STM32F101RB [STMICROELECTRONICS]

Access line, advanced ARM-based 32-bit MCU with Flash memory, six 16-bit timers, ADC and seven communication interfaces; 接入线路,先进的基于ARM的32位微控制器与闪存, 6个16位定时器, ADC和七个通信接口
STM32F101RB
型号: STM32F101RB
厂家: ST    ST
描述:

Access line, advanced ARM-based 32-bit MCU with Flash memory, six 16-bit timers, ADC and seven communication interfaces
接入线路,先进的基于ARM的32位微控制器与闪存, 6个16位定时器, ADC和七个通信接口

闪存 微控制器 通信
文件: 总64页 (文件大小:969K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32F101x6  
STM32F101x8 STM32F101xB  
Access line, advanced ARM-based 32-bit MCU with Flash memory,  
six 16-bit timers, ADC and seven communication interfaces  
Preliminary Data  
Features  
Core: ARM 32-bit Cortex™-M3 CPU  
– 36 MHz, 45 DMIPS with 1.25 DMIPS/MHz  
LQFP100  
LQFP48  
LQFP64  
– Single-cycle multiplication and hardware  
division  
14 x 14 mm  
7 x 7 mm  
10 x 10 mm  
Temperature sensor  
– Nested interrupt controller with 43  
maskable interrupt channels  
Up to 80 fast I/O ports  
– 32/49/80 5 V-tolerant I/Os  
– Interrupt processing (down to 6 CPU  
cycles) with tail chaining  
– All mappable on 16 external interrupt  
vectors  
Memories  
– Atomic read/modify/write operations  
– 32-to-128 Kbytes of Flash memory  
– 6-to-16 Kbytes of SRAM  
Up to 6 timers  
– Up to three 16-bit timers, each with up to 4  
IC/OC/PWM or pulse counter  
Clock, reset and supply management  
– 2.0 to 3.6 V application supply and I/Os  
– POR, PDR and programmable voltage  
detector (PVD)  
– 4-to-16 MHz high-speed quartz oscillator  
– Internal 8 MHz factory-trimmed RC  
– Internal 32 kHz RC  
– 2 x 16-bit watchdog timers (Independent  
and Window)  
– SysTick timer: 24-bit downcounter  
Up to 7 communication interfaces  
2
– Up to 2 x I C interfaces (SMBus/PMBus)  
– Up to 3 USARTs (ISO 7816 interface, LIN,  
IrDA capability, modem control)  
– PLL for CPU clock  
– Dedicated 32 kHz oscillator for RTC with  
calibration  
– Up to 2 SPIs (18 Mbit/s)  
Low power  
Table 1.  
Device summary  
– Sleep, Stop and Standby modes  
Reference  
Root part number  
– V  
supply for RTC and backup registers  
BAT  
STM32F101x6  
STM32F101x8  
STM32F101xB  
STM32F101C6, STM32F101R6  
Debug mode  
STM32F101C8, STM32F101R8  
STM32F101V8  
– Serial wire debug (SWD) and JTAG  
interfaces  
STM32F101RB, STM32F101VB  
DMA  
– 7-channel DMA controller  
– Peripherals supported: timers, ADC, SPIs,  
2
I Cs and USARTs  
12-bit, 1 µs A/D converter (16-channel)  
– Conversion range: 0 to 3.6 V  
July 2007  
Rev 2  
1/64  
This is preliminary information on a new product now in development or undergoing evaluation. Details are subject to  
change without notice.  
www.st.com  
1
Contents  
STM32F101xx  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
2.1  
2.2  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3
4
5
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.1  
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
5.2  
5.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
5.3.1  
5.3.2  
5.3.3  
5.3.4  
5.3.5  
5.3.6  
5.3.7  
5.3.8  
5.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 26  
Embedded reset and power control block characteristics . . . . . . . . . . . 27  
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Internal Clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
5.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
5.3.11 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 40  
5.3.12 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
5.3.13 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
2/64  
STM32F101xx  
Contents  
5.3.14 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
5.3.15 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
5.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
5.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
6
7
8
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
6.1  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
7.1  
Future family enhancements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
3/64  
List of tables  
STM32F101xx  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Table 6.  
Table 7.  
Table 8.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Device features and peripheral counts (STM32F101xx access line) . . . . . . . . . . . . . . . . . . 7  
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Maximum current consumption in Run and Sleep modes (T = 85 °C) . . . . . . . . . . . . . . . 28  
A
Maximum current consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . 29  
Typical current consumption in Run and Sleep modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Typical current consumption in Stop and Standby modes . . . . . . . . . . . . . . . . . . . . . . . . . 31  
High-speed user external (HSE) clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Low-speed user external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
HSE 4-16 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
LSE oscillator characteristics (  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
fLSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Flash endurance and data retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
I/O AC characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
SCL frequency (f  
= 36 MHz, V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
ADC accuracy (f  
= 10 MHz, f  
= 10 MHz, R  
< 10 k, V  
= 3.3 V) . . . . . . . . 55  
PCLK2  
ADC  
AIN  
DDA  
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
LQPF100 – 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . 58  
LQFP64 – 64-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . 59  
LQFP48 – 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . 60  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Order codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
4/64  
STM32F101xx  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
STM32F101xx access line block diagram  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
STM32F101xx access line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
STM32F101xx access line LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
STM32F101xx access line LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 10. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 11. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Figure 12. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Figure 13. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Figure 14. Unused I/O pin connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Figure 15. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 16. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
2
Figure 17. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Figure 18. SPI timing diagram - slave mode and CPHA=0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 19. SPI timing diagram - slave mode and CPHA=11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Figure 20. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Figure 21. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 22. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figure 23. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . . 56  
REF+  
DDA  
Figure 24. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . 56  
Figure 25. LQPF100 – 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Figure 26. LQFP64 – 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Figure 27. LQFP48 – 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
5/64  
Introduction  
STM32F101xx  
1
Introduction  
This datasheet contains the description of the STM32F101xx access line family features,  
pinout, Electrical Characteristics, Mechanical Data and Ordering information.  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM32F10x Flash Programming Reference Manual  
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical  
Reference Manual.  
2
Description  
The STM32F101xx access line family incorporates the high-performance ARM Cortex™-M3  
32-bit RISC core operating at a 36 MHz frequency, high-speed embedded memories (Flash  
memory up to 128Kbytes and SRAM up to 16 Kbytes), and an extensive range of enhanced  
peripherals and I/Os connected to two APB buses. All devices offer standard communication  
2
interfaces (two I Cs, two SPIs, and up to three USARTs), one 12-bit ADC and three general  
purpose 16-bit timers.  
The STM32F101 family operates in the 40 to +85°C temperature range, from a 2.0 to 3.6 V  
power supply. A comprehensive set of power-saving mode allows to design low-power  
applications.  
The complete STM32F101xx access line family includes devices in 3 different package  
types: from 48 pins to 100 pins. Depending on the device chosen, different sets of  
peripherals are included, the description below gives an overview of the complete range of  
peripherals proposed in this family.  
These features make the STM32F101xx access line microcontroller family suitable for a  
wide range of applications:  
Application control and user interface  
Medical and handheld equipment  
PC peripherals, gaming and GPS platforms  
Industrial applications: PLC, inverters, printers, and scanners  
Alarm systems, Video intercom, and HVAC  
Figure 1 shows the general block diagram of the device family.  
6/64  
STM32F101xx  
Description  
2.1  
Device overview  
Table 2.  
Device features and peripheral counts (STM32F101xx access line)  
Peripheral  
STM32F101Cx  
STM32F101Rx  
STM32F101Vx  
Flash - Kbytes  
SRAM - Kbytes  
32  
6
64  
10  
32  
6
64  
10  
128  
16  
64  
10  
128  
16  
General purpose  
2
3
3
3
SPI  
I2C  
1
1
2
2
1
1
2
2
2
2
USART  
2
3
2
3
3
12-bit synchronized ADC  
number of channels  
1
1
10 channels  
16 channels  
GPIOs  
32  
49  
80  
CPU frequency  
Operating voltage  
Operating temperature  
Packages  
36 MHz  
2.0 to 3.6 V  
-40 to +85 °C  
LQFP64  
LQFP48  
LQFP100  
7/64  
Description  
STM32F101xx  
2.2  
Overview  
ARM® CortexTM-M3 core with embedded Flash and SRAM  
The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded  
systems. It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The STM32F101xx access line family having an embedded ARM core, is therefore  
compatible with all ARM tools and software.  
Embedded Flash memory  
Up to 128 Kbytes of embedded Flash is available for storing programs and data.  
Embedded SRAM  
Up to 16 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait  
states.  
Nested vectored interrupt controller (NVIC)  
The STM32F101xx access line embeds a nested vectored interrupt controller able to handle  
up to 43 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3)  
and 16 priority levels.  
Closely coupled NVIC gives low latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving higher priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
8/64  
STM32F101xx  
Description  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 19 edge detectors lines used to generate  
interrupt/event requests. Each line can be independently configured to select the trigger  
event (rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect external line with pulse  
width lower than the Internal APB2 clock period. Up to 80 GPIOs are connected to the 16  
external interrupt lines.  
Clocks and startup  
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is  
selected as default CPU clock on reset. An external 4-16 MHz clock can be selected and is  
monitored for failure. During such a scenario, it is disabled and software interrupt  
management follows. Similarly, full interrupt management of the PLL clock entry is available  
when necessary (for example with failure of an indirectly used external oscillator).  
Several prescalers allow the configuration of the AHB frequency, the High Speed APB  
(APB2) and the low Speed APB (APB1) domains. The maximum frequency of the AHB and  
the APB domains is 36 MHz.  
Boot modes  
At startup, boot pins are used to select one of five boot options:  
Boot from User Flash  
Boot from System Memory  
Boot from SRAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using the USART.  
Power supply schemes  
V
= 2.0 to 3.6 V: External power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 2.0 to 3.6 V: External analog power supplies for ADC, Reset blocks, RCs  
DDA  
SSA  
and PLL. In V range (ADC is limited at 2.4 V).  
DD  
V
= 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup  
BAT  
registers (through power switch) when V is not present.  
DD  
Power supply supervisor  
The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is  
always active, and ensures proper operation starting from/down to 2 V. The device remains  
in reset mode when V is below a specified threshold, V  
, without the need for an  
DD  
POR/PDR  
external reset circuit.  
The device features an embedded Programmable voltage detector (PVD) that monitors the  
power supply and compares it to the V threshold. An interrupt can be generated  
V
DD  
PVD  
when V drops below the V  
and/or when V is higher than the V  
threshold. The  
DD  
PVD  
DD  
PVD  
interrupt service routine can then generate a warning message and/or put the MCU into a  
safe state. The PVD is enabled by software.  
Refer to Table 9: Embedded reset and power control block characteristics for the values of  
V
and V  
.
POR/PDR  
PVD  
9/64  
Description  
STM32F101xx  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in the nominal regulation mode (Run)  
LPR is used in the Stop modes  
Power down is used in Standby Mode: the regulator output is in high impedance: the  
kernel circuitry is powered-down, inducing zero consumption (but the contents of the  
registers and SRAM are lost)  
This regulator is always enabled after RESET. It is disabled in Standby Mode, providing high  
impedance output.  
Low-power modes  
The STM32F101xx access line supports three low-power modes to achieve the best  
compromise between low power consumption, short startup time and available wakeup  
sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Stop mode  
Stop mode allows to achieve the lowest power consumption while retaining the content  
of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI  
and the HSE RC oscillators are disabled. The voltage regulator can also be put either in  
normal or in low power mode.  
The device can be woken up from Stop mode by any of the EXTI line. The EXTI line  
source can be one of the 16 external lines, the PVD output or the RTC alarm.  
Standby mode  
The Standby mode allows to achieve the lowest power consumption. The internal  
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The  
PLL, the HSI and the HSE RC oscillators are also switched off. After entering Standby  
mode, SRAM and registers content are lost except for registers in the Backup domain  
and Standby circuitry.  
The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a  
rising edge on the WKUP pin, or an RTC alarm occurs.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop  
or Standby mode.  
DMA  
The flexible 7-channel general-purpose DMA is able to manage memory-to-memory,  
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports  
circular buffer management avoiding the generation of interrupts when the controller  
reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with support for software  
trigger on each channel. Configuration is made by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, I C, USART, general purpose timers  
TIMx and ADC.  
10/64  
STM32F101xx  
Description  
RTC (real-time clock) and backup registers  
The RTC and the backup registers are supplied through a switch that takes power either on  
supply when present or through the VBAT pin. The backup registers (ten 16-bit registers)  
V
DD  
can be used to store data when V power is not present.  
DD  
The Real-Time Clock provides a set of continuously running counters which can be used  
with suitable software to provide a clock calendar function, and provides an alarm interrupt  
and a periodic interrupt. It is clocked by an external 32.768 kHz oscillator, the internal low  
power RC oscillator or the high-speed external clock divided by 128. The internal low power  
RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512Hz  
output to compensate for any natural quartz deviation. The RTC features a 32-bit  
programmable counter for long term measurement using the Compare register to generate  
an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to  
generate a time base of 1 second from a clock at 32.768 kHz.  
Independent watchdog  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 32 kHz internal RC and as it operates independently from the  
main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to  
reset the device when a problem occurs, or as a free running timer for application time out  
management. It is hardware or software configurable through the option bytes. The counter  
can be frozen in debug mode.  
Window watchdog  
The window watchdog is based on a 7-bit downcounter that can be set as free running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
SysTick timer  
This timer is dedicated for OS, but could also be used as a standard down counter. It  
features:  
A 24-bit down counter  
Autoreload capability  
Maskable system interrupt generation when the counter reaches 0.  
Programmable clock source  
General purpose timers (TIMx)  
There are up to 3 synchronizable standard timers embedded in the STM32F101xx access  
line devices. These timers are based on a 16-bit auto-reload up/down counter, a 16-bit  
prescaler and feature 4 independent channels each for input capture, output compare, PWM  
or one pulse mode output. This gives up to 12 input captures / output compares / PWMs on  
the largest packages. They can work together via the Timer Link feature for synchronization  
or event chaining.  
The counter can be frozen in debug mode.  
Any of the standard timers can be used to generate PWM outputs. Each of the timers has  
independent DMA request generations.  
11/64  
Description  
STM32F101xx  
I²C bus  
Up to two I²C bus interfaces can operate in multi-master and slave modes. They can support  
standard and fast modes.  
They support dual slave addressing (7-bit only) and both 7/10-bit addressing in master  
mode. A hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SM Bus 2.0/PM Bus.  
Universal synchronous/asynchronous receiver transmitter (USART)  
The available USART interfaces communicate at up to 2.25 Mbit/s. They provide hardware  
management of the CTS and RTS signals, support IrDA SIR ENDEC, are ISO 7816  
compliant and have LIN Master/Slave capability.  
The USART interfaces can be served by the DMA controller.  
Serial peripheral interface (SPI)  
Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in full-  
duplex and simplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable from 8-bit to 16-bit. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
Both SPIs can be served by the DMA controller.  
GPIOs (general purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as Peripheral Alternate Function. Most of the  
GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current-  
capable.  
The I/Os alternate function configuration can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/Os registers.  
ADC (analog to digital converter)  
The 12-bit Analog to Digital Converter has up to 16 external channels and performs  
conversions in single-shot or scan modes. In scan mode, automatic conversion is performed  
on a selected group of analog inputs.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
Temperature sensor  
The temperature sensor has to generate a linear voltage with any variation in temperature.  
The conversion range is between 2V < V  
< 3.6V. The temperature sensor is internally  
DDA  
connected to the ADC_IN16 input channel which is used to convert the sensor output  
voltage into a digital value.  
12/64  
STM32F101xx  
Description  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP Interface is embedded. and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a  
specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP.  
Figure 1.  
STM32F101xx access line block diagram  
Trace  
Controller  
JTAG & SWD  
pbus  
POWER  
V
= 2 to 3.6V  
DD  
VSS  
VOLT. REG.  
3.3V TO 1.8V  
JNTRST  
Ibus  
JTDI  
JTCK/SWCLK  
JTMS/SWDIO  
JTDO  
Cortex M3 CPU  
FLASH 128 KB  
64 bit  
@VDD  
Fmax: 36 MHz  
Dbus  
as AF  
SRAM  
16 KB  
NVIC  
System  
@VDD  
OSC_IN  
OSC_OUT  
PCLK1  
PCLK2  
HCLK  
FCLK  
PLL &  
XTAL OSC  
4-16 MHz  
GP DMA  
CLOCK  
MANAGT  
7 channels  
RC 8 MHz  
RC 32 kHz  
@VDDA  
IWDG  
@VDDA  
Standby  
interface  
SUPPLY  
SUPERVISION  
VBAT  
NRST  
VDDA  
VSSA  
@VBAT  
Rst  
Int  
POR / PDR  
PVD  
OSC32_IN  
OSC32_OUT  
XTAL 32 kHz  
Backup  
RTC  
AWU  
AHB2  
APB2  
AHB2  
APB1  
ANTI_TAMP  
reg  
Backup interface  
EXTI  
80AF  
WAKEUP  
4 Channels  
4 Channels  
TIM2  
PA[15:0]  
PB[15:0]  
PC[15:0]  
PD[15:0]  
PE[15:0]  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
TIM3  
4 Channels  
TIM4  
RX,TX, CTS, RTS,  
SmartCard as AF  
USART2  
USART3  
RX,TX, CTS, RTS,  
SmartCard as AF  
MOSI,MISO,SCK,NSS  
as AF  
SPI2  
I2C1  
I2C2  
SCL,SDA,SMBAL  
as AF  
MOSI,MISO,  
SCK,NSS as AF  
SPI1  
SCL,SDA  
as AF  
RX,TX, CTS, RTS,  
SmartCard as AF  
USART1  
@VDDA  
16AF  
VREF+  
12bit ADC1  
IF  
W W D G  
VREF-  
Temp sensor  
ai14385  
1. AF = alternate function on I/O port pin.  
2. TA = –40 °C to +85 °C (junction temperature up to 125 °C).  
13/64  
Pin descriptions  
STM32F101xx  
3
Pin descriptions  
Figure 2.  
STM32F101xx access line LQFP100 pinout  
PE2  
PE3  
PE4  
PE5  
PE6  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD_2  
VSS_2  
NC  
PA 13  
PA 12  
PA 11  
PA 10  
PA 9  
PA 8  
PC9  
PC8  
PC7  
VBAT  
PC13-ANTI_TAMP  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS_5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD_5  
LQFP100  
OSC_IN  
OSC_OUT  
NRST  
PC6  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PD8  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP  
PA1  
PA2  
ai14386  
14/64  
STM32F101xx  
Pin descriptions  
Figure 3.  
STM32F101xx access line LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VDD_2  
VBAT  
PC13-ANTI_TAMP  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0 OSC_IN  
PD1 OSC_OUT  
NRST  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
2
3
4
5
6
7
PC0  
PC1  
PC2  
PC3  
8
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
VSSA  
VDDA  
PA0-WKUP  
PA1  
PB15  
PB14  
PB13  
PB12  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai14387  
Figure 4.  
STM32F101xx access line LQFP48 pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
36  
1
2
3
4
5
6
7
8
9
VBAT  
PC13-ANTI_TAMP  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PD0 OSC_IN  
PD1 OSC_OUT  
NRST  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
LQFP48  
PA8  
VSSA  
VDDA  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP 10  
PA1 11  
12  
PA2  
24  
13 14 15 16 17 18 19 20 21 22 23  
ai14378  
15/64  
Pin descriptions  
STM32F101xx  
Table 3.  
Pins  
Pin definitions  
Main  
Pin name  
function(3)  
(after reset)  
Default alternate functions(3)  
FT  
FT  
FT  
FT  
FT  
-
-
-
1
2
3
4
5
6
7
PE2/TRACECK  
PE3/TRACED0  
PE4/TRACED1  
PE5/TRACED2  
PE6/TRACED3  
VBAT  
I/O  
I/O  
I/O  
I/O  
I/O  
S
PE2  
PE3  
PE4  
PE5  
PE6  
VBAT  
PC13  
TRACECK  
TRACED0  
TRACED1  
TRACED2  
TRACED3  
-
-
-
-
-
-
-
1
2
1
2
PC13-ANTI_TAMP(4)  
I/O  
ANTI_TAMP  
PC14-  
OSC32_IN  
3
4
3
4
8
9
PC14-OSC32_IN(4)  
I/O  
I/O  
PC15-  
OSC32_OUT  
PC15-OSC32_OUT(4)  
-
-
-
-
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VSS_5  
VDD_5  
S
S
VSS_5  
VDD_5  
OSC_IN  
OSC_OUT  
NRST  
PC0  
5
6
7
-
5
OSC_IN  
I
6
OSC_OUT  
NRST  
O
7
I/O  
I/O  
I/O  
I/O  
I/O  
S
8
PC0/ADC_IN10  
PC1/ADC_IN11  
PC2/ADC_IN12  
PC3/ADC_IN13  
VSSA  
ADC_IN10  
ADC_IN11  
ADC_IN12  
ADC_IN13  
-
9
PC1  
-
10  
11  
12  
-
PC2  
-
PC3  
8
-
VSSA  
VREF-  
S
VREF-  
VREF+  
VDDA  
-
-
VREF+  
S
9
13  
VDDA  
S
PA0-WKUP/USART2_CTS/  
ADC_IN0/TIM2_CH1_ETR  
WKUP/USART2_CTS(7)/ ADC_IN0/  
TIM2_CH1_ETR(7)  
10 14  
11 15  
12 16  
13 17  
23  
24  
25  
26  
I/O  
I/O  
I/O  
I/O  
PA0  
PA1  
PA2  
PA3  
PA1/USART2_RTS/ADC_  
IN1/TIM2_CH2  
USART2_RTS(7)/ADC_IN1/  
TIM2_CH2(7)  
PA2/USART2_TX/ADC_IN2/  
TIM2_CH3  
USART2_TX(7)/ADC_IN2/  
TIM2_CH3(7)  
PA3/USART2_RX/ADC_IN3/  
TIM2_CH4  
USART2_RX(7)/ADC_IN3/  
TIM2_CH4(7)  
-
-
18  
19  
27  
28  
VSS_4  
VDD_4  
S
S
VSS_4  
VDD_4  
16/64  
STM32F101xx  
Pin descriptions  
Table 3.  
Pins  
Pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default alternate functions(3)  
PA4/SPI1_NSS/  
USART2_CK/ADC_IN4  
SPI1_NSS/USART2_CK(7)  
ADC_IN4  
/
14 20  
15 21  
16 22  
29  
30  
31  
I/O  
I/O  
I/O  
PA4  
PA5  
PA6  
PA5/SPI1_SCK/ADC_IN5  
SPI1_SCK/ADC_IN5  
PA6/SPI1_MISO/ADC_IN6/  
TIM3_CH1  
SPI1_MISO/ADC_IN6/  
TIM3_CH1(7)  
PA7/SPI1_MOSI/ADC_IN7/  
TIM3_CH2  
SPI1_MOSI/ADC_IN7/  
TIM3_CH2(7)  
17 23  
32  
I/O  
PA7  
-
-
24  
25  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
PC4/ADC_IN14  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
PC4  
PC5  
ADC_IN14  
ADC_IN15  
PC5/ADC_IN15  
18 26  
19 27  
20 28  
PB0/ADC_IN8/TIM3_CH3  
PB0  
ADC_IN8/TIM3_CH3(7)  
ADC_IN9/TIM3_CH4(7)  
PB1/ADC_IN9/TIM3_CH4  
PB1  
PB2/BOOT1  
PE7  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
PB2/BOOT1  
PE7  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PE8  
PE8  
PE9  
PE9  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10/I2C2_SCL  
USART3_TX  
21 29  
22 30  
47  
48  
I/O  
I/O  
FT  
FT  
PB10  
PB11  
I2C2_SCL(5)/USART3_TX(5) (7)  
I2C2_SDA(5)/USART3_RX(5) (7)  
PB11/I2C2_SDA  
USART3_RX  
23 31  
24 32  
49  
50  
VSS_1  
VDD_1  
S
S
VSS_1  
VDD_1  
PB12/SPI2_NSS/  
I2C2_SMBAl/USART3_CK  
SPI2_NSS(5) (7)/I2C2_SMBAl(5)  
USART3_CK(5) (7)  
/
25 33  
26 34  
51  
52  
53  
I/O  
I/O  
I/O  
FT  
FT  
FT  
PB12  
PB13  
PB14  
PB13/SPI2_SCK/  
USART3_CTS  
SPI2_SCK(5)(7)/USART3_CTS(5)(7)  
PB14/SPI2_MISO/  
USART3_RTS  
27 35  
28 36  
SPI2_MISO(5)(7)/USART3_RTS(5)(7)  
SPI2_MOSI(5) (7)  
54  
55  
PB15/SPI2_MOSI  
PD8  
I/O  
I/O  
FT  
FT  
PB15  
PD8  
-
-
17/64  
Pin descriptions  
STM32F101xx  
Table 3.  
Pins  
Pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default alternate functions(3)  
-
-
-
-
-
-
-
-
-
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
PD9  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
PD9  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PC6  
-
-
PD10  
PD11  
-
PD12  
-
PD13  
-
PD14  
-
PD15  
37  
38  
39  
40  
PC6  
PC7  
PC7  
PC8  
PC8  
-
PC9  
PC9  
29 41  
30 42  
31 43  
32 44  
33 45  
34 46  
PA8/USART1_CK/MCO  
PA9/USART1_TX  
PA10/USART1_RX  
PA11/USART1_CTS  
PA12/USART1_RTS  
PA13/JTMS/SWDIO  
PA8  
USART1_CK/MCO  
USART1_TX(7)  
USART1_RX(7)  
USART1_CTS  
USART1_RTS  
PA13  
PA9  
PA10  
PA11  
PA12  
FT JTMS-SWDIO  
Not connected  
VSS_2  
-
-
35 47  
36 48  
37 49  
38 50  
VSS_2  
VDD_2  
S
S
VDD_2  
PA14/JTCK/SWCLK  
PA15/JTDI  
PC10  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
FT JTCK/SWCLK  
PA14  
PA15  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
FT  
JTDI  
PC10  
-
-
51  
52  
53  
5
PC11  
PC11  
-
PC12  
PC12  
5
6
PD0  
OSC_IN(6)  
OSC_OUT(6)  
PD2  
6
PD1  
54  
-
PD2/TIM3_ETR  
PD3  
TIM3_ETR  
-
-
-
-
PD3  
-
PD4  
PD4  
-
PD5  
PD5  
-
PD6  
PD6  
18/64  
STM32F101xx  
Pin descriptions  
Table 3.  
Pins  
Pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Default alternate functions(3)  
-
-
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
PD7  
PB3/JTDO/TRACESWO  
PB4/JNTRST  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
FT  
FT  
FT  
PD7  
JTDO  
JNTRST  
PB5  
39 55  
40 56  
41 57  
42 58  
43 59  
44 60  
45 61  
46 62  
PB3/TRACESWO  
PB4  
PB5/I2C1_SMBAl  
PB6/I2C1_SCL/TIM4_CH1  
PB7/I2C1_SDA/TIM4_CH2  
BOOT0  
I2C1_SMBAl  
FT  
FT  
PB6  
I2C1_SCL(7)/TIM4_CH1(5) (7)  
I2C1_SDA(7)/TIM4_CH2(5) (7)  
PB7  
BOOT0  
PB8  
PB8/TIM4_CH3  
PB9/TIM4_CH4  
PE0/TIM4_ETR  
PE1  
I/O  
I/O  
I/O  
I/O  
S
FT  
FT  
FT  
FT  
TIM4_CH3(5) (7)  
TIM4_CH4(5) (7)  
TIM4_ETR(5)  
PB9  
-
-
-
-
PE0  
PE1  
47 63  
VSS_3  
VSS_3  
VDD_3  
48 64 100  
VDD_3  
S
1. I = input, O = output, S = supply, HiZ= high impedance.  
2. FT= 5 V tolerant.  
3. Function availability depends on the chosen device. Refer to Table 2 on page 7.  
4. PC13, PC14 and PC15 are supplied through the power switch, and so their use in ouptut mode is limited: they can be used  
only in output 2 MHz mode with a maximum load of 30 pF and only one pin can be put in output mode at a time.  
5. Available only on devices with a Flash memory density equal or higher than 64 Kbytes.  
6. For the LQFP48 and LQFP64 packages, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset,  
however the functionality of PD0 and PD1 can be remapped by software on these pins.  
7. This alternate function can be remapped by software to some other port pins (if available on the used package). For more  
details, refer to the Alternate function I/O and debug configuration section in the STM32F10xxx reference manual,  
UM0306, available from the STMicroelectronics website: www.st.com.  
19/64  
Memory mapping  
STM32F101xx  
4
Memory mapping  
The memory map is shown in Figure 5.  
Figure 5.  
Memory map  
APB memory space  
0xFFFF FFFF  
reserved  
reserved  
reserved  
reserved  
reserved  
0xE010 0000  
0x6000 0000  
0x4002 3400  
0x4002 3000  
0x4002 2400  
0x4002 2000  
0x4002 1400  
0x4002 1000  
0x4002 0400  
0x4002 0000  
4K  
1K  
3K  
0xFFFF FFFF  
0xFFFF F000  
1K  
3K  
1K  
3K  
1K  
Flash interface  
reserved  
RCC  
7
0xE010 0000  
Cortex-M3 internal  
peripherals  
reserved  
DMA  
0xE000 0000  
reserved  
1K  
6
0x4001 3C00  
0x4001 3800  
0x4001 3400  
0x4001 3000  
0x4001 2C00  
0x4001 2800  
0x4001 2400  
1K  
1K  
USART1  
reserved  
SPI1  
0xC000 0000  
1K  
1K  
1K  
1K  
reserved  
reserved  
ADC1  
5
0xA000 0000  
reserved  
2K  
0x4001 1C00  
0x4001 1800  
0x4001 1400  
0x4001 1000  
0x4001 0C00  
0x4001 0800  
0x4001 0400  
0x4001 0000  
1K  
1K  
1K  
1K  
Port E  
Port D  
Port C  
Port B  
Port A  
EXTI  
4
0x1FFF FFFF  
0x1FFF F9FF  
reserved  
0x8000 0000  
Option bytes  
0x1FFF F800  
1K  
System memory  
1K  
1K  
3
AFIO  
0x1FFF F000  
0x6000 0000  
reserved  
35K  
0x4000 7400  
0x4000 7000  
0x4000 6C00  
0x4000 6800  
0x4000 6400  
0x4000 6000  
0x4000 5C00  
0x4000 5800  
0x4000 5400  
PWR  
1K  
1K  
2
BKP  
reserved  
reserved  
reserved  
reserved  
1K  
1K  
1K  
1K  
1K  
reserved  
Peripherals  
0x4000 0000  
1
I2C2  
I2C1  
1K  
2K  
SRAM  
0x2000 0000  
0x0801 FFFF  
0x0800 0000  
reserved  
0x4000 4C00  
0x4000 4800  
0x4000 4400  
USART3  
USART2  
1K  
1K  
Flash memory  
0
Code  
reserved  
SPI2  
2K  
0x0000 0000  
0x4000 3C00  
0x4000 3800  
0x4000 3400  
0x4000 3000  
0x4000 2C00  
0x4000 2800  
1K  
1K  
1K  
1K  
1K  
reserved  
IWDG  
Reserved  
WWDG  
RTC  
reserved  
7K  
0x4000 0C00  
0x4000 0800  
0x4000 0400  
0x4000 0000  
TIM4  
TIM3  
TIM2  
1K  
1K  
1K  
ai14379  
20/64  
STM32F101xx  
Electrical characteristics  
5
Electrical characteristics  
5.1  
Test conditions  
Unless otherwise specified, all voltages are referred to V  
.
SS  
5.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean±3Σ).  
5.1.2  
5.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.3 V (for the  
A
DD  
2 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean±2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
5.1.4  
5.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 6.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 7.  
21/64  
Electrical characteristics  
Figure 6.  
STM32F101xx  
Pin loading conditions  
Figure 7.  
Pin input voltage  
STM32F101 PIN  
STM32F101 PIN  
C=50pF  
V
IN  
ai14123  
ai14124  
5.1.6  
Power supply scheme  
Figure 8.  
Power supply scheme  
V
3.3 V  
BAT  
Backup circuitry  
(OSC32K,RTC,  
Wake-up logic  
Power switch  
1.8-3.6V  
Backup registers)  
OUT  
IN  
IO  
Logic  
GP I/Os  
Kernel logic  
(CPU,  
Digital  
& Memories)  
V
DD  
V
DD  
1/2/3/4/5  
Regulator  
5 × 100 nF  
+ 1 × 10 µF  
V
SS  
1/2/3/4/5  
3.3V  
V
DD  
V
DDA  
V
REF  
V
REF+  
Analog:  
RCs, PLL,  
...  
10 nF  
+ 1 µF  
10 nF  
+ 1 µF  
V
ADC  
REF-  
V
SSA  
ai14125  
22/64  
STM32F101xx  
Electrical characteristics  
5.1.7  
Current consumption measurement  
Figure 9.  
Current consumption measurement scheme  
I
_V  
DD BAT  
V
BAT  
I
DD  
V
DD  
V
DDA  
ai14126  
23/64  
Electrical characteristics  
STM32F101xx  
5.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 4: Voltage characteristics,  
Table 5: Current characteristics, and Table 6: Thermal characteristics may cause permanent  
damage to the device. These are stress ratings only and functional operation of the device  
at these conditions is not implied. Exposure to maximum rating conditions for extended  
periods may affect device reliability.  
Table 4.  
Symbol  
Voltage characteristics  
Ratings  
Min  
Max  
Unit  
External 3.3 V supply voltage (including  
VDDVSS  
0.3  
4.0  
(1)  
VDDA and VDD  
)
V
Input voltage on five volt tolerant pin(2)  
Input voltage on any other pin(2)  
V
SS 0.3  
+5.5  
VDD+0.3  
50  
VIN  
VSS 0.3  
|VDDx  
|
Variations between different power pins  
50  
mV  
Variations between all the different ground  
pins  
|VSSX VSS  
|
50  
50  
see Section 5.3.11:Absolute  
maximum ratings (electrical  
sensitivity)  
Electrostatic discharge voltage (human  
body model)  
VESD(HBM)  
1. All 3.3 V power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external 3.3 V  
supply.  
2. IINJ(PIN) must never be exceeded (see Table 5: Current characteristics). This is implicitly insured if VIN  
maximum is respected. If VIN maximum cannot be respected, the injection current must be limited  
externally to the IINJ(PIN) value. A positive injection is induced by VIN>VDD while a negative injection is  
induced by VIN<VSS  
.
Table 5.  
Symbol  
IVDD  
IVSS  
Current characteristics  
Ratings  
Max.  
Unit  
Total current into VDD power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on NRST pin  
150  
150  
25  
IIO  
25  
± 5  
mA  
Injected current on High-speed external OSC_IN and Low-  
speed external OSC_IN pins  
(2)(3)  
IINJ(PIN)  
± 5  
Injected current on any other pin(4)  
± 5  
(2)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(4)  
± 25  
1. All 3.3 V power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external 3.3 V  
supply.  
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS  
.
3. Negative injection disturbs the analog performance of the device. See note in Section 5.3.16: 12-bit ADC  
characteristics.  
4. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values). These results are based on  
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
24/64  
STM32F101xx  
Electrical characteristics  
Table 6.  
Symbol  
TSTG  
TJ  
Thermal characteristics  
Ratings  
Storage temperature range  
Value  
Unit  
–65 to +150  
°C  
Maximum junction temperature (see Thermal characteristics)  
25/64  
Electrical characteristics  
STM32F101xx  
5.3  
Operating conditions  
5.3.1  
General operating conditions  
Table 7.  
Symbol  
General operating conditions  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
VDD  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
Standard operating voltage  
Backup operating voltage  
0
0
36  
36  
MHz  
0
36  
2
3.6  
3.6  
85  
V
V
VBAT  
TA  
1.8  
40  
Ambient temperature range  
°C  
5.3.2  
Operating conditions at power-up / power-down  
The parameters given in Table 8 are derived from tests performed under the ambient  
temperature condition summarized in Table 7.  
Table 8.  
Symbol  
Operating conditions at power-up / power-down  
Parameter  
Conditions  
Min Typ Max Unit  
20  
µs/V  
tVDD  
VDD rise/fall time  
20 ms/V  
26/64  
STM32F101xx  
Electrical characteristics  
5.3.3  
Embedded reset and power control block characteristics  
The parameters given in Table 9 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 7.  
DD  
.
Table 9.  
Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max Unit  
PLS[2:0]=000 (rising edge)  
PLS[2:0]=000 (falling edge)  
PLS[2:0]=001 (rising edge)  
PLS[2:0]=001 (falling edge)  
PLS[2:0]=010 (rising edge)  
PLS[2:0]=010 (falling edge)  
PLS[2:0]=011 (rising edge)  
PLS[2:0]=011 (falling edge)  
PLS[2:0]=100 (rising edge)  
PLS[2:0]=100 (falling edge)  
PLS[2:0]=101 (rising edge)  
PLS[2:0]=101 (falling edge)  
PLS[2:0]=110 (rising edge)  
PLS[2:0]=110 (falling edge)  
PLS[2:0]=111 (rising edge)  
PLS[2:0]=111 (falling edge)  
2.1 2.18 2.26  
2.08 2.16  
V
V
2
2.19 2.28 2.37  
2.09 2.18 2.27  
2.28 2.38 2.48  
2.18 2.28 2.38  
2.38 2.48 2.58  
2.28 2.38 2.48  
2.47 2.58 2.69  
2.37 2.48 2.59  
2.57 2.68 2.79  
2.47 2.58 2.69  
2.66 2.78 2.9  
2.56 2.68 2.8  
V
V
V
V
V
V
Programmable voltage  
detector level selection  
VPVD  
V
V
V
V
V
V
2.76 2.88  
3
V
2.66 2.78 2.9  
100  
V
VPVDhyst  
VPOR/PDR  
VPDRhyst  
PVD hysteresis  
mV  
V
Falling edge  
Rising edge  
1.8 1.88 1.96  
1.84 1.92 2.0  
40  
Power on/power down reset  
threshold  
V
PDR hysteresis  
mV  
ms  
tRSTTEMPO Reset temporization  
1.5 2.5 3.5  
5.3.4  
Embedded reference voltage  
The parameters given in Table 10 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 7.  
DD  
Table 10. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
VREFINT Internal reference voltage  
-45 °C < TA < +85 °C  
1.16 1.20 1.24  
V
27/64  
Electrical characteristics  
STM32F101xx  
5.3.5  
Supply current characteristics  
The current consumption is measured as described in Figure 9: Current consumption  
measurement scheme.  
Maximum current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if it is explicitly mentioned  
The Flash access time is adjusted to f  
wait state from 24 to 36 MHz)  
frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
The parameters given in Table 11 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 7.  
DD  
(1)  
Table 11. Maximum current consumption in Run and Sleep modes (T = 85 °C)  
A
Symbol  
Parameter  
Conditions  
FHCLK Typ (2) Max(3) Unit  
External clock with PLL, code running from  
Flash, all peripherals enabled (see RCC register  
description): fPCLK1= fHCLK/2, fPCLK2=fHCLK  
36 MHz  
24 MHz  
22  
21  
TBD  
TBD  
External clock, PLL stopped, code running from  
Flash, all peripherals enabled (see RCC register  
description): fPCLK1= fHCLK/2, fPCLK2=fHCLK  
8 MHz  
10  
TBD  
Supply current in  
Run mode  
External clock with PLL, code running from RAM, 36 MHz  
all peripherals enabled (see RCC register  
description): fPCLK1= fHCLK/2, fPCLK2=fHCLK  
13  
11  
18  
15  
24 MHz  
IDD  
External clock, PLL stopped, code running from  
mA  
RAM, all peripherals enabled (see RCC register  
description): fPCLK1= fHCLK/2, fPCLK2=fHCLK  
8 MHz  
4.5  
TBD  
External clock with PLL, code running from RAM 36 MHz  
or Flash, all peripherals enabled (see RCC  
13  
10  
22  
17  
register description): fPCLK1= fHCLK/2,  
24 MHz  
fPCLK2=fHCLK  
Supply current in  
Sleep mode  
External clock, PLL stopped, code running from  
RAM or Flash, all peripherals enabled (see RCC  
register description): fPCLK1= fHCLK/2,  
8 MHz  
3.5  
TBD  
fPCLK2=fHCLK  
1. TBD stands for to be determined.  
2. Typical values are measured at TA = 25 °C, and VDD = 3.3 V.  
3. Data based on characterization results, tested in production at VDmax, fHCLK max. TAmax, and code executed from RAM.  
28/64  
STM32F101xx  
Electrical characteristics  
(1)  
Table 12. Maximum current consumption in Stop and Standby modes  
Typ(2)  
DD/ VBAT VDD VBAT  
Max(3)  
Symbol  
Parameter  
Conditions  
Unit  
V
/
TA = 85 °C  
= 2.4 V  
= 3.3 V  
Regulator in Run mode,  
Low-speed and high-speed internal  
RC oscillators and high-speed  
oscillator OFF (no independent  
watchdog)  
TBD  
24  
TBD  
Supply current in  
Stop mode  
Regulator in Low Power mode,  
Low-speed and high-speed internal  
RC oscillators and high-speed  
oscillator OFF (no independent  
watchdog)  
IDD  
TBD(4)  
14(4)  
TBD(4)  
µA  
Low-speed internal RC oscillator and  
independent watchdog OFF, low-  
speed oscillator and RTC OFF  
Supply current in  
Standby mode(5)  
TBD(4)  
2(4)  
TBD(4)  
TBD(4)  
IDD_VBA  
Backup domain  
supply current  
Low-speed oscillator and RTC ON  
1(4)  
1.4(4)  
T
1. TBD stands for to be determined.  
2. Typical values are measured at TA = 25 °C, VDD = 3.3 V, unless otherwise specified.  
3. Data based on characterization results, tested in production at VDD max, fHCLK max. and TA max.  
4. Values expected for next silicon revision.  
5. To have the Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator and RTC ON) to IDD Standby (when  
DD is present the Backup Domain is powered by VDD supply).  
V
29/64  
Electrical characteristics  
STM32F101xx  
Typical current consumption  
The MCU is placed under the following conditions:  
All I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
All peripherals are disabled except if it is explicitly mentioned  
The Flash access time is adjusted to f  
wait state from 24 to 36 MHz)  
frequency (0 wait state from 0 to 24 MHz, 1  
HCLK  
The parameters given in Table 13 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 7.  
DD  
(1)  
Table 13. Typical current consumption in Run and Sleep modes  
Symbol  
Parameter  
Conditions  
fHCLK  
Typ(2)  
Unit  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
TBD  
13  
Oscillator running at 8 MHz with PLL, code running  
from Flash, all peripheral disabled (see RCC register  
description): fPCLK1= fHCLK/2, fPCLK2 = fHCLK  
mA  
TBD  
7.8  
4 MHz  
7
Running on HSI clock, code running from Flash, all  
peripheral disabled (see RCC register description):  
fPCLK1= fHCLK/2, fPCLK2 = fHCLK. AHB pre-scaler used  
2 MHz  
6.3  
mA  
1 MHz  
6.2  
to reduce the frequency  
Supply current in  
Run mode  
500 kHz  
125 kHz  
8 MHz  
6.1  
5.95  
2.3  
4 MHz  
1.6  
Running on HSI clock, code running from RAM, all  
peripheral disabled (see RCC register description):  
fPCLK1= fHCLK/2, fPCLK2 = fHCLK. AHB pre-scaler used  
IDD  
2 MHz  
1.2  
mA  
1 MHz  
1
to reduce the frequency  
500 kHz  
125 kHz  
36 MHz  
24 MHz  
16 MHz  
8 MHz  
0.88  
0.82  
TBD  
TBD  
1
Oscillator running at 8 MHz with PLL, code running  
from Flash, all peripheral disabled (see RCC register  
description): fPCLK1= fHCLK/2, fPCLK2 = fHCLK  
mA  
mA  
TBD  
TBD  
TBD  
TBD  
TBD  
Supply current in  
Sleep mode  
Running on HSI clock, code running from Flash, all  
peripheral disabled (see RCC register description):  
fPCLK1= fHCLK/2, fPCLK2 = fHCLK. AHB pre-scaler used  
4 MHz  
2 MHz  
1 MHz  
to reduce the frequency  
500 kHz  
1. TBD stands for to be determined.  
2. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
30/64  
STM32F101xx  
Electrical characteristics  
(1)  
Table 14. Typical current consumption in Stop and Standby modes  
Typ(2)  
VDD  
Symbol  
Parameter  
Conditions  
Unit  
Regulator in Run mode,  
3.3 V  
24  
Low-speed and high-speed internal RC  
oscillators OFF  
High-speed oscillator OFF (no  
independent watchdog)  
2.4 V  
3.3 V  
2.4 V  
TBD  
14(3)  
Supply current in Stop  
mode  
µA  
Regulator in Low Power mode,  
Low-speed and high-speed internal RC  
oscillators OFF,  
High-speed oscillator OFF (no  
independent watchdog)  
TBD(3)  
IDD  
3.3 V  
2.4 V  
3.3 V  
2.4 V  
3.3 V  
2.4 V  
3.3 V  
2.4 V  
3.3 V  
2.4 V  
2(3)  
Low-speed internal RC oscillator and  
independent watchdog OFF  
TBD(3)  
3.1(3)  
TBD(3)  
2.9(3)  
TBD(3)  
1.4(3)  
1(3)  
Supply current in  
Standby mode(4)  
Low-speed internal RC oscillator and  
independent watchdog ON  
µA  
µA  
Low-speed internal RC oscillator ON,  
independent watchdog OFF  
Low-speed oscillator and RTC ON  
Low-speed oscillator OFF, RTC ON  
Backup domain  
supply current  
IDD_VBAT  
0.5(3)  
TBD(3)  
1. TBD stands for to be determined.  
2. Typical values are measures at TA = 25 °C, VDD = 3.3 V.  
3. Values expected for next silicon revision.  
4. To obtain Standby consumption with RTC ON, add IDD_VBAT (Low-speed oscillator, RTC ON) to IDD Standby.  
31/64  
Electrical characteristics  
STM32F101xx  
5.3.6  
External clock source characteristics  
High-speed user external clock  
The characteristics given in Table 15 result from tests performed using an high-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 7.  
Table 15. High-speed user external (HSE) clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fHSE_ext  
8
25  
MHz  
OSC_IN input pin high level  
voltage  
VHSEH  
VHSEL  
0.7VDD  
VSS  
VDD  
V
OSC_IN input pin low level  
voltage  
0.3VDD  
tw(HSE)  
tw(HSE)  
OSC_IN high or low time(1)  
OSC_IN rise or fall time(1)  
16  
ns  
tr(HSE)  
tf(HSE)  
5
OSC_IN Input leakage  
current  
IL  
VSS VIN VDD  
±1  
µA  
1. Value based on design simulation and/or technology characteristics. It is not tested in production.  
Low-speed user external clock  
The characteristics given in Table 16 result from tests performed using an low-speed  
external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 7.  
Table 16. Low-speed user external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency(1)  
fLSE_ext  
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSE)  
0.7VDD  
VSS  
VDD  
V
OSC32_IN input pin low level  
voltage  
0.3VDD  
OSC32_IN high or low time(1)  
OSC32_IN rise or fall time(1)  
450  
tw(LSE)  
ns  
tr(LSE)  
tf(LSE)  
5
OSC32_IN Input leakage  
current  
IL  
VSS VIN VDD  
±1  
µA  
1. Value based on design simulation and/or technology characteristics. It is not tested in production.  
32/64  
STM32F101xx  
Electrical characteristics  
Figure 10. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC _IN  
STM32F101  
ai14127  
Figure 11. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
EXTERNAL  
CLOCK SOURCE  
I
L
OSC32_IN  
STM32F101  
ai14140b  
33/64  
Electrical characteristics  
STM32F101xx  
High-speed external clock  
The high-speed external (HSE) clock can be supplied with a 4 to 16 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 17. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)  
Table 17. HSE 4-16 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fOSC_IN Oscillator frequency  
4
8
16  
MHz  
RF  
Feedback resistor  
200  
kΩ  
Recommended load capacitance  
versus equivalent serial  
CL1  
RS = 30 Ω  
30  
pF  
(2)  
CL2  
resistance of the crystal (RS)(3)  
VDD = 3.3 V  
VIN = VSS with 30 pF  
load  
i2  
HSE driving current  
1
mA  
gm  
Oscillator transconductance  
Startup time  
Startup  
25  
mA/V  
ms  
tSU(HSE)  
VSS is stabilized  
2
(4)  
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 25 pF range (typ.),  
designed for high-frequency applications, and selected to match the requirements of the crystal or  
resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load  
capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be  
included when sizing CL1 and CL2 (10 pF can be used as a rough estimate of the combined pin and board  
capacitance).  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a  
humid environment, due to the induced leakage and the bias condition change. However, it is  
recommended to take this point into account if the MCU is used in tough humidity conditions.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer  
Figure 12. Typical application with an 8 MHz crystal  
RESONATOR WITH  
INTEGRATED CAPACITORS  
C
L1  
f
OSC_IN  
HSE  
Bias  
controlled  
gain  
8 MHz  
resonator  
R
F
STM32F101xx  
OSC_OUT  
(1)  
R
EXT  
C
L2  
ai14128  
1. REXT value depends on the crystal characteristics. Typical value is in the range of 5 to 6RS.  
34/64  
STM32F101xx  
Electrical characteristics  
Low-speed external clock  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 18. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Table 18. LSE oscillator characteristics ( LSE = 32.768 kHz)  
f
Symbol  
Parameter  
Feedback resistor  
Conditions  
Min  
Typ  
Max  
Unit  
RF  
5
MΩ  
Recommended load capacitance  
versus equivalent serial  
CL1  
CL2  
RS = 30 KΩ  
15  
pF  
µA  
resistance of the crystal (RS)(1)  
VDD = 3.3 V  
VIN = VSS  
I2  
LSE driving current  
1.4  
gm  
Oscillator transconductance  
Startup time  
5
µA/V  
s
(2)  
tSU(LSE)  
VSS is stabilized  
3
1. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details  
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer  
Figure 13. Typical application with a 32.768 kHz crystal  
RESONATOR WITH  
INTEGRATED CAPACITORS  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 KHz  
resonator  
R
F
STM32F101xx  
OSC32_OUT  
C
L2  
ai14129  
35/64  
Electrical characteristics  
STM32F101xx  
5.3.7  
Internal Clock source characteristics  
The parameters given in Table 19 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 7.  
DD  
High-speed internal (HSI) RC oscillator  
(1)(2)  
Table 19. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Max(3)  
Unit  
fHSI  
8
MHz  
%
TA = –40 to 85 °C  
at TA = 25 °C  
TBD  
TBD  
1
±3  
±1  
TBD  
TBD  
2
ACCHSI Accuracy of HSI oscillator  
tsu(HSI) HSI oscillator startup time  
%
µs  
HSI oscillator power  
IDD(HSI)  
80  
100  
µA  
consumption  
1.  
VDD = 3.3 V, TA = 40 to 85 °C unless otherwise specified.  
2. TBD stands for to be determined.  
3. Values based on device characterization, not tested in production.  
LSI Low Speed Internal RC Oscillator  
(1)  
Table 20. LSI oscillator characteristics  
Max(2)  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ  
Unit  
fLSI  
30  
60  
85  
kHz  
µs  
tsu(LSI) LSI oscillator start up time  
LSI oscillator power  
IDD(LSI)  
0.65  
1.2  
µA  
consumption  
1.  
VDD = 3 V, TA = 40 to 85 °C unless otherwise specified.  
2. Value based on device characterization, not tested in production.  
36/64  
STM32F101xx  
Electrical characteristics  
Wakeup time from low power mode  
The wakeup times given in Table 21 is measured on a wakeup phase with a 8-MHz HSI RC  
oscillator. The clock source used to wake up the device depends from the current operating  
mode:  
Stop or Standby mode: the clock source is the RC oscillator  
Sleep mode: the clock source is the clock that was set before entering Sleep mode.  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 7.  
(1)  
Table 21. Low-power mode wakeup timings  
Symbol  
Parameter  
Conditions  
Typ  
Max Unit  
(2)  
Wakeup from Sleep mode  
Wakeup on HSI RC clock  
0.75 TBD  
µs  
tWUSLEEP  
Wakeup from Stop mode  
(regulator in run mode)  
HSI RC wakeup time = 2 µs  
4
7
TBD  
TBD  
(2)  
µs  
tWUSTOP  
HSI RC wakeup time = 2 µs,  
Regulator wakeup from LP  
mode time = 5 µs  
Wakeup from Stop mode  
(regulator in low power mode)  
HSI RC wakeup time = 2 µs,  
Regulator wakeup from power  
down time = 38 µs  
(3)  
tWUSTDBY  
Wakeup from Standby mode  
40  
TBD  
µs  
1. TBD stands for to be determined.  
2. The wakeup time from Sleep and Stop mode are measured from the wakeup event to the point in which  
the user application code reads the first instruction.  
3. The wakeup time from Standby mode is measured from the wakeup event to the point in which the device  
exits from reset.  
5.3.8  
PLL characteristics  
The parameters given in Table 22 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 7.  
DD  
(1)  
Table 22. PLL characteristics  
Value  
Test  
Symbol  
Parameter  
Unit  
conditions  
Min  
Typ Max(2)  
PLL input clock  
8.0  
MHz  
%
fPLL_IN  
PLL input clock duty cycle  
PLL multiplier output clock  
PLL lock time  
40  
16  
60  
fPLL_OUT  
tLOCK  
36  
MHz  
µs  
200  
Cycle to cycle jitter (+/-3Σ peak to  
peak)  
tJITTER  
VDD is stable  
TBD  
TBD  
%
1. TBD stands for to be determined.  
2. Data based on device characterization, not tested in production.  
37/64  
Electrical characteristics  
STM32F101xx  
5.3.9  
Memory characteristics  
Flash memory  
The characteristics are given at T = 40 to 85 °C unless otherwise specified.  
A
(1)  
Table 23. Flash memory characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(2) Unit  
tprog  
tERASE  
tME  
Word programming time  
Page (1kB) erase time  
Mass erase time  
TA = 40 to +85 °C  
TA = 40 to +85 °C  
TA = 40 to +85 °C  
20  
20  
20  
40  
40  
40  
µs  
ms  
ms  
Read mode  
f
HCLK = 36MHz with  
20  
mA  
2 wait states, VDD  
3.3 V  
=
Write / Erase modes  
fHCLK = 36 MHz,  
IDD  
Supply current  
5
mA  
µA  
VDD = 3.3 V  
Power-down mode /  
HALT,  
50  
VDD=3.0 to 3.6 V  
1. TBD stands for to be determined.  
2. Values based on characterization and not tested in production.  
Table 24. Flash endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1)  
Typ  
Max  
NEND Endurance  
tRET Data retention  
10  
kcycles  
Years  
1
TA = 85° C  
30  
1. Values based on characterization not tested in production.  
38/64  
STM32F101xx  
Electrical characteristics  
5.3.10  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (Electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic Discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 1000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 1000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 25. They are based on the EMS levels and classes  
defined in application note AN1709.  
(1)  
Table 25. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, TA=+25 °C,  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
f
HCLK = 36 MHz  
TBD  
4A  
conforms to IEC 1000-4-2  
Fast transient voltage burst limits to be  
applied through 100pF on VDD and VSS pins fHCLK = 36 MHz  
to induce a functional disturbance conforms to IEC 1000-4-4  
VDD = 3.3 V, TA=+25 °C,  
VEFTB  
1. TBD stands for to be determined.  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and pre  
qualification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical Data corruption (control registers...)  
39/64  
Electrical characteristics  
STM32F101xx  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1  
second. To complete these trials, ESD stress can be applied directly on the device, over the  
range of specification values. When unexpected behavior is detected, the software can be  
hardened to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device is monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with SAE J  
1752/3 standard which specifies the test board and the pin loading.  
(1)  
Table 26. EMI characteristics  
Max vs.  
[fHSE/fHCLK  
]
Monitored  
frequency band  
Symbol Parameter  
Conditions  
Unit  
8/36 MHz  
0.1 MHz to 30 MHz  
30 MHz to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
TBD  
TBD  
TBD  
TBD  
V
DD = 3.3 V, TA = 2 5°C,  
dBµV  
-
SEMI  
Peak level LQFP100 package compliant  
with SAE J 1752/3  
1. TBD stands for to be determined.  
5.3.11  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size is  
either 3 parts (cumulative mode) or 3 parts × (n + 1) supply pins (non-cumulative mode).  
The human body model (HBM) can be simulated. The tests are compliant with JESD22-  
A114A standard.  
For more details, refer to the application note AN1181.  
(1)  
Table 27. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Maximum value(2)  
Unit  
Electrostatic discharge voltage (human  
body model)  
VESD(HBM)  
2000  
TA = +25 °C  
V
Electrostatic discharge voltage (charge  
device model)  
VESD(CDM)  
TBD  
1. TBD stands for to be determined.  
2. Values based on characterization results, not tested in production.  
40/64  
STM32F101xx  
Electrical characteristics  
Static latch-up  
Two complementary static tests are required on 10 parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78 IC latch-up standard.  
Table 28. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C  
II level A  
41/64  
Electrical characteristics  
STM32F101xx  
5.3.12  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 29 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 7.  
All unused pins must be held at a fixed voltage, by using the I/O output mode, an external  
pull-up or pull-down resistor (see Figure 14).  
(1)  
Table 29. I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
Input low level voltage(2)  
–0.5  
0.8  
V
IO TC input high level  
voltage(2)  
TTL ports  
2
VDD+0.5  
VIH  
IO FT high level voltage(2)  
Input low level voltage(2)  
Input high level voltage(2)  
2
5.5V  
VIL  
VIH  
–0.5  
0.35 VDD  
VDD+0.5  
CMOS ports  
V
0.65 VDD  
IO TC Schmitt trigger voltage  
hysteresis(3)  
200  
mV  
mV  
Vhys  
IO TC Schmitt trigger voltage  
hysteresis(3)  
(4)  
5% VDD  
VSS VIN VDD  
Standard I/Os  
±1  
3
Ilkg  
Input leakage current (4)  
µA  
VIN = 5 V  
5 V tolerant I/Os  
Weak pull-up equivalent  
resistor(5)  
RPU  
VIN = VSS  
VIN = VDD  
30  
30  
40  
50  
50  
kΩ  
Weak pull-down equivalent  
resistor(6)  
RPD  
CIO  
40  
5
kΩ  
I/O pin capacitance  
pF  
1. VDD = 3.3 V, TA = 40 to 85 °C unless otherwise specified.  
2. Values based on characterization results, and not tested in production.  
3. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested.  
4. With a minimum of 100 mV.  
5. Leakage could be higher than max. if negative current is injected on adjacent pins.  
6. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable  
PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order).  
42/64  
STM32F101xx  
Electrical characteristics  
Figure 14. Unused I/O pin connection  
V
DD  
STM32F101  
10 kΩ  
UNUSED I/O PORT  
STM32F101  
UNUSED I/O PORT  
10 kΩ  
ai14130  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink  
+20 mA (with a relaxed V ).  
OL  
In the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 5.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 5).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 5).  
VSS  
43/64  
Electrical characteristics  
STM32F101xx  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 30 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 7.  
Table 30. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Output Low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
0.4  
VOL  
TTL port, IIO  
+8 mA,  
2.7 V < VDD < 3.6 V  
=
V
Output High level voltage for an I/O pin  
when 4 pins are sourced at same time  
(2)  
VDD–0.4  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
0.4  
1.3  
0.4  
VOL  
CMOS port  
IIO = +8 mA  
V
V
V
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(2)  
2.7 V < VDD < 3.6 V  
2.4  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
VOL  
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(2)  
V
DD–1.3  
VOH  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)  
VOL  
IIO = +6 mA  
2 V < VDD < 2.7 V  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(2)  
VDD–0.4  
VOH  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 5  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 5 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
44/64  
STM32F101xx  
Electrical characteristics  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 15 and  
Table 31, respectively.  
Unless otherwise specified, the parameters given in Table 31 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 7.  
(1)  
Table 31. I/O AC characteristics  
I/O  
Symbol  
Parameter  
Conditions  
Max Unit  
mode(1)  
fmax(IO)out Maximum frequency(2)  
CL = 50 pF, VDD = 2 V to 3.6 V  
2
MHz  
ns  
Output high to low level fall  
tf(IO)out  
125  
10  
time(3)  
CL = 50 pF, VDD = 2 V to 3.6 V  
CL= 50 pF, VDD = 2 V to 3.6 V  
CL= 50 pF, VDD = 2 V to 3.6 V  
Output low to high level rise  
tr(IO)out  
125  
time(3)  
fmax(IO)out Maximum frequency(2)  
10 MHz  
Output high to low level fall  
tf(IO)out  
tr(IO)out  
25  
ns  
25  
01  
time(3)  
Output low to high level rise  
time(3)  
CL= 30 pF, VDD = 2.7 V to 3.6 V 50 MHz  
CL = 50 pF, VDD = 2.7 V to 3.6 V 30 MHz  
Fmax(IO)out Maximum Frequency(2)  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 2 V to 2.7 V  
20 MHz  
5
8
Output high to low level fall  
11  
tf(IO)out  
time(3)  
12  
ns  
5
Output low to high level rise  
tr(IO)out  
8
time(3)  
12  
Pulse width of external signals  
tEXTIpw  
-
10  
ns  
detected by the EXTI controller  
1. Refer to the Reference user manual UM0306 for a description of GPIO Port configuration register.  
2. The maximum frequency is defined in Figure 15.  
3. Values based on design simulation and validated on silicon, not tested in production.  
45/64  
Electrical characteristics  
STM32F101xx  
Figure 15. I/O AC characteristics definition  
90%  
10 %  
50%  
50%  
90%  
10%  
t
EXTERNAL  
OUTPUT  
ON 50pF  
t
r(IO)out  
r(IO)out  
T
Maximum frequency is achieved if (t + t ) £ 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50pF  
ai14131  
46/64  
STM32F101xx  
Electrical characteristics  
5.3.13  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up  
resistor, R (see Table 29).  
PU  
Unless otherwise specified, the parameters given in Table 32 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 7.  
(1)  
Table 32. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST) NRST Input low level voltage  
VIH(NRST) NRST Input high level voltage  
–0.5  
2
0.8  
V
VDD+0.5  
NRST Schmitt trigger voltage  
Vhys(NRST)  
hysteresis  
200  
40  
RPU  
Weak pull-up equivalent resistor(2)  
VIN = VSS  
30  
50  
kΩ  
ns  
µs  
VF(NRST) NRST Input filtered pulse(3)  
VNF(NRST) NRST Input not filtered pulse(3)  
1. TBD stands for to be determined.  
100  
300  
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance must be minimum (~10% order).  
3. Values guaranteed by design, not tested in production.  
Figure 16. Recommended NRST pin protection  
V
DD  
External  
reset circuit  
R
PU  
Internal Reset  
NRST  
FILTER  
0.1 µF  
STM32F101xx  
ai14132b  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 32. Otherwise the reset will not be taken into account by the device.  
47/64  
Electrical characteristics  
STM32F101xx  
5.3.14  
TIM timer characteristics  
Unless otherwise specified, the parameters given in Table 33 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLKx  
DD  
summarized in Table 7.  
Refer to Section 5.3.12: I/O port characteristics for details on the input/output alternate  
function characteristics (output compare, input capture, external clock, PWM output).  
Table 33. TIMx characteristics  
TIMx(1)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
ns  
1
27.8  
0
Timer resolution  
time  
tres(TIM)  
x = 2, 3, 4  
fTIMxCLK = 36 MHz  
Timer external clock  
frequency on CH1 to x = 2, 3, 4  
CH4  
f
TIMxCLK/2  
MHz  
MHz  
fEXT  
f
TIMxCLK = 36 MHz  
0
18  
16  
ResTIM  
Timer resolution  
bit  
16-bit counter clock  
period when internal x = 2, 3, 4  
clock is selected  
tTIMxCLK  
1
65536  
1820  
tCOUNTER  
fTIMxCLK = 36 MHz  
0.0278  
µs  
tTIMxCLK  
s
65536 ×  
65536  
Maximum possible  
x = 2, 3, 4  
tMAX_COUNT  
count  
fTIMxCLK = 36 MHz  
119.2  
1. x gives the TIM concerned; where x = 2, TIM2 is concerned, etc.  
48/64  
STM32F101xx  
Electrical characteristics  
5.3.15  
Communications interfaces  
I2C interface characteristics  
Unless otherwise specified, the parameters given in Table 34 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLK1  
DD  
summarized in Table 7.  
2
2
The STM32F101xx access line I C interface meets the requirements of the standard I C  
communication protocol with the following restrictions: t  
he I/O pins SDA and SCL are  
mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected  
between the I/O pin and V is disabled, but is still present. In addition, there is a protection  
DD  
diode between the I/O pin and V . As a consequence, when multiple master devices are  
DD  
2
2
I C  
I C  
connected to the  
bus, it is not possible to power off the STM32F101xx while another  
master node remains powered on. Otherwise, the ST device would be powered by the  
protection diode.  
2
The I C characteristics are described in Table 34. Refer also to  
Section 5.3.12: I/O port  
for more details on the input/output alternate function characteristics (SDA  
characteristics  
and SCL)  
.
2
Table 34. I C characteristics  
Symbol Parameter  
Standard mode I2C(1) Fast mode I2C(1)(2)  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
4.7  
4.0  
1.3  
0.6  
µs  
250  
0(3)  
100  
0(4)  
th(SDA)  
SDA data hold time  
900(3)  
300  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
1000  
300  
20+0.1Cb  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
20+0.1Cb  
0.6  
300  
th(STA)  
4.0  
4.7  
4.0  
4.7  
µs  
Repeated Start condition setup  
time  
tsu(STA)  
0.6  
tsu(STO) Stop condition setup time  
0.6  
µs  
µs  
pF  
Stop to Start condition time (bus  
tw(STO:STA)  
free)  
1.3  
Cb  
Capacitive load for each bus line  
400  
400  
Values based on standard I2C protocol requirement, not tested in production.  
1.  
2. fPCLK1 must be higher than 2 MHz to achieve the maximum standard mode I2C frequency. It must be  
higher than 4 MHz to achieve the maximum fast mode I2C frequency.  
The maximum hold time of the Start condition has only to be met if the interface does not stretch the low  
period of SCL signal.  
3.  
4.  
The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the  
undefined region of the falling edge of SCL.  
49/64  
Electrical characteristics  
STM32F101xx  
2
Figure 17. I C bus AC waveforms and measurement circuit  
V
V
DD  
DD  
STM32F101  
SDA  
4.7kΩ  
4.7kΩ  
100 Ω  
100 Ω  
I²C bus  
SCL  
START REPEATED  
START  
START  
t
su(STA)  
SDA  
t
t
t
r(SDA)  
f(SDA)  
su(SDA)  
t
su(STA:STO)  
STOP  
t
t
t
w(SCKL)  
h(SDA)  
h(STA)  
SCL  
t
t
t
su(STO)  
r(SCK)  
t
f(SCK)  
w(SCKH)  
ai14127b  
Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
1.  
(1)(2)(3)  
Table 35. SCL frequency (f  
= 36 MHz, VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
fSCL  
(kHz)  
RP = 4.7 kΩ  
400  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
300  
200  
100  
50  
20  
1. TBD = to be determined.  
2. RP = External pull-up resistance, fSCL = I2C speed,  
3. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the  
tolerance on the achieved speed ±2%. These variations depend on the accuracy of the external  
components used to design the application.  
50/64  
STM32F101xx  
Electrical characteristics  
SPI interface characteristics  
Unless otherwise specified, the parameters given in Table 36 are derived from tests  
performed under ambient temperature, f  
frequency and V supply voltage conditions  
PCLKx  
DD  
summarized in Table 7.  
Refer to Section 5.3.12: I/O port characteristics for more details on the input/output alternate  
function characteristics (NSS, SCK, MOSI, MISO).  
(1)  
Table 36. SPI characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Master mode  
Slave mode  
TBD  
0
TBD  
TBD  
fSCK  
1/tc(SCK)  
SPI clock frequency  
MHz  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall time  
Capacitive load: C = 50 pF  
TBD  
(2)  
tsu(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
0
0
(2)  
th(NSS)  
(2)  
tw(SCKH)  
tw(SCKL)  
Master mode, fPCLK = TBD,  
presc = TBD  
SCK high and low time  
Data input setup time  
TBD  
(2)  
(2)  
Master mode  
Slave mode  
TBD  
TBD  
tsu(MI)  
tsu(SI)  
(2)  
Master mode  
TBD  
(2)  
Slave mode  
TBD  
th(MI)  
th(SI)  
Data input hold time  
(2)  
Master mode, fPCLK = TBD  
Slave mode, fPCLK = TBD  
Slave mode  
TBD(3)  
TBD(3)  
TBD  
ns  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
(2)(4)  
(2)(5)  
ta(SO)  
Data output access time  
Data output disable time  
Data output valid time  
Slave mode, fPCLK = TBD  
Slave mode  
TBD  
tdis(SO)  
TBD  
Slave mode (after enable edge)  
fPCLK = TBD  
(2)(1)  
tv(SO)  
Master mode (after enable edge)  
(2)(1)  
(2)  
tv(MO)  
Data output valid time  
Data output hold time  
f
PCLK = TBD  
TBD  
TBD  
th(SO)  
Slave mode (after enable edge)  
(2)  
th(MO)  
Master mode (after enable edge) TBD  
1. TBD = to be determined.  
2. Values based on design simulation and/or characterization results, and not tested in production.  
3. Depends on fPCLK. For example, if fPCLK= 8 MHz, then tPCLK = 1/fPLCLK =125 ns and tv(MO) = 255 ns.  
4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate  
the data.  
5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put  
the data in Hi-Z  
51/64  
Electrical characteristics  
STM32F101xx  
Figure 18. SPI timing diagram - slave mode and CPHA=0  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
c(SCK)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
dis(SO)  
v(SO)  
r(SCK)  
f(SCK)  
h(SO)  
t
a(SO)  
MISO  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
OUT PUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
Figure 19. SPI timing diagram - slave mode and CPHA=11)  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
MSB O UT  
BI T6 OUT  
LSB OUT  
OUT PUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
52/64  
STM32F101xx  
Electrical characteristics  
Figure 20. SPI timing diagram - master mode  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
MSBIN  
BIT6 IN  
LSB IN  
INPUT  
t
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
53/64  
Electrical characteristics  
STM32F101xx  
5.3.16  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 37 are derived from tests  
performed under ambient temperature, f  
frequency and V  
supply voltage  
PCLK2  
DDA  
conditions summarized in Table 7.  
Note:  
It is recommended to perform a calibration after each power-up.  
(1)  
Table 37. ADC characteristics  
Symbol  
Parameter  
Conditions  
Min  
2.4  
2.0  
Typ  
Max  
3.6  
Unit  
V
VDDA ADC power supply  
VDDA  
VREF+ Positive reference voltage  
V
fADC  
fS  
ADC clock frequency  
Sampling rate  
0.6  
14  
MHz  
TBD  
0.05  
1
MHz  
kHz  
1/fADC  
V
823  
fTRIG  
External trigger frequency  
fADC = 14 MHz  
17  
Conversion voltage range 2)  
External input impedance  
VAIN  
RAIN  
VSSA  
VDDA  
kΩ  
TBD(2)(3)  
External capacitor on analog  
input  
CAIN  
pF  
µA  
VIN < VSS, | IIN |<  
400 µA on adjacent  
analog pin  
Negative input leakage current on  
analog pins  
Ilkg  
5
6
RADC  
CADC  
Sampling switch resistance  
1
5
kΩ  
Internal sample and hold  
capacitor  
pF  
5.9  
83  
µs  
1/fADC  
µs  
tCAL  
Calibration time  
fADC = 14 MHz  
0.214  
3
tlat  
Injection conversion latency  
fADC = 14 MHz  
fADC = 14 MHz  
1/fADC  
µs  
tS  
Sampling time  
Power-up time  
0.107  
17.1  
1
tSTAB  
0
1
0
µs  
µs  
18  
Total conversion time (including  
sampling time)  
14 (1.5 for sampling  
+12.5 for successive  
approximation)  
tCONV  
fADC = 14 MHz  
1/fADC  
1. TBD = to be determined.  
2. Depending on the input signal variation (fAIN), CAIN can be increased for stabilization time and reduced to  
allow the use of a larger serial resistor (RAIN). It is valid for all fADC frequencies 14 MHz.  
3. During the sample time the input capacitance CAIN (5 max) can be charged/discharged by the external  
source. The internal resistance of the analog source must allow the capacitance to reach its final voltage  
level within tS. After the end of the sample time tS, changes of the analog input voltage have no effect on  
the conversion result. Values for the sample clock tS depend on programming.  
54/64  
STM32F101xx  
Electrical characteristics  
Table 38. ADC accuracy (f  
= 10 MHz, f  
= 10 MHz, R  
< 10 k, V  
=
DDA  
PCLK2  
ADC  
AIN  
(1)  
3.3 V)  
Symbol  
Parameter  
Conditions  
Typ  
Max  
Unit  
|ET|  
|EO|  
|EG|  
|ED|  
|EL|  
Total unadjusted error(2)  
Offset error(2)  
3
1
2
3
2
TBD  
TBD  
TBD  
TBD  
TBD  
Gain Error(2)  
LSB  
Differential linearity error(2)  
Integral linearity error(2)  
1. TBD = to be determined.  
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-  
robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion  
being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to  
standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.12 does not  
affect the ADC accuracy.  
Figure 21. ADC accuracy characteristics  
EG  
(1) Example of an actual transfer curve  
1023  
(2) The ideal transfer curve  
(3) End point correlation line  
V
V  
1022  
1021  
DDA  
SSA  
1LSB  
= ----------------------------------------  
IDEAL  
1024  
(2)  
ET=Total Unadjusted Error: maximum deviation  
ET  
between the actual and the ideal transfer curves.  
(3)  
7
6
5
4
3
2
1
EO=Offset Error: deviation between the first actual  
transition and the first ideal one.  
(1)  
EG=Gain Error: deviation between the last ideal  
transition and the last actual one.  
EO  
EL  
ED=Differential Linearity Error: maximum deviation  
between actual steps and the ideal one.  
EL=Integral Linearity Error: maximum deviation  
between any actual transition and the end point  
correlation line.  
ED  
1 LSBIDEAL  
0
1
2
3
4
5
6
7
1021 1022 1023 1024  
VDDA  
VSSA  
ai14395  
Figure 22. Typical connection diagram using the ADC  
V
DD  
STM32F101  
V
T
0.6V  
R
R
AIN  
ADC  
AINx  
(1)  
12-bit A/D  
conversion  
V
T
I ±1mA  
V
C
C
L
AIN  
AIN  
ADC  
0.6V  
ai14139  
1. Refer to Table 37 for the values of RADC and CADC  
.
2. CPARASITIC must be added to CAIN. It represents the capacitance of the PCB (dependent on soldering and  
PCB layout quality) plus the pad capacitance (3 pF). A high CPARASITIC value will downgrade conversion  
accuracy. To remedy this, fADC should be reduced.  
55/64  
Electrical characteristics  
STM32F101xx  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 23 or Figure 24,  
depending on whether V is connected to V or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed them as close as possible to the chip.  
Figure 23. Power supply and reference decoupling (V  
not connected to V  
)
DDA  
REF+  
STM32F101xx  
V
REF+  
DDA  
1 µF // 10 nF  
V
V
1 µF // 10 nF  
/V  
SSA REF-  
ai14380  
1. VREF+ and VREF- inputs are available only on 100-pin packages.  
Figure 24. Power supply and reference decoupling (V  
connected to V  
)
REF+  
DDA  
STM32F101xx  
VREF+/VDDA  
1 µF // 10 nF  
VREF–/VSSA  
ai14380  
1. VREF+ and VREF- inputs are available only on 100-pin packages.  
56/64  
STM32F101xx  
Electrical characteristics  
5.3.17  
Temperature sensor characteristics  
Table 39. TS characteristics  
Symbol  
Parameter  
VSENSE linearity with temperature  
Conditions Min  
Typ  
Max  
Unit  
T
°C  
mV/°C  
V
±1.5  
4.478  
1.4  
L
Avg_Slope Average slope  
V25  
Voltage at 25°C  
Startup time  
tSTART  
4
10  
µs  
57/64  
Package characteristics  
STM32F101xx  
6
Package characteristics  
Figure 25. LQPF100 – 100-pin low-profile quad flat package outline  
A
D
D1  
A2  
A1  
b
e
E1  
E
c
L1  
L
h
ai14382  
Table 40. LQPF100 – 100-pin low-profile quad flat package mechanical data  
mm  
Typ  
inches  
Typ  
Dim.  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.063  
0.006  
0.057  
0.011  
0.008  
0.05  
1.35  
0.17  
0.09  
0.002  
0.053  
0.007  
0.004  
1.40  
0.22  
0.055  
0.009  
C
D
16.00  
14.00  
16.00  
14.00  
0.50  
0.630  
0.551  
0.630  
0.551  
0.020  
3.5°  
D1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.018  
0.024  
0.039  
0.030  
L1  
1.00  
Number of pins  
100  
N
58/64  
STM32F101xx  
Package characteristics  
Figure 26. LQFP64 – 64-pin low-profile quad flat package outline  
D
A
D1  
A2  
A1  
b
e
E1  
E
c
L1  
L
ai14383  
Table 41. LQFP64 – 64-pin low-profile quad flat package mechanical data  
mm  
Typ  
inches  
Typ  
Dim.  
Min  
Max  
Min  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.063  
0.006  
0.057  
0.011  
0.008  
0.05  
1.35  
0.17  
0.09  
0.002  
0.053  
0.007  
0.004  
1.40  
0.22  
0.055  
0.009  
c
D
12.00  
10.00  
12.00  
10.00  
0.50  
0.472  
0.394  
0.472  
0.394  
0.020  
3.5°  
D1  
E
E1  
e
θ
0°  
3.5°  
7°  
0°  
7°  
L
0.45  
0.60  
0.75  
0.018  
0.024  
0.039  
0.030  
L1  
1.00  
Number of pins  
64  
N
59/64  
Package characteristics  
STM32F101xx  
Figure 27. LQFP48 – 48-pin low-profile quad flat package outline  
D
A
D1  
A2  
A1  
b
e
E1  
E
c
L1  
L
ai14384  
Table 42. LQFP48 – 48-pin low-profile quad flat package mechanical data  
mm  
Typ  
inches(1)  
Dim.  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.60  
0.15  
1.45  
0.27  
0.20  
0.063  
0.006  
0.057  
0.011  
0.008  
0.05  
1.35  
0.17  
0.09  
0.002  
0.053  
0.007  
0.004  
1.40  
0.22  
0.055  
0.009  
C
D
9.00  
7.00  
9.00  
7.00  
0.50  
3.5°  
0.60  
1.00  
0.354  
0.276  
0.354  
0.276  
0.020  
3.5°  
D1  
E
E1  
e
θ
0°  
7°  
0°  
7°  
L
0.45  
0.75  
0.018  
0.024  
0.039  
0.030  
L1  
Number of pins  
48  
N
1. Values in inches are converted from mm and rounded to 3 decimal digits.  
60/64  
STM32F101xx  
Package characteristics  
6.1  
Thermal characteristics  
The average chip-junction temperature, T , in degrees Celsius, may be calculated using the  
J
following equation:  
T = T + (P x Θ )  
(1)  
J
A
D
JA  
Where:  
T is the ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P is the sum of P  
and P (P = P  
+ P ),  
INT I/O  
D
INT  
I/O  
D
P
is the product of I and V , expressed in Watts. This is the chip internal power.  
DD DD  
INT  
P
represents the power dissipation on input and output pins;  
I/O  
Most of the time for the application P < P and can be neglected. On the other hand, P  
I/O  
I/O  
INT  
may be significant if the device is configured to drive continuously external modules and/or  
memories.  
An approximate relationship between P and T (if P is neglected) is given by:  
D
J
I/O  
P = K / (T + 273 °C)  
(2)  
D
J
Therefore (solving equations 1 and 2):  
2
K = P x (T + 273 °C) + Θ x P  
D
(3)  
D
A
JA  
where:  
K is a constant for the particular part, which may be determined from equation (3) by  
measuring P (at equilibrium) for a known T Using this value of K, the values of P and T  
J
D
A.  
D
may be obtained by solving equations (1) and (2) iteratively for any value of T .  
A
Table 43. Thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
LQFP 100 - 14 x 14 mm / 0.5 mm pitch  
46  
Thermal resistance junction-ambient  
LQFP 64 - 10 x 10 mm / 0.5 mm pitch  
Θ
45  
55  
°C/W  
JA  
Thermal resistance junction-ambient  
LQFP 48 - 7 x 7 mm / 0.5 mm pitch  
61/64  
Order codes  
STM32F101xx  
7
Order codes  
Table 44. Order codes  
Partnumber  
Flash program  
memory  
SRAM  
memory  
Package  
Kbytes  
Kbytes  
STM32F101C6T6  
STM32F101C8T6  
STM32F101R6T6  
STM32F101R8T6  
STM32F101RBT6  
STM32F101V8T6  
STM32F101VBT6  
32  
64  
6
LQFP48  
LQFP64  
LQFP100  
10  
6
32  
64  
10  
16  
10  
16  
128  
64  
128  
7.1  
Future family enhancements  
Further developments of the STM32F101xx access line will see an expansion of the current  
options. Larger packages will soon be available with up to 512KB Flash, 48KB SRAM and  
with extended features such as EMI support, DAC and additional timers and USARTS.  
62/64  
STM32F101xx  
Revision history  
8
Revision history  
Table 45. Document revision history  
Date  
Revision  
Changes  
06-Jun-2007  
1
First draft.  
IDD values modified in Table 11: Maximum current consumption in Run  
and Sleep modes (TA = 85 °C).  
VBAT range modified in Power supply schemes.  
VREF+ min value, tSTAB, tlat and fTRIG added to Table 37: ADC  
characteristics. Table 33: TIMx characteristics modified.  
Note 5 modified and Note 7, Note 4 and Note 6 added below Table 3:  
Pin definitions.  
Figure 11: Low-speed external clock source AC timing diagram,  
Figure 8: Power supply scheme, Figure 16: Recommended NRST pin  
protection and Figure 17: I2C bus AC waveforms and measurement  
circuit modified.  
Sample size modified and machine model removed in Electrostatic  
discharge (ESD).  
Number of parts modified and standard reference updated in Static  
latch-up. 25 °C and 85 °C conditions removed and class name modified  
in Table 28: Electrical sensitivities.  
20-Jul-07  
2
tSU(LSE) changed to tSU(LSE) in Table 17: HSE 4-16 MHz oscillator  
characteristics.  
In Table 24: Flash endurance and data retention, typical endurance  
added, data retention for TA = 25 °C removed and data retention for TA =  
85 °C added. Note removed below Table 7: General operating  
conditions.  
VBG changed to VREFINT in Table 10: Embedded internal reference  
voltage. IDD max values added to Table 11: Maximum current  
consumption in Run and Sleep modes (TA = 85 °C).  
IDD(HSI) max value added to Table 19: HSI oscillator characteristics.  
RPU and RPD min and max values added to Table 29: I/O static  
characteristics. RPU min and max values added to Table 32: NRST pin  
characteristics (two notes removed).  
Datasheet title corrected. USB characteristics section removed.  
Features on page 1 list optimized. Small text changes.  
63/64  
STM32F101xx  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2007 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
64/64  

相关型号:

STM32F101RBH6

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101RBH6TR

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101RBH6XXX

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101RBT6

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101RBT6AXX

32-BIT, FLASH, 36MHz, RISC MICROCONTROLLER, PQFP64, 10 X 10 MM, 0.50 MM PITCH, ROHS COMPLIANT, LQFP-64
STMICROELECTR

STM32F101RBT6TR

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101RBT6XXX

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101RBT6XXXTR

IC,MICROCONTROLLER,32-BIT,CMOS,QFP,64PIN,PLASTIC
STMICROELECTR

STM32F101RBU6TR

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101RBU6XXX

Medium-density access line, ARM-based 32-bit MCU with 64 or 128 KB Flash, 6 timers, ADC and 7 communication interfaces
STMICROELECTR

STM32F101RC

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
STMICROELECTR

STM32F101RCT6TR

High-density access line, ARM-based 32-bit MCU with 256 to 512 KB Flash, 9 timers, 1 ADC and 10 communication interfaces
STMICROELECTR