to safeguard the  
device and speakers against fault conditions that could damage the overall system.  
a. The achievable output power depends on the thermal configuration of the final application.  
A high performance thermal interface material between the package exposed pad and the heat sink should be  
used in order to maximize output power levels  
2/17  
Doc ID 13183 Rev 4  
STA516B  
Pin description  
2
Pin description  
Figure 1.  
Pin out  
VCC_SIGN  
VCC_SIGN  
VSS  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
SUB_GND  
OUT2B  
OUT2B  
VCC2B  
GND2B  
GND2A  
VCC2A  
OUT2A  
OUT2A  
OUT1B  
OUT1B  
VCC1B  
GND1B  
GND1A  
VCC1A  
OUT1A  
OUT1A  
N.C.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
VSS  
IN2B  
IN2A  
IN1B  
STA516B  
IN1A  
TH_WARN  
FAULT  
TRISTATE  
PWRDN  
CONFIG  
VL  
VDD  
VDD  
GND_REG  
GND_CLEAN  
Table 2.  
Pin  
Pin function  
Name  
Type  
Description  
1
GND_SUB  
OUT2B  
VCC2B  
GND2B  
GND2A  
VCC2A  
OUT2A  
PWR  
O
Substrate ground  
Output half bridge 2B  
Positive supply  
2, 3  
4
PWR  
PWR  
PWR  
PWR  
O
5
Negative supply  
Negative supply  
Positive supply  
6
7
8, 9  
Output half bridge 2A  
Output half bridge 1B  
Positive supply  
10, 11 OUT1B  
O
12  
13  
14  
15  
VCC1B  
GND1B  
GND1A  
VCC1A  
PWR  
PWR  
PWR  
PWR  
O
Negative supply  
Negative supply  
Positive supply  
16, 17 OUT1A  
Output half bridge 1A  
No internal connection  
Logical ground  
18  
19  
20  
N.C.  
-
GND_CLEAN  
GND_REG  
PWR  
PWR  
PWR  
PWR  
Ground for regulator VDD  
5-V regulator referred to ground  
21, 22 VDD  
23 VL  
High logical state setting voltage, VL  
Doc ID 13183 Rev 4  
3/17  
Pin description  
STA516B  
Table 2.  
Pin  
Pin function (continued)  
Name Type  
Description  
Configuration pin:  
0: normal operation  
1: bridges in parallel (OUT1A = OUT1B, OUT2A = OUT2B (If  
IN1A = IN1B, IN2A = IN2B))  
24  
CONFIG  
I
Standby pin:  
25  
26  
27  
PWRDN  
TRISTATE  
FAULT  
I
I
0: low-power mode  
1: normal operation  
Hi-Z pin:  
0: all power amplifier outputs in high impedance state  
1: normal operation  
Fault pin advisor (open-drain device, needs pull-up resistor):  
O
O
0: fault detected (short circuit or thermal, for example)  
1: normal operation  
Thermal warning advisor (open-drain device, needs pull-up  
resistor):  
28  
TH_WARN  
0: temperature of the IC >130 °C  
1: normal operation  
29  
30  
31  
32  
IN1A  
IN1B  
IN2A  
IN2B  
I
Input of half bridge 1A  
Input of half bridge 1B  
Input of half bridge 2A  
Input of half bridge 2B  
5-V regulator referred to +VCC  
Signal positive supply  
I
I
I
33, 34 VSS  
PWR  
PWR  
35, 36 VCC_SIGN  
4/17  
Doc ID 13183 Rev 4  
STA516B  
Electrical specifications  
3
Electrical specifications  
Table 3.  
Symbol  
Absolute maximum ratings  
Parameter  
Value  
Unit  
VCC_MAX DC supply voltage (pins 4, 7, 12, 15)  
65  
V
Vmax  
Tj_MAX  
Tstg  
Maximum voltage on pins 23 to 32  
Operating junction temperature  
Storage temperature  
5.5  
V
0 to 150  
°C  
°C  
-40 to 150  
Warning: Stresses beyond those listed under “Absolute maximum  
ratings” may cause permanent damage to the device. These  
are stress ratings only, and functional operation of the device  
at these or any other conditions beyond those indicated  
under “Recommended operating condition” are not implied.  
Exposure to absolute-maximum-rated conditions for  
extended periods may affect device reliability. In the real  
application, power supplies with nominal values rated within  
the recommended operating conditions, may experience  
some rising beyond the maximum operating conditions for a  
short time when no or very low current is being drawn  
(amplifier in mute state, for instance). In this case the  
reliability of the device is guaranteed, provided that the  
absolute maximum rating is not exceeded.  
Table 4.  
Thermal data  
Symbol  
Parameter  
Min  
Typ  
Max  
2.5  
Unit  
Tj-case  
Twarn  
TjSD  
Thermal resistance junction to case (thermal pad)  
Thermal warning temperature  
-
-
-
-
1
°C/W  
°C  
130  
150  
25  
-
-
-
Thermal shut-down junction temperature  
Thermal shut-down hysteresis  
°C  
thSD  
°C  
Table 5.  
Symbol  
Recommended operating conditions  
Parameter  
Min  
Typ  
Max  
Unit  
VCC  
Supply voltage for pins PVCCA, PVCCB  
Ambient operating temperature  
10  
0
-
-
58  
90  
V
Tamb  
°C  
Doc ID 13183 Rev 4  
5/17  
Electrical specifications  
STA516B  
Unless otherwise stated, the test conditions for Table 6 below are V = 3.3 V, V = 50 V  
L
CC  
and T  
= 25 °C  
amb  
Table 6.  
Symbol  
Electrical characteristics  
Parameter  
Test conditions  
Idd = 1 A  
Min  
Typ  
200  
Max  
240  
Unit  
Power P-channel/N-channel  
MOSFET RdsON  
RdsON  
Idss  
-
-
mΩ  
Power P-channel/N-channel  
leakage Idss  
-
-
-
50  
-
µA  
%
Power P-channel RdsON  
matching  
gN  
Idd = 1 A  
Idd = 1 A  
95  
Power N-channel RdsON  
matching  
gP  
95  
-
-
-
%
Dt_s  
Low current dead time (static) see Figure 2  
10  
20  
ns  
L = 22 µH, C = 470 nF  
RL = 8 , Idd = 4.5 A  
see Figure 3  
High current dead time  
(dynamic)  
Dt_d  
-
-
50  
ns  
td ON  
Turn-on delay time  
Turn-off delay time  
Resistive load  
Resistive load  
-
-
-
-
100  
100  
ns  
ns  
td OFF  
Resistive load  
see Figure 2  
tr  
tf  
Rise time  
Fall time  
-
-
-
-
-
-
25  
25  
ns  
ns  
V
Resistive load  
see Figure 2  
VL / 2 +  
300 mV  
VIN-High High level input voltage  
-
-
-
VL / 2  
300 mV  
-
VIN-Low  
Low level input voltage  
-
V
IIN-H  
IIN-L  
High level input current  
Low level input current  
VIN = VL  
-
-
1
1
-
-
µA  
µA  
VIN = 0.3 V  
High level PWRDN pin input  
current  
IPWRDN-H  
VL = 3.3 V  
VL = 3.3 V  
-
35  
-
-
µA  
V
Low logical state voltage  
(pins PWRDN, TRISTATE)  
(seeTable 7)  
VLow  
0.8  
High logical state voltage  
(pins PWRDN, TRISTATE)  
(seeTable 7)  
VHigh  
VL = 3.3 V  
-
1.7  
2.4  
-
V
IVCC-  
Supply current from VCC in  
power down  
VPWRDN = 0 V  
Vpin = 3.3 V  
-
-
-
-
mA  
mA  
mA  
PWRDN  
Output current on pins  
FAULT, TH_WARN with fault  
condition  
IFAULT  
1
22  
Supply current from VCC in  
3-state  
IVCC-HiZ  
VTRISTATE = 0 V  
-
6/17  
Doc ID 13183 Rev 4  
STA516B  
Electrical specifications  
Table 6.  
Symbol  
Electrical characteristics (continued)  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Input pulse width  
= 50% duty,  
Supply current from VCC in  
operation, both channels  
switching)  
IVCC  
switching frequency  
= 384 kHz,  
-
70  
-
mA  
no LC filters  
Overcurrent protection  
threshold Isc (short-circuit  
current limit) (1)  
IOCP  
-
7.5  
-
8.5  
7
10  
-
A
V
Undervoltage protection  
threshold  
VUVP  
-
Overvoltage protection  
threshold  
VOVP  
-
61  
50  
62.5  
-
V
tpw_min  
Output minimum pulse width  
No load  
110  
ns  
1. See application note AN1994  
Table 7.  
Threshold switching voltage variation with voltage on pin VL  
Voltage on pin VL, VL  
VLOW max  
VHIGH min  
Unit  
2.7  
3.3  
5.0  
1.05  
1.4  
1.65  
1.95  
2.8  
V
V
V
2.2  
Table 8.  
Logic truth table  
Inputs as per Figure 3  
Transistors as per Figure 3  
Q1 Q2 Q3 Q4  
Pin  
TRISTATE  
Output mode  
INxA  
INxB  
0
1
1
1
1
x
0
0
1
1
x
0
1
0
1
Off  
Off  
Off  
On  
On  
Off  
Off  
On  
Off  
On  
Off  
On  
On  
Off  
Off  
Off  
On  
Off  
On  
Off  
Hi Z  
Dump  
Negative  
Positive  
Not used  
Doc ID 13183 Rev 4  
7/17  
Electrical specifications  
STA516B  
3.1  
Test circuits  
Figure 2.  
Test circuit  
OUTxY  
Vcc  
(3/4)Vcc  
Low current dead time = MAX(DTr,DTf)  
(1/2)Vcc  
(1/4)Vcc  
+Vcc  
t
DTr  
DTf  
Duty cycle = 50%  
INxY  
M58  
M57  
OUTxY  
R 8Ω  
+
-
V67 =  
vdc = Vcc/2  
gnd  
D03AU1458  
Figure 3.  
Current dead-time test circuit  
High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))  
+VCC  
Duty cycle=A  
Duty cycle=B  
DTout(A)  
M58  
M57  
M64  
M63  
Q1  
OUTxA  
Iout=4.5A  
Q2  
Q4  
DTin(A)  
INxA  
DTout(B)  
DTin(B)  
INxB  
Rload=8Ω  
OUTxB  
L67 22µ  
L68 22µ  
Iout=4.5A  
Q3  
C69  
470nF  
C70  
470nF  
C71 470nF  
Duty cycle A and B: Fixed to have DC output current of 4.5A in the direction shown in figure  
D00AU1162  
8/17  
Doc ID 13183 Rev 4  
STA516B  
Power supply and control sequencing  
4
Power supply and control sequencing  
To guarantee correct operation and reliability, the recommended power-on/off sequence as  
shown in Figure 4 should be followed  
Figure 4.  
Suggested power-on/off sequence  
V
Vcc  
VL  
Vcc > VL  
t
t
PWRDN  
IN  
t
V
should be turned on before V . This prevents uncontrolled current flowing through the  
L
CC  
internal protection diode connected between V (logic supply) and V (high power supply).  
L
CC  
which could result in damage to the device.  
PWRDN must be released after V is switched on. An input signal can then be sent to the  
L
power stage.  
Doc ID 13183 Rev 4  
9/17  
Applications information  
STA516B  
5
Applications information  
The STA516B is a dual channel H-bridge that is able to deliver 200 W per channel (into  
R = 6 with THD = 10% and V = 51V) of audio output power very efficiently. It operates  
L
CC  
in conjunction with a pulse-width modulator driver such as the STA321 or STA309A.  
The STA516B converts ternary, phase-shift or binary-controlled PWM signals into audio  
power at the load. It includes a logic interface, integrated bridge drivers, high efficiency  
MOSFET outputs and thermal and short-circuit protection circuitry.  
In differential mode (ternary, phase-shift or binary differential), two logic level signals per  
channel are used to control high-speed MOSFET switches to connect the speaker load to  
the input supply or to ground in a bridge configuration, according to the damped ternary  
modulation operation.  
In binary mode, both full bridge and half bridge modes are supported. The STA516B  
includes overcurrent and thermal protection as well as an undervoltage lockout with  
automatic recovery. A thermal warning status is also provided.  
®
Figure 5.  
Block diagram of full-bridge FFX or binary mode  
INL[1,2]  
INR[1,2]  
VL  
PWRDN  
Logic  
interface  
and  
OUTPL  
OUTNL  
Left  
H-bridge  
decode  
TRISTATE  
OUTPR  
OUTNR  
FAULT  
Protection  
Regulators  
Right  
H-bridge  
THWARN  
Figure 6.  
Block diagram of binary half-bridge mode  
INL[1,2]  
LeftA  
Logic  
OUTPL  
OUTNL  
INR[1,2]  
VL  
½-bridge  
interface  
and  
PWRDN  
TRISTATE  
LeftB  
decode  
½-bridge  
RightA  
OUTPR  
OUTNR  
FAULT  
½-bridge  
Protection  
Regulators  
THWARN  
RightB  
½-bridge  
5.1  
Logic interface and decode  
The STA516B power outputs are controlled using one or two logic-level timing signals. In  
order to provide a proper logic interface, the VL input must operate at the same voltage as  
®
the FFX control logic supply.  
10/17  
Doc ID 13183 Rev 4  
STA516B  
Applications information  
5.2  
Protection circuitry  
The STA516B includes protection circuitry for overcurrent and thermal overload conditions.  
A thermal warning pin (THWARN, pin 28, open drain MOSFET) is activated low when the IC  
temperature exceeds 130 °C, just in advance of thermal shutdown. When a fault condition is  
detected an internal fault signal immediately disables the output power MOSFETs, placing  
both H-bridges in a high-impedance state. At the same time the open-drain MOSFET of pin  
FAULT (pin 27) is switched on.  
There are two possible modes subsequent to activating a fault.  
"
Shutdown mode: with pins FAULT (with pull-up resistor) and TRISTATE separate, an  
activated fault disables the device, signalling a low at pin FAULT output.  
The device may subsequently be reset to normal operation by toggling pin TRISTATE  
from high to low to high using an external logic signal.  
"
Automatic recovery mode: This is shown in the applications circuits below where pins  
FAULT and TRISTATE are connected together to a time-constant circuit (R59 and C58).  
An activated fault forces a reset on pin TRISTATE causing normal operation to resume  
following a delay determined by the time constant of the circuit.  
If the fault condition persists, the circuit operation repeats until the fault condition is  
cleared.  
An increase in the time constant of the circuit produces a longer recovery interval. Care  
must be taken in the overall system design not to exceed the protection thresholds  
under normal operation.  
5.3  
5.4  
Power outputs  
The STA516B power and output pins are duplicated to provide a low-impedance path for the  
device bridged outputs. All duplicate power, ground and output pins must be connected for  
proper operation.  
The PWRDN or TRISTATE pin should be used to set all power MOSFETs to the  
high-impedance state during power-up until the logic power supply, V , has settled.  
L
Parallel output / high current operation  
®
When using the FFX mode output, the STA516B outputs can be connected in parallel to  
increase the output current capability to the load. In this configuration the STA516B can  
provide up to 400 W into a 3-load.  
This mode of operation is enabled with pin CONFIG (pin 24) connected to pin VDD. The  
inputs are joined so that IN1A = IN1B, IN2A = IN2B and similarly the outputs  
OUT1A = OUT1B, OUT2A = OUT2B as shown in Figure 8.  
5.5  
Output filtering  
A passive 2nd-order filter is used on the STA516B power outputs to reconstruct the analog  
audio signal. System performance can be significantly affected by the output filter design  
and choice of passive components. Filter designs for 3- and 6-loads are shown in the  
applications circuits of Figure 7, Figure 8 and Figure 9.  
Doc ID 13183 Rev 4  
11/17  
Applications information  
STA516B  
5.6  
Applications circuits  
Figure 7.  
Typical stereo-BTL configuration for 200 W per channel  
+VCC  
VCC1A  
15  
17  
16  
C30  
1µF  
C55  
1000µF  
IN1A  
29  
M3  
M2  
M5  
M4  
IN1A  
L18 22µH  
C20  
VL  
23  
24  
+3.3V  
OUT1A  
CONFIG  
100nF  
OUT1A  
GND1A  
C52  
330pF  
PWRDN  
PWRDN  
FAULT  
25  
C99  
100nF  
14  
12  
R98  
6
PROTECTIONS  
R57  
10K  
R59  
10K  
27  
26  
&
C23  
470nF  
6Ω  
LOGIC  
VCC1B  
R63 R100  
C101  
100nF  
TRI-STATE  
20  
6
C58  
100nF  
C31  
1µF  
11  
10  
C21  
100nF  
TH_WAR  
IN1B  
28  
30  
OUT1B  
OUT1B  
GND1B  
TH_WAR  
L19 22µH  
IN1B  
VDD  
VDD  
VSS  
VSS  
21  
22  
33  
34  
13  
7
REGULATORS  
V
CC2A  
C32  
1µF  
M17  
M15  
M16  
M14  
C58  
100nF  
C53  
100nF  
L113 22µH  
VCCSIGN  
VCCSIGN  
8
9
35  
OUT2A  
C60  
100nF  
C110  
100nF  
36  
31  
20  
19  
OUT2A  
GND2A  
C109  
330pF  
C107  
100nF  
6
4
R103  
6
IN2A  
IN2B  
IN2A  
6 Ω  
C108  
470nF  
GND-Reg  
V
CC2B  
R104  
20  
R102  
6
C106  
100nF  
GND-Clean  
C33  
1µF  
3
2
C111  
100nF  
OUT2B  
OUT2B  
GND2B  
IN2B  
32  
1
L112 22µH  
GNDSUB  
5
D00AU1148B  
Figure 8 below shows a single-BLT configuration capable of giving 400 W into a 3-load at  
10% THD with V = 52 V. This result was obtained using the STA30X+STA50X demo  
CC  
board. Note that a PWM modulator as driver is required.  
Figure 8.  
Typical single-BTL configuration for 400 W  
V
L
+3.3V  
23  
18  
N.C.  
12µH  
100nF  
GND-Clean  
GND-Reg  
17  
16  
OUT1A  
OUT1A  
19  
20  
100nF  
FILM  
11  
10  
100nF  
X7R  
10K  
100nF  
X7R  
680nF  
FILM  
100nF  
X7R  
OUT1B  
OUT1B  
OUT2A  
OUT2A  
22Ω  
6.2  
1/2W  
VDD  
VDD  
1/2W  
21  
22  
24  
3 Ω  
6.2  
1/2W  
CONFIG  
9
8
330pF  
TH_WAR  
PWRDN  
FAULT  
TH_WAR  
OUT2B  
OUT2B  
28  
25  
100nF  
FILM  
3
2
nPWRDN  
12µH  
10K  
V
CC1A  
CC1B  
27  
26  
V
15  
CC  
TRI-STATE  
IN1A  
1µF  
2200µF  
63V  
100nF  
X7R  
V
29  
30  
31  
32  
12  
7
IN1B  
IN1A  
IN1B  
VCC2A  
IN2A  
VCC  
IN2B  
1µF  
X7R  
VSS  
VSS  
VCC2B  
33  
34  
4
14  
13  
GND1A  
GND1B  
100nF  
X7R  
VCCSIGN  
35  
100nF  
X7R  
VCCSIGN  
GNDSUB  
GND2A  
GND2B  
36  
1
6
5
Add.  
D04AU1545  
12/17  
Doc ID 13183 Rev 4  
STA516B  
Applications information  
Typical quad half-bridge configuration for 100 W per channel  
Figure 9.  
+VCC  
VCC1P  
15  
17  
16  
C21  
2200µF  
IN1A  
29  
M3  
M2  
M5  
M4  
R61  
5K  
IN1A  
C31 820µF  
L11 22µH  
V
23  
24  
L
+3.3V  
OUTPL  
C71  
100nF  
CONFIG  
PWRDN  
FAULT  
R41  
20  
C91  
1µF  
3 Ω  
OUTPL  
PWRDN  
25  
C81  
100nF  
14  
12  
PGND1P  
R51  
6
R62  
5K  
C41  
330pF  
PROTECTIONS  
R57  
10K  
R59  
10K  
27  
26  
&
LOGIC  
VCC1N  
TRI-STATE  
C58  
100nF  
C51  
1µF  
C61  
100nF  
11  
10  
R63  
5K  
TH_WAR  
IN1B  
28  
30  
OUTNL  
OUTNL  
PGND1N  
C32 820µF  
L12 22µH  
TH_WAR  
C72  
100nF  
R42  
20  
IN1B  
C92  
1µF  
3 Ω  
VDD  
VDD  
VSS  
VSS  
21  
22  
33  
34  
13  
7
C82  
100nF  
R52  
6
R64  
5K  
C42  
330pF  
REGULATORS  
VCC2P  
M17  
M15  
M16  
M14  
R65  
5K  
C58  
100nF  
C53  
100nF  
C33 820µF  
L13 22µH  
VCCSIGN  
8
9
35  
OUTPR  
C60  
100nF  
C73  
100nF  
R43  
20  
VCCSIGN  
C93  
1µF  
3 Ω  
36  
31  
20  
19  
OUTPR  
C83  
100nF  
6
4
PGND2P  
R53  
6
R66  
5K  
IN2A  
IN2B  
C43  
330pF  
IN2A  
GND-Reg  
VCC2N  
GND-Clean  
C52  
1µF  
C62  
100nF  
3
2
R67  
5K  
OUTNR  
OUTNR  
PGND2N  
C34 820µF  
L14 22µH  
IN2B  
32  
1
C74  
100nF  
R44  
20  
GNDSUB  
3 Ω  
C94  
1µF  
5
C84  
100nF  
R54  
6
R68  
5K  
C44  
330pF  
D03AU1474  
For more information, refer to the applications note AN1994.  
Doc ID 13183 Rev 4  
13/17  
Package mechanical data  
STA516B  
14/17  
Doc ID 13183 Rev 4  
STA516B  
Package mechanical data  
Dimensions in inch  
Table 9.  
Symbol  
PowerSO36 exposed pad up dimensions  
Dimensions in mm  
Min  
Typ  
Max  
Min  
0.128  
Typ  
Max  
0.135  
A
3.25  
3.10  
0.80  
-
-
3.43  
3.20  
1.00  
-
-
-
-
A2  
A4  
A5  
a1  
b
-
0.122  
0.126  
0.039  
-
-
0.031  
0.20  
-
0.008  
0.03  
0.22  
0.23  
-
-0.04  
0.38  
0.32  
16.00  
9.80  
-
0.001  
-
-0.002  
0.015  
0.013  
0.630  
0.386  
-
-
0.009  
-
c
-
0.009  
-
D
15.80  
-
0.622  
-
D1  
D2  
E
9.40  
-
0.370  
-
-
1.00  
-
0.039  
13.90  
-
14.50  
11.10  
2.90  
6.20  
3.20  
-
0.547  
-
0.571  
0.437  
0.114  
0.244  
0.126  
-
E1  
E2  
E3  
E4  
e
10.90  
-
0.429  
-
-
-
-
-
5.80  
-
0.228  
-
2.90  
-
0.114  
-
-
0.65  
-
0.026  
e3  
G
-
11.05  
-
-
0.435  
-
0
-
0.08  
15.90  
1.10  
1.10  
2.60  
10 degrees  
-
0
-
0.003  
0.626  
0.043  
0.043  
0.102  
10 degrees  
-
H
15.50  
-
0.610  
-
h
-
-
-
-
L
0.80  
-
0.031  
-
M
N
2.25  
-
0.089  
-
-
-
-
-
-
-
-
-
R
0.6  
-
0.024  
-
s
8 degrees  
8 degrees  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specifications, grade definitions and product status are available at: www.st.com.  
®
ECOPACK is an ST trademark.  
Doc ID 13183 Rev 4  
15/17  
Revision history  
STA516B  
7
Revision history  
Table 10. Document revision history  
Date  
Revision  
Changes  
01-Feb-2007  
19-Mar-2007  
11-Aug-2009  
1
2
3
Initial release.  
Update to reflect product maturity  
Updated section Description on cover page.  
Modified presentation  
16-Nov-2010  
4
Updated Chapter 3: Electrical specifications on page 5  
Added Chapter 5: Applications information on page 10  
16/17  
Doc ID 13183 Rev 4  
STA516B  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2010 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 13183 Rev 4  
17/17  

相关型号:

STA517A

General Purpose Sink Driver Array
ETC

STA517B

60 V 6 A quad power half bridge
STMICROELECTR

STA517B13TR

60 V 6 A quad power half bridge
STMICROELECTR

STA518

40V 3.5A quad power half bridge
STMICROELECTR

STA51813TR

40V 3.5A quad power half bridge
STMICROELECTR

STA521A

Power Field-Effect Transistor, 7A I(D), 200V, 0.48ohm, 4-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, STA, 10 PIN
SANKEN

STA529

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR

STA529B

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR

STA529Q

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR

STA529_07

2 x 100 mW class-D amplifier with analog or digital input 2.0 multichannel digital audio processor with FFX
STMICROELECTR

STA529_12

FFX™ audio codec with analog and digital inputs and 2 x 1.2 W (or 2 x 100 mW HP) class-D amplifier
STMICROELECTR