STE2004S [STMICROELECTRONICS]

102 x 65 single-chip LCD controller/driver; 102 ×65的单芯片LCD控制器/驱动器
STE2004S
型号: STE2004S
厂家: ST    ST
描述:

102 x 65 single-chip LCD controller/driver
102 ×65的单芯片LCD控制器/驱动器

驱动器 控制器 CD
文件: 总79页 (文件大小:1233K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STE2004S  
102 x 65 single-chip LCD controller/driver  
Description  
Features  
102 x 65 bits display data RAM  
Programmable MUX rate  
Programmable frame rate  
X,Y programmable carriage return  
Dual partial display mode  
Row by row scrolling  
The STE2004S is a low power CMOS LCD  
controller driver. Designed to drive a 65 rows by  
102 columns graphic display, it provides all  
necessary functions in a single chip, including  
on-chip LCD supply and bias voltages generators,  
resulting in a minimum of externals components  
and in a very low power consumption.  
STE2004S features six standard interfaces  
(3-lines Serial, 3-lines SPI, 4-lines SPI, 68000  
N-line inversion  
Parallel, 8080 parallel and I2C) for interfacing with  
the host micro-controller.  
Automatic data RAM blanking procedure  
Selectable input interface:  
– I2C Bus Fast and Hs-mode (read and write)  
– 8000 and 8080 Parallel Interfaces (read  
and write)  
– 3-lines and 4-lines SPI Interface (read and  
write)  
CO to C101  
R0 to R64  
OSC_IN  
OSC_OUT  
FR_IN  
TIMING  
GENERATOR  
OSC  
COLUMN  
DRIVERS  
ROW  
DRIVERS  
MASTER  
SLAVE SYNC  
CLOCK  
FR_OUT  
BIAS VOLTAGE  
GENERATOR  
DATA  
LATCHES  
SHIFT  
REGISTER  
– 3-lines 9 bit Serial Interface (read and  
write)  
VSENSE SLAVE  
VLCD  
HIGH VOLTAGE  
GENERATOR  
VLCDSENSE  
65 x 102  
RAM  
SCROLL  
LOGIC  
RES  
RESET  
TEST_MODE  
TEST_VREF  
TEST  
VSSAUX  
VDD1,2  
Fully integrated configurable LCD bias voltage  
DISPLAY  
CONTROL  
LOGIC  
DATA  
REGISTER  
INSTRUCTION  
REGISTER  
ICON_MODE  
EXT  
generator with:  
VSS  
– Selectable multiplication factor (up to 5 )  
X
SEL 3  
SEL 2  
SEL 1  
3 & 4 Line SPI  
Parallel 8080 Parallel 68K  
I2C BUS  
9 Bit SERIAL  
– Effective sensing for high precision output  
– Eight selectable temperature compensation  
coefficients  
SA1 SAO SDOUT SCLK/SCL SDIN/SDA_IN SDA_OUT DB0 E/WR R/W- RD D/C  
CS  
LR0047  
to  
DB7  
CMOS compatible inputs  
Fully integrated oscillator requires no external  
components  
Designed for chip-on-glass (COG)  
applications.  
Low power consumption, suitable for battery  
operated systems  
Logic supply voltage range from 1.7 to 3.6V  
High voltage generator supply voltage range  
from 1.75 to 4.5V  
Display supply voltage range from 4.5 to 14.5V  
Backward compatibility with STE2001/2/4  
January 2007  
Rev 3  
1/7979  
www.st.com  
79  
Contents  
STE2004S  
Contents  
1
2
3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Circuit description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
Supplies voltages and grounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Internal supply voltage generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Master/slave mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Bias levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
LCD voltage generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Temperature coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Display data RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4
Bus interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.1  
I2C Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
4.1.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Serial interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
4.2  
4.2.1  
4.2.2  
4.2.3  
4-lines SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
3-lines SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
3-lines 9 bits serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
4.3  
Parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
4.3.1  
4.3.2  
68000-series parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
8080-series parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
5
Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
5.1  
5.2  
5.3  
5.4  
5.5  
5.6  
Reset (RES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Power down (PD = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Memory blanking procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Checker board procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Scrolling function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Dual partial display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
2/79  
STE2004S  
Contents  
ID-number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
6
7
7.1  
7.2  
7.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
DC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
AC operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
8
Pad coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
9
10  
3/79  
Block diagram  
STE2004S  
1
Block diagram  
Figure 1.  
STE2004S block diagram  
CO to C101  
R0 to R64  
OSC_IN  
OSC  
OSC_OUT  
TIMING  
GENERATOR  
COLUMN  
DRIVERS  
ROW  
DRIVERS  
FR_IN  
MASTER  
SLAVE SYNC  
CLOCK  
FR_OUT  
BIAS VOLTAGE  
GENERATOR  
DATA  
LATCHES  
SHIFT  
REGISTER  
VSENSE SLAVE  
VLCD  
HIGH VOLTAGE  
GENERATOR  
VLCDSENSE  
65 x 102  
RAM  
SCROLL  
LOGIC  
RES  
RESET  
TEST_MODE  
TEST_VREF  
TEST  
VSSAUX  
VDD1,2  
DISPLAY  
CONTROL  
LOGIC  
DATA  
REGISTER  
INSTRUCTION  
REGISTER  
ICON_MODE  
EXT  
VSS  
SEL 3  
SEL 2  
SEL 1  
3 & 4 Line SPI  
Parallel 68K  
I2C BUS  
Parallel 8080  
9 Bit SERIAL  
SA1 SAO SDOUT SCLK/SCL SDIN/SDA_IN SDA_OUT  
E/WR R/W- RD D/C  
CS  
DB0  
to  
LR0047  
DB7  
4/79  
STE2004S  
Pin description  
2
Pin description  
Table 1. Pin description  
N°  
Pad  
Type  
Function  
1-6  
109-141  
R0 to R64  
O
O
LCD row driver output  
C0 to C101  
VSS  
6-107  
LCD column driver output  
192-203  
156-163  
164-171  
205-209  
GND Ground pads.  
VDD1  
Supply IC positive power supply  
VDD2  
Supply Internal generator supply voltages.  
Supply Voltage multiplier output  
VLCD  
Voltage multiplier regulation input. VLCDOUT sensing for output voltage fine  
tuning  
VLCDSENSE  
204  
Supply  
VSENSE_SLAVE  
VSSAUX  
145  
190-177-147  
142  
Supply Voltage reference for slave charge pump  
O
O
Ground reference for pins configuration  
VDD1 reference for pins configuration  
Interface mode selection - cannot be left floating  
VDD1AUX  
SEL3  
SEL2  
SEL1  
Interface  
GND/VSSAUX GND/VSSAUX GND/VSSAUX  
I2C  
152  
153  
154  
GND/VSSAUX GND/VSSAUX  
VDD1  
GND/VSSAUX  
VDD1  
SPI 4-Lines 8 bit  
SPI 3-Lines 8 bit  
Serial 3-Lines 9 bit  
SEL1,2,3  
I
GND/VSSAUX  
GND/VSSAUX  
VDD1  
VDD1  
VDD1  
GND/VSSAUX GND/VSSAUX Parallel 8080-series  
GND/VSSAUX VDD1 Parallel 68000-series  
VDD1  
Extended instruction set selection - cannot be left floating  
Ext pad config  
Instruction set selected  
EXT_SET  
151  
155  
I
I
GND or VSSAUX  
VDD1  
BASIC  
EXTENDED  
Extended instruction set selection - cannot be left floating  
Icon mode pad config  
Icon mode status  
ICON_MODE  
GND or VSSAUX  
VDD1  
DISBLED  
ENABLED  
SDOUT  
180  
179  
O
I
Serial and SPI data output - if unused must be left floating  
SDIN - Serial and SPI interface data input - cannot be left floating  
SDAIN - I2C bus data in - cannot be left floating  
SDIN - SDAIN  
I
5/79  
Pin description  
STE2004S  
Table 1. Pin description (continued)  
N°  
Pad  
Type  
Function  
I
I
SCLK - Serial and SPI interface clock - cannot be left floating  
SCL - I2C bus clock - cannot be left floating  
SCLK - SCL  
181  
SDA_OUT  
SA0  
178  
149  
O
I
I2C Bus data out - if unused must be left floating  
I2C slave address BIT 0 - cannot be left floating  
I2C slave address BIT 1- cannot be left floating  
Parallel interface 8 bit data bus - cannot be left floating  
SA1  
148  
I
DB0 to DB7  
182-189  
I/O  
R/W - 68000 Series Parallel interface read and write control input  
- cannot be left floating  
I
I
I
I
R/W - RD  
175  
RD - 8080 Series Parallel interface read enable clock input  
- cannot be left floating  
E - 68000 Series Parallel interface read and write clock input  
- cannot be left floating  
E / WR  
E / WR  
176  
176  
WR - 8080 Series Parallel interface - write enable clock input  
- cannot be left floating  
RES  
D/C  
172  
174  
I
I
Reset input. Active Low.  
Interface data/command selector- cannot be left floating  
Serial and Parallel interfaces ENABLE. When Low the incoming data are  
clocked In. Cannot be left floating  
CS  
173  
I
TEST_MODE  
TEST_VREF  
191  
146  
I
Test Pad - 50 kohm internal pull-down must be connected to VSS/VSSAUX  
Test Pad - must be left floating  
O
Oscillator Input:  
OSC_IN  
Configuration  
High  
Low  
Internal oscillator enabled  
Internal oscillator disabled  
Internal oscillator disabled  
OSCIN  
144  
I
External Oscillator  
OSCOUT  
FR_OUT  
FR_IN  
210  
211  
143  
O
O
I
Internal/external oscillator out - if unused must be left floating  
Master slave frame inversion synchronization - f unused must be left floating  
Master slave frame inversion synchronization - cannot be left floating  
Master/slave configuration bit:- cannot be left floating  
M/S PIN OSC_OUT FR_OUT  
FR_IN  
Charge Pump  
M/S  
100  
I
High  
Low  
ENABLED Enabled  
ENABLED Enabled  
Disabled AuxVsense disabled  
Charge pump in slave  
Enabled  
mode or ext power  
6/79  
STE2004S  
Pin description  
Figure 2.  
Chip mechanical drawing  
MARK_1  
ROW  
5
ROW28  
ROW31  
ROW  
COL  
0
0
FR_OUT  
OSC_OUT  
MARK_3  
VLCD  
STE2004S  
VLCDSENSE  
VSS  
TEST_MODE  
VSSAUX  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
SCLK - SCL  
SDOUT  
SDIN - SDAIN  
SDAOUT  
COL 50  
COL 51  
VSSAUX  
E - WR  
(0,0)  
X
R/W - RD  
D/C  
Y
CS  
RES  
MARK_4  
VDD2  
VDD1  
ICON  
SEL1  
SEL2  
SEL3  
EXT_SET  
M/S  
SA0  
SA1  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
COL 101  
ROW 32  
ROW64/ICON  
ROW63  
ROW 37  
ROW60  
MARK_2  
LR0048  
7/79  
Pin description  
Figure 3.  
STE2004S  
Improved ALTH and PLESKO driving method  
V
LCD  
V
V
2
3
V (t)  
V (t)  
2
1
ROW 0  
R0 (t)  
V
V
4
5
V
SS  
V
LCD  
V
V
2
3
ROW 1  
R1 (t)  
V
V
4
5
V
SS  
V
LCD  
V
V
2
3
COL 0  
C0 (t)  
V
V
4
5
V
SS  
V
LCD  
V
V
2
3
COL 1  
C1 (t)  
V
V
4
5
V
SS  
SS  
SS  
V
LCD  
- V  
- V  
V
3
V
LCD  
- V  
2
V - V  
4 5  
V (t)  
state1  
0V  
0V  
V
3
- V  
SS  
V - V  
SS 5  
V
V
- V  
LCD  
4
V
- V  
- V  
LCD  
SS  
- V  
LCD  
SS  
V
3
SS  
V
LCD  
- V  
2
V
4
- V  
5
V (t)  
state2  
0V  
0V  
V
3
- V  
SS  
V
SS  
- V  
5
V
V
- V  
LCD  
4
- V  
LCD  
SS  
.......  
.......  
0
..... 64  
1
2
3
4
5
6
7
8
9
..... 64  
0
1
2
3
4
5
6
7
8
9
FRAME n  
FRAME n + 1  
D00IN1154  
V (t) = C1(t) - R0(t)  
1
V (t) = C1(t) - R1(t)  
2
8/79  
STE2004S  
Circuit description  
3
Circuit description  
3.1  
3.2  
Supplies voltages and grounds  
VDD2 supplies voltages to the internal voltage generator (see below). If the internal voltage  
generator is not used, this should be connected to VDD1 pad. VDD1 supplies the rest of the  
IC. VDD1 supply voltage could be different form VDD2  
.
2 VLCD  
V
--------------------------- + 200mV  
(n + 4)  
DD2  
Internal supply voltage generator  
The IC has a fully integrated (no external capacitors required) charge pump for the liquid  
crystal display (LCD) supply voltage generation. The multiplying factor can be programmed  
to be: Auto, X5, X4, X3, X2, using the ’set CP multiplication’ command. If auto is set, the  
multiplying factor is automatically selected to have the lowest current consumption in every  
condition, allowing an input voltage that changes over time and a constant VLCD voltage.  
The output voltage (VLCD) is tightly controlled through the VLCDSENSE pad. For this voltage,  
eight different temperature coefficients (TC, rate of change with temperature) can be  
programmed using the bits TC1, TC0, T2, T1, T0, to ensure there is no contrast degradation  
over the LCD operating range.  
An external supply could be connected to VLCD to supply the LCD without using the internal  
generator. In such event the internal voltage generator must be programmed to zero (PRS =  
[0;0], Vop = 0 - reset condition) and the charge pump (CP[0;0]) set to 5x or quto mode.  
3.3  
3.4  
Oscillator  
A fully integrated oscillator (requires no external components) is present to provide the clock  
for the display system. When used the OSC pad must be connected to VDD1 pad. An  
external oscillator could be used and fed into the OSC pin. If an external oscillator is used, it  
must be always present when STE2004S is not in power down mode. An oscillator out is  
provided on the OSCOUT Pad to cascade two or more drivers.  
Master/slave mode  
STE2004S supports the master slave working mode for both control logic and charge pump.  
This function allows to drive matrix such as 204x65 or 102x130 using two synchronized  
STE2004S and the internal charge pump of both devices.  
If M/S is connected to VDD1, the driver is configured to work in master mode. When  
STE2004S is in master mode, the Vsense_Slave pin is disabled and the VLCD value can be  
controlled using Vop bits. The master time generator outputs the relevant timing references  
on FR_OUT and OSC_OUT.  
If M/S is connected to GND, the driver is configured to work in slave mode. When  
STE2004S is in slave mode, the VLCD configuration set by Vop registers and the thermal  
compensation slope set by TC register, are neglected. The VLCD value generated is equal  
to the voltage value present on the Vsense_Slave pin so the slave configuration can follow  
9/79  
Circuit description  
STE2004S  
the master configuration. The only recognized configuration is Vop=0 that forces the charge  
pump to be in off state whatever is the value of Vsense_aux.  
To synchronize the master and slave timing circuits, the slave driver FR_IN pad must be  
connected to master driver FR_OUT pad, and slave driver OSC_IN pad must be connected  
to the master driver OSC_OUT Pad (Figure 4.). This connection ensures a synchronization  
at both frame level (R0 on the master is driven together with the Slave R0 driver) and at  
oscillator level (same frame frequency on the master and on the slave). If the  
synchronization at frame level is not required, FR_IN pin must be connected toVDD1 or to  
VDD1_aux (Figure 5.).  
During the power up procesure, the master device must be forced to exit from power down  
before the slave device. To enter into PowerDown mode, the slave device must be forced  
into power down state before master device.  
Figure 4.  
Master slave logic connection with frame synchronization  
STE2004S  
STE2004S  
OSCOUT FROUT  
VDD1AUX OSCIN FRIN  
OSCOUT FROUT  
FRIN OSCIN  
LR0219  
Figure 5.  
Master slave logic connection without frame synchronization  
STE2004S  
STE2004S  
OSCIN  
OSCOUT FROUT  
VDD1AUX OSCIN FRIN  
OSCOUT FROUT  
LR0220  
VDD1AUX  
FRIN  
3.5  
Bias levels  
To properly drive the LCD, six (Including VLCD and VSS) different voltage (Bias) levels are  
generated. The ratios among these levels and VLCD, should be selected according to the  
MUX ratio (m). They are established according to the following (Figure 6.)  
n + 3  
n + 4  
n + 2  
n + 4  
2
n + 4  
1
n + 4  
------------  
------------  
------------  
------------  
V
,
V
,
V
,
V
,
V
,V  
LCD SS  
LCD  
LCD  
LCD  
LCD  
10/79  
STE2004S  
Circuit description  
Figure 6.  
Bias level generator  
VLCD  
R
R
n + 3  
n + 4  
·VLCD  
n + 2  
n + 4  
·VLCD  
nR  
R
2
·VLCD  
n + 4  
1
·VLCD  
n + 4  
R
VSS  
D00IN1150  
providing an 1/(n+4) ratio, with n calculated from:  
n= m 3  
For m = 65, n = 5, a 1/9 ratio is set.  
For m = 49, n =4, a 1/8 ratio is set.  
The STE2004S provides three bits (BS0, BS1, BS2) for programming the bias ratio as shown  
below:  
Table 2. Bias ratio programmable bits  
BS2  
BS1  
BS0  
n
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
7
6
5
4
3
2
1
0
The following table shows the bias level for m = 65 and m = 49:  
11/79  
Circuit description  
STE2004S  
Table 3. Bias level m=65 and m=49  
Symbol  
m = 65 (1/9)  
m = 49 (1/8)  
V1  
V2  
V3  
V4  
V5  
V6  
VLCD  
8/9*VLCD  
7/9*VLCD  
2/9*V VLCD  
1/9 *VLCD  
VSS  
VLCD  
7/8*VLCD  
6/8*VLCD  
2/8*VLCD  
1/8*VLCD  
VSS  
3.6  
LCD voltage generation  
The LCD voltage at reference temperature (To = 27°C) can be set using the VOP register content  
according to the following formula:  
VLCD(T=To) = VLCDo = (Ai+VOP · B)  
with the following values:  
(i=0,1,2)  
Table 4. LCD voltage generation  
Symbol  
Value  
Unit  
Note  
Ao  
A1  
A2  
B
2.95  
6.83  
V
V
PRS = [0;0]  
PRS = [0;1]  
PRS = [1;0]  
10.71  
0.0303  
27  
V
V
To  
°C  
Note that the three PRS values produce three adjacent ranges for VLCD. If the VOP register  
and PRS bits are set to zero the internal voltage generator is switched off.  
The proper value for the VLCD is a function of the liquid crystal threshold voltage (Vth) and  
of the multiplexing rate. A general expression for this is:  
1 +  
--------------------------------------  
V  
m
V
=
LCD  
th  
1
2 1 --------  
m
For MUX Rate m = 65 the ideal VLCD is:  
V
LCD(to) = 6.85 · Vth  
than:  
(6.85 V A )  
th  
i
V
= --------------------------------------------  
op  
0.03  
12/79  
STE2004S  
Circuit description  
3.7  
Temperature coefficients  
As the viscosity, and therefore the contrast, of the LCD are subject to change with  
temperature, the LCD voltage must be varied with temperature. STE2004S provides eight  
different temperature coefficients to change the VLCD in a linear fashion against  
temperature. selectable through T2, T1 and T0 bits. Only four of the temperature coefficients  
are available through the basic instruction set.  
Table 5. Temperature coefficients with basic instruction set  
NAME  
TC1  
TC0  
Value  
Unit  
TC0  
TC2  
TC3  
TC6  
0
0
1
1
0
1
0
1
-0.0· 10-3  
-0.7 · 10-3  
-1.05· 10-3  
-2.1 · 10-3  
1/ °C  
1/°C  
1/°C  
1/°C  
Table 6. Temperature coefficients  
NAME  
T2  
T1  
T0  
Value  
Unit  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
-0.0· 10-3  
-0.35 · 10-3  
-0.7 · 10-3  
-1.05· 10-3  
-1.4 · 10-3  
-1.75· 10-3  
-2.1 · 10-3  
-2.3· 10-3  
1/ °C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
Figure 7.  
Temperature coefficients  
LCD  
V
B
2
A
1
A
0
A + B  
1
A
00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh 00h 01h 02h 03h 04h 05h …. 7Ch 7Dh 7Eh 7Fh  
O
V
PRS = [0;0]  
PRS = [0;1]  
PRS = [1;0]  
Finally, the V  
voltage at a given (T) temperature can be calculated as:  
VLCD(T) = VLCDo · [1 + (T-To) · TC]  
LCD  
13/79  
Circuit description  
STE2004S  
3.8  
Display data RAM  
The STE2004S, provides an 102X65 bits static RAM to store display data. This is organized  
into 9 (Bank0 to Bank8) banks with 102 bytes. One of these banks can be used for icons.  
RAM access is accomplished in either one of the bus interfaces provided (see below).  
Allowed addresses are X0 to X101 (Horizontal) and Y0 to Y8 (Vertical).  
There are four address mode provided to write to RAM:  
Normal Horizontal (MX=0 and V=0), having the column with address X= 0 located on  
the left of the memory map. The X pointer is increased after each byte written. After the  
last column address (X=X-Carriage), Y address pointer jumps to the following bank and  
X restarts from X=0. (Figure 8.)  
Normal Vertical (MX=0 and V=1), having the column with address X= 0 located on the  
left of the memory map. The Y pointer is increased after each byte written. After the last  
Y bank address (Y=Y-Carriage), X address pointer jumps to next column and Y restarts  
from Y=0 (Figure 9).  
Mirrored Horizontal (MX=1 and V=0), having the column with address X= 0 located on  
the right of the memory map. The X pointer is increased after each byte written. After  
the last column address (X=X-Carriage), Y address pointer jumps to the next bank and  
X restarts from X=0 (Figure 10.).  
Mirrored Vertical (MX=1 and V=1), having the column with address X= 0 located on the  
right of the memory map. The Y pointer is increased after each byte written. After the  
last Y bank address (Y=Y-Carriage), the X pointer jumps to next column and Y restarts  
from Y=0 (Figure 11.).  
After the last allowed address (X;Y)=(X-Carriage; Y-Carriage), the address pointers always  
jumps to the cell with address (X;Y) = (0;0) (Figure 12. Figure 13. Figure 14. Figure 15.).  
Data bytes in the memory could have the MSB either on top (D0 = 0, Figure 16.) or on the  
bottom (D0=1, Figure 17.).  
The STE2004S also allows the normal output address to be altered. The display is mirrored  
along the X axis if a logic one MY bit is set. Only the memory read process is altered, the  
content is not affected in memory.  
When ICON MODE=1 the icon row is not mirrored with MY and is not scrolled.  
When ICON MODE=0 the icon row is like an other graphic line and is mirrored and scrolled.  
When the partial display mode is disabled, there are three multiplex ratios available (MUX  
33, MUX 49 and MUX 65). Only a subset of writable rows are output on row drivers in MUX  
33,49 and 65 modes.  
When Y-Carriage<MUX/8, if MUX 49 is selected only the first 49 memory rows are  
visualized; if MUX 33 selected, only the first 33 memory rows. The unused output row and  
column drivers must be left floating.  
When Y-Carriage<=MUX/8 the icon bank is located to BANK 8 in MUX 65 Mode, to BANK6  
in MUX 49 Mode, and to BANK 4 in MUX 33 Mode.  
In MUX 33 and MUX 49 modes and Y-Carriage>MUX/8, only lines 33 and 49 are  
visualized.  
The lines of DDRAM connected on the output drivers using the scrolling function (Range: 0-  
Y-Carriage*8) are selectable. When Y-Carriage>MUX/8 lines, the icon row is moved in  
DDRAM to the first row of the bank, corresponding to the Y-CARRIAGE Return value, being  
always connected on the same output Driver.  
14/79  
STE2004S  
Circuit description  
When MY=0, the icon Row is output on R64 in MUX 65 mode, on R56 in MUX 49, and on  
R48 in MUX33.  
When MY=1, and ICON MODE=0, the icon Row is output on R0 whatever the MUX rate.  
Figure 8.  
Automatic data RAM writing sequence with V=0 and data RAM normal  
format (MX=0)(a)  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
LR0049  
Figure 9.  
Automatic data RAM writing sequence with V=1 and data RAM normal  
format (MX=0)(a)  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
LR0050  
a. X Carriage=101; Y-Carriage = 8  
15/79  
Circuit description  
STE2004S  
Figure 10. Automatic data RAM writing sequence with V=0 and data RAM mirrored  
format (MX=1)(a)  
101 100 99  
98  
3
2
1
0
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
LR0051  
Figure 11. Automatic data RAM writing sequence with V=1 and data RAM mirrored  
format (MX=1)(a)  
101 100 99  
98  
3
2
1
0
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
LR0052  
Figure 12. Automatic data RAM writing sequence with X-Y carriage return  
(V=0; MX=0)  
X CARR  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 7  
BANK 8  
LR0053  
16/79  
STE2004S  
Circuit description  
Figure 13. Automatic data RAM writing sequence with X-Y carriage return  
(V=1; MX=0)  
X CARR  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 7  
BANK 8  
LR0054  
Figure 14. Automatic data RAM writing sequence with X-Y carriage return  
(V=0; MX=1)  
X CARR  
101 100 99  
98  
3
2
1
0
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 7  
BANK 8  
LR0055  
Figure 15. Automatic data RAM writing sequence with X-Y carriage return (V=1;  
MX=1)  
X CARR  
101 100 99  
98  
3
2
1
0
BANK  
BANK  
BANK  
0
1
2
Y CARR  
BANK 7  
BANK 8  
LR0056  
17/79  
Circuit description  
Figure 16. Data RAM Byte organization with D0 = 0  
STE2004S  
MSB  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
LSB  
LR0057  
Figure 17. Data RAM byte organization with D0 = 1  
LSB  
0
1
2
3
98  
99 100 101  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
BANK  
0
1
2
3
4
5
6
7
8
MSB  
LR0058  
18/79  
STE2004S  
Circuit description  
Figure 18. Memory rows vs. row drivers mapping ICON_MODE=1 and MUX 65  
D
a
t
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
D3 D2 D1 D0  
Address  
a
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R63  
R62  
R61  
R60  
R59  
R58  
R57  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R31  
R30  
R29  
R28  
R27  
R26  
R25  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
R1  
R2  
R3  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
Y-CARRIAGE  
R8  
R7  
R6  
R5  
R4  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
R3  
R2  
R1  
R0  
R64  
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
lr0268  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
5
C
O
L
4
C
O
L
3
C
O
L
2
C
O
L
1
C
O
L
0
C
O
L
Reverse  
Direction  
O
L
98 97 96 95  
101  
100 99  
6
19/79  
Circuit description  
STE2004S  
Figure 19. Memory rows vs. row drivers mapping ICON_MODE=0 and MUX 65  
D
a
t
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
D3 D2 D1 D0  
Address  
a
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
40H  
R0  
R64  
R63  
R62  
R61  
R60  
R59  
R58  
R57  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R31  
R30  
R29  
R28  
R27  
R26  
R25  
R24  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
R1  
R2  
R3  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
Y-CARRIAGE  
R8  
R7  
R6  
Page 7  
Page 8  
R5  
0
1
1
0
1
0
1
0
R4  
R3  
R2  
R1  
R0  
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
5
C
O
L
4
C
O
L
3
C
O
L
2
C
O
L
1
C
O
L
0
C
O
L
Reverse  
Direction  
lr0269  
98 97 96 95  
100 99  
6
20/79  
STE2004S  
Circuit description  
Figure 20. Memory rows vs. Row drivers mapping ICON_MODE=1, Y-Carriage<=6 and  
MUX 49  
D
a
t
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
D3 D2 D1 D0  
Address  
a
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
R1  
R2  
R3  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
R56  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
4
C
O
L
3
C
O
L
2
C
O
L
1
C
O
L
0
C
O
L
5
C
O
L
Reverse  
Direction  
lr0270  
98 97 96 95  
100 99  
6
21/79  
Circuit description  
STE2004S  
Figure 21. Memory rows vs. row drivers ;apping ICON_MODE=0, Y-Carriage<=6 and  
MUX 49  
D
a
t
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
D3 D2 D1 D0  
Address  
a
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
R1  
R2  
R3  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
4
C
O
L
3
C
O
L
2
C
O
L
1
C
O
L
0
C
O
L
5
C
O
L
lr0271  
Reverse  
Direction  
98 97 96 95  
100 99  
6
22/79  
STE2004S  
Circuit description  
Figure 22. Memory rows vs. row drivers mapping ICON_MODE=0, Y-carriage=7,  
scrolling pointer>07h and MUX 49  
D
a
a
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
t
D3 D2 D1 D0  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
R1  
R2  
R3  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
3
C
O
L
2
C
O
L
1
C
O
L
0
lr0275  
C
O
L
C
O
L
Reverse  
Direction  
96  
98 97  
95  
5
4
101 100 99  
6
23/79  
Circuit description  
STE2004S  
Figure 23. Memory rows vs. row drivers mapping ICON_MODE=1, Y-Carriage=7,  
scrolling pointer>07h and MUX 4  
9
D
a
a
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
t
D3 D2 D1 D0  
Address  
R0  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
R1  
R2  
R3  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
Scrolling Pointer  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
R56  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
3
C
O
L
2
C
O
L
1
C
O
L
0
lr0276  
C
O
L
C
O
L
Reverse  
Direction  
96  
98 97  
95  
5
4
101 100 99  
6
24/79  
STE2004S  
Circuit description  
Figure 24. Memory rows vs. row drivers mapping ICON_MODE=1, Y-carriage=8,  
Scrolling pointer<10h and MUX 49  
D
a
a
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
t
D3 D2 D1 D0  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
R1  
R2  
R3  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R4  
R5  
R6  
R7  
R8  
R9  
Scrolling Pointer  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
R56  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
Y-CARRIAGE  
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
LR0273  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
3
C
O
L
2
C
O
L
1
C
O
L
0
C
O
L
C
O
L
Reverse  
Direction  
96  
98 97  
95  
5
4
101 100 99  
6
25/79  
Circuit description  
STE2004S  
Figure 25. Memory rows vs. row drivers mapping ICON_MODE=0, Y-carriage=8,  
Scrolling pointer<10h and MUX 49  
D
ROW Output  
Normal Reverse  
direction direction  
Y Address  
a
t
Line  
D3 D2 D1 D0  
a
Address  
R0  
R56  
R55  
R54  
R53  
R52  
R51  
R50  
R49  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
D0  
D1  
D2  
R1  
R2  
R3  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R4  
R5  
R6  
R7  
R8  
R9  
Scrolling Pointer  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
Y-CARRIAGE  
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
LR0274  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
3
C
O
L
2
C
O
L
1
C
O
L
0
C
O
L
C
O
L
Reverse  
Direction  
96  
98 97  
95  
5
4
101 100 99  
6
26/79  
STE2004S  
Circuit description  
Figure 26. Memory rows vs. row drivers mapping ICON_MODE=1, Y-carriage<=4 and  
MUX33  
D
a
a
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
t
D3 D2 D1 D0  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
R1  
R2  
R3  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
Scrolling Pointer  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
R48  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
3
C
O
L
2
C
O
L
1
C
O
L
0
C
O
L
C
O
L
Reverse  
Direction  
LR0272  
96  
98 97  
95  
5
4
101 100 99  
6
27/79  
Circuit description  
STE2004S  
Figure 27. Memory rows vs. row drivers mapping ICON_MODE=0, Y-carriage<=4 and  
MUX 33  
D
a
a
Y Address  
ROW Output  
Normal Reverse  
direction direction  
Line  
t
D3 D2 D1 D0  
Address  
00H  
01H  
02H  
03H  
04H  
05H  
06H  
07H  
08H  
09H  
0AH  
0BH  
0CH  
0DH  
0EH  
0FH  
10H  
11H  
12H  
13H  
14H  
15H  
16H  
17H  
18H  
19H  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
23H  
24H  
25H  
26H  
27H  
28H  
29H  
2AH  
2BH  
2CH  
2DH  
2EH  
2FH  
30H  
31H  
32H  
33H  
34H  
35H  
36H  
37H  
38H  
39H  
3AH  
3BH  
3CH  
3DH  
3EH  
3FH  
R0  
R48  
R47  
R46  
R45  
R44  
R43  
R42  
R41  
R40  
R39  
R38  
R37  
R36  
R35  
R34  
R33  
R32  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D0  
R1  
R2  
R3  
Page 0  
Page 1  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R12  
R13  
R14  
R15  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
Scrolling Pointer  
Page 2  
Page 3  
Page 4  
Page 5  
Page 6  
R8  
R7  
R6  
R5  
R4  
R3  
R2  
R1  
R0  
Y-CARRIAGE  
Page 7  
Page 8  
0
1
1
0
1
0
1
0
X address  
00H 01H 02H 03H 04H 05H 06H  
5FH  
60H  
61H 62H 63H 64H 65H  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
Normal  
Direction  
COL  
Output  
0
1
2
3
4
5
6
95 96 97 98 99 100 101  
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
C
O
L
3
C
O
L
2
C
O
L
1
C
O
L
0
C
O
L
C
O
L
Reverse  
Direction  
LR0272  
96  
98 97  
95  
5
4
101 100 99  
6
28/79  
STE2004S  
Circuit description  
Figure 28. Row drivers vs. LCD panel interconnection in MUX65 mode  
ICON  
MUX 65  
COLUMN DRIVERS  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R
R
R
R
R
R
R
R
R
R
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
0
1
2
3
4
5
6
7
8
9
ROW DRIVERS  
ROW DRIVERS  
STE2004S  
R30  
R31  
LR0109  
Figure 29. Row drivers vs. LCD panel interconnection in MUX49 mode  
ICON  
MUX 49  
COLUMN DRIVERS  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R
R
R
R
R
R
R
R
R
R
0
1
2
3
4
5
6
7
8
9
R10  
R11  
R12  
ROW DRIVERS  
ROW DRIVERS  
R13  
R14  
R15  
R16  
R17  
STE2004S R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
R30  
R31  
LR0108  
29/79  
Circuit description  
Figure 30. Row drivers vs. LCD panel interconnection in MUX33 mode  
STE2004S  
ICON  
MUX 33  
COLUMN DRIVERS  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R
R
R
R
R
R
R
R
R
R
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
R21  
R22  
R23  
R24  
R25  
R26  
R27  
R28  
R29  
0
1
2
3
4
5
6
7
8
9
ROW DRIVERS  
ROW DRIVERS  
R50 STE2004S  
R51  
R52  
R53  
R54  
R55  
R56  
R57  
R58  
R59  
R60  
R61  
R62  
R63  
R64  
R30  
R31  
LR0107  
30/79  
STE2004S  
Bus interfaces  
4
Bus interfaces  
To provide the widest flexibility and ease of use the STE2004S features six different  
methods for interfacing the host controller. To select the desired interface the SEL1, SEL2  
and SEL3 pads need to be connected to a logic LOW (connect to GND) or a logic HIGH  
(connect to VDD). All the I/O pins of the unused interfaces must be connected to GND.  
All interfaces work while the STE2004S is in power down.  
Table 7. Bus interfaces  
SEL3  
SEL2  
SEL1  
Interface  
Note  
Read and write; fast and  
high speed mode  
0
0
0
I2C  
0
0
0
1
1
0
1
1
0
0
1
0
1
0
1
SPI 4 lines 8 bit  
SPI 3 lines 8 bit  
Read and write  
Read and write  
Read and write  
Read and write  
Read and write  
Serial 3 lines 9 bit  
Parallel 8080-series  
Parallel 68000-series  
2
4.1  
I C Interface  
The I2C interface is a fully complying I2C bus specification, selectable to work in both Fast  
(400kHz Clock) and High Speed Mode (3.4MHz).  
This bus is intended for communication between different LCs. It consists of two lines: one  
bi-directional for data signals (SDA) and one for clock signals (SCL). Both the SDA and SCL  
lines must be connected to a positive supply voltage via an active or passive pull-up.  
The following protocol has been defined:  
Data transfer may be initiated only when the bus is not busy.  
During data transfer, the data line must remain stable whenever the clock line is  
high. Changes in the data line while the clock line is high are interpreted as control  
signals.  
Accordingly, the following bus conditions have been defined:  
BUS not busy: Both data and clock lines remain High.  
Start Data Transfer: A change in the state of the data line, from High to Low, while the clock  
is High, define the START condition.  
Stop Data Transfer: A Change in the state of the data line, from low to High, while the clock  
signal is High, defines the STOP condition.  
Data Valid: The state of the data line represents valid data when after a start condition, the  
data line is stable for the duration of the High period of the clock signal. The data on the line  
may be changed during the Low period of the clock signal. There is one clock pulse per bit  
of data.  
Each data transfer is initiated with a start condition and terminated with a stop condition.  
The number of data bytes transferred between the start and the stop conditions is not  
31/79  
Bus interfaces  
STE2004S  
limited. The information is transmitted byte-wide and each receiver acknowledges with the  
ninth bit.  
By definition, a device that gives out a message is called "transmitter", the receiving device  
that gets the signals is called "receiver". The device that controls the message is called  
"master". The devices that are controlled by the master are called "slaves"  
Acknowledge. Each byte of eight bits is followed by one acknowledge bit. This  
acknowledge bit is a low level put on the bus by the receiver, whereas the master generates  
an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the reception of  
each byte. Also, a master receiver must generate an acknowledge after the reception of  
each byte that has been clocked out of the slave transmitter. The device that acknowledges  
has to pull down the SDA_IN line during the acknowledge clock pulse. Of course, setup and  
hold time must be taken into account. A master receiver must signal an end-of-data to the  
slave transmitter by not generating an acknowledge on the last byte that has been clocked  
out of the slave. In this case, the transmitter must leave the data line High to enable the  
master to generate the STOP condition.  
Connecting SDA_IN and SDA_OUT together the SDA line become the standard data line.  
Having the acknowledge output (SDAOUT) separated from the serial data line is  
advantageous in Chip-On-Glass (COG) applications. In COG applications where the track  
resistance from the SDAOUT pad to the system SDA line can be significant, a potential  
divider is generated by the bus pull-up resistor and the Indium Tin Oxide (ITO) track  
resistance. It is possible that during the acknowledge cycle the STE2004S will not be able to  
create a valid logic 0 level. By splitting the SDA input from the output the device could be  
used in a mode that ignores the acknowledge bit. In COG applications where the  
acknowledge cycle is required, it is necessary to minimize the track resistance from the  
SDACK pad to the system SDA line to guarantee a valid LOW level.  
To be compliant with the I2C-bus Hs-mode specification the STE2004S is able to detect the  
special sequence "S00001xxx". After this sequence no acknowledge pulse is generated.  
Since no internal modification are applied to work in Hs-mode, the device is able to work in  
Hs-mode without detecting the master code.  
Figure 31. Bit transfer and start,stop conditions definition  
DATA LINE  
STABLE  
DATA VALID  
CLOCK  
DATA  
START  
CHANGE OF  
STOP  
CONDITION  
DATA ALLOWED  
CONDITION  
LR0069  
32/79  
STE2004S  
Bus interfaces  
2
Figure 32. Acknowledgment on the I C-bus  
CLOCK PULSE FOR  
ACKNOWLEDGEMENT  
START  
SCLK FROM  
MASTER  
1
2
8
9
DATA OUTPUT  
BY TRANSMITTER  
MSB  
LSB  
DATA OUTPUT  
BY RECEIVER  
LR0070  
4.1.1  
Communication protocol  
The STE2004S is an I2C slave. The access to the device is bi-directional as data write and  
status read are allowed.  
The STE2004S has four device addresses. All have the first 5 bits (01111) in common. The  
two least significant bit of the slave address are set by connecting the SA0 and SA1 inputs  
to a logic 0 or logic 1.  
To start the communication between the bus master and the slave LCD driver, the master  
must initiate a START condition. Following this, the master sends an 8-bit byte, on the SDA  
bus line (most significant bit first). This consists of the 7-bit device select code, and the 1-bit  
read/write designator (R/W).  
All slaves with the corresponding address acknowledge in parallel, while the rest ignore the  
I2C-bus transfer.  
Writing mode  
When the R/W bit is set to logic 0, the STE2004S is set to be a receiver. After the slaves  
acknowledge, one or more command word follows to define the status of the device.  
A command word is composed of three bytes. The first is a control byte which defines the  
Co and D/C values, the second and third are data bytes. The Co bit is the command MSB  
and defines whether this command is followed by two data bytes and and another command  
word, or if a stream of data follows (Co = 1 Command word, Co = 0 Stream of data). The  
D/C bit defines whether the data byte is a command or RAM data (D/C = 1 RAM Data, D/C  
= 0 Command).  
If Co =1 and D/C = 0, the incoming data byte is decoded as a command, and if Co =1 and  
D/C =1, the following data byte is stored in the data RAM at the location specified by the  
data pointer.  
Every byte of a command word must be acknowledged by all addressed units.  
After the last control byte, if D/C is set to a logic 1, the incoming data bytes are stored inside  
the STE2004S display RAM starting at the address specified by the data pointer. The data  
pointer is automatically updated after every byte written and in the end points to the last  
RAM location written.  
Every byte must be acknowledged by all addressed units.  
33/79  
Bus interfaces  
Reading mode  
STE2004S  
If the R/W bit is set to logic 1 the chip outputs data immediately after the slave address. If  
the D/C bit during the last write access is set to a logic 0, the byte read is the status byte.  
Figure 33. Communication protocol  
WRITE MODE  
DRIVER ACK  
DRIVER ACK  
DRIVER ACK  
DRIVER ACK  
DRIVER ACK  
S S  
A A  
S
0
1
1
1
1
0
A
1
DC Control Byte  
A
DATA Byte  
A
0
DC Control Byte  
A
DATA Byte A P  
1
0
R/W Co  
SLAVE ADDRESS  
Co  
LAST  
CONTROL BYTE  
N> 0 BYTE  
MSB........LSB  
COMMAND WORD  
READ MODE  
DRIVER ACK  
MASTER ACK  
P
S S  
A A  
S S R  
H H H  
E [1][0]  
C D  
o C  
S
0
1
1
1
1
1
A
0
1
1
1
1
A A  
/
0
0
0
A
1
0
1
0 W  
DRIVER  
SLAVE ADDRESS  
R/W  
CONTROL BYTE  
LR0008  
4.2  
Serial interfaces  
STE2004S can feature three different serial synchronized interfaces with the host controller. It is  
possible to select a 3-lines SPI, a 4-lines SPI or 3-line 9 bits serial interface.  
4.2.1  
4-lines SPI interface  
The STE2004S 4-lines serial interface is a bidirectional link between the display driver and the  
application supervisor. It consists of four lines: one/two for data signals (SDIN, SOUT), one for  
clock signals (SCLK), one for the peripheral enable (CS) and one for mode selection (SD/C).  
The serial interface is active only if the CS line is set to a logic 0. When CS line is high the serial  
peripheral power consumption is zero. While CS pin is high the serial interface is kept in reset.  
The STE2004S is always a slave on the bus and receives the communication clock on the SCLK  
pin from the master.  
Information is exchanged byte-wide. During data transfer, the data line is sampled on the positive  
SCLK edge.  
SD/C line status indicates whether the byte is a command (SD/C =0) or a data (SD/C =1); SD/C  
line is read on the eighth SCLK clock pulse during every byte transfer.  
If CS stays low after the last bit of a command/data byte, the serial interface expects the MSB of  
the next byte at the next SCLK positive edge.  
A reset pulse on RES pin interrupts the transmission. No data is written into the data RAM and all  
the internal registers are cleared.  
If CS is low after the positive edge of RES, the serial interface is ready to receive data.  
2
Throughout SDOUT, the driver I C slave address or the status byte can be read. The command  
2
sequence to read the I C slave address or the status byte is shown in Figure 34., Figure 35.,  
34/79  
STE2004S  
Bus interfaces  
Figure 36.. SDOUT is in high impedance in steady state and during data write. It is possible to  
short circuit SDOUT and SDIN and read the I2C address or status byte without any additional  
lines.  
Figure 34. 4-lines serial bus protocol - one byte transmission  
CS  
D/C  
SCLK  
SDIN  
MSB  
LSB  
LR0071  
Figure 35. 4-lines serial bus protocol - several byte transmission  
CS  
D/C  
SCLK  
SDIN  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
DB7  
DB6  
DB5  
LR0072  
Figure 36. 4-lines serial bus protocol - I2C address or status byte read  
CS  
SCLK  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
SDIN  
D/C  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
High-Z  
High-Z  
High-Z  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
ID Number  
SDOUT  
High-Z  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
STATUS BYTE  
DATA Read  
LR00076  
Command Write  
35/79  
Bus interfaces  
Figure 37. 4-lines SPI reading sequence  
STE2004S  
READING SEQUENCE  
Write a "00000000" Instruction  
SDOUT Buffer becomes active (Low Impedence)  
Source 8 pulses on SCLK and  
Read the ID Number or the Status Byte On SDOUT1  
SDOUT Buffer Configured in High Impedence  
END OF READING SEQUENCE  
note: 1) these data are not read by the display Diver  
2) SDIN and SDOUT can be short circuited if the processor can configure  
serial output buffers in high impedence during data read  
.
LR0078  
4.2.2  
3-lines SPI interface  
The STE2004S 3-lines serial interface is a bidirectional link between the display driver and  
the application supervisor.  
It consists of three lines: one/two for data signals (SDIN,SDOUT), one for clock signals  
(SCLK) and one for peripheral enable (CS).  
If the R/W bit is set to logic 0 the STE2004S is set to be a receiver. One or more command  
words follow to define the status of the device.  
A command word is composed by two bytes. The first is a control byte which defines Co,  
D/C, R/W H[1;0] and HE values, the second is a data byte (Figure 38.). The Co bit is the  
command MSB and defines whether the command is followed by one data byte and an  
other command word, or if it is followed by a stream of commands, or a steam of DDRAM  
data (Co = 1 Command word, Co = 0 Stream of data). The D/C bit defines whether the data  
byte is a command or DDRAM data (D/C = 1 RAM Data, D/C = 0 Command). The H[1;0] bits  
define the instruction Set Page if HE bit =1. If HE bit is set to 0, H[1;0] values are neglected  
and it is possible to update the instruction set page number using only the related instruction  
in the instruction set.  
If Co =1 and D/C = 0, the incoming data byte is decoded as a command, and if Co =1 and  
D/C =1, the following data byte is stored in the data RAM at the location specified by the  
data pointer.  
After the last control byte, if D/C is set to a logic 1, the incoming data bytes are stored inside  
the STE2004S display data RAM starting at the address specified by the data pointer. The  
data pointer is automatically updated after every byte written and in the end points to the last  
RAM location written.  
36/79  
STE2004S  
Bus interfaces  
Throughout SDOUT can be read the driver I2C slave address or the status byte. The  
command sequence that allows to read I2C slave address or the status byte is shown in  
Figure 39. and Figure 40..  
If the R bit is set to logic 0 and D/C=0, the I2C slave address is read. If the R bit is set to logic  
1 and D/C=0, the the I2C slave address is read. SDOUT is in high impedance in steady state  
and during data write.  
It is possible to short circuit SDOUT and SDIN and read the I2C address or status byte  
without any additional line.  
Figure 38. 3-lines serial interface protocol in writing mode  
WRITE MODE  
R
/
W
H H H  
E [1][0]  
C D  
o C  
1
Control Byte  
DATA Byte  
0
Control Byte  
LAST  
DATA Byte  
0 0  
CONTROL BYTE  
Co  
N> 0 BYTE  
MSB........LSB  
Co  
COMMAND WORD  
Control Byte  
CONTROL BYTE  
TRANSFERRED  
ONLY COMMANDS  
0
0
DATA Byte  
DATA Byte  
DATA Byte = Command  
if D/C=0  
LAST  
CONTROL BYTE  
N> 0 BYTE  
MSB........LSB  
DATA Byte = DDRAM Data if D/C=1  
Control Byte  
TRANSFERRED  
ONLY DDRAM DATA  
0
1
DATA Byte  
DATA Byte  
LAST  
CONTROL BYTE  
N> 0 BYTE  
MSB........LSB  
LR0002  
Figure 39. 3-lines SPI interface protocol in reading mode  
CS  
SCLK  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
SDIN  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
Co=1  
D/C=0  
R/W=1  
"Command" "Read"  
High-Z  
High-Z  
High-Z  
High-Z  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
ID-Number  
SDOUT  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
STATUS BYTE  
DATA Read  
LR0077  
Command Write  
37/79  
Bus interfaces  
Figure 40. 3-lines SPI reading sequence  
STE2004S  
READING SEQUENCE  
Set Co bit =1, D/C Bit =0 R/W Bit =1  
SDOUT Buffer become active (Low Impedence)  
Source 8 pulses on SCLK and  
1
Read the ID-Number or the Status Byte On SDOUT  
SDOUT Buffer Configured in High Impedence  
END OF READING SEQUENCE  
note: 1) these data are not read by the display Diver  
2) SDIN and SDOUT can be short circuited if the processor can configure  
serial output buffers in high impedence during data read  
.
LR0079  
4.2.3  
3-lines 9 bits serial interface  
The STE2004S 3-lines serial interface is a bidirectional link between the display driver and  
the application supervisor.  
It consists of three lines: one/two for data signals (SDIN, SDOUT), one for clock signals  
(SCLK) and one for peripheral enable (CS).  
The serial interface is active only if the CS line is set to a logic 0. When CS line is high the  
serial peripheral power consumption is zero. While CS pin is high the serial interface is kept  
in reset.  
The STE2004S is always a slave on the bus and receives the communication clock on the  
SCLK pin from the master.  
Information is exchanged word-wide. The word is composed of 9 bits. The first bit is named  
SD/C and indicates whether the following byte is a command (SD/C =0) or data byte (SD/C  
=1). During data transfer, the data line is sampled on the positive SCLK edge.  
If CS stays low after the last bit of a command/data byte, the serial interface expects the  
SD/C bit of the next word at the next SCLK positive edge. A reset pulse on RES pin  
interrupts the transmission. No data is written into the data RAM and all the internal  
registers are cleared. If CS is low after the positive edge of RES, the serial interface is ready  
to receive data.  
Throughout SDOUT, only the driver I2C slave address or the status byte can be read. The  
command sequence that the I2C slave address or status byte to be read is shown in Figure  
43. and Figure 44.. SDOUT is in high impedance in steady state and during data write.  
38/79  
STE2004S  
Bus interfaces  
It is possible to short circuit SDOUT and SDIN, and read the I2C address or status byte  
without any additional line.  
Figure 41. 3-lines serial bus protocol - one byte transmission  
CS  
SCLK  
SDIN  
SD/C  
MSB  
LSB  
LR0073  
Figure 42. 3-lines serial bus protocol - several byte transmission  
CS  
SCLK  
SDIN  
D/C  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
D/C  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
D/C  
DB7  
DB6  
LR0074  
Figure 43. 3-lines serial interface protocol in Reading Mode  
CS  
SCLK  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
Don't  
Care  
SDIN  
SD/C DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
High-Z  
High-Z  
High-Z  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
ID-Number  
SDOUT  
High-Z  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
STATUS BYTE  
LR0075  
DATA Read  
Command Write  
39/79  
Bus interfaces  
Figure 44. 3-lines serial reading sequence  
STE2004S  
READING SEQUENCE  
Write a "00000000" Instruction  
SDOUT Buffer becomes active (Low Impedence)  
Source 9 pulses on SCLK and  
Read the ID Number or the Status Byte On SDOUT1  
SDOUT Buffer Configured in High Impedence  
END OF READING SEQUENCE  
note: 1) these data are not read by the display Diver  
2) SDIN and SDOUT can be short circuited if the processor can configure  
serial output buffers in high impedence during data read  
.
LR0080  
4.3  
Parallel interface  
The STE2004S selectable parallel interfaces are 68000-series and 8080-series. They are  
both an 8-bits bi-directional link between the display driver and the application supervisor.  
Both parallel interfaces can be read the I2C driver slave address or the status byte.  
4.3.1  
68000-series parallel interface  
If CS is low after the positive edge of RES, the 68000 parallel interface is ready to receive or  
transmit data.  
While CS pin is high the 68000 parallel interface is kept in reset.  
Write mode  
If R/W line is set to 0, data is latched on the E falling edge.  
Read mode  
When R/W line is set to 1, data is output on the D0-D7 bus on the E rising edge. The data  
bus is set in high impedance mode when E is set to logic 0.  
The I2C address or status byte is output on D0-D7 bus, according to R bit value.  
40/79  
STE2004S  
Bus interfaces  
Figure 45. 68000-series parallel interface protocol - one byte transmission  
CS  
R/W  
D/C  
E
D0  
to  
D7  
LR0004  
Figure 46. 68000-series parallel interface bus protocol - several bytes transmission  
CS  
R/W  
D/C  
E
D0  
to  
D7  
LR0081  
Figure 47. 68000-series parallel interface protocol in reading mode  
CS  
D/C  
R/W  
E
D0  
to  
D7  
LR0082  
41/79  
Bus interfaces  
STE2004S  
Figure 48. 68000-series parallel interface protocol in reading mode (several bytes)  
CS  
D/C  
R/W  
E
D0  
to  
D7  
Note 1) Data Bus is configured in high impedence mode after evry RD rising edge  
2) Always the same data is output on D0-D7  
LR0046  
4.3.2  
8080-series parallel interface  
If CS is low after the positive edge of RES, the 8080 parallel interface is ready to receive or  
transmit data. While CS pin is high the 8080 parallel interface is kept in reset.  
Write mode  
Data are latched on WR rising edge.  
Read mode  
Data is output on the D0-D7 bus on the RD rising edge. The data bus is set in high impedance  
mode when RD is set to logic 1.  
The I2C address or status byte is output on D0-D7 bus, accordingly to R bit value.  
Figure 49. 8080-series parallel bus protocol - one byte transmission  
CS  
D/C  
RD  
WR  
D0  
to  
D7  
LR0083  
42/79  
STE2004S  
Bus interfaces  
Figure 50. 8080-series parallel bus protocol - several bytes transmission  
CS  
D/C  
RD  
WR  
D0  
to  
D7  
LR0084  
Figure 51. 8080-series parallel interface protocol in reading mode  
CS  
D/C  
RD  
WR  
D0  
to  
D7  
LR0085  
Figure 52. 8080-series parallel interface protocol in reading mode (several bytes)  
CS  
D/C  
RD  
WR  
D0  
to  
D7  
LR0045  
Note 1) Data Bus is configured in high impedence mode after every RD rising edge  
2) Always the same data is output on D0-D7  
43/79  
Instruction set  
STE2004S  
5
Instruction set  
Two different instructions formats are provided:  
With D/C set to LOW : commands are sent to the control circuitry.  
With D/C set to HIGH : the data RAM is addressed.  
Two different instruction sets are embedded: the STE2001-like instruction set and the  
extended instruction set. To select the STE2001-like instruction set, the EXT pad must be  
connected to a logic LOW (connect to GND). To select the extended instruction set, the EXT  
pad must be connected to a logic HIGH (connect to VDD1).  
The instruction syntax is summarized in Table 8. (basic-set) and Table 9. (extended set).  
Table 8. STE2001/2-like instruction set  
Instruction  
H=0 or H=1  
D/C R/W  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Description  
Read I2C address or  
status byte  
(with 3-lines serial and  
4-lines SPI only)  
Read command  
Function set  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
Power down  
H[0] management; entry  
mode;  
MX  
MY  
PD  
V
Status byte  
ID code  
0
0
1
1
1
0
PD BSY  
0
1
D
1
E
1
MX  
1
MY  
ID1  
D1  
DO (I2C interface only)  
0
0
ID0  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D0 Writes data to RAM  
H=0  
Starts memory blank  
procedure  
Memory blank  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
Scrolls by one row up  
or down  
Scroll  
DIR  
PRS[ VLDC programming  
0] range selection  
VLCD range setting  
Display control  
Set CP factor  
Set RAM Y  
0
0
0
0
1
0
Select display  
E
0
0
0
1
D
0
configuration  
Charge pump  
S0  
0
0
1
0
S2  
Y2  
X2  
S1  
Y1  
X1  
multiplication factor  
Set horizontal (Y)  
Y0  
1
0
0
Y3  
X3  
RAM address  
Set vertical (X) RAM  
address  
Set RAM X  
X6  
X5  
X4  
X0  
44/79  
STE2004S  
Instruction set  
Description  
Table 8. STE2001/2-like instruction set  
Instruction  
H=1  
D/C R/W  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Starts checker board  
procedure  
Checker board  
Duty  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
MUX Selects duty factor  
Set temperature  
coefficient for VLDC  
TC select  
1
TC1 TC0  
Data order  
Bias ratios  
Reserved  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
X
0
1
X
1
0
X
DO  
0
0
BS2 BS1 BS0 Set desired bias ratios  
X
X
X
Not to be used  
VOP register write  
instruction  
Set VOP  
0
0
1
OP6 OP5 OP4 OP3 OP2 OP1 OP0  
Table 9. Extended instruction set  
Instruction  
D/C R/W  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Description  
H independent instructions  
Read I2C address or  
status byte  
(with 3-lines serial and  
4-lines SPI only)  
Read command  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
Page selector, power  
H[1] H[0] down management;  
entry mode  
MX  
MY  
PD  
Status byte  
ID code  
0
0
1
1
1
0
PD BSY  
0
1
D
1
E
1
MX  
1
MY  
ID1  
D1  
DO  
0
0
ID0  
Write data  
D7  
D6  
D5  
D4  
D3  
D2  
D0 Writes data to RAM  
H=[0;0] RAM commands  
Starts memory blank  
procedure  
Memory blank  
Scroll  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
1
1
Scrolls by one row up  
or down  
DIR  
PRS[ PRS[ VLDC programming  
VLCD range setting  
Display control  
Set CP factor  
Set RAM Y  
0
0
0
0
1
1]  
0] range selection  
Select display  
E
0
0
0
1
D
0
configuration  
Charge pump  
S0  
0
0
1
0
S2  
Y2  
X2  
S1  
Y1  
X1  
multiplication factor  
Set horizontal (Y)  
Y0  
1
0
0
Y3  
X3  
RAM address  
Set vertical (X) RAM  
address  
Set RAM X  
X6  
X5  
X4  
X0  
45/79  
Instruction set  
STE2004S  
Table 9. Extended instruction set  
Instruction  
H=[0;1]  
D/C R/W  
B7  
B6  
B5  
B4  
B3  
B2  
B1  
B0  
Description  
Starts checker board  
procedure  
Checker board  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
Vertical addressing  
mode  
V
Set temperature  
coefficient for VLDC  
TC select  
1
TC1 TC0  
Data order  
Bias ratios  
Read mode,  
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
0
1
0
DO  
0
0
MSB position  
BS2 BS1 BS0 Set desired bias ratios  
R
0
0
0
VOP register write  
instruction  
Set VOP  
0
0
1
OP6 OP5 OP4 OP3 OP2 OP1 OP0  
H=[1;0]  
Driver control  
Display control  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
1
1
Software reset  
PE Partial enable  
1
FR1 FR0 Frame rate control  
M[1] M[0] MUX ratio  
0
Partial mode  
PDC  
2
PDC  
1
1
PDC0 Partial display config  
1
st Sector start  
address  
0
0
0
0
0
1
1
PDY  
5
5
PDY  
4
4
PDY  
PDY  
3
3
PDY  
PDY  
2
PDY  
PDY  
0
0
2
nd Sector start  
PDY  
6
PDY  
PDY  
2
PDY  
1
PDY  
address  
H=[1;1]  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
X
1
X
X
Scrolling pointer reset  
Not used  
Not used  
Set temperature  
coefficient for VLDC  
0
0
0
0
0
0
1
T2  
T1  
T0  
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
NW3 NW2 NW1 NW0 N-Line inversion  
YC-3 YC-2 YC-1 YC-0 Y carriage return  
XC-6 XC-5 XC-4 XC-3 XC-2 XC-1 XC-0 X carriage return  
46/79  
STE2004S  
Instruction set  
Reset state  
Table 10. Explanations of Table 8 and Table 9 symbols  
Bit  
DIR  
0
1
Scroll by one down  
Select page 0  
Scroll by one up  
Select page 1  
H[0]  
PD  
V
0
1
0
0
Device fully working  
Horizontal addressing  
Normal X axis addressing  
Device in power down  
Vertical addressing  
MX  
X axis address is mirrored.  
Image is displayed not vertically  
mirrored  
Image is displayed vertically  
mirrored  
MY  
0
DO  
PE  
MUX  
R
MSB on TOP  
MSB on BOTTOM  
Partial Display enabled  
MUX 33 mode  
0
0
0
0
Partial Display disabled  
MUX 65 mode  
Read ID-Number / I2C address  
Read status byte  
Table 11. Page selection  
H[1]  
H[0]  
Description  
Reset state  
0
0
1
1
0
1
0
1
Page 0  
Page 1  
Page 2  
Page 3  
Page 0  
Table 12. Display mode  
D
E
Description  
Reset state  
0
0
1
1
0
1
0
1
Display blank  
Qll display segments on  
Normal mode  
E=0  
D=0  
Inverse video mode  
Table 13. Frame rate control  
FR[1]  
FR[0]  
Description  
Reset state  
0
0
1
1
0
1
0
1
65Hz  
70Hz  
75Hz  
80Hz  
75Hz  
47/79  
Instruction set  
STE2004S  
Table 14. Vlcd range selection  
PRS[1]  
PRS[0]  
Description  
Reset state  
0
0
1
1
0
1
0
1
2.94  
6.78  
10.62  
10.62  
Table 15. Multiplexing ratio  
M[1]  
M[0]  
Description  
Reset state  
0
0
1
1
0
1
0
1
49  
65  
33  
01  
Not Allowed  
Table 16. Temperature coefficient (T0, T1, T2)  
T2  
T1  
T0  
Description  
Reset state  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
VLCD temperature coefficient 0  
VLCD temperature coefficient 1  
VLCD temperature coefficient 2  
VLCD temperature coefficient 3  
VLCD temperature coefficient 4  
VLCD temperature coefficient 5  
VLCD temperature coefficient 6  
VLCD temperature coefficient 7  
000  
Table 17. Temperature coefficient (TC0, TC1)  
TC1  
TC0  
Description  
Reset state  
0
0
0
1
0
1
1
1
VLCD temperature coefficient 0  
VLCD temperature coefficient 2  
VLCD temperature coefficient 3  
VLCD temperature coefficient 6  
00  
48/79  
STE2004S  
Instruction set  
Table 18. Charge pump multiplication factor  
CP2  
CP1  
CP0  
Description  
Reset state  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Multiplication factor X2  
Multiplication factor X3  
Multiplication factor X4  
Multiplication factor X5  
Not used  
000  
Not used  
Not used  
Automatic  
Table 19. Bias ratio  
BS2  
BS1  
BS0  
Description  
Reset state  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Bias ratio equal to 7  
Bias ratio equal to 6  
Bias ratio equal to 5  
Bias ratio equal to 4  
Bias ratio equal to 3  
Bias ratio equal to 2  
Bias ratio equal to 1  
Bias ratio equal to 0  
000  
Table 20. Y Carriage return register  
Y-C[3]  
Y-C[2]  
Y-C[1]  
Y-C[0]  
Description  
Y-CARRIAGE =0  
Reset state  
0
0
0
0
0
.
0
0
0
0
1
.
0
0
1
1
0
.
0
1
0
1
0
.
Y-CARRIAGE =1  
Y-CARRIAGE =2  
Y-CARRIAGE =3  
Y-CARRIAGE =4  
1000  
0
0
1
1
1
0
1
1
0
0
1
0
Y-CARRIAGE =6  
Y-CARRIAGE =7  
Y-CARRIAGE =8  
49/79  
Instruction set  
STE2004S  
Table 21. Partial display configuration  
PD2  
PD1  
PD0  
Section 1  
Section 2  
Reset state  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
8
8 + Icon row  
0 + Icon row  
8 + Icon row  
16 + Icon row  
0 + Icon row  
16 + Icon row  
8 + Icon row  
16 + Icon row  
8
0
000  
16  
8
16  
16  
Table 22. N-Line inversion  
NW3  
NW2  
NW1  
NW0  
Description  
0-Line inversion  
(Frame inversion)  
Reset state  
0
0
0
0
0
0
0
:
0
0
0
:
0
1
1
:
1
0
1
:
2-Line inversion  
3-Line inversion  
4-Line inversion  
:
0000  
1
1
1
1
1
1
0
1
15-Line inversion  
16-Line inversion  
5.1  
Reset (RES)  
At power-on, all internal registers are configured with the default value. The RAM content is  
not defined. A reset pulse on the RES pad (active low) re-initializes the internal registers  
content see Table 10. All on-going communication with the host controller is interrupted if a  
reset pulse is applied. After the power-on, the software reset instruction can be used to re-  
load the reset configuration into the internal registers.  
The default configuration is:  
– Horizontal addressing (V = 0)  
– Normal instruction set (H[1:0] = 0)  
– Normal display (MX = MY = 0)  
– Display blank (E = D = 0)  
– Multiplexing ratio (M[1:0]=0 - MUX 65)  
– Frame rate (FR[1:0]=”75Hz”)  
– Power down (PD = 1)  
– Dual partial display disabled (PE=0)  
– VOP=0  
– Address counter X[6: 0] = 0 and Y[4: 0] = 0  
Temperature coefficient (TC[1: 0] = 0)  
– Bias system (BS[2: 0] = 0)  
Y-CARRIAGE=8  
– X-CARRIAGE=101  
A memory blank instruction can be used to clear the DDRAM content.  
50/79  
STE2004S  
Instruction set  
5.2  
Power down (PD = 1)  
At power down, all LCD outputs are kept at VSS (display off). Bias generator and VLCD  
generator are off (VLCDOUT output is discharged to VSS, and then VLCDOUT can be  
disconnected). The internal oscillator is in off state. An external clock can be provided. The  
RAM contents is not cleared.  
5.3  
Memory blanking procedure  
This instruction fills the memory with "blank" patterns, in order to delete patterns randomly  
generated in memory when starting up the device. It substitutes (102X8) single "write"  
instructions. The procedure can only be programmed if:  
PD bit = 0  
No instruction can be programmed for a period equivalent to 102X8 internal write cycles  
(102X8X1/fclock). The start of the memory blanking procedure is between one and two  
fclock cycles from the last active edge (E falling edge for the parallel interface, last SCLK  
rising edge for the serial and SPI interfaces, last SCL rising edge for the I2C interface).  
5.4  
5.5  
Checker board procedure  
This instruction fills the memory with "checker-board" pattern, allowing developers to create  
a complex module test configuration using one instruction. It can only be programmed if:  
PD bit = 0  
No instruction can be programmed for a period equivalent to 102X8 internal write cycles  
(102X8X1/fclock). The start of checker-board procedure is between one and two fclock  
cycles from the last active edge (E falling edge for the parallel interface, last SCLK rising  
edge for the serial and SPI interfaces, last SCL rising edge for the I2C interface).  
Scrolling function  
The STE2004S can scroll the graphics display in units of raster-rows. The scrolling function  
changes the correspondence between the rows of the logical memory map and the output  
row drivers. The scroll function does not affect the data ram contentm it is only related to the  
visualization process. The information output on the drivers is related to the row reading  
sequence (the 1st row read is output on R0, the 2nd on R1 and so on). Scrolling means  
reading the matrix starting from a row that is sequentially increased or decreased. After  
every scrolling command the offset between the memory address and the memory scanning  
pointer is increased or decreased by one. The offset range changes in accordance with  
MUX Rate. After 64th/65th scrolling commands in MUX 65 mode, or after the 48th/49th  
scrolling commands in MUX 49 mode, or after 32nd/33rd scrolling command in MUX 33  
mode, the offset between the memory address and the memory scanning pointer is again  
zero (Cyclic Scrolling).  
A Reset Scrolling Pointer instruction can be executed to force the offset between the  
memory address and the memory scanning pointer to zero.  
If ICON MODE =1, the Icon Row is not scrolled. If ICON MODE=0 the last row is like a  
general purpose row and it is scrolled as other lines.  
51/79  
Instruction set  
STE2004S  
If the DIR bit is set to a logic 0, the offset register is increased by one and the raster is  
scrolled from top down. If the DIR bit is set to a logic 1, the offset register is decreased by  
one and the raster is scrolled from bottom-up.  
Table 23. Scrolling function  
MUX Rate  
Icon mode  
Description  
Icon row driver with MY=0  
MUX 33  
MUX 33  
MUX 49  
MUX 49  
MUX 65  
MUX 65  
1
0
1
0
1
0
Icon row not scrooled  
33 line graphic matrix  
Icon row not scrooled  
49 line graphic matrix  
Icon row not scrooled  
65 line graphic matrix  
R48  
R48  
R56  
R56  
R64  
R64  
5.6  
Dual partial display  
If the PE bit is set to a logic one the dual partial display mode is enabled. There are eight  
partial display modes available. The offset of the two partial display zones is row by row  
programmable. The icon row is accessed last in each partial display frame.  
Two sets of register for the HV-generator parameters are provided (PRS[1:0], Vop[6:0],  
BS[2:0], CP[2:0]), allowing normal mode and partial display mode to be switched using one  
instruction. The HV generator is automatically reconfigured using the parameters related to  
the enabled mode. The parameters of the two sets of registers with the same function are  
located in the same position of the instruction set. The registers related to the normal mode  
are accessible when normal mode (PE=0) is selected, the others are accessible when the  
partial display mode is enabled (PE=1). To setup the PRS[1:0], Vop[6:0], BS[2:0], CP[2:0]  
values, follow the instruction flow proposed in Figure 54. To setup partial display sectors  
start qddress and partial display mode no particular instruction flow has to be followed.  
Figure 53. Dual partial display enabling instruction flow  
ENABLE DUAL PARTIAL DISPLAY  
SET 1st Sector Start Address  
OPTIONAL1  
SET 2nd Sector Start Address  
SET PE=1  
END OF ENABLING DUAL PARTIAL DISPLAY  
52/79  
STE2004S  
Instruction set  
Figure 54. Dual partial display mode configuration or duty change  
SETUP PARTIAL DISPLAY CONFIGURATION  
SET Driver in Power Down(PD=1)  
SET Driver in Partial Display Mode (PE=1)  
SET PRS[1:0], Vop[6:0], BS[2:0], CP[2:0]  
for Partial Display Operation  
SET Partial Display Configuration (PDC[2:0])  
SET 1st Sector Start Address  
SET 2nd Sector Start Address  
OPTIONAL  
SET Driver in Normal Mode (PE=0)  
END OF PARTIAL DISPLAY CONFIG.  
Table 24. Partial display configurations  
PDC2 PDC1 PDC0 Section 1  
Section2  
Reset state  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
8
8 + Icon Row  
0 + Icon Row  
8 + Icon Row  
16 + Icon Row  
0 + Icon Row  
16 + Icon Row  
8 + Icon Row  
16 + Icon Row  
8
0
000  
16  
8
16  
16  
53/79  
ID-number  
STE2004S  
6
ID-number  
The STE2004S lets you program a driver identification number (ID-Number), so more than  
one LCD module with different configuration parameters can be managed on one platform.  
There are four programmable device ID-numbers: 00111100, 00111101, 0011110 and  
0011111. All have the first 6 bits (001111) in common. The two least significant bits can be  
used to connect the SA0 and SA1 inputs to a VSS or VDD1.  
The driver ID-number can be read through all communication interfaces. The way to read  
the ID-number changes according the interface selected. The readout protocol for each  
interface is described in Chapter 4.  
Figure 55. I2C interface interconnection in master/ slave mode  
STE2004S  
STE2004S  
SDAOUT SDAIN  
RES  
SCL  
SDAOUT SDAIN  
RES  
SCL  
LR0214  
NOTE:  
MASTER and SLAVE I2C AADDRESS  
MUST BE DIFFERENT  
RES  
SCL  
SDA  
Figure 56. I3-lines SPI and 3-lines serial interfaces interconnection in master slave  
mode  
STE2004S  
STE2004S  
CS SCLK SDIN SDOUT  
RES  
RES  
CS  
SCLK SDIN  
SDOUT  
LR0215  
RES MASTER SCLK  
CS  
SD  
SLAVE  
CS  
54/79  
STE2004S  
ID-number  
Figure 57. 4-lines SPI interface interconnection in master slave mode  
STE2004S  
STE2004S  
SDIN SDOUT  
RES  
D/C  
CS  
SCLK  
RES  
CS  
D/C  
SCLK  
SDIN  
SDOUT  
LR0216  
RES MASTER D/C  
CS  
SCLK  
SD  
SLAVE  
CS  
Figure 58. 8080-series and 68000-series interface interconnection in master slave  
mode  
STE2004S  
D7-D0  
STE2004S  
D7-D0  
CS  
D/C RW-RD  
E-WR  
RES  
D/C  
RW-RD  
RES  
CS  
E-WR  
LR0217  
8 LINES  
8 LINES  
RES MASTER D/C  
CS  
RW-RD E-WR D7-D0  
SLAVE  
CS  
55/79  
ID-number  
STE2004S  
Figure 59. Host processor interconnection with I2C interface  
VSS  
TEST_MODE  
µP  
VSSAUX  
D0  
D1  
D2  
STE2004S  
D3  
D4  
D5  
D6  
D7  
SCLK -SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
VDD1  
ICON  
ANALOG VDD  
DIGITAL VDD  
VDD1 / VSSAUX  
VSSAUX  
SEL1  
SEL2  
SEL3  
EXT_SET  
M/S  
VDD1 / VSSAUX  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0110  
Figure 60. Host processor interconnection with 4-line SPI interface  
VSS  
TEST_MODE  
µP  
VSSAUX  
D0  
D1  
D2  
STE2004S  
D3  
D4  
D5  
D6  
D7  
SCLK-SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
ANALOG VDD  
VDD1  
ICON  
DIGITAL VDD  
VDD1 / VSSAUX  
SEL1  
SEL2  
VDD1  
VSSAUX  
SEL3  
EXT_SET  
M/S  
VDD1 / VSSAUX  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0111  
56/79  
STE2004S  
ID-number  
Figure 61. Host processor interconnection with 3-line SPI interface  
VSS  
TEST_MODE  
µP  
VSSAUX  
D0  
D1  
D2  
STE2004S  
D3  
D4  
D5  
D6  
D7  
SCLK-SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
ANALOG VDD  
VDD1  
ICON  
DIGITAL VDD  
VDD1 / VSSAUX  
SEL1  
SEL2  
VSSAUX  
VDD1  
SEL3  
VSSAUX  
EXT_SET  
VDD1 / VSSAUX  
M/S  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0112  
Figure 62. Host processor interconnection with 3-line serial interface  
VSS  
TEST_MODE  
µP  
VSSAUX  
D0  
D1  
D2  
STE2004S  
D3  
D4  
D5  
D6  
D7  
SCLK-SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
ANALOG VDD  
VDD1  
ICON  
DIGITAL VDD  
VDD1 / VSSAUX  
SEL1  
SEL2  
VDD1  
VDD1  
SEL3  
VSSAUX  
EXT_SET  
VDD1 / VSSAUX  
M/S  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0113  
57/79  
ID-number  
STE2004S  
Figure 63. Host processor interconnection with 8080-series parallel interface  
VSS  
TEST_MODE  
µP  
VSSAUX  
D0  
D1  
D2  
STE2004S  
D3  
D4  
D5  
D6  
D7  
SCLK-SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
ANALOG VDD  
VDD1  
ICON  
DIGITAL VDD  
VDD1 / VSSAUX  
VSSAUX  
SEL1  
SEL2  
VSSAUX  
SEL3  
VDD1  
EXT_SET  
M/S  
VDD1 / VSSAUX  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0114  
Figure 64. Host processor interconnection with 6800  
VSS  
TEST_MODE  
µP  
VSSAUX  
D0  
D1  
D2  
D3  
STE2004S  
D4  
D5  
D6  
D7  
SCLK-SCL  
SDOUT  
SDIN-SDAIN  
SDAOUT  
VSSAUX  
E - WR  
R/W - RD  
D/C  
CS  
RES  
VDD2  
ANALOG VDD  
VDD1  
ICON  
DIGITAL VDD  
VDD1 / VSSAUX  
SEL1  
SEL2  
VDD1  
VSSAUX  
SEL3  
VDD1  
EXT_SET  
M/S  
VDD1 / VSSAUX  
VDD1  
SA0  
SA1  
VDD1 / VSSAUX  
VDD1 / VSSAUX  
VSSAUX  
TEST VREF  
VSENSE_SLAVE  
OSC_IN  
FR_IN  
VDD1_AUX  
LR0115  
58/79  
STE2004S  
ID-number  
Figure 65. Application schematic using the internal LCD voltage generator and two  
separate supplies  
I/O  
VDD2  
VDD2  
VDD1  
32  
102  
33  
VDD1  
1µF  
1µF  
VSS  
VSS  
65 x 102  
DISPLAY  
1µF  
VLCDSENSE  
VLCD  
Figure 66. Application schematic using the internal LCD voltage generator and a  
single supply  
I/O  
VDD  
VDD2  
VDD1  
32  
102  
33  
1µF  
65 x 102  
DISPLAY  
VSS  
VSS  
1µF  
VLCDSENSE  
VLCD  
59/79  
ID-number  
STE2004S  
Figure 67. Power-ON timing diagram  
T
vdd  
Tw(res)  
Tlogic(res)  
VDD2  
VDD1  
RES  
CS  
SCLK  
SDIN  
D/C  
E
R/W  
D0 - D7  
HOST  
D0 - D7  
DRIVER  
Hi-Z  
Hi-Z  
SCL- SDAIN  
SDOUT -  
SDA OUT  
OSCIN, FR_IN  
(HOST)  
OSC OUT, FR_OUT  
(DRIVER)  
POWER ON  
INTERNAL  
RESET  
RESET  
Acceptance  
Time  
BOOSTER  
OFF  
LR0208  
60/79  
STE2004S  
ID-number  
Figure 68. Power-OFF timing diagram  
TVDD  
VDD2  
VDD1  
RES  
CLK-SCL  
SDIN-SDAIN  
D/C  
E
CS  
R/W  
D0 - D7  
HOST  
D0 - D7  
DRIVER  
Hi-Z  
Hi-Z  
SDOUT  
SDA-OUT  
OSCIN  
(HOST)  
OSC OUT  
FR_OUT  
(DRIVER)  
FR_IN  
RESET  
TABLE  
LOADED  
LR0207  
61/79  
ID-number  
STE2004S  
Figure 69. Initialization with built-in booster  
SETUP NORMAL DISPLAY MODE CONFIGURATION  
SET Driver in Power Down(PD=1)  
SET Driver in Normal Display Mode (PE=0)  
SET Operative Voltage for Normal Display Operation  
( Vop[6:0] - PRS[1;0])  
SET Bias Raio for Normal Display Operation  
(BS[2:0])  
SET Temperature Compensation for  
Normal Display Operation (T[2:0] or TC[1:0])  
SET Multiplexing Rate  
M[1:0)  
SET Charge Pump for  
Normal Display Operation (CP[1:0])  
Switch "ON" Booster and Display Control Logic  
(PD=0)  
END OF NORMAL DISPLAY MODE CONFIG.  
LR0218  
62/79  
STE2004S  
ID-number  
Figure 70. Data RAM to display mapping  
DISPLAY DATA RAM  
bank  
0
GLASS  
TOP VIEW  
bank  
1
DISPLAY DATA RAM = "1"  
DISPLAY DATA RAM = "0"  
bank  
2
LCD  
bank  
3
bank  
7
bank  
8
ICOR ROW  
D00IN1155  
Table 25. Test pin configuration  
Test Pin  
Pin Configuration  
TEST_VREF  
TEST_MODE  
OPEN  
GND  
63/79  
Electrical characteristics  
STE2004S  
7
Electrical characteristics  
7.1  
Absolute maximum ratings  
Table 26. Absolute maximum ratings  
Symbol  
Parameter  
Value  
Unit  
VDD1  
VDD2  
VLCD  
ISS  
Supply voltage range  
- 0.5 to + 5  
- 0.5 to + 7  
- 0.5 to + 15  
- 50 to +50  
-0.5 to VDD1 + 0.5  
- 10 to + 10  
- 10 to + 10  
300  
V
V
Supply voltage range  
LCD supply voltage range  
Supply current  
V
mA  
V
Vi  
Input voltage (all input pads)  
DC input current  
Iin  
mA  
mA  
mW  
mW  
°C  
°C  
Iout  
Ptot  
Po  
DC output current  
Total power dissipation (Tj = 85°C)  
Power dissipation per output  
Operating junction temperature(1)  
Storage temperature  
30  
Tj  
-25 to + 85  
- 65 to 150  
Tstg  
1. Device behavior and characterization are measured over this temperature range during internal qualification of the product.  
During production testing, however, device performance is measured at a fixed ambient temperature - typically 25°C.  
7.2  
DC operation  
VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =25°C;  
unless otherwise specified.  
Table 27. DC operation  
Symbol  
Parameter  
Test condition  
Min.  
1.7  
Typ.  
Max.  
Unit  
Supply voltages  
3.6  
V
V
VDD1  
Supply voltage(1)  
VDD2  
LCD voltage internally  
generated  
VDD2  
Supply voltage  
1.75  
4.5  
V
LCD voltage supplied  
externally  
LCD supply voltage  
LCD supply voltage  
4.5  
4.5  
14.5  
14.5  
V
V
VLCD  
Internally generated(2)  
VDD1 = 2.8V;  
Supply current  
V
LCD = 10V; fsclk = 0;  
15  
20  
40  
µA  
µA  
Parallel Port (3) (5)  
I(VDD1  
)
VDD2 = 2.8V;  
Supply current write  
mode  
V
LCD = 10V; fsclk = 1Mhz;  
100  
200  
OSC_IN=GND(3)  
64/79  
STE2004S  
Electrical characteristics  
Table 27. DC operation (continued)  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
Unit  
with VOP = 0 and  
PRS = [0:0] with external  
VLCD  
5
µA  
(4)  
Voltage generator supply  
current  
I(VDD2  
)
VDD2 = 2.8V;  
VLCD = 10V; fsclk=0;  
no display load;  
60  
150  
µA  
5x charge pump(5)(3) (6)  
VDD2 = 2.8V; VLCD  
=
10V; 5x charge pump;  
80  
3
190  
15  
µA  
µA  
µA  
f
sclk = 0;  
no display load(5) (3) (6)  
I(VDD1,2  
)
Total supply current  
Power down mode with  
internal or external  
VLCD(7)  
VDD =2.8V;  
VLCD =10V;  
no display load;  
fsclk = 0;(3)  
External LCD supply  
voltage current  
I(VLDCIN  
)
25  
Logic outputs  
High logic level output  
voltage  
V0H  
IOH=-500µA  
IOL=+500µA  
0.8VDD1  
VSS  
VDD1  
V
V
Low logic level output  
voltage  
VOL  
0.2VDD1  
Logic inputs  
VIL  
VIH  
Iin  
Logic low voltage level  
Logic high voltage level  
Input current  
VSS  
0.7 VDD1  
-1  
0.3 VDD1  
VDD2  
1
V
V
Vin = VSS1 or VDD1  
µA  
Logic inputs/outputs  
VIL  
VIH  
Logic low voltage level  
Logic high voltage level  
VSS  
0.3 VDD1  
V
V
0.7 VDD1  
VDD1 + 0.5  
65/79  
Electrical characteristics  
STE2004S  
Unit  
Table 27. DC operation (continued)  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
Column and row driver  
Rrow  
Rcol  
ROW output resistance  
3K  
5K  
5K  
kohm  
kohm  
Column output  
resistance  
10K  
Column bias voltage  
accuracy  
Vcol  
No load  
-50  
-50  
+50  
+50  
mV  
mV  
Row bias voltage  
accuracy  
Vrow  
LCD supply voltage  
VDD = 2.8V; VLCD = 10V;  
fsclk=0;  
LCD supply voltage  
accuracy; internally  
generated  
VLCD  
-2  
+2  
%
no display load(5)(3) (6) (8)  
VOP=69h, PRS=2Hex(9)  
TC0  
TC1  
TC2  
TC3  
TC4  
TC5  
TC6  
TC7  
-0.0· 10-3  
-0.35 · 10-3  
-0.7 · 10-3  
-1.05· 10-3  
-1.4 · 10-3  
-1.75· 10-3  
-2.1 · 10-3  
-2.3· 10-3  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
1/°C  
Temperature coefficient  
1. VDD1<=VDD2  
2. The maximum possible V  
voltage that can be generated is dependent on voltage, temperature and (display) load.  
LCD  
3. When f  
= 0 there is no interface clock.  
sclk  
4. If external V  
, the display load current is not transmitted to I  
DD  
LCD  
5. Internal clock  
6. Tolerance depends on the temperature; (typically zero at T  
temperature range limit.  
= 25°C), maximum tolerance values are measured at the  
amb  
7. Power-down mode. During power-down all static currents are switched-off.  
8. For TC0 to TC7  
9. Data byte writing mode  
66/79  
STE2004S  
Electrical characteristics  
7.3  
AC operation  
VDD1 = 1.7 to 3.6 V; VDD2 = 1.75 to 4.5 V; Vss1,2 = 0V; VLCD = 4.5 to 15 V; Tamb =25°C;  
unless otherwise specified.  
Table 28. AC operation  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
Unit  
Internal oscillator (Figure 71)  
Internal oscillator  
frequency  
FOSC  
VDD = 2.8V  
61  
20  
72  
83  
kHz  
kHz  
External oscillator  
frequency  
FEXT  
100  
FFRAME Frame frequency  
fosc or fext = 72 kHz(1)  
75  
Hz  
µs  
µs  
RES LOW pulse width  
Tw(RES)  
5
Reset pulse rejection  
1
5
TLOGIC  
Internal logic reset time  
µs  
µs  
(RES)  
TVDD  
VDD1 vs. VDD2 Delay  
0
I2C bus interface (Figure 72)(2) (3)  
Fast mode  
DC  
DC  
400  
3.4  
kHz  
High speed mode;  
Cb=100pF (max);(4)  
VDD1=2  
MHz  
FSCL  
SCL clock frequency  
High speed mode;  
Cb=400pF (max)(4)  
VDD1=2  
;
DC  
1.7  
MHz  
Fast Mode (4);VDD1=1.7V  
400  
KHz  
ns  
Set-up time (repeated)  
START condition  
TSU;STA  
THD;STA  
TLOW  
Cb = 100pF(5) (6)  
160  
160  
160  
160  
Hold time (repeated)  
START condition  
Cb = 100pF(5) (6)  
Cb = 100pF(5) (6)  
Cb = 100pF(5) (6)  
ns  
ns  
ns  
Low period of SCLH  
clock  
High period of SCLH  
clock  
THIGH  
TSU;DAT Data set-up time  
THD;DAT Data hold time  
Cb = 100pF(5) (6)  
Cb = 100pF(5) (6)  
60  
10  
10  
ns  
ns  
ns  
T
Rise time of SCLH signal Cb = 100pF(5) (6)  
r;CL  
Rise time of SCLH signal  
after a repeated START  
condition and aftyer an  
acknowledge bit  
T
Cb = 100pF(5) (6)  
10  
10  
ns  
ns  
r;CL1  
Tf;CL  
Fall time of SCLH signal Cb = 100pF(5) (6)  
67/79  
Electrical characteristics  
Table 28. AC operation  
STE2004S  
Unit  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
T
Rise time of SCLH signal Cb = 100pF(5) (6)  
Fall time of SDAH signal Cb = 100pF(5) (6)  
Rise time of SDAH signal Cb = 400pF(5) (6)  
Fall time of SDAH signal Cb = 400pF(5) (6)  
10  
10  
20  
20  
ns  
ns  
ns  
ns  
r;DA  
Tf;DA  
80  
T
r;DA  
Tf;DA  
160  
Setup time for STOP  
Cb = 100pF(5) (6)  
condition  
TSU;STO  
160  
100  
ns  
pF  
Capacitive load for SDAH  
and SCLH  
Cb  
Cb  
400  
400  
Capacitive load for SDAH  
+SDA line and SCLH  
+SCL line  
pF  
Parallel interface (Figure 73, Figure 74)  
VDD1 = 1.7V;  
read and write  
TCYC  
TCLW  
TCHW  
TCLR  
System cycle time  
125  
20  
75  
40  
55  
60  
60  
60  
60  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Control low pulse width  
(WR)  
Control high pulse width  
(WR)  
Control low pulse width  
(RD)  
Control high pulse width  
(RD)  
TCHR  
Enable high pulse width  
(Write)  
TEWHW  
TEWLW  
TEWHR  
TEWLR  
Enable low pulse width  
(Write)  
Enable high pulse width  
(Read)  
Enable low pulse width  
(Read)  
TSU(A)  
TH(A)  
TSU1  
TH1  
Address set-up time  
Address hold time  
Data set-up time  
Data hold time  
10  
10  
30  
30  
ns  
ns  
ns  
ns  
ns  
ns  
TSU2  
TH2  
Read access time  
Output disable time  
40  
30  
0
68/79  
STE2004S  
Electrical characteristics  
Table 28. AC operation  
Symbol  
Parameter  
Test condition  
Min.  
Typ.  
Max.  
Unit  
Serial interface (Figure 75)  
FSCLK  
TCYC  
TPWH1  
TPWL1  
TS2  
Clock frequency  
VDD1 = 1.7V;  
8
125  
60  
60  
40  
50  
50  
30  
30  
30  
40  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Clock cycle SCLK  
SCLK pulse width HIGH  
SCLK pulse width LOW  
CS setup time  
VDD1 = 1.7V  
VDD1 = 1.7V  
VDD1 = 1.7V  
TH2  
CS hold time  
TPWH2  
TS3  
CS minimum high time  
SD/C setup time  
SD/C hold time  
TH3  
TS4  
SDIN setup time  
SDIN hold time  
TH4  
TS5  
SDOUT access time  
30  
20  
SDOUT disable time vs.  
SCLK  
TH5  
TH6  
0
0
ns  
ns  
SDOUT disable time vs.  
CS  
20  
fosc  
1.  
Fframe = ---------  
960  
2. For bus line loads Cb between 100 and 400pF the timing parameters must be linearly interpolated  
3. Trise and Tfall (30%-70%) -10ns  
4.  
C
is the filtering capacitor on VLCD  
VLCD  
5. All timing values are valid within the operating supply voltage and ambient temperature ranges and referenced to V and  
IL  
V
with an input voltage swing of V to V  
SS DD  
IH  
6. Cb is the capacitive load for each bus line.  
69/79  
Electrical characteristics  
Figure 71. Reset timing diagram  
STE2004S  
Tw(res)  
Tlogic(res)  
VDD2  
VDD1  
RES  
INPUTS  
I/O  
(HOST)  
I/O  
(DRIVER)  
Hi-Z  
Hi-Z  
INTERFACE  
OUTPUT  
OSCIN  
FR_IN  
(HOST)  
OSC OUT  
FR_OUT  
(DRIVER)  
RESET  
TABLE  
LOADED  
LR0209  
Figure 72. I2C-bus timings  
Sr  
Sr P  
t
t
rDA  
fDA  
SDAH  
SCLH  
t
HD;DAT  
t
HD;STA  
t
SU;DAT  
t
SU;STA  
t
fCL  
t
t
t
rCL1  
rCL  
rCL1  
(1)  
(1)  
t
t
t
t
LOW HIGH  
HIGH LOW  
LR0093  
= MCS current source pull-up  
= Rp resistor pull-up  
70/79  
STE2004S  
Electrical characteristics  
Figure 73. 68000-series parallel interface timing  
D/C  
R/W  
t
SU(A)  
tH(A)  
CS  
E
t
CYC  
t
EWHR, tEWHW  
t
EWLR  
,
t
EWLW  
t
SU1  
t
H1  
D0 to D7  
(Write)  
t
SU2  
tH2  
D0 to D7  
(Read)  
Figure 74. 8080-series parallel interface timing  
D/C  
tSU(A)  
tH (A)  
CS  
tCYC  
tCLR , tCLW  
WR, RD  
tCHR , tCHW  
tH1  
tSU1  
D0 to D7  
(Write)  
tSU2  
tH2  
D0 to D7  
(Read)  
71/79  
Pad coordinates  
Figure 75. Serial interface timing  
STE2004S  
t
S2  
t
H2  
t
PWH2  
CS  
t
t
H3  
S3  
D/C  
t
CYC  
t
t
WH1  
PWL1  
t
S2  
SCLK  
SDIN  
SOUT  
t
t
H4  
S4  
t
H6  
t
t
H5  
S5  
LR0096  
8
Pad coordinates  
See Table 29: Pad coordinates and Table 30: Alignment marks coordinates.  
72/79  
STE2004S  
Pad coordinates  
Pad placements  
Table 29. Pad coordinates  
Pad placements  
No  
Name  
No  
Name  
X
Y
X
Y
1
R5  
R4  
-2632.5  
-2587.5  
-2542.5  
-2497.5  
-2452.5  
-2407.5  
-2362.5  
-2317.5  
-2272.5  
-2227.5  
-2182.5  
-2137.5  
-2092.5  
-2047.5  
-2002.5  
-1957.5  
-1912.5  
-1867.5  
-1822.5  
-1777.5  
-1732.5  
-1687.5  
-1642.5  
-1597.5  
-1552.5  
-1507.5  
-1462.5  
-1417.5  
-1372.5  
-1327.5  
-1282.5  
-1237.5  
-1192.5  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
C27  
C28  
C29  
C30  
C31  
C32  
C33  
C34  
C35  
C36  
C37  
C38  
C39  
C40  
C41  
C42  
C43  
C44  
C45  
C46  
C47  
C48  
C49  
C50  
C51  
C52  
C53  
C54  
C55  
C56  
C57  
C58  
C59  
-1147.5  
-1102.5  
-1057.5  
-1012.5  
-967.5  
-922.5  
-877.5  
-832.5  
-787.5  
-742.5  
-697.5  
-652.5  
-607.5  
-562.5  
-517.5  
-472.5  
-427.5  
-382.5  
-337.5  
-292.5  
-247.5  
-202.5  
-157.5  
-112.5  
112.5  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
2
3
R3  
4
R2  
5
R1  
6
R0  
7
C0  
8
C1  
9
C2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
C3  
C4  
C5  
C6  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
C22  
C23  
C24  
C25  
C26  
157.5  
202.5  
247.5  
292.5  
337.5  
382.5  
427.5  
472.5  
73/79  
Pad coordinates  
STE2004S  
Table 29. Pad coordinates  
Pad placements  
Pad placements  
No  
Name  
No  
Name  
X
Y
X
Y
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
C60  
C61  
C62  
C63  
C64  
C65  
C66  
C67  
C68  
C69  
C70  
C71  
C72  
C73  
C74  
C75  
C76  
C77  
C78  
C79  
C80  
C81  
C82  
C83  
C84  
C85  
C86  
C87  
C88  
C89  
C90  
C91  
C92  
517.5  
562.5  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
C93  
C94  
C95  
C96  
C97  
C98  
C99  
C100  
C101  
R32  
R33  
R34  
R35  
R36  
R37  
R38  
R39  
R40  
R41  
R42  
R43  
R44  
R45  
R46  
R47  
R48  
R49  
R50  
R51  
R52  
R53  
R54  
R55  
2002.5  
2047.5  
2092.5  
2137.5  
2182.5  
2227.5  
2272.5  
2317.5  
2362.5  
2407.5  
2452.5  
2497.5  
2542.5  
2587.5  
2632.5  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
2773.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-532.8  
-472.5  
-427.5  
-382.5  
-337.5  
-292.5  
-247.5  
-202.5  
-157.5  
-112.5  
-67.5  
607.5  
652.5  
697.5  
742.5  
787.5  
832.5  
877.5  
922.5  
967.5  
1012.5  
1057.5  
1102.5  
1147.5  
1192.5  
1237.5  
1282.5  
1327.5  
1372.5  
1417.5  
1462.5  
1507.5  
1552.5  
1597.5  
1642.5  
1687.5  
1732.5  
1777.5  
1822.5  
1867.5  
1912.5  
1957.5  
-22.5  
22.5  
67.5  
112.5  
157.5  
202.5  
247.5  
292.5  
74/79  
STE2004S  
Pad coordinates  
Pad placements  
Table 29. Pad coordinates  
Pad placements  
No  
Name  
No  
Name  
X
Y
X
Y
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
R56  
R57  
2773.8  
2773.8  
2773.8  
2773.8  
2632.5  
2587.5  
2542.5  
2497.5  
2452.5  
2227.5  
2182.5  
2137.5  
2092.5  
1777.5  
1732.5  
1687.5  
1642.5  
1597.5  
1552.5  
1507.5  
1462.5  
1417.5  
1372.5  
1327.5  
1282.5  
1237.5  
1192.5  
1147.5  
1102.5  
1057.5  
1012.5  
967.5  
337.5  
382.5  
427.5  
472.5  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
VDD2  
_RES  
-CS  
877.5  
832.5  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
R58  
787.5  
R59  
742.5  
R60  
697.5  
R61  
652.5  
R62  
337.5  
R63  
247.5  
R64/ICON  
VDD1 AUX  
FR IN  
OSC IN  
Vsns_Slave  
TEST_VREF  
VSSAUX  
SA1  
D/C  
157.5  
RW-RD  
E-WR  
VSSAUX  
SDA_OUT  
SDIN_SDAIN  
SDOUT  
SCLK_SCL  
D7  
67.5  
-22.5  
-67.5  
-157.5  
-202.5  
-247.5  
-337.5  
-382.5  
-427.5  
-472.5  
-517.5  
-562.5  
-607.5  
-652.5  
-697.5  
-742.5  
-1102.5  
-1147.5  
-1192.5  
-1237.5  
-1282.5  
-1327.5  
-1372.5  
-1417.5  
SA0  
M/S  
D6  
EXT_SET  
SEL3  
D5  
D4  
SEL2  
D3  
SEL1  
D2  
ICON  
D1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD1  
VDD2  
VDD2  
D0  
VSSAUX  
TEST_MODE  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
922.5  
VSS  
75/79  
Pad coordinates  
STE2004S  
Table 29. Pad coordinates  
Pad placements  
Pad placements  
No  
Name  
No  
Name  
X
Y
X
Y
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
2
VSS  
VSS  
-1462.5  
-1507.5  
-1552.5  
-1597.5  
-1642.5  
-1867.5  
-1912.5  
-1957.5  
-2002.5  
-2047.5  
-2092.5  
-2227.5  
-2272.5  
-2497.5  
-2542.5  
-2587.5  
-2632.5  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
532.8  
472.5  
427.5  
382.5  
337.5  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
234  
235  
236  
237  
R23  
R22  
R21  
R20  
R19  
R18  
R17  
R16  
R15  
R14  
R13  
R12  
R11  
R10  
R9  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
-2773.8  
292.5  
247.5  
202.5  
157.5  
112.5  
67.5  
VSS  
VSS  
VSS  
VLCD_SNS  
VLCD  
VLCD  
VLCD  
VLCD  
VLCD  
OSC_OUT  
FR_OUT  
R31  
22.5  
-22.5  
-67.5  
-112.5  
-157.5  
-202.5  
-247.5  
-292.5  
-337.5  
-382.5  
-427.5  
-472.5  
R30  
R29  
R8  
R28  
R7  
R27  
R6  
R26  
R25  
R24  
1. I C bus AC characteristics are tested by correlation  
Table 30. Alignment marks coordinates  
Marks  
X
Y
mark1  
mark2  
mark3  
mark4  
-2780.55  
2780.55  
-2160.0  
484.89  
-539.55  
-539.55  
539.55  
539.55  
76/79  
STE2004S  
Pad coordinates  
Figure 76. Alignment marks dimensions  
35 µm  
85 µm  
Table 31. Bumps  
Dimensions  
Bumps size  
28µmX97µmX17.5µm  
35µm X 104µm  
45µm  
Pad size  
Pad pitch  
Spacing between bumps  
17µm  
Table 32. Die mechanical dimensions  
Die Size (X x Y)  
5.815mm x 1.333mm  
Wafers thickness  
500µm  
77/79  
Ordering information  
STE2004S  
9
Ordering information  
Table 33. Ordering information  
Part numbers  
Type  
STE2004S DIE2  
Bumped dice on waffle pack  
10  
Revision history  
Table 34. Document revision history  
Date  
Revision  
Changes  
24-Jan-2006  
1
Initial release.  
– Junction temperature range in Table 26: Absolute maximum  
ratings set to: -25 to + 85 and added a footnote.  
– Globally set Tamb = 25°C  
12-Dec-2006  
31-Jan-2007  
2
3
– Moved Table 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 from  
Chapter 6: ID-number to Chapter 5: Instruction set where Table 8  
and Table 9 are referenced.  
– Ordering information moved from cover page to Chapter 9.  
Added Chapter 1: Block diagram and corrected the document title.  
78/79  
STE2004S  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
79/79  

相关型号:

STE2004SDIE2

102 x 65 single-chip LCD controller/driver
STMICROELECTR

STE2007

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2007DIE2

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2007_06

96 x 68 Single-chip LCD controller/driver
STMICROELECTR

STE2028

162 x 130 RGB single-chip true 262k color LCD controller driver
STMICROELECTR

STE2028D3

162 x 130 RGB single-chip true 262k color LCD controller driver
STMICROELECTR

STE2102

240x320RGB single-chip true 262K colors ramless LCD controller/driver
STMICROELECTR

STE2102D3

240x320RGB single-chip true 262K colors ramless LCD controller/driver
STMICROELECTR

STE2130S

240RGB x 320 single chip true 262K color controller/driver
STMICROELECTR

STE220-100T3KI

CAP TANT 220UF 100V 10% AXIAL
VISHAY

STE2200-50T4KI

CAP TANT 2200UF 50V 10% AXIAL
VISHAY

STE2200-50T4MI

CAP TANT 2200UF 50V 20% AXIAL
VISHAY