STM32L151RBT6TR [STMICROELECTRONICS]

Ultra-low-power ARM Cortex-M3 MCU with 128 Kbytes Flash, 32 MHz CPU, USB;
STM32L151RBT6TR
型号: STM32L151RBT6TR
厂家: ST    ST
描述:

Ultra-low-power ARM Cortex-M3 MCU with 128 Kbytes Flash, 32 MHz CPU, USB

微控制器和处理器 外围集成电路 时钟
文件: 总121页 (文件大小:2252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM32L15xx6/8/B  
Ultra-low-power 32-bit MCU ARM-based Cortex-M3,  
128KB Flash, 16KB SRAM, 4KB EEPROM, LCD, USB, ADC, DAC  
Datasheet production data  
Features  
Ultra-low-power platform  
LQFP100 14 × 14 mm  
LQFP64 10 × 10 mm  
LQFP48 7 × 7 mm  
BGA100 7 × 7 mm  
BGA64 5 × 5 mm  
UFQFPN48  
7 × 7 mm  
– 1.65 V to 3.6 V power supply  
– -40°C to 85°C/105°C temperature range  
– 0.3 µA Standby mode (3 wakeup pins)  
0.9 µA Standby mode + RTC  
– 0.57 µA Stop mode (16 wakeup lines)  
– 1.2 µA Stop mode + RTC  
– 9 µA Low-power Run mode  
– 214 µA/MHz Run mode  
– 10 nA ultra-low I/O leakage  
– < 8 µs wakeup time  
Memories  
– Up to 128 KB Flash with ECC  
– Up to 16 KB RAM  
– Up to 4 KB of true EEPROM with ECC  
– 80 Byte Backup Register  
LCD Driver for up to 8x40 segments  
– Support contrast adjustment  
– Support blinking mode  
– Step-up converter on board  
Core: ARM 32-bit Cortex -M3 CPU  
Rich analog peripherals (down to 1.8 V)  
– 12-bit ADC 1 Msps up to 24 channels  
– 12-bit DAC 2 channels with output buffers  
– From 32 kHz up to 32 MHz max  
– 33.3 DMIPS peak (Dhrystone 2.1)  
– Memory protection unit  
– 2x Ultra-low-power-comparators  
(window mode and wake up capability)  
Reset and supply management  
– Ultra-safe, low-power BOR (brownout  
reset) with 5 selectable thresholds  
– Ultra-low-power POR/PDR  
DMA controller 7x channels  
8x peripherals communication interface  
– 1x USB 2.0 (internal 48 MHz PLL)  
– 3x USART (ISO 7816, IrDA)  
– 2x SPI 16 Mbits/s  
– Programmable voltage detector (PVD)  
Clock sources  
– 1 to 24 MHz crystal oscillator  
– 32 kHz oscillator for RTC with calibration  
– High Speed Internal 16 MHz factory-  
trimmed RC (+/- 1%)  
– 2x I2C (SMBus/PMBus)  
10x timers: 6x 16-bit with up to 4 IC/OC/PWM  
channels, 2x 16-bit basic timer, 2x watchdog  
timers (independent and window)  
– Internal Low Power 37 kHz RC  
– Internal multispeed low power 65 kHz to  
4.2 MHz  
Up to 20 capacitive sensing channels  
supporting touchkey, linear and rotary touch  
sensors  
– PLL for CPU clock and USB (48 MHz)  
CRC calculation unit, 96-bit unique ID  
Pre-programmed bootloader  
Table 1.  
Device summary  
Part number  
– USART supported  
Reference  
Development support  
STM32L151CB, STM32L151C8, STM32L151C6,  
STM32L151xx STM32L151RB, STM32L151R8, STM32L151R6,  
STM32L151VB, STM32L151V8  
– Serial wire debug supported  
– JTAG and trace supported  
STM32L152CB, STM32L152C8, STM32L152C6,  
STM32L152xx STM32L152RB, STM32L152R8, STM32L152R6,  
STM32L152VB, STM32L152V8  
Up to 83 fast I/Os (73 I/Os 5V tolerant), all  
mappable on 16 external interrupt vectors  
February 2013  
Doc ID 17659 Rev 8  
1/121  
This is information on a product in full production.  
www.st.com  
1
 
 
 
Contents  
STM32L151x6/8/B, STM32L152x6/8/B  
Contents  
1
2
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Shared peripherals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Common system strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
3.1  
3.2  
3.3  
Low power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
ARM® Cortex™-M3 core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Low power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 22  
GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
DMA (direct memory access) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
LCD (liquid crystal display) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.10 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.10.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.10.2 Internal voltage reference (V  
) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
REFINT  
3.11 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.12 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 25  
3.13 Routing interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.14 Touch sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.15 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
2/121  
Doc ID 17659 Rev 8  
STM32L151x6/8/B, STM32L152x6/8/B  
Contents  
3.15.1 General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11) 28  
3.15.2 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.15.3 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.15.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
3.15.5 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16.1 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 29  
3.16.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.16.4 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
3.17 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 30  
3.18 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
4
5
6
Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6.1  
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.1.7  
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
6.2  
6.3  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
6.3.1  
6.3.2  
6.3.3  
6.3.4  
6.3.5  
6.3.6  
6.3.7  
6.3.8  
6.3.9  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Embedded reset and power control block characteristics . . . . . . . . . . . 51  
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
Doc ID 17659 Rev 8  
3/121  
Contents  
STM32L151x6/8/B, STM32L152x6/8/B  
6.3.10 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 77  
6.3.11 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
6.3.12 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
6.3.13 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
6.3.14 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
6.3.15 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
6.3.16 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
6.3.17 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
6.3.18 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
6.3.19 Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
6.3.20 LCD controller (STM32L152xx only) . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
7
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
7.1  
7.2  
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
7.2.1  
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
8
9
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117  
4/121  
Doc ID 17659 Rev 8  
STM32L151x6/8/B, STM32L152x6/8/B  
List of tables  
List of tables  
Table 1.  
Table 2.  
Table 3.  
Table 4.  
Table 5.  
Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ultra-low-power STM32L15xxx device features and peripheral counts . . . . . . . . . . . . . . . 10  
Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 14  
CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 15  
Functionalities depending on the working mode (from Run/active down to  
standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
STM32L15xxx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Alternate function input/output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Embedded internal reference voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Current consumption in Run mode, code with data processing running from Flash. . . . . . 54  
Current consumption in Run mode, code with data processing running from RAM . . . . . . 55  
Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Current consumption in Low power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Current consumption in Low power sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 59  
Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 61  
Typical and maximum timings in Low power modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65  
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
HSE 1-24 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Table 6.  
Table 7.  
Table 8.  
Table 9.  
Table 10.  
Table 11.  
Table 12.  
Table 13.  
Table 14.  
Table 15.  
Table 16.  
Table 17.  
Table 18.  
Table 19.  
Table 20.  
Table 21.  
Table 22.  
Table 23.  
Table 24.  
Table 25.  
Table 26.  
Table 27.  
Table 28.  
Table 29.  
Table 30.  
Table 31.  
Table 32.  
Table 33.  
Table 34.  
Table 35.  
Table 36.  
Table 37.  
Table 38.  
Table 39.  
Table 40.  
Table 41.  
Table 42.  
Table 43.  
Table 44.  
Table 45.  
Table 46.  
Table 47.  
LSE oscillator characteristics (f  
= 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
LSE  
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
Flash memory, data EEPROM endurance and data retention . . . . . . . . . . . . . . . . . . . . . . 75  
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75  
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76  
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78  
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81  
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
2
I C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84  
Doc ID 17659 Rev 8  
5/121  
List of tables  
SCL frequency (f  
STM32L151x6/8/B, STM32L152x6/8/B  
= 32 MHz, V = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Table 48.  
Table 49.  
Table 50.  
Table 51.  
Table 52.  
Table 53.  
Table 54.  
Table 55.  
Table 56.  
Table 57.  
Table 58.  
Table 59.  
Table 60.  
Table 61.  
Table 62.  
Table 63.  
Table 64.  
Table 65.  
Table 66.  
Table 67.  
Table 68.  
Table 69.  
PCLK1  
DD  
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86  
USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
ADC clock frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
ADC accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92  
R
max for f  
= 16 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
AIN  
ADC  
DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96  
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99  
Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
LCD controller characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 104  
LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data. . . . . . . . . . 106  
LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 108  
UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . . . . . . 110  
UFBGA100 - 7 x 7 x 0.6 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . 111  
TFBGA64 - 8.0x8.0x1.2 mm, 0.5 mm pitch, package mechanical data . . . . . . . . . . . . . . 112  
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114  
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116  
6/121  
Doc ID 17659 Rev 8  
STM32L151x6/8/B, STM32L152x6/8/B  
List of figures  
List of figures  
Figure 1.  
Figure 2.  
Figure 3.  
Figure 4.  
Figure 5.  
Figure 6.  
Figure 7.  
Figure 8.  
Figure 9.  
Ultra-low-power STM32L15xxx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
STM32L15xVx UFBGA100 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
STM32L15xVx LQFP100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
STM32L15xRx TFBGA64 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
STM32L15xRx LQFP64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
STM32L15xCx LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
STM32L15xCx UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Memory map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Figure 10. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 11. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Figure 12. Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 13. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Figure 14. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Figure 15. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Figure 16. HSE oscillator circuit diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Figure 17. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Figure 18. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
Figure 19. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83  
2
Figure 20. I C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85  
Figure 21. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
(1)  
Figure 22. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87  
(1)  
Figure 23. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Figure 24. USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
Figure 25. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 26. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93  
Figure 27. Maximum dynamic current consumption on V  
supply pin during ADC  
REF+  
conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94  
Figure 28. Power supply and reference decoupling (V  
Figure 29. Power supply and reference decoupling (V  
not connected to V  
). . . . . . . . . . . . . . 95  
). . . . . . . . . . . . . . . . . 95  
REF+  
DDA  
connected to V  
REF+  
DDA  
Figure 30. 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98  
Figure 31. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 103  
Figure 32. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104  
Figure 33. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 105  
Figure 34. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
Figure 35. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 107  
Figure 36. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108  
Figure 37. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 109  
Figure 38. Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110  
Figure 39. UFBGA100 - 7 x 7 x 0.6 mm, 0.5 mm pitch, package outline. . . . . . . . . . . . . . . . . . . . . . 111  
Figure 40. TFBGA64 - 8.0x8.0x1.2 mm, 0.5 mm pitch, package outline . . . . . . . . . . . . . . . . . . . . . . 112  
Figure 41. Recommended PCB design rules for pads (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . . . 113  
Figure 42. Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115  
Doc ID 17659 Rev 8  
7/121  
Introduction  
STM32L151x6/8/B, STM32L152x6/8/B  
1
Introduction  
This datasheet provides the ordering information and mechanical device characteristics of  
the STM32L151xx and STM32L152xx ultra-low-power ARM Cortex™-based  
microcontrollers product line.  
The ultra-low-power STM32L15xxx family includes devices in 3 different package types:  
from 48 pins to 100 pins. Depending on the device chosen, different sets of peripherals are  
included, the description below gives an overview of the complete range of peripherals  
proposed in this family.  
These features make the ultra-low-power STM32L15xxx microcontroller family suitable for a  
wide range of applications:  
Medical and handheld equipment  
Application control and user interface  
PC peripherals, gaming, GPS and sport equipment  
Alarm systems, Wired and wireless sensors, Video intercom  
Utility metering  
This STM32L151xx and STM32L152xx datasheet should be read in conjunction with the  
STM32L1xxxx reference manual (RM0038).  
The document "Getting started with STM32L1xxx hardware development" AN3216 gives a  
hardware implementation overview. The both documents are available from the  
STMicroelectronics website www.st.com.  
For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical  
Reference Manual, available from the www.arm.com website at the following address:  
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337g.  
Figure 1 shows the general block diagram of the device family.  
8/121  
Doc ID 17659 Rev 8  
 
STM32L151x6/8/B, STM32L152x6/8/B  
Description  
2
Description  
The ultra-low-power STM32L15xxx incorporates the connectivity power of the universal  
serial bus (USB) with the high-performance ARM Cortex -M3 32-bit RISC core operating at  
a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories  
(Flash memory up to 128 Kbytes and RAM up to 16 Kbytes) and an extensive range of  
enhanced I/Os and peripherals connected to two APB buses.  
All devices offer a 12-bit ADC, 2 DACs and 2 ultra-low-power comparators, six general-  
purpose 16-bit timers and two basic timers, which can be used as time bases.  
Moreover, the STM32L15xxx devices contain standard and advanced communication  
2
interfaces: up to two I Cs and SPIs, three USARTs and a USB. The STM32L15xxx devices  
offer up to 20 capacitive sensing channels to simply add touch sensing functionality to any  
application.  
They also include a real-time clock and a set of backup registers that remain powered in  
Standby mode.  
Finally, the integrated LCD controller has a built-in LCD voltage generator that allows you to  
drive up to 8 multiplexed LCDs with contrast independent of the supply voltage.  
The ultra-low-power STM32L15xxx operates from a 1.8 to 3.6 V power supply (down to  
1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option.  
It is available in the -40 to +85 °C temperature range, extended to 105°C in low power  
dissipation state. A comprehensive set of power-saving modes allows the design of low-  
power applications.  
Doc ID 17659 Rev 8  
9/121  
 
Description  
STM32L151x6/8/B, STM32L152x6/8/B  
2.1  
Device overview  
Table 2.  
Ultra-low-power STM32L15xxx device features and peripheral counts  
Peripheral  
STM32L15xCx STM32L15xRx STM32L15xVx  
Flash (Kbytes)  
32  
64  
128  
32  
64  
4
128  
64  
128  
Data EEPROM (Kbytes)  
RAM (Kbytes)  
10  
10  
16  
10  
10  
16  
10  
16  
General-  
6
purpose  
Basic  
SPI  
Timers  
2
2
I2C  
2
Communication  
interfaces  
USART  
USB  
3
1
GPIOs  
37  
51  
83  
1
12-bit synchronized ADC  
Number of channels  
1
1
16 channels  
20 channels  
24 channels  
12-bit DAC  
Number of channels  
2
2
LCD (STM32L152xx Only)  
COM x SEG  
4x32  
8x28  
4x44  
8x40  
4x16  
13  
Comparator  
2
Capacitive sensing channels  
Max. CPU frequency  
20  
32 MHz  
1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option  
1.65 V to 3.6 V without BOR option  
Operating voltage  
Ambient temperatures: –40 to +85 °C  
Junction temperature: –40 to + 105 °C  
Operating temperatures  
Packages  
LQFP48, UFQFPN48  
LQFP64, BGA64  
LQFP100, BGA100  
.
10/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Description  
2.2  
Ultra-low-power device continuum  
The ultra-low-power STM32L151xx and STM32L152xx are fully pin-to-pin and software  
compatible. Besides the full compatibility within the family, the devices are part of  
STMicroelectronics microcontrollers ultra-low-power strategy which also includes  
STM8L101xx and STM8L15xx devices. The STM8L and STM32L families allow a  
continuum of performance, peripherals, system architecture and features.  
They are all based on STMicroelectronics ultralow leakage process.  
Note:  
The ultra-low-power STM32L and general-purpose STM32Fxxxx families are pin-to-pin  
compatible. The STM8L15xxx devices are pin-to-pin compatible with the STM8L101xx  
devices. Please refer to the STM32F and STM8L documentation for more information on  
these devices.  
2.2.1  
Performance  
All families incorporate highly energy-efficient cores with both Harvard architecture and  
pipelined execution: advanced STM8 core for STM8L families and ARM Cortex™-M3 core  
for STM32L family. In addition specific care for the design architecture has been taken to  
optimize the mA/DMIPS and mA/MHz ratios.  
This allows the ultra-low-power performance to range from 5 up to 33.3 DMIPs.  
2.2.2  
2.2.3  
Shared peripherals  
STM8L15xxx and STM32L15xxx share identical peripherals which ensure a very easy  
migration from one family to another:  
Analog peripherals: ADC, DAC and comparators  
Digital peripherals: RTC and some communication interfaces  
Common system strategy  
To offer flexibility and optimize performance, the STM8L15xx and STM32L15xx families use  
a common architecture:  
Same power supply range from 1.65 V to 3.6 V, (1.65 V at power down only for  
STM8L15xx devices)  
Architecture optimized to reach ultralow consumption both in low power modes and  
Run mode  
Fast startup strategy from low power modes  
Flexible system clock  
Ultrasafe reset: same reset strategy including power-on reset, power-down reset,  
brownout reset and programmable voltage detector.  
2.2.4  
Features  
ST ultra-low-power continuum also lies in feature compatibility:  
More than 10 packages with pin count from 20 to 144 pins and size down to 3 x 3 mm  
Memory density ranging from 4 to 384 Kbytes  
Doc ID 17659 Rev 8  
11/121  
 
 
 
 
 
Functional overview  
STM32L151x6/8/B, STM32L152x6/8/B  
3
Functional overview  
Figure 1 shows the block diagrams.  
Figure 1. Ultra-low-power STM32L15xxx block diagram  
TRACECK, TRACED0, TRACED1, TRACED2, TRACED3  
@V DD  
PO WE R  
J T AG & SW  
Trace controller  
ETM  
V
CO R E  
pbus  
V
V
=1. 65 V to 3.6 V  
DD  
SS  
VOLT. R E G.  
NJT R ST  
Cortex-M3 CPU  
JT DI  
JT CK/ S WCLK  
JTMS /SWDAT  
Ibus  
128 KB Flash  
4 KB data EEPROM  
F
: 32 MHz  
ma x  
Db us  
JTDO  
as A F  
MP U  
S yst em  
RAM  
16 KB  
NV IC  
@V DD A  
GP DMA  
7 c hannels  
@V DD A  
Supply  
OSC_IN  
OSC_OUT  
A HBP CL K  
AP BP CL K  
HC L K  
PLL  
clock  
management  
&
X T AL O S C  
1-24 MHz  
FC LK  
RC HS  
RC MS  
RC LS  
NRST  
VR EF O UTPU T  
monitoring  
Power reset  
Int  
IWDG  
BOR/V REFINT  
Standby interface  
X T A L 32 kHz  
@VD DA  
VDDA /  
VSS  
PV D  
A
OS C32 _IN  
OS C32 _OUT  
Co mp 1  
Co mp 2  
COMP2 _IN- /IN+  
RTC_AFIN  
RT C  
Power-up/  
Power-down  
AW U  
RTC_OUT, RTC_TS,RTC_TAMP  
Backup  
register  
P A [15:0 ]  
P B [15:0 ]  
P C [15:0 ]  
PD[ 15:0]  
PE[1 5:0]  
PH[2 :0]  
GPIOA  
Backup interface  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOH  
LCD step-up  
converter  
V
=2.5 V to 3.6 V  
LCD  
4 Ch an nels  
4 Ch an nels  
TIM2  
TIM3  
TIM4  
4 Ch an nels  
RX ,TX, C T S, R T S,  
S martCa rd as A F  
AHB/APB2  
US ART  
US ART  
2
3
AHB/APB1  
EXT. IT  
WKU P  
RX ,T X , CT S , RT S ,  
S martC ard a s AF  
83A F  
MO S I,MIS O, S CK, NS S  
as AF  
MOSI ,MIS O,  
SC K, NS S as AF  
SP I2  
SPI 1  
RX ,T X , C T S, R T S,  
S mar tC ar d as AF  
SC L, S DA  
as AF  
I2C 1  
I2C 2  
US ART  
1
@V DD A  
12-bit ADC  
S C L, SD A, SMB us ,P MB us  
as AF  
24A F  
*
V
V
DDREF _ADC  
SS REF_ ADC  
IF  
*
US B_DP  
US B_DM  
USB 2.0 FS device  
US B RAM 512 B  
WWDG  
Te mp s ens or  
SEG  
x
LCD 8x4 0 (4x44 )  
@V DD A  
COM x  
General purpose  
timers  
BA SI C T IME RS  
TIM6  
2 Channe ls  
1 C hannel  
1 Channel  
TI M9  
TI M10  
TI M11  
DAC_OUT1 as AF  
DAC_OUT2 as AF  
12-bit DAC1  
IF
TIMM7  
12-bit DAC2  
Ai15687h  
1. AF = alternate function on I/O port pin.  
12/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Functional overview  
3.1  
Low power modes  
The ultra-low-power STM32L15xxx supports dynamic voltage scaling to optimize its power  
consumption in run mode. The voltage from the internal low-drop regulator that supplies the  
logic can be adjusted according to the system’s maximum operating frequency and the  
external voltage supply:  
In range 1 (V range limited to 2.0-3.6 V), the CPU runs at up to 32 MHz (refer to  
Table 17 for consumption).  
DD  
In range 2 (full V range), the CPU runs at up to 16 MHz (refer to Table 17 for  
DD  
consumption)  
In range 3 (full V range), the CPU runs at up to 4 MHz (generated only with the  
DD  
multispeed internal RC oscillator clock source). Refer to Table 17 for consumption.  
Seven low power modes are provided to achieve the best compromise between low power  
consumption, short startup time and available wakeup sources:  
Sleep mode  
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can  
wake up the CPU when an interrupt/event occurs.  
Sleep mode power consumption: refer to Table 19.  
Low power run mode  
This mode is achieved with the multispeed internal (MSI) RC oscillator set to the  
minimum clock (65 kHz), execution from SRAM or Flash memory, and internal regulator  
in low power mode to minimize the regulator's operating current. In the Low power run  
mode, the clock frequency and the number of enabled peripherals are both limited.  
Low power run mode consumption: refer to Table 20.  
Low power sleep mode  
This mode is achieved by entering the Sleep mode with the internal voltage regulator in  
Low power mode to minimize the regulator’s operating current. In the Low power sleep  
mode, both the clock frequency and the number of enabled peripherals are limited; a  
typical example would be to have a timer running at 32 kHz.  
When wakeup is triggered by an event or an interrupt, the system reverts to the run  
mode with the regulator on.  
Low power sleep mode consumption: refer to Table 21.  
Stop mode with RTC  
Stop mode achieves the lowest power consumption while retaining the RAM and  
register contents and real time clock. All clocks in the V  
domain are stopped, the  
CORE  
PLL, MSI RC, HSI RC and HSE crystal oscillators are disabled. The LSE or LSI is still  
running. The voltage regulator is in the low power mode.  
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI  
line source can be one of the 16 external lines. It can be the PVD output, the  
Comparator 1 event or Comparator 2 event (if internal reference voltage is on), it can be  
the RTC alarm(s), the USB wakeup, the RTC tamper events, the RTC timestamp event  
or the RTC wakeup.  
Stop mode without RTC  
Stop mode achieves the lowest power consumption while retaining the RAM and  
register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, LSE and  
HSE crystal oscillators are disabled. The voltage regulator is in the low power mode.  
The device can be woken up from Stop mode by any of the EXTI line, in 8 µs. The EXTI  
line source can be one of the 16 external lines. It can be the PVD output, the  
Doc ID 17659 Rev 8  
13/121  
 
 
Functional overview  
STM32L151x6/8/B, STM32L152x6/8/B  
Comparator 1 event or Comparator 2 event (if internal reference voltage is on). It can  
also be wakened by the USB wakeup.  
Stop mode consumption: refer to Table 22.  
Standby mode with RTC  
Standby mode is used to achieve the lowest power consumption and real time clock.  
The internal voltage regulator is switched off so that the entire V  
domain is  
CORE  
powered off. The PLL, MSI RC, HSI RC and HSE crystal oscillators are also switched  
off. The LSE or LSI is still running. After entering Standby mode, the RAM and register  
contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG,  
RTC, LSI, LSE Crystal 32K osc, RCC_CSR).  
The device exits Standby mode in 60 µs when an external reset (NRST pin), an IWDG  
reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B),  
RTC tamper event, RTC timestamp event or RTC Wakeup event occurs.  
Standby mode without RTC  
Standby mode is used to achieve the lowest power consumption. The internal voltage  
regulator is switched off so that the entire V  
domain is powered off. The PLL, MSI,  
CORE  
RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After  
entering Standby mode, the RAM and register contents are lost except for registers in  
the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32K osc,  
RCC_CSR).  
The device exits Standby mode in 60 µs when an external reset (NRST pin) or a rising  
edge on one of the three WKUP pin occurs.  
Standby mode consumption: refer to Table 23.  
Note:  
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering the  
Stop or Standby mode.  
Table 3.  
Functionalities depending on the operating power supply range  
Functionalities depending on the operating power supply range  
Operating power  
supply range  
DAC and ADC  
operation  
Dynamicvoltage  
scaling range  
USB  
I/O operation  
Range 2 or  
range 3  
Degraded speed  
performance  
VDD = 1.65 to 1.8 V  
Not functional  
Not functional  
Not functional  
Conversion time  
up to 500 Ksps  
Range 2 or  
range 3  
Degraded speed  
performance  
VDD = 1.8 to 2.0 V  
VDD = 2.0 to 2.4 V  
Conversion time  
up to 500 Ksps  
Range 1, range 2  
or range 3  
Functional(1)  
Functional(1)  
Full speed operation  
Full speed operation  
Conversion time  
up to 1 Msps  
Range 1, range 2  
or range 3  
VDD = 2.4 to 3.6 V  
1. Should be USB compliant from I/O voltage standpoint, the minimum VDD is 3.0 V.  
14/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Functional overview  
Table 4.  
CPU frequency range depending on dynamic voltage scaling  
CPU frequency range  
Dynamic voltage scaling range  
16 MHz to 32 MHz (1ws)  
32 kHz to 16 MHz (0ws)  
Range 1  
8 MHz to 16 MHz (1ws)  
32 kHz to 8 MHz (0ws)  
Range 2  
Range 3  
2.1 MHz to 4.2 MHz (1ws)  
32 kHz to 2.1 MHz (0ws)  
Doc ID 17659 Rev 8  
15/121  
 
 
Functional overview  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 5.  
Functionalities depending on the working mode (from Run/active down to  
standby)  
Stop  
Standby  
Low-  
power  
Run  
Low-  
power  
Sleep  
Ips  
Run/Active  
Sleep  
Wakeup  
capability  
Wakeup  
capability  
CPU  
Flash  
RAM  
Y
Y
Y
Y
Y
--  
Y
Y
Y
--  
Y
Y
Y
Y
Y
--  
N
Y
Y
Y
--  
--  
Y
Y
Y
--  
--  
--  
Y
--  
Backup Registers  
EEPROM  
Brown-out rest  
(BOR)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
--  
Y
Y
--  
DMA  
Programable  
Voltage Detector  
(PVD)  
Y
Y
Y
Y
Y
Y
Y
Y
Power On Reset  
(POR)  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
--  
--  
Y
Y
Y
Y
Y
Y
--  
--  
Y
Y
Y
Y
Y
Y
--  
--  
Y
Y
--  
--  
Y
Y
--  
--  
--  
--  
--  
--  
Power Down Rest  
(PDR)  
High Speed  
Internal (HSI)  
High Speed  
External (HSE)  
Low Speed Internal  
(LSI)  
Low Speed  
External (LSE)  
Multi-Speed  
Internal (MSI)  
Inter-Connect  
Controler  
RTC  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
RTC Tamper  
Y
Y
Auto WakeUp  
(AWU)  
Y
Y
Y
Y
Y
Y
Y
LCD  
USB  
USART  
SPI  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
Y
--  
--  
--  
--  
--  
Y
(1)  
(1)  
I2C  
16/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Table 5.  
Functional overview  
Standby  
Functionalities depending on the working mode (from Run/active down to  
standby) (continued)  
Stop  
Low-  
power  
Run  
Low-  
power  
Sleep  
Ips  
Run/Active  
Sleep  
Wakeup  
Wakeup  
capability  
capability  
ADC  
Y
Y
Y
Y
Y
Y
Y
Y
--  
Y
Y
Y
--  
Y
Y
Y
--  
Y
Y
Y
--  
--  
--  
--  
DAC  
Tempsensor  
Comparators  
Y
Y
16-bit and 32-bit  
Timers  
Y
Y
Y
Y
--  
--  
IWDG  
Y
Y
Y
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
Y
Y
Y
Y
--  
Y
Y
Y
--  
--  
Y
--  
--  
--  
Y
WWDG  
Touch sensing  
Systic Timer  
GPIOs  
Y
Y
3Pins  
50 µs  
Wakeup time to  
Run mode  
0 µs  
0.36 µs  
3 µs  
32 µs  
< 8 µs  
0.65 µA (No  
RTC) VDD=1.8V  
0.3 µA (No RTC)  
VDD=1.8V  
1.4 µA (with  
RTC) VDD=1.8V  
1 µA (with RTC)  
VDD=1.8V  
Consumption  
VDD=1.8V to 3.6V  
(Typ)  
Down to  
214 µA/MHz  
(from Flash)  
Down to  
50 µA/MHz  
(from Flash)  
Down to Down to  
9 µA 4.4 µA  
0.65 µA (No  
RTC) VDD=3.0V  
0.3 µA (No RTC)  
VDD=3.0V  
1.6 µA (with  
1.3 µA (with  
RTC) VDD=3.0V RTC) VDD=3.0V  
1. The startup on communication line wakes the CPU which was made possible by an EXTI, this induces a delay before  
entering run mode.  
3.2  
ARM® Cortex™-M3 core with MPU  
The ARM Cortex™-M3 processor is the industry leading processor for embedded systems.  
It has been developed to provide a low-cost platform that meets the needs of MCU  
implementation, with a reduced pin count and low-power consumption, while delivering  
outstanding computational performance and an advanced system response to interrupts.  
The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency,  
delivering the high-performance expected from an ARM core in the memory size usually  
associated with 8- and 16-bit devices.  
The memory protection unit (MPU) improves system reliability by defining the memory  
attributes (such as read/write access permissions) for different memory regions. It provides  
up to eight different regions and an optional predefined background region.  
Owing to its embedded ARM core, the STM32L15xxx is compatible with all ARM tools and  
software.  
Doc ID 17659 Rev 8  
17/121  
 
Functional overview  
STM32L151x6/8/B, STM32L152x6/8/B  
Nested vectored interrupt controller (NVIC)  
The ultra-low-power STM32L15xxx embeds a nested vectored interrupt controller able to  
handle up to 45 maskable interrupt channels (not including the 16 interrupt lines of  
Cortex™-M3) and 16 priority levels.  
Closely coupled NVIC gives low-latency interrupt processing  
Interrupt entry vector table address passed directly to the core  
Closely coupled NVIC core interface  
Allows early processing of interrupts  
Processing of late arriving, higher-priority interrupts  
Support for tail-chaining  
Processor state automatically saved  
Interrupt entry restored on interrupt exit with no instruction overhead  
This hardware block provides flexible interrupt management features with minimal interrupt  
latency.  
3.3  
Reset and supply management  
3.3.1  
Power supply schemes  
V
= 1.65 to 3.6 V: external power supply for I/Os and the internal regulator.  
DD  
Provided externally through V pins.  
DD  
V
, V  
= 1.65 to 3.6 V: external analog power supplies for ADC, reset blocks, RCs  
DDA  
SSA  
and PLL (minimum voltage to be applied to V  
is 1.8 V when the ADC is used).  
DDA  
V
and V  
must be connected to V and V , respectively.  
DDA  
SSA DD SS  
3.3.2  
Power supply supervisor  
The device has an integrated ZEROPOWER power-on reset (POR)/power-down reset  
(PDR) that can be coupled with a brownout reset (BOR) circuitry.  
The device exists in two versions:  
The version with BOR activated at power-on operates between 1.8 V and 3.6 V.  
The other version without BOR operates between 1.65 V and 3.6 V.  
After the V threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or  
DD  
not at power-on), the option byte loading process starts, either to confirm or modify default  
thresholds, or to disable the BOR permanently: in this case, the V min value becomes  
DD  
1.65 V (whatever the version, BOR active or not, at power-on).  
When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever  
the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the  
power ramp-up should guarantee that 1.65 V is reached on V at least 1 ms after it exits  
DD  
the POR area.  
18/121  
Doc ID 17659 Rev 8  
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Functional overview  
Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To  
reduce the power consumption in Stop mode, it is possible to automatically switch off the  
internal reference voltage (V ) in Stop mode. The device remains in reset mode when  
REFINT  
V
is below a specified threshold, V  
or V  
, without the need for any external  
DD  
POR/PDR  
BOR  
reset circuit.  
Note:  
3.3.3  
3.3.4  
The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the start-  
up time at power-on can be decreased down to 1 ms typically for devices with BOR inactive  
at power-up.  
The device features an embedded programmable voltage detector (PVD) that monitors the  
V
/V  
power supply and compares it to the V  
threshold. This PVD offers 7 different  
DD DDA  
PVD  
levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An  
interrupt can be generated when V /V drops below the V threshold and/or when  
DD DDA  
PVD  
V
/V  
is higher than the V  
threshold. The interrupt service routine can then generate  
DD DDA  
PVD  
a warning message and/or put the MCU into a safe state. The PVD is enabled by software.  
Voltage regulator  
The regulator has three operation modes: main (MR), low power (LPR) and power down.  
MR is used in Run mode (nominal regulation)  
LPR is used in the Low-power run, Low-power sleep and Stop modes  
Power down is used in Standby mode. The regulator output is high impedance, the  
kernel circuitry is powered down, inducing zero consumption but the contents of the  
registers and RAM are lost are lost except for the standby circuitry (wakeup logic,  
IWDG, RTC, LSI, LSE crystal 32K osc, RCC_CSR).  
Boot modes  
At startup, boot pins are used to select one of three boot options:  
Boot from Flash memory  
Boot from System Memory  
Boot from embedded RAM  
The boot loader is located in System Memory. It is used to reprogram the Flash memory by  
using USART1 or USART2. See STM32™ microcontroller system memory boot mode  
AN2606 for details.  
Doc ID 17659 Rev 8  
19/121  
 
 
Functional overview  
STM32L151x6/8/B, STM32L152x6/8/B  
3.4  
Clock management  
The clock controller distributes the clocks coming from different oscillators to the core and  
the peripherals. It also manages clock gating for low power modes and ensures clock  
robustness. It features:  
Clock prescaler: to get the best tradeoff between speed and current consumption, the  
clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler  
Safe clock switching: clock sources can be changed safely on the fly in run mode  
through a configuration register.  
Clock management: to reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
Master clock source: three different clock sources can be used to drive the master  
clock:  
1-24 MHz high-speed external crystal (HSE), that can supply a PLL  
16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can  
supply a PLL  
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate 7  
frequencies (65.5 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz)  
with a consumption proportional to speed, down to 750 nA typical. When a  
32.768 kHz clock source is available in the system (LSE), the MSI frequency can  
be trimmed by software down to a 0.5% accuracy.  
Auxiliary clock source: two ultra-low-power clock sources that can be used to drive  
the LCD controller and the real-time clock:  
32.768 kHz low-speed external crystal (LSE)  
37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.  
The LSI clock can be measured using the high-speed internal RC oscillator for  
greater precision.  
RTC and LCD clock sources: the LSI, LSE or HSE sources can be chosen to clock  
the RTC and the LCD, whatever the system clock.  
USB clock source: the embedded PLL has a dedicated 48 MHz clock output to supply  
the USB interface.  
Startup clock: after reset, the microcontroller restarts by default with an internal  
2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the  
application program as soon as the code execution starts.  
Clock security system (CSS): this feature can be enabled by software. If a HSE clock  
failure occurs, the master clock is automatically switched to HSI and a software  
interrupt is generated if enabled.  
Clock-out capability (MCO: microcontroller clock output): it outputs one of the  
internal clocks for external use by the application.  
Several prescalers allow the configuration of the AHB frequency, the high-speed APB  
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and  
the APB domains is 32 MHz. See Figure 2 for details on the clock tree.  
20/121  
Doc ID 17659 Rev 8  
 
STM32L151x6/8/B, STM32L152x6/8/B  
Functional overview  
Figure 2.  
Clock tree  
MSI RC  
MSI  
ADCCLK  
to ADC  
Peripheral clock  
enable  
16 MHz  
HSI RC  
HSI  
48 MHz  
USBCLK  
to USB interface  
PLLVCO/2  
SW  
PLLSRC  
PLLMUL  
PLLDIV  
/2,/3,/4  
x3,x4,x6,x8  
HSI  
PLLCLK  
32  
MHz  
max  
SYSCLK  
x12,x16,x24  
OSC_OUT  
OSC_IN  
x32,x48  
1-24 MHz  
HSE OSC  
HSE  
CSS  
HCLK  
32 MHz max  
to AHB bus, core,  
memory and DMA  
Clock  
Enable  
to Cortex System timer  
/8  
FCLK Cortex  
free running clock  
AHB  
Prescaler  
/1, 2..512  
APB1  
32 MHz max  
PCLK1  
Prescaler  
to APB1  
/1, 2, 4, 8, 16  
peripherals  
Peripheral Clock  
Enable  
If (APB1 prescaler =1) x1  
else x2  
to TIM2,3,4,6 and 7  
TIMxCLK  
Peripheral Clock  
Enable  
APB2  
32 MHz max  
PCLK2  
peripherals to APB2  
Prescaler  
/1, 2, 4, 8, 16  
Peripheral Clock  
Enable  
to TIM9, 10, and 11  
TIMxCLK  
Peripheral Clock  
Enable  
If (APB2 prescaler =1) x1  
else x2  
to  
Timer 9, 10, 11 ETR  
/2,4,  
8,16  
OSC32_IN  
to RTC  
to LCD  
LSE  
LSE OSC  
32.768 kHz  
RTCCLK  
OSC32_OUT  
RTCSEL[1:0]  
to Independent Watchdog (IWDG)  
IWDGCLK  
LSI  
LSI RC  
37 kHz  
Legend:  
HSE = High-speed external clock signal  
HSI = High-speed internal clock signal  
LSI = Low-speed internal clock signal  
LSE = Low-speed external clock signal  
MSI = Multispeed internal clock signal  
SYSCLK  
HSI  
/1,2,4,  
8,16  
MSI  
MCO  
HSE  
PLLCLK  
LSI  
LSE  
MCOSEL  
ai17212c  
2. For the USB function to be available, both HSE and PLL must be enabled, with the CPU running at either  
24 MHz or 32 MHz.  
Doc ID 17659 Rev 8  
21/121  
 
Functional overview  
STM32L151x6/8/B, STM32L152x6/8/B  
3.5  
Low power real-time clock and backup registers  
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain  
the second, minute, hour (12/24 hour), week day, date, month, year, in BCD (binary-coded  
decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are made  
automatically. The RTC provides a programmable alarm and programmable periodic  
interrupts with wakeup from Stop and Standby modes.  
The programmable wakeup time ranges from 120 µs to 36 hours  
Stop mode consumption with LSI and Auto-wakeup: 1.2 µA (at 1.8 V) and 1.4 µA (at  
3.0 V)  
Stop mode consumption with LSE, calendar and Auto-wakeup: 1.3 µA (at 1.8V), 1.6 µA  
(at 3.0 V)  
The RTC can be calibrated with an external 512 Hz output, and a digital compensation  
circuit helps reduce drift due to crystal deviation.  
There are twenty 32-bit backup registers provided to store 80 bytes of user application data.  
They are cleared in case of tamper detection.  
3.6  
GPIOs (general-purpose inputs/outputs)  
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as  
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the  
GPIO pins are shared with digital or analog alternate functions, and can be individually  
remapped using dedicated AFIO registers. All GPIOs are high current capable. The  
alternate function configuration of I/Os can be locked if needed following a specific  
sequence in order to avoid spurious writing to the I/O registers. The I/O controller is  
connected to the AHB with a toggling speed of up to 16 MHz.  
External interrupt/event controller (EXTI)  
The external interrupt/event controller consists of 23 edge detector lines used to generate  
interrupt/event requests. Each line can be individually configured to select the trigger event  
(rising edge, falling edge, both) and can be masked independently. A pending register  
maintains the status of the interrupt requests. The EXTI can detect an external line with a  
pulse width shorter than the Internal APB2 clock period. Up to 83 GPIOs can be connected  
to the 16 external interrupt lines. The 7 other lines are connected to RTC, PVD, USB or  
Comparator events.  
22/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Functional overview  
3.7  
Memories  
The STM32L15xxx devices have the following features:  
Up to 16 Kbyte of embedded RAM accessed (read/write) at CPU clock speed with 0  
wait states. With the enhanced bus matrix, operating the RAM does not lead to any  
performance penalty during accesses to the system bus (AHB and APB buses).  
The non-volatile memory is divided into three arrays:  
32, 64 or 128 Kbyte of embedded Flash program memory  
4 Kbyte of data EEPROM  
Options bytes  
The options bytes are used to write-protect the memory (with 4 KB granularity) and/or  
readout-protect the whole memory with the following options:  
Level 0: no readout protection  
Level 1: memory readout protection, the Flash memory cannot be read from or  
written to if either debug features are connected or boot in RAM is selected  
Level 2: chip readout protection, debug features (Cortex-M3 JTAG and serial wire)  
and boot in RAM selection disabled (JTAG fuse)  
The whole non-volatile memory embeds the error correction code (ECC) feature.  
3.8  
DMA (direct memory access)  
The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory,  
peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports  
circular buffer management, avoiding the generation of interrupts when the controller  
reaches the end of the buffer.  
Each channel is connected to dedicated hardware DMA requests, with software trigger  
support for each channel. Configuration is done by software and transfer sizes between  
source and destination are independent.  
2
The DMA can be used with the main peripherals: SPI, I C, USART, general-purpose timers  
and ADC.  
3.9  
LCD (liquid crystal display)  
The LCD drives up to 8 common terminals and 44 segment terminals to drive up to 320  
pixels.  
Internal step-up converter to guarantee functionality and contrast control irrespective of  
. This converter can be deactivated, in which case the V pin is used to provide  
V
DD  
LCD  
the voltage to the LCD  
Supports static, 1/2, 1/3, 1/4 and 1/8 duty  
Supports static, 1/2, 1/3 and 1/4 bias  
Phase inversion to reduce power consumption and EMI  
Up to 8 pixels can be programmed to blink  
Unneeded segments and common pins can be used as general I/O pins  
LCD RAM can be updated at any time owing to a double-buffer  
The LCD controller can operate in Stop mode  
Doc ID 17659 Rev 8  
23/121  
 
 
 
Functional overview  
STM32L151x6/8/B, STM32L152x6/8/B  
3.10  
ADC (analog-to-digital converter)  
A 12-bit analog-to-digital converters is embedded into STM32L15xxx devices with up to 24  
external channels, performing conversions in single-shot or scan mode. In scan mode,  
automatic conversion is performed on a selected group of analog inputs.  
The ADC can be served by the DMA controller.  
An analog watchdog feature allows very precise monitoring of the converted voltage of one,  
some or all selected channels. An interrupt is generated when the converted voltage is  
outside the programmed thresholds.  
The events generated by the general-purpose timers (TIMx) can be internally connected to  
the ADC start trigger and injection trigger, to allow the application to synchronize A/D  
conversions and timers. An injection mode allows high priority conversions to be done by  
interrupting a scan mode which runs in as a background task.  
The ADC includes a specific low power mode. The converter is able to operate at maximum  
speed even if the CPU is operating at a very low frequency and has an auto-shutdown  
function. The ADC’s runtime and analog front-end current consumption are thus minimized  
whatever the MCU operating mode.  
3.10.1  
Temperature sensor  
The temperature sensor (T  
temperature.  
) generates a voltage V  
that varies linearly with  
SENSE  
SENSE  
The temperature sensor is internally connected to the ADC_IN16 input channel which is  
used to convert the sensor output voltage into a digital value.  
The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy  
of the temperature measurement. As the offset of the temperature sensor varies from chip  
to chip due to process variation, the uncalibrated internal temperature sensor is suitable for  
applications that detect temperature changes only.  
To improve the accuracy of the temperature sensor measurement, each device is  
individually factory-calibrated by ST. The temperature sensor factory calibration data are  
stored by ST in the system memory area, accessible in read-only mode.  
Table 6.  
Temperature sensor calibration values  
Calibration value name  
Description  
Memory address  
TS ADC raw data acquired at  
temperature of 30 °C,  
TSENSE_CAL1  
TSENSE_CAL2  
0x1FF8 007A-0x1FF8 007B  
VDDA= 3 V  
TS ADC raw data acquired at  
temperature of 110 °C  
0x1FF8 007E-0x1FF8 007F  
VDDA= 3 V  
24/121  
Doc ID 17659 Rev 8  
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Functional overview  
3.10.2  
Internal voltage reference (V  
)
REFINT  
The internal voltage reference (V  
) provides a stable (bandgap) voltage output for the  
REFINT  
ADC and Comparators. V  
is internally connected to the ADC_IN17 input channel. It  
REFINT  
enables accurate monitoring of the V  
value (when no external voltage, VREF+, is  
DD  
available for ADC). The precise voltage of V  
is individually measured for each part by  
REFINT  
ST during production test and stored in the system memory area. It is accessible in read-  
only mode.  
Table 7.  
Internal voltage reference measured values  
Calibration value name  
Description  
Memory address  
Raw data acquired at  
temperature of 30 °C  
VREFINT_CAL  
0x1FF8 0078-0x1FF8 0079  
VDDA= 3 V  
3.11  
DAC (digital-to-analog converter)  
The two 12-bit buffered DAC channels can be used to convert two digital signals into two  
analog voltage signal outputs. The chosen design structure is composed of integrated  
resistor strings and an amplifier in non-inverting configuration.  
This dual digital Interface supports the following features:  
two DAC converters: one for each output channel  
left or right data alignment in 12-bit mode  
synchronized update capability  
noise-wave generation  
triangular-wave generation  
dual DAC channels’ independent or simultaneous conversions  
DMA capability for each channel (including the underrun interrupt)  
external triggers for conversion  
input reference voltage V  
REF+  
Eight DAC trigger inputs are used in the STM32L15xxx. The DAC channels are triggered  
through the timer update outputs that are also connected to different DMA channels.  
3.12  
Ultra-low-power comparators and reference voltage  
The STM32L15xxx embeds two comparators sharing the same current bias and reference  
voltage. The reference voltage can be internal or external (coming from an I/O).  
one comparator with fixed threshold  
one comparator with rail-to-rail inputs, fast or slow mode. The threshold can be one of  
the following:  
DAC output  
External I/O  
Internal reference voltage (V  
) or V  
submultiple (1/4, 1/2, 3/4)  
REFINT  
REFINT  
Doc ID 17659 Rev 8  
25/121  
 
 
 
 
 
Functional overview  
STM32L151x6/8/B, STM32L152x6/8/B  
Both comparators can wake up from Stop mode, and be combined into a window  
comparator.  
The internal reference voltage is available externally via a low power / low current output  
buffer (driving current capability of 1 µA typical).  
3.13  
3.14  
Routing interface  
This interface controls the internal routing of I/Os to TIM2, TIM3, TIM4 and to the  
comparator and reference voltage output.  
Touch sensing  
The STM32L15xxx devices provide a simple solution for adding capacitive sensing  
functionality to any application. These devices offer up to 20 capacitive sensing channels  
distributed over 10 analog I/O groups. Only software capacitive sensing acquisition mode is  
supported.  
Capacitive sensing technology is able to detect the presence of a finger near a sensor which  
is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation  
introduced by the finger (or any conductive object) is measured using a proven  
implementation based on a surface charge transfer acquisition principle. It consists of  
charging the sensor capacitance and then transferring a part of the accumulated charges  
into a sampling capacitor until the voltage across this capacitor has reached a specific  
threshold. The capacitive sensing acquisition only requires few external components to  
operate.  
Reliable touch sensing functionality can be quickly and easily implemented using the free  
STM32L1xx STMTouch touch sensing firmware library.  
3.15  
Timers and watchdogs  
The ultra-low-power STM32L15xxx devices include six general-purpose timers, two basic  
timers and two watchdog timers.  
Table 8 compares the features of the general-purpose and basic timers.  
Table 8.  
Timer  
Timer feature comparison  
Counter Counter Prescaler DMA request Capture/compare Complementary  
resolution  
type  
factor  
generation  
channels  
outputs  
TIM2,  
TIM3,  
TIM4  
Up,  
down,  
up/down and 65536  
Any integer  
between 1  
16-bit  
Yes  
4
No  
Any integer  
TIM9  
16-bit  
Up  
between 1  
and 65536  
No  
2
No  
26/121  
Doc ID 17659 Rev 8  
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Functional overview  
Table 8.  
Timer  
Timer feature comparison  
Counter  
Counter Prescaler DMA request Capture/compare Complementary  
resolution  
type  
factor  
generation  
channels  
outputs  
Any integer  
between 1  
and 65536  
TIM10,  
TIM11  
16-bit  
16-bit  
Up  
No  
1
No  
Any integer  
between 1  
and 65536  
TIM6,  
TIM7  
Up  
Yes  
0
No  
Doc ID 17659 Rev 8  
27/121  
Functional overview  
STM32L151x6/8/B, STM32L152x6/8/B  
3.15.1  
General-purpose timers (TIM2, TIM3, TIM4, TIM9, TIM10 and TIM11)  
There are six synchronizable general-purpose timers embedded in the STM32L15xxx  
devices (see Table 8 for differences).  
TIM2, TIM3, TIM4  
These timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler.  
They feature 4 independent channels each for input capture/output compare, PWM or one-  
pulse mode output. This gives up to 12 input captures/output compares/PWMs on the  
largest packages.  
The TIM2, TIM3, TIM4 general-purpose timers can work together or with the TIM10, TIM11  
and TIM9 general-purpose timers via the Timer Link feature for synchronization or event  
chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers  
can be used to generate PWM outputs.  
TIM2, TIM3, TIM4 all have independent DMA request generation.  
These timers are capable of handling quadrature (incremental) encoder signals and the  
digital outputs from 1 to 3 hall-effect sensors.  
TIM10, TIM11 and TIM9  
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10 and  
TIM11 feature one independent channel, whereas TIM9 has two independent channels for  
input capture/output compare, PWM or one-pulse mode output. They can be synchronized  
with the TIM2, TIM3, TIM4 full-featured general-purpose timers.  
They can also be used as simple time bases and be clocked by the LSE clock source  
(32.768 kHz) to provide time bases independent from the main CPU clock.  
3.15.2  
3.15.3  
Basic timers (TIM6 and TIM7)  
These timers are mainly used for DAC trigger generation. They can also be used as generic  
16-bit time bases.  
SysTick timer  
This timer is dedicated to the OS, but could also be used as a standard downcounter. It is  
based on a 24-bit downcounter with autoreload capability and a programmable clock  
source. It features a maskable system interrupt generation when the counter reaches 0.  
3.15.4  
Independent watchdog (IWDG)  
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is  
clocked from an independent 37 kHz internal RC and, as it operates independently of the  
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog  
to reset the device when a problem occurs, or as a free-running timer for application timeout  
management. It is hardware- or software-configurable through the option bytes. The counter  
can be frozen in debug mode.  
28/121  
Doc ID 17659 Rev 8  
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Functional overview  
3.15.5  
Window watchdog (WWDG)  
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It  
can be used as a watchdog to reset the device when a problem occurs. It is clocked from the  
main clock. It has an early warning interrupt capability and the counter can be frozen in  
debug mode.  
3.16  
Communication interfaces  
3.16.1  
I²C bus  
Up to two I²C bus interfaces can operate in multimaster and slave modes. They can support  
standard and fast modes.  
They support dual slave addressing (7-bit only) and both 7- and 10-bit addressing in master  
mode. A hardware CRC generation/verification is embedded.  
They can be served by DMA and they support SM Bus 2.0/PM Bus.  
3.16.2  
3.16.3  
Universal synchronous/asynchronous receiver transmitter (USART)  
All USART interfaces are able to communicate at speeds of up to 4 Mbit/s. They provide  
hardware management of the CTS and RTS signals. They support IrDA SIR ENDEC, are  
ISO 7816 compliant and have LIN Master/Slave capability.  
All USART interfaces can be served by the DMA controller.  
Serial peripheral interface (SPI)  
Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in  
full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode  
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC  
generation/verification supports basic SD Card/MMC modes.  
Both SPIs can be served by the DMA controller.  
3.16.4  
Universal serial bus (USB)  
The STM32L15xxx embeds a USB device peripheral compatible with the USB full speed  
12 Mbit/s. The USB interface implements a full speed (12 Mbit/s) function interface. It has  
software-configurable endpoint setting and supports suspend/resume. The dedicated  
48 MHz clock is generated from the internal main PLL (the clock source must use a HSE  
crystal oscillator).  
Doc ID 17659 Rev 8  
29/121  
 
 
 
 
 
 
Functional overview  
STM32L151x6/8/B, STM32L152x6/8/B  
3.17  
CRC (cyclic redundancy check) calculation unit  
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit  
data word and a fixed generator polynomial.  
Among other applications, CRC-based techniques are used to verify data transmission or  
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of  
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of  
the software during runtime, to be compared with a reference signature generated at link-  
time and stored at a given memory location.  
3.18  
Development support  
Serial wire JTAG debug port (SWJ-DP)  
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug  
port that enables either a serial wire debug or a JTAG probe to be connected to the target.  
The JTAG JTMS and JTCK pins are shared with SWDAT and SWCLK, respectively, and a  
specific sequence on the JTMS pin is used to switch between JTAG-DP and SW-DP.  
The JTAG port can be permanently disabled with a JTAG fuse.  
Embedded Trace Macrocell™  
The ARM® Embedded Trace Macrocell provides a greater visibility of the instruction and  
data flow inside the CPU core by streaming compressed data at a very high rate from the  
STM32L15xxx through a small number of ETM pins to an external hardware trace port  
analyzer (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or  
any other high-speed channel. Real-time instruction and data flow activity can be recorded  
and then formatted for display on the host computer running debugger software. TPA  
hardware is commercially available from common development tool vendors. It operates  
with third party debugger software tools.  
30/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Pin descriptions  
4
Pin descriptions  
Figure 3.  
STM32L15xVx UFBGA100 ballout  
2
3
4
5
6
7
8
9
10  
11  
12  
1
PD5  
PD6  
PA12  
PA11  
PA10  
PC9  
BOOT0  
PB7  
PD7  
PB3  
PD3  
PD2  
PA13  
PC10  
PH2  
PB8  
PA15  
PD1  
PE1  
PB4  
PD4  
PA14  
PC12  
PE3  
A
B
C
PB9  
PB6  
PB5  
PE4  
PE2  
PE5  
PC13  
WKUP2  
VDD_3  
PE0  
PD0  
PC11  
PA9  
PE6  
WUKP3  
PC14  
OSC32_IN  
D
E
PA8  
VSS_3  
VSS_4  
PC7  
PC6  
PC8  
PC15  
VLCD  
OSC32_OUT  
PH0  
OSC_IN  
VSS_2  
VSS_1  
F
VSS_5  
PH1  
OSC_OUT  
G
VDD_2 VDD_1  
VDD_5  
PD14  
PD11  
PB14  
PD13  
PD10  
PB13  
PB12  
PE15  
H
J
PD15  
PD12  
PB15  
PB10  
PE13  
PC0  
NRST  
PC1  
VDD_4  
PC2  
VSSA  
VREF-  
VREF+  
VDDA  
PD9  
PD8  
PA5  
PA6  
PC4  
PC5  
PB0  
PA2  
K
L
PC3  
PB2  
PB1  
PA3  
PE10 PE12  
PB11  
PE14  
PE8  
PA0  
WKUP1  
PA7  
PA4  
PE9  
PE11  
PE7  
PA1  
M
ai17096e  
1. This figure shows the package top view.  
Doc ID 17659 Rev 8  
31/121  
 
 
 
Pin descriptions  
Figure 4.  
STM32L151x6/8/B, STM32L152x6/8/B  
STM32L15xVx LQFP100 pinout  
PE2  
PE3  
PE4  
1
2
3
4
5
6
7
8
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
VDD_2  
VSS_2  
PH2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
PE5  
PE6-WKUP3  
VLCD  
PC13-WKUP2  
PC14-OSC32_IN  
PC15-OSC32_OUT  
VSS_5  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
VDD_5  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
LQFP100  
PC6  
PD15  
PD14  
PD13  
PD12  
PD11  
PD10  
PD9  
PC0  
PC1  
PC2  
PC3  
VSSA  
VREF-  
VREF+  
VDDA  
PD8  
PB15  
PB14  
PB13  
PB12  
PA0-WKUP1  
PA1  
PA2  
ai15692c  
1. This figure shows the package top view.  
32/121  
Doc ID 17659 Rev 8  
 
STM32L151x6/8/B, STM32L152x6/8/B  
Pin descriptions  
Figure 5.  
STM32L15xRx TFBGA64 ballout  
1
2
3
4
5
6
7
8
PC14-  
OSC32_IN WKUP2  
PC13-  
A
B
PB9  
PB8  
PB7  
PB6  
PB4  
BOOT0  
PB5  
PB3  
PD2  
PA15  
PC11  
PA10  
PA14  
PC10  
PA9  
PA13  
PA12  
PA11  
PC9  
PC15-  
VLCD  
OSC32_OUT  
PH0-  
OSC_IN  
C
D
E
F
V
V
PC12  
SS_4  
PH1-  
OSC_OUT  
V
V
V
PA8  
DD_4  
SS_3  
SS_2  
SS_1  
NRST  
PC1  
PC2  
PC0  
PA2  
V
V
V
PC7  
PC8  
DD_3  
DD_2  
DD_1  
V
PA5  
PB0  
PC6  
PB15  
PB14  
SSA  
V
REF+  
G
H
PA0-WKUP1  
PA1  
PA3  
PA6  
PA7  
PB1  
PC4  
PB2  
PC5  
PB10  
PB11  
PB13  
PB12  
V
PA4  
DDA  
AI16090c  
1. This figure shows the package top view.  
Doc ID 17659 Rev 8  
33/121  
 
Pin descriptions  
Figure 6.  
STM32L151x6/8/B, STM32L152x6/8/B  
STM32L15xRx LQFP64 pinout  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
VDD_2  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PA8  
PC9  
PC8  
PC7  
V
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
1
LCD  
PC13-WKUP2  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0 -OSC_IN  
PH1-OSC_OUT  
NRST  
2
3
4
5
6
7
PC0  
PC1  
PC2  
PC3  
8
LQFP64  
9
10  
11  
12  
13  
14  
15  
16  
PC6  
VSSA  
VDDA  
PA0-WKUP1  
PB15  
PB14  
PB13  
PB12  
PA1  
PA2  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
ai15693c  
1. This figure shows the package top view.  
Figure 7.  
STM32L15xCx LQFP48 pinout  
48 47 46 45 44 43 42 41 40 39 38 37  
36  
VDD_2  
V
1
2
3
4
5
6
7
8
9
LCD  
VSS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
PC13-WKUP2  
PC14-OSC32_IN  
PC15-OSC32_OUT  
PH0-OSC_IN  
PH1-OSC_OUT  
NRST  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
LQFP48  
PA8  
VSSA  
VDDA  
PB15  
PB14  
PB13  
PB12  
PA0 -WKUP1 10  
PA1 11  
12  
PA2  
24  
13 14 15 16 17 18 19 20 21 22 23  
ai15694c  
1. This figure shows the package top view.  
34/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Figure 8. STM32L15xCx UFQFPN48 pinout  
Pin descriptions  
48 47 46  
45 44 43 42 41 40  
39 38 37  
36  
V
V
1
LCD  
DD_2  
V
2
PC13-WKUP2  
PC14-OSC32_IN  
PC15-OSC32_OUT  
35  
SS_2  
PA13  
PA12  
PA11  
PA10  
PA9  
3
34  
33  
4
PH0-OSC_IN  
32  
31  
5
PH1-OSC_OUT  
6
UFQFPN48  
7
30  
29  
NRST  
V
8
PA8  
SSA  
V
9
28  
27  
PB15  
PB14  
DDA  
PA0-WKUP1  
PA1  
10  
11  
12  
26  
PB13  
PB12  
25  
24  
PA2  
13 14 15 16  
17 18 19 20  
21 22 23  
ai15695d  
1. This figure shows the package top view.  
Doc ID 17659 Rev 8  
35/121  
 
 
Pin descriptions  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 9.  
Pins  
STM32L15xxx pin definitions  
Main  
Pin name  
function(3)  
(after reset)  
Alternate functions  
1
2
3
4
5
6
7
-
-
-
-
-
B2  
A1  
B1  
-
-
PE2  
PE3  
PE4  
PE5  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PE2  
PE3  
PE4  
PE5  
PE6  
VLCD  
PC13  
TRACECLK/LCD_SEG38/TIM3_ETR  
TRACED0/LCD_SEG39/TIM3_CH1  
TRACED1/TIM3_CH2  
-
C2  
D2  
-
TRACED2/TIM9_CH1  
-
PE6-WKUP3 I/O FT  
TRACED3/WKUP3/TIM9_CH2  
(4)  
1 B2 E2  
2 A2 C1  
1
2
VLCD  
S
PC13-WKUP2 I/O FT  
RTC_TAMP1/RTC_TS/RTC_OUT/WKUP2  
OSC32_IN  
PC14-  
I/O  
8
9
3 A1 D1  
4 B1 E1  
3
4
PC14  
PC15  
OSC32_IN(5)  
PC15-  
OSC32_OUT I/O  
OSC32_OUT  
(5)  
10  
11  
-
-
-
-
F2  
-
-
VSS_5  
VDD_5  
S
S
VSS_5  
VDD_5  
G2  
PH0-  
12 5 C1 F1  
13 6 D1 G1  
5
6
I
PH0  
PH1  
OSC_IN  
OSC_IN(6)  
PH1-  
OSC_OUT  
O
OSC_OUT  
14 7 E1 H2  
15 8 E3 H1  
16 9 E2 J2  
17 10 F2 J3  
18 11 -(7) K2  
19 12 F1 J1  
7
-
NRST  
PC0  
I/O  
NRST  
PC0  
I/O FT  
I/O FT  
I/O FT  
I/O  
ADC_IN10/LCD_SEG18/COMP1_INP  
ADC_IN11/LCD_SEG19/COMP1_INP  
ADC_IN12/LCD_SEG20/COMP1_INP  
ADC_IN13/LCD_SEG21/COMP1_INP  
-
PC1  
PC1  
-
PC2  
PC2  
-
PC3  
PC3  
8
-
VSSA  
VREF-  
S
VSSA  
VREF-  
20  
21  
-
-
-
K1  
L1  
S
G1  
-
VREF+  
VDDA  
S
S
VREF+  
VDDA  
PA0  
(7)  
22 13 H1 M1  
9
WKUP1/USART2_CTS/ADC_IN0/TIM2_CH1_ETR/  
COMP1_INP  
23 14 G2 L2 10 PA0-WKUP1 I/O FT  
24 15 H2 M2 11 PA1 I/O FT  
USART2_RTS/ADC_IN1/TIM2_CH2/LCD_SEG0/  
COMP1_INP  
PA1  
36/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Pin descriptions  
Table 9.  
Pins  
STM32L15xxx pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Alternate functions  
USART2_TX/ADC_IN2/TIM2_CH3/TIM9_CH1/  
LCD_SEG1/COMP1_INP  
25 16 F3 K3 12  
26 17 G3 L3 13  
PA2  
PA3  
I/O FT  
I/O  
PA2  
PA3  
USART2_RX/ADC_IN3/TIM2_CH4/TIM9_CH2/  
LCD_SEG2/COMP1_INP  
27 18 C2 E3  
28 19 D2 H3  
-
-
VSS_4  
VDD_4  
S
S
VSS_4  
VDD_4  
SPI1_NSS/USART2_CK/  
ADC_IN4/DAC_OUT1/COMP1_INP  
29 20 H3 M3 14  
30 21 F4 K4 15  
31 22 G4 L4 16  
32 23 H4 M4 17  
PA4  
PA5  
PA6  
PA7  
I/O  
PA4  
PA5  
PA6  
PA7  
SPI1_SCK/ADC_IN5/  
DAC_OUT2/TIM2_CH1_ETR/COMP1_INP  
I/O  
SPI1_MISO/ADC_IN6/TIM3_CH1/  
LCD_SEG3/TIM10_CH1/COMP1_INP  
I/O FT  
I/O FT  
SPI1_MOSI/ADC_IN7/TIM3_CH2/  
LCD_SEG4/TIM11_CH1/COMP1_INP  
33 24 H5 K5  
34 25 H6 L5  
-
-
PC4  
PC5  
I/O FT  
I/O FT  
PC4  
PC5  
ADC_IN14/LCD_SEG22/COMP1_INP  
ADC_IN15/LCD_SEG23/COMP1_INP  
ADC_IN8/TIM3_CH3/LCD_SEG5/  
COMP1_INP/VREF_OUT  
35 26 F5 M5 18  
PB0  
PB1  
I/O  
PB0  
PB1  
ADC_IN9/TIM3_CH4/LCD_SEG6/  
COMP1_INP/VREF_OUT  
36 27 G5 M6 19  
37 28 G6 L6 20  
I/O FT  
PB2  
PE7  
I/O FT PB2/BOOT1  
38  
39  
40  
41  
42  
43  
44  
45  
46  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
M7  
L7  
-
-
-
-
-
-
-
-
-
I/O  
PE7  
PE8  
ADC_IN22/COMP1_INP  
ADC_IN23/COMP1_INP  
PE8  
I/O  
M8  
L8  
PE9  
I/O  
PE9  
ADC_IN24/TIM2_CH1_ETR/COMP1_INP  
ADC_IN25/TIM2_CH2/COMP1_INP  
TIM2_CH3  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
I/O  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
PB10  
PB11  
M9  
L9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
TIM2_CH4/SPI1_NSS  
- M10  
- M11  
- M12  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
47 29 G7 L10 21  
48 30 H7 L11 22  
I2C2_SCL/USART3_TX/TIM2_CH3/LCD_SEG10  
I2C2_SDA/USART3_RX/TIM2_CH4/LCD_SEG11  
Doc ID 17659 Rev 8  
37/121  
Pin descriptions  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 9.  
Pins  
STM32L15xxx pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Alternate functions  
49 31 D6 F12 23  
50 32 E6 G12 24  
VSS_1  
VDD_1  
S
S
VSS_1  
VDD_1  
SPI2_NSS/I2C2_SMBA/USART3_CK/LCD_SEG12/  
ADC_IN18/COMP1_INP/TIM10_CH1  
51 33 H8 L12 25  
52 34 G8 K12 26  
53 35 F8 K11 27  
54 36 F7 K10 28  
PB12  
PB13  
PB14  
PB15  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PB12  
PB13  
PB14  
PB15  
SPI2_SCK/USART3_CTS/LCD_SEG13/ADC_IN19/  
COMP1_INP/TIM9_CH1  
SPI2_MISO/USART3_RTS/LCD_SEG14/ADC_IN20/  
COMP1_INP/TIM9_CH2  
SPI2_MOSI/LCD_SEG15/ADC_IN21/  
COMP1_INP/TIM11_CH1/RTC_REFIN  
55  
56  
57  
58  
59  
60  
61  
62  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
K9  
K8  
-
-
-
-
-
-
-
-
-
PD8  
PD9  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD8  
PD9  
USART3_TX/LCD_SEG28  
USART3_RX/LCD_SEG29  
USART3_CK/LCD_SEG30  
USART3_CTS/LCD_SEG31  
TIM4_CH1/USART3_RTS/LCD_SEG32  
TIM4_CH2/LCD_SEG33  
J12  
J11  
J10  
H12  
H11  
H10  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PC6  
PD10  
PD11  
PD12  
PD13  
PD14  
PD15  
PC6  
TIM4_CH3/LCD_SEG34  
TIM4_CH4/LCD_SEG35  
63 37 F6 E12  
64 38 E7 E11  
65 39 E8 E10  
66 40 D8 D12  
TIM3_CH1/LCD_SEG24  
PC7  
PC7  
TIM3_CH2/LCD_SEG25  
PC8  
PC8  
TIM3_CH3/LCD_SEG26  
-
PC9  
PC9  
TIM3_CH4/LCD_SEG27  
67 41 D7 D11 29  
68 42 C7 D10 30  
69 43 C6 C12 31  
70 44 C8 B12 32  
71 45 B8 A12 33  
PA8  
PA8  
USART1_CK/MCO/LCD_COM0  
USART1_TX/LCD_COM1  
PA9  
PA9  
PA10  
PA11  
PA12  
PA10  
PA11  
PA12  
USART1_RX/LCD_COM2  
USART1_CTS/USB_DM/SPI1_MISO  
USART1_RTS/USB_DP/SPI1_MOSI  
JTMS/  
SWDAT  
72 46 A8 A11 34  
PA13  
I/O FT  
73  
-
-
C11  
-
PH2  
I/O FT  
S
PH2  
74 47 D5 F11 35  
VSS_2  
VSS_2  
38/121  
Doc ID 17659 Rev 8  
STM32L151x6/8/B, STM32L152x6/8/B  
Pin descriptions  
Table 9.  
Pins  
STM32L15xxx pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Alternate functions  
75 48 E5 G11 36  
76 49 A7 A10 37  
77 50 A6 A9 38  
VDD_2  
PA14  
PA15  
PC10  
S
VDD_2  
JTCK  
/SWCLK  
I/O FT  
I/O FT  
I/O FT  
JTDI  
TIM2_CH1_ETR/PA15/SPI1_NSS/LCD_SEG17  
USART3_TX/LCD_SEG28/LCD_SEG40/  
LCD_COM4  
78 51 B7 B11  
79 52 B6 C10  
80 53 C5 B10  
-
-
-
PC10  
USART3_RX/LCD_SEG29/LCD_SEG41/  
LCD_COM5  
PC11  
PC12  
I/O FT  
I/O FT  
PC11  
PC12  
USART3_CK/LCD_SEG30/LCD_SEG42/  
LCD_COM6  
81  
82  
-
-
-
-
C9  
B9  
-
-
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
PD0  
PD1  
PD2  
PD3  
PD4  
PD5  
PD6  
PD7  
SPI2_NSS/TIM9_CH1  
SPI2_SCK  
83 54 B5 C8  
TIM3_ETR/LCD_SEG31/LCD_SEG43/LCD_COM7  
USART2_CTS/SPI2_MISO  
USART2_RTS/SPI2_MOSI  
USART2_TX  
84  
85  
86  
87  
88  
-
-
-
-
-
-
-
-
-
-
B8  
B7  
A6  
B6  
A5  
-
-
-
-
-
USART2_RX  
USART2_CK/TIM9_CH2  
TIM2_CH2/PB3/SPI1_SCK/COMP2_INM/  
LCD_SEG7  
89 55 A5 A8 39  
90 56 A4 A7 40  
PB3  
PB4  
I/O FT  
I/O FT  
JTDO  
TIM3_CH1/PB4/  
SPI1_MISO/COMP2_INP/LCD_SEG8  
NJTRST  
I2C1_SMBA/TIM3_CH2/SPI1_MOSI/COMP2_INP/  
LCD_SEG9  
91 57 C4 C5 41  
92 58 D3 B5 42  
93 59 C3 B4 43  
PB5  
PB6  
PB7  
I/O FT  
I/O FT  
I/O FT  
PB5  
PB6  
PB7  
I2C1_SCL/TIM4_CH1/USART1_TX  
I2C1_SDA/TIM4_CH2/  
USART1_RX/PVD_IN  
94 60 B4 A4 44  
95 61 B3 A3 45  
96 62 A3 B3 46  
BOOT0  
PB8  
I
BOOT0  
PB8  
I/O FT  
I/O FT  
I/O FT  
I/O FT  
TIM4_CH3/I2C1_SCL/LCD_SEG16/TIM10_CH1  
TIM4_CH4/I2C1_SDA/LCD_COM3/TIM11_CH1  
TIM4_ETR/LCD_SEG36/TIM10_CH1  
LCD_SEG37/TIM11_CH1  
PB9  
PB9  
97  
98  
-
-
-
-
C3  
A2  
-
-
PE0  
PE0  
PE1  
PE1  
Doc ID 17659 Rev 8  
39/121  
Pin descriptions  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 9.  
Pins  
STM32L15xxx pin definitions (continued)  
Main  
Pin name  
function(3)  
(after reset)  
Alternate functions  
99 63 D4 D3 47  
100 64 E4 C4 48  
VSS_3  
VDD_3  
S
S
VSS_3  
VDD_3  
1. I = input, O = output, S = supply.  
2. FT = 5 V tolerant.  
3. Function availability depends on the chosen device. For devices having reduced peripheral counts, it is always the lower  
number of peripheral that is included. For example, if a device has only one SPI and two USARTs, they will be called SPI1  
and USART1 & USART2, respectively. Refer to Table 2 on page 10.  
4. Applicable to STM32L152xx devices only. In STM32L151xx devices, this pin should be connected to VDD  
.
5. The PC14 and PC15 I/Os are only configured as OSC32_IN/OSC32_OUT when the LSE oscillator is on (by setting the  
LSEON bit in the RCC_CSR register). The LSE oscillator pins OSC32_IN/OSC32_OUT can be used as general-purpose  
PC14/PC15 I/Os, respectively, when the LSE oscillator is off ( after reset, the LSE oscillator is off ). The LSE has priority  
over the GPIO function. For more details, refer to Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins  
section in the STM32L15xxx reference manual (RM0038).  
6. The PH0 and PH1 I/Os are only configured as OSC_IN/OSC_OUT when the HSE oscillator is on ( by setting the HSEON  
bit in the RCC_CR register). The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1 I/Os,  
respectively, when the HSE oscillator is off (after reset, the HSE oscillator is off ). The HSE has priority over the GPIO  
function.  
7. Unlike in the LQFP64 package, there is no PC3 in the TFBGA64 package. The VREF+ functionality is provided instead.  
40/121  
Doc ID 17659 Rev 8  
Table 10. Alternate function input/output  
Digital alternate function number  
AFIO0  
AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFIO8 AFIO9 AFIO10 AFIO11 AFIO12 AFIO13 AFIO14 AFIO15  
Port  
name  
Alternate function  
USART  
1/2/3  
SYSTEM  
TIM2  
TIM3/4  
TIM9/10/11  
I2C1/2  
SPI1/2  
N/A  
N/A  
N/A  
USB  
LCD  
N/A  
N/A  
RI  
SYSTEM  
BOOT0  
NRST  
BOOT0  
NRST  
TIM2_CH1_  
ETR  
USART2_  
CTS  
PA0-WKUP1 WKUP1  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
USART2_  
RTS  
PA1  
PA2  
PA3  
PA4  
PA5  
TIM2_CH2  
TIM2_CH3  
TIM2_CH4  
[SEG0]  
[SEG1]  
[SEG2]  
USART2_  
TX  
TIM9_CH1  
TIM9_CH2  
USART2_  
RX  
USART2_  
CK  
SPI1_NSS  
SPI1_SCK  
TIM2_CH1_  
ETR  
PA6  
PA7  
TIM3_CH1 TIM10_CH1  
TIM3_CH2 TIM11_CH1  
SPI1_MISO  
SPI1_MOSI  
[SEG3]  
[SEG4]  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
USART1_  
CK  
PA8  
MCO  
[COM0]  
[COM1]  
[COM2]  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
USART1_  
TX  
PA9  
USART1_  
RX  
PA10  
PA11  
PA12  
USART1_  
CTS  
SPI1_MISO  
SPI1_MOSI  
DM  
DP  
USART1_  
RTS  
PA13  
PA14  
JTMS-SWDAT  
JTCK-SWCLK  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
 
 
Table 10. Alternate function input/output (continued)  
Digital alternate function number  
AFIO0  
AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFIO8 AFIO9 AFIO10 AFIO11 AFIO12 AFIO13 AFIO14 AFIO15  
Port  
name  
Alternate function  
USART  
1/2/3  
SYSTEM  
TIM2  
TIM3/4  
TIM9/10/11  
I2C1/2  
SPI1/2  
N/A  
N/A  
N/A  
USB  
LCD  
N/A  
N/A  
RI  
SYSTEM  
TIM2_CH1_  
ETR  
PA15  
JTDI  
SPI1_NSS  
SEG17  
TIMx_IC4 EVENTOUT  
PB0  
PB1  
PB2  
PB3  
PB4  
TIM3_CH3  
TIM3_CH4  
[SEG5]  
[SEG6]  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
BOOT1  
JTDO  
TIM2_CH2  
SPI1_SCK  
[SEG7]  
[SEG8]  
JTRST  
TIM3_CH1  
TIM3_CH2  
SPI1_MISO  
I2C1_  
SMBA  
PB5  
PB6  
PB7  
SPI1_MOSI  
[SEG9]  
EVENTOUT  
EVENTOUT  
EVENTOUT  
USART1_  
TX  
TIM4_CH1  
TIM4_CH2  
I2C1_SCL  
USART1_  
RX  
I2C1_SDA  
PB8  
PB9  
TIM4_CH3 TIM10_CH1* I2C1_SCL  
TIM4_CH4 TIM11_CH1* I2C1_SDA  
SEG16  
[COM3]  
EVENTOUT  
EVENTOUT  
USART3_  
TX  
PB10  
PB11  
PB12  
PB13  
PB14  
TIM2_CH3  
TIM2_CH4  
I2C2_SCL  
I2C2_SDA  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
EVENTOUT  
USART3_  
RX  
I2C2_  
TIM10_CH1  
SMBA  
USART3_  
CK  
SPI2_NSS  
SPI2_SCK  
USART3_  
CTS  
TIM9_CH1  
USART3_  
RTS  
TIM9_CH2  
SPI2_MISO  
SPI2_MOSI  
PB15  
PC0  
PC1  
RTC_REFIN  
TIM11_CH1  
SEG15  
SEG18  
SEG19  
EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
Table 10. Alternate function input/output (continued)  
Digital alternate function number  
AFIO0  
AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFIO8 AFIO9 AFIO10 AFIO11 AFIO12 AFIO13 AFIO14 AFIO15  
Port  
name  
Alternate function  
USART  
1/2/3  
SYSTEM  
TIM2  
TIM3/4  
TIM9/10/11  
I2C1/2  
SPI1/2  
N/A  
N/A  
N/A  
USB  
LCD  
N/A  
N/A  
RI  
SYSTEM  
PC2  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
PC3  
PC4  
PC5  
PC6  
PC7  
PC8  
PC9  
TIM3_CH1  
TIM3_CH2  
TIM3_CH3  
TIM3_CH4  
COM4 /  
SEG28 /  
SEG40  
USART3_  
TX  
PC10  
PC11  
PC12  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
COM5 /  
SEG29 /  
SEG41  
USART3_  
RX  
COM6 /  
SEG30 /  
SEG42  
USART3_  
CK  
RTC_TAMP1/  
RTC_TS/  
RTC_OUT/  
WKUP2  
PC13-  
WKUP2  
TIMx_IC2 EVENTOUT  
PC14-  
OSC32_IN  
OSC32_IN  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
PC15-  
OSC32_OUT  
OSC32_OUT  
PD0  
PD1  
TIM9_CH1  
SPI2_NSS  
SPI2_SCK  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
Table 10. Alternate function input/output (continued)  
Digital alternate function number  
AFIO0  
AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFIO8 AFIO9 AFIO10 AFIO11 AFIO12 AFIO13 AFIO14 AFIO15  
Port  
name  
Alternate function  
USART  
1/2/3  
SYSTEM  
TIM2  
TIM3/4  
TIM9/10/11  
I2C1/2  
SPI1/2  
N/A  
N/A  
N/A  
USB  
LCD  
N/A  
N/A  
RI  
SYSTEM  
COM7 /  
SEG31 /  
SEG43  
PD2  
TIM3_ETR  
TIMx_IC3 EVENTOUT  
USART2_  
CTS  
PD3  
PD4  
PD5  
PD6  
PD7  
PD8  
PD9  
PD10  
PD11  
PD12  
SPI2_MISO  
SPI2_MOSI  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
USART2_  
RTS  
USART2_  
TX  
USART2_  
RX  
USART2_  
CK  
TIM9_CH2  
USART3_  
TX  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
USART3_  
RX  
USART3_  
CK  
USART3_  
CTS  
USART3_  
RTS  
TIM4_CH1  
PD13  
PD14  
PD15  
PE0  
TIM4_CH2  
TIM4_CH3  
TIM4_CH4  
SEG33  
SEG34  
SEG35  
SEG36  
SEG37  
SEG 38  
SEG 39  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIM4_ETR TIM10_CH1  
TIM11_CH1  
PE1  
PE2  
TRACECK  
TRACED0  
TIM3_ETR  
PE3  
TIM3_CH1  
Table 10. Alternate function input/output (continued)  
Digital alternate function number  
AFIO0  
AFIO1 AFIO2 AFIO3 AFIO4 AFIO5 AFOI6 AFIO7 AFIO8 AFIO9 AFIO10 AFIO11 AFIO12 AFIO13 AFIO14 AFIO15  
Port  
name  
Alternate function  
USART  
1/2/3  
SYSTEM  
TIM2  
TIM3/4  
TIM9/10/11  
I2C1/2  
SPI1/2  
N/A  
N/A  
N/A  
USB  
LCD  
N/A  
N/A  
RI  
SYSTEM  
PE4  
TRACED1  
TRACED2  
TIM3_CH2  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
PE5  
PE6  
TIM9_CH1*  
TIM9_CH2*  
TRACED3 /  
WKUP3  
TIMx_IC3 EVENTOUT  
PE7  
PE8  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIM2_CH1_  
ETR  
PE9  
TIMx_IC2 EVENTOUT  
PE10  
PE11  
PE12  
PE13  
PE14  
PE15  
TIM2_CH2  
TIM2_CH3  
TIM2_CH4  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
TIMx_IC1 EVENTOUT  
TIMx_IC2 EVENTOUT  
TIMx_IC3 EVENTOUT  
TIMx_IC4 EVENTOUT  
SPI1_NSS  
SPI1_SCK  
SPI1_MISO  
SPI1_MOSI  
PH0-OSC_IN OSC_IN  
PH1-  
OSC_OUT  
OSC_OUT  
PH2  
Memory mapping  
STM32L151x6/8/B, STM32L152x6/8/B  
5
Memory mapping  
The memory map is shown in the following figure.  
Figure 9. Memory map  
APB memory space  
0xFFFF FFFF  
reserved  
0xE010 0000  
reserved  
0x6000 0000  
reserved  
0x4002 6400  
DMA  
0x4002 6000  
0xFFFF FFFF  
reserved  
0x4002 4000  
Flash Interface  
0x4002 3C00  
RCC  
0x4002 3800  
7
reserved  
0x4002 3400  
0xE010 0000  
Cortex-M3 Internal  
Peripherals  
CRC  
0x4002 3000  
0xE000 0000  
reserved  
0x4002 1800  
Port H  
0x4002 1400  
Port E  
0x4002 1000  
6
Port D  
0x4002 0C00  
Port C  
0x4002 0800  
Port B  
0xC000 0000  
0x4002 0400  
Port A  
0x4002 0000  
reserved  
0x4001 3C00  
USART1  
5
0x4001 3800  
reserved  
0x4001 3400  
SPI1  
0xA000 0000  
0x4001 3000  
reserved  
0x4001 2800  
ADC  
0x4001 2400  
4
reserved  
0x4001 1400  
TIM11  
0x4001 1000  
0x8000 0000  
TIM10  
0x4001 0C00  
TIM9  
0x4001 0800  
EXTI  
3
0x4001 0400  
0x1FF8 001F  
0x1FF8 0000  
SYSCFG  
Option Bytes  
reserved  
0x4001 0000  
reserved  
0x6000 0000  
COMP + RI  
0x1FF0 0FFF  
0x4000 7C00  
reserved  
0x4000 7800  
DAC1 & 2  
2
System memory  
0x4000 7400  
PWR  
0x4000 7000  
reserved  
Peripherals  
0x4000 0000  
0x1FF0 0000  
0x4000 6200  
512 byte  
USB  
USB Registers  
0x4000 6000  
0x4000 5C00  
0x4000 5800  
1
I2C2  
I2C1  
reserved  
0x4000 5400  
0x4000 4C00  
SRAM  
0x2000 0000  
reserved  
USART3  
0x4000 4800  
0x4000 4400  
0x4000 3C00  
USART2  
reserved  
0
0x0808 0FFF  
0x0808 0000  
Data EEPROM  
reserved  
SPI2  
0x4000 3800  
0x0000 0000  
reserved  
0x4000 3400  
0x4000 3000  
IWDG  
WWDG  
RTC  
0x0801 FFFF  
0x4000 2C00  
0x4000 2800  
Flash memory  
LCD  
0x4000 2400  
0x4000 1C00  
0x4000 1400  
0x4000 1000  
Reserved  
0x0800 0000  
0x0000 0000  
reserved  
TIM7  
Aliased to Flash or system  
memory depending on  
BOOT pins  
TIM6  
reserved  
0x4000 0C00  
0x4000 0800  
TIM4  
TIM3  
TIM2  
0x4000 0400  
0x4000 0000  
ai18200b  
46/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
6
Electrical characteristics  
6.1  
Parameter conditions  
Unless otherwise specified, all voltages are referenced to V  
.
SS  
6.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100% of the devices with an ambient temperature at T = 25 °C and T = T max (given by  
A
A
A
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on  
characterization, the minimum and maximum values refer to sample tests and represent the  
mean value plus or minus three times the standard deviation (mean 3Σ).  
6.1.2  
6.1.3  
Typical values  
Unless otherwise specified, typical data are based on T = 25 °C, V = 3.6 V (for the  
A
DD  
1.65 V V 3.6 V voltage range). They are given only as design guidelines and are not  
DD  
tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean 2Σ).  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are  
not tested.  
6.1.4  
6.1.5  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in Figure 10.  
Pin input voltage  
The input voltage measurement on a pin of the device is described in Figure 11.  
Figure 10. Pin loading conditions  
Figure 11. Pin input voltage  
STM32L15xxx pin  
STM32L15xxx pin  
C = 50 pF  
V
IN  
ai17852  
ai17851  
Doc ID 17659 Rev 8  
47/121  
 
 
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
6.1.6  
Power supply scheme  
Figure 12. Power supply scheme  
Standby-power circuitry  
(OSC32K,RTC,  
Wake-up logic  
RTC backup registers)  
OUT  
IN  
IO  
Logic  
GP I/Os  
Kernel logic  
(CPU,  
Digital  
& Memories)  
V
DD  
V
DD1/2/.../5  
Regulator  
11 × 100 nF  
+ 1 × 4.7 µF  
V
SS1/2/.../5  
V
DD  
V
DDA  
V
REF  
V
REF+  
Analog:  
RCs, PLL,  
...  
10 nF  
+ 1 µF  
10 nF  
+ 1 µF  
V
ADC  
REF-  
V
SSA  
ai15401c  
6.1.7  
Current consumption measurement  
Figure 13. Current consumption measurement scheme  
I
DD  
V
DD  
V
DDA  
ai14126b  
48/121  
Doc ID 17659 Rev 8  
 
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
6.2  
Absolute maximum ratings  
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,  
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause  
permanent damage to the device. These are stress ratings only and functional operation of  
the device at these conditions is not implied. Exposure to maximum rating conditions for  
extended periods may affect device reliability.  
Table 11. Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
External main supply voltage  
VDD–VSS  
–0.3  
4.0  
(1)  
(including VDDA and VDD  
)
V
Input voltage on five-volt tolerant pin  
Input voltage on any other pin  
VSS 0.3  
VSS 0.3  
VDD+4.0  
4.0  
(2)  
VIN  
|ΔVDDx  
|
Variations between different VDD power pins  
Variations between all different ground pins  
50  
mV  
|VSSX VSS  
|
50  
Electrostatic discharge voltage  
(human body model)  
VESD(HBM)  
see Section 6.3.10  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. VIN maximum must always be respected. Refer to Table 12 for maximum allowed injected current values.  
Table 12. Current characteristics  
Symbol  
Ratings  
Max.  
Unit  
IVDD  
IVSS  
Total current into VDD/VDDA power lines (source)(1)  
Total current out of VSS ground lines (sink)(1)  
Output current sunk by any I/O and control pin  
Output current sourced by any I/O and control pin  
Injected current on five-volt tolerant I/O(3)  
80  
80  
25  
IIO  
- 25  
+0 /-5  
5
mA  
(2)  
IINJ(PIN)  
Injected current on any other pin (4)  
ΣIINJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
25  
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power  
supply, in the permitted range.  
2. Negative injection disturbs the analog performance of the device. See note in Section 6.3.16.  
3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN)  
must never be exceeded. Refer to Table 11 for maximum allowed input voltage values.  
4. A positive injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. IINJ(PIN)  
must never be exceeded. Refer to Table 11: Voltage characteristics for the maximum allowed input voltage  
values.  
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the  
positive and negative injected currents (instantaneous values).  
Doc ID 17659 Rev 8  
49/121  
 
 
 
 
 
 
Electrical characteristics  
Table 13. Thermal characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Symbol  
Ratings  
Value  
Unit  
TSTG  
TJ  
Storage temperature range  
–65 to +150  
150  
°C  
°C  
Maximum junction temperature  
6.3  
Operating conditions  
6.3.1  
General operating conditions  
Table 14. General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHCLK  
fPCLK1  
fPCLK2  
Internal AHB clock frequency  
Internal APB1 clock frequency  
Internal APB2 clock frequency  
0
0
32  
32  
32  
3.6  
MHz  
0
BOR detector disabled  
1.65  
BOR detector enabled,  
at power on  
1.8  
1.65  
1.65  
1.8  
3.6  
3.6  
3.6  
3.6  
339  
VDD  
Standard operating voltage  
V
BOR detector disabled,  
after power on  
Analog operating voltage  
(ADC and DAC not used)  
Must be the same voltage  
(1)  
VDDA  
V
(2)  
as VDD  
Analog operating voltage  
(ADC or DAC used)  
Power dissipation at  
TA = 85 °C(3)  
PD  
BGA100 package  
mW  
Maximum power dissipation –40  
85  
TA  
TJ  
Temperature range  
°C  
°C  
Low power dissipation(4)  
–40  
–40  
105  
105  
Junction temperature range  
-40 °C TA 105 °C  
1. When the ADC is used, refer to Table 54: ADC characteristics.  
2. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV  
between VDD and VDDA can be tolerated during power-up and operation.  
3. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 68: Thermal  
characteristics on page 114).  
4. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJ max  
(see Table 68: Thermal characteristics on page 114).  
50/121  
Doc ID 17659 Rev 8  
 
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
6.3.2  
Embedded reset and power control block characteristics  
The parameters given in the following table are derived from the tests performed under the  
ambient temperature condition summarized in Table 14.  
Table 15. Embedded reset and power control block characteristics  
Symbol  
Parameter  
Conditions  
BOR detector enabled  
BOR detector disabled  
BOR detector enabled  
BOR detector disabled  
Min  
0
Typ  
Max Unit  
VDD rise time rate  
0
1000  
µs/V  
(1)  
tVDD  
20  
0
V
DD fall time rate  
1000  
V
DD rising, BOR enabled  
2
3.3  
ms  
1.6  
(1)  
TRSTTEMPO  
Reset temporization  
VDD rising, BOR disabled(2)  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
Falling edge  
Rising edge  
0.4  
1
0.7  
1.5  
1.5  
1.7  
1.65  
1.65  
1.74  
1.8  
Power on/power down reset  
threshold  
VPOR/PDR  
VBOR0  
VBOR1  
VBOR2  
VBOR3  
VBOR4  
VPVD0  
VPVD1  
VPVD2  
VPVD3  
VPVD4  
VPVD5  
1.3  
1.67  
Brown-out reset threshold 0  
Brown-out reset threshold 1  
Brown-out reset threshold 2  
Brown-out reset threshold 3  
Brown-out reset threshold 4  
1.69 1.76  
1.87 1.93 1.97  
1.96 2.03 2.07  
2.22 2.30 2.35  
2.31 2.41 2.44  
2.45 2.55 2.60  
2.54 2.66  
2.7  
2.68  
2.78  
1.8  
2.8  
2.9  
2.85  
2.95  
V
1.85 1.88  
Programmable voltage detector  
threshold 0  
1.88 1.94 1.99  
1.98 2.04 2.09  
2.08 2.14 2.18  
2.20 2.24 2.28  
2.28 2.34 2.38  
2.39 2.44 2.48  
2.47 2.54 2.58  
2.57 2.64 2.69  
2.68 2.74 2.79  
2.77 2.83 2.88  
2.87 2.94 2.99  
PVD threshold 1  
PVD threshold 2  
PVD threshold 3  
PVD threshold 4  
PVD threshold 5  
Doc ID 17659 Rev 8  
51/121  
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 15. Embedded reset and power control block characteristics (continued)  
Symbol  
Parameter  
PVD threshold 6  
Conditions  
Falling edge  
Min  
Typ  
Max Unit  
2.97 3.05 3.09  
3.08 3.15 3.20  
40  
VPVD6  
V
Rising edge  
BOR0 threshold  
Vhyst  
Hysteresis voltage  
mV  
All BOR and PVD thresholds  
excepting BOR0  
100  
1. Guaranteed by characterisation, not tested in production.  
2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details.  
52/121  
Doc ID 17659 Rev 8  
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
6.3.3  
Embedded internal reference voltage  
The parameters given in Table 16 are based on characterization results, unless otherwise  
specified.  
Table 16. Embedded internal reference voltage  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Typ  
(1)  
VREFINT out  
Internal reference voltage  
– 40 °C < TJ < +105 °C 1.202 1.224 1.242  
V
Internal reference current  
consumption  
IREFINT  
1.4  
2
2.3  
3
µA  
ms  
V
TVREFINT  
Internal reference startup time  
VDDA and VREF+ voltage during  
VVREF_MEAS  
2.99  
3
3.01  
VREFINT factory measure  
Including uncertainties  
due to ADC and  
VDDA/VREF+ values  
Accuracy of factory-measured  
VREF value(2)  
AVREF_MEAS  
5
mV  
–40 °C < TJ < +105 °C  
0 °C < TJ < +50 °C  
20  
50  
20  
(3)  
TCoeff  
Temperature coefficient  
ppm/°C  
(3)  
ACoeff  
Long-term stability  
Voltage coefficient  
1000 hours, T= 25 °C  
3.0 V < VDDA < 3.6 V  
1000  
2000  
ppm  
VDDCoeff(3)  
ppm/V  
ADC sampling time when  
reading the internal reference  
voltage  
(3)(4)  
TS_vrefint  
5
10  
µs  
Startup time of reference voltage  
buffer for ADC  
(3)  
TADC_BUF  
10  
25  
µs  
Consumption of reference  
voltage buffer for ADC  
(3)  
IBUF_ADC  
13.5  
µA  
(3)  
VREF_OUT output current(5)  
VREF_OUT output load  
IVREF_OUT  
1
µA  
pF  
(3)  
CVREF_OUT  
50  
Consumption of reference  
voltage buffer for VREF_OUT  
and COMP  
(3)  
ILPBUF  
730  
1200  
nA  
(3)  
VREFINT_DIV1  
VREFINT_DIV2  
VREFINT_DIV3  
1/4 reference voltage  
1/2 reference voltage  
3/4 reference voltage  
24  
49  
74  
25  
50  
75  
26  
51  
76  
%
VREFINT  
(3)  
(3)  
1. Tested in production;  
2. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes.  
3. Guaranteed by design, not tested in production.  
4. Shortest sampling time can be determined in the application by multiple iterations.  
5. To guarantee less than 1% VREF_OUT deviation.  
Doc ID 17659 Rev 8  
53/121  
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
6.3.4  
Supply current characteristics  
The current consumption is a function of several parameters and factors such as the  
operating voltage, ambient temperature, I/O pin loading, device software configuration,  
operating frequencies, I/O pin switching rate, program location in memory and executed  
binary code. The current consumption is measured as described in Figure 13: Current  
consumption measurement scheme.  
All Run-mode current consumption measurements given in this section are performed with a  
reduced code that gives a consumption equivalent to Dhrystone 2.1 code.  
Maximum current consumption  
The MCU is placed under the following conditions:  
V
= 3.6 V  
DD  
All I/O pins are in input mode with a static value at V or V (no load)  
DD  
SS  
All peripherals are disabled except when explicitly mentioned  
The Flash memory access time is adjusted depending on f  
range  
frequency and voltage  
HCLK  
Prefetch and 64-bit access are enabled in configurations with 1 wait state  
The parameters given in Table 17, Table 14 and Table 15 are derived from tests performed  
under ambient temperature and V supply voltage conditions summarized in Table 14.  
DD  
Table 17. Current consumption in Run mode, code with data processing running from Flash  
Max(1)  
Conditions  
Symbol Parameter  
fHCLK  
Typ  
Unit  
55 °C 85 °C 105 °C  
1 MHz  
2 MHz  
4 MHz  
4 MHz  
8 MHz  
270  
470  
400  
600  
400  
600  
400  
600  
Range 3,  
VCORE=1.2 V  
VOS[1:0] = 11  
µA  
890 1025 1025 1025  
fHSE = fHCLK  
up to 8 MHz,  
included  
fHSE = fHCLK/2  
above 8 MHz  
(PLL ON)(2)  
1
2
1.3  
2.5  
5
1.3  
2.5  
5
1.3  
2.5  
5
Range 2,  
VCORE=1.5 V  
VOS[1:0] = 10  
16 MHz 3.9  
8 MHz 2.16  
16 MHz 4.8  
32 MHz 9.6  
3
3
3
Supply  
Range 1,  
current in  
Run mode,  
code  
executed  
VCORE=1.8 V  
5.5  
11  
5.5  
11  
5.5  
11  
IDD (Run  
VOS[1:0] = 01  
from  
Flash)  
Range 2,  
mA  
from Flash  
VCORE=1.5 V  
16 MHz  
4
5
5
5
VOS[1:0] = 10  
HSI clock source  
(16 MHz)  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01  
32 MHz 9.4  
11  
11  
11  
MSI clock, 65 kHz  
65 kHz 0.05 0.085 0.09  
524 kHz 0.15 0.185 0.19  
0.1  
0.2  
1
Range 3,  
MSI clock, 524 kHz VCORE=1.2 V  
VOS[1:0] = 11  
MSI clock, 4.2 MHz  
4.2 MHz 0.9  
1
1
1. Based on characterization, not tested in production, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
54/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
Table 18. Current consumption in Run mode, code with data processing running from RAM  
Max(1)  
Symbol  
Parameter  
Conditions  
fHCLK  
Typ  
Unit  
55 °C 85 °C 105 °C  
1 MHz  
2 MHz  
4 MHz  
4 MHz  
8 MHz  
16 MHz  
8 MHz  
16 MHz  
32 MHz  
200  
380  
720  
0.9  
1.65  
3.2  
2
300  
500  
860  
1
300  
500  
860 860(3)  
300  
500  
Range 3,  
VCORE=1.2 V  
VOS[1:0] = 11  
µA  
fHSE = fHCLK  
up to 8 MHz,  
included  
fHSE = fHCLK/2  
above 8 MHz  
(PLL ON)(2)  
1
1
Range 2,  
VCORE=1.5 V  
VOS[1:0] = 10  
2
2
2
3.7  
2.5  
4.5  
8.5  
3.7  
2.5  
4.5  
8.5  
3.7  
2.5  
4.5  
8.5  
Supply current  
in Run mode,  
code executed  
from RAM,  
Flash switched  
off  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01  
4
IDD (Run  
mA  
7.7  
from  
RAM)  
Range 2,  
VCORE=1.5 V  
VOS[1:0] = 10  
16 MHz  
3.3  
3.8  
9.2  
3.8  
9.2  
3.8  
9.2  
HSI clock source  
(16 MHz)  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01  
32 MHz  
65 kHz  
7.8  
40  
MSI clock, 65 kHz  
60  
60  
80  
Range 3,  
MSI clock, 524 kHz VCORE=1.2 V  
524 kHz 110  
4.2 MHz 700  
140  
800  
140  
800  
160  
820  
µA  
VOS[1:0] = 11  
MSI clock, 4.2 MHz  
1. Based on characterization, not tested in production, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register).  
3. Tested in production.  
Doc ID 17659 Rev 8  
55/121  
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Max(1)  
Table 19. Current consumption in Sleep mode  
Symbol Parameter  
Conditions  
fHCLK  
Typ  
Unit  
55 °C 85 °C 105 °C  
1 MHz  
2 MHz  
4 MHz  
4 MHz  
8 MHz  
80  
140  
210  
330  
400  
550  
140  
210  
330  
400  
550  
140  
210  
330(3)  
Range 3,  
VCORE=1.2 V  
VOS[1:0] = 11  
150  
280  
280  
450  
fHSE = fHCLK up to  
16 MHz included,  
fHSE = fHCLK/2  
400  
Range 2,  
VCORE=1.5 V  
550  
above 16 MHz (PLL VOS[1:0] = 10  
Supply  
current in  
Sleep  
mode,  
code  
executed  
from RAM,  
Flash  
switched  
OFF  
16 MHz 900 1050 1050 1050  
8 MHz 550 650 650 650  
ON)(2)  
Range 1,  
VCORE=1.8 V  
16 MHz 1050 1200 1200 1200  
32 MHz 2300 2500 2500 2500  
VOS[1:0] = 01  
µA  
Range 2,  
VCORE=1.5 V  
VOS[1:0] = 10  
16 MHz 1000 1100 1100 1100  
32 MHz 2300 2500 2500 2500  
HSI clock source  
(16 MHz)  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01  
MSI clock, 65 kHz  
MSI clock, 524 kHz  
MSI clock, 4.2 MHz  
65 kHz  
30  
50  
50  
60  
Range 3,  
IDD  
VCORE=1.2 V  
524 kHz 50  
4.2 MHz 200  
70  
70  
80  
(Sleep)  
VOS[1:0] = 11  
240  
140  
210  
350  
400  
600  
240  
140  
210  
350  
400  
600  
250  
140  
210  
350  
400  
600  
1 MHz  
2 MHz  
4 MHz  
4 MHz  
8 MHz  
80  
Range 3,  
VCORE=1.2 V  
VOS[1:0] = 11  
150  
290  
300  
500  
fHSE = fHCLK up to  
16 MHz included,  
fHSE = fHCLK/2  
Range 2,  
VCORE=1.5 V  
Supply  
current in  
Sleep  
above 16 MHz (PLL VOS[1:0] = 10  
16 MHz 1000 1100 1100 1100  
8 MHz 550 650 650 650  
ON)(2)  
Range 1,  
mode,  
µA  
V
CORE=1.8 V  
16 MHz 1050 1200 1200 1200  
32 MHz 2300 2500 2500 2500  
code  
VOS[1:0] = 01  
executed  
from Flash  
Range 2,  
V
CORE=1.5 V  
16 MHz 1000 1100 1100 1100  
32 MHz 2300 2500 2500 2500  
VOS[1:0] = 10  
HSI clock source  
(16 MHz)  
Range 1,  
VCORE=1.8 V  
VOS[1:0] = 01  
Supply  
current in  
Sleep  
MSI clock, 65 kHz  
MSI clock, 524 kHz  
65 kHz  
40  
70  
90  
70  
90  
80  
524 kHz 60  
100  
Range 3,  
IDD  
mode,  
code  
executed  
VCORE=1.2V  
VOS[1:0] = 11  
µA  
(Sleep)  
MSI clock, 4.2 MHz  
4.2 MHz 210  
250  
250  
260  
from Flash  
56/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
1. Based on characterization, not tested in production, unless otherwise specified.  
2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register)  
3. Tested in production  
Table 20. Current consumption in Low power run mode  
Max  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
(1)  
TA = -40 °C to 25 °C  
TA = 85 °C  
9
17.5  
31  
14  
22  
35  
37  
37  
37  
48  
24  
33  
48  
31  
40  
54  
48  
54  
56  
70  
12  
24  
46  
17  
29  
51  
42  
42  
42  
65  
32  
42  
64  
40  
48  
70  
58  
63  
65  
90  
MSI clock, 65 kHz  
All  
fHCLK = 32 kHz  
TA = 105 °C  
peripherals  
OFF, code  
executed  
from RAM,  
Flash  
switched  
OFF, VDD  
from 1.65 V  
to 3.6 V  
TA = -40 °C to 25 °C  
TA = 85 °C  
MSI clock, 65 kHz  
fHCLK = 65 kHz  
TA = 105 °C  
TA = -40 °C to 25 °C  
TA = 55 °C  
MSI clock, 131 kHz  
fHCLK = 131 kHz  
TA = 85 °C  
Supply  
TA = 105 °C  
IDD (LP  
current in  
Low power  
run mode  
Run)  
TA = -40 °C to 25 °C  
TA = 85 °C  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
µA  
TA = 105 °C  
All  
peripherals  
OFF, code  
executed  
from Flash,  
VDD from  
1.65 V to  
3.6 V  
TA = -40 °C to 25 °C  
TA = 85 °C  
MSI clock, 65 kHz  
fHCLK = 65 kHz  
TA = 105 °C  
TA = -40 °C to 25 °C  
TA = 55 °C  
MSI clock, 131 kHz  
fHCLK = 131 kHz  
TA = 85 °C  
TA = 105 °C  
Max allowed  
current in  
Low power  
run mode  
I
DD Max  
VDD from  
1.65 V to  
3.6 V  
(LP  
200  
Run)(2)  
1. Based on characterization, not tested in production, unless otherwise specified.  
2. This limitation is related to the consumption of the CPU core and the peripherals that are powered by the regulator.  
Consumption of the I/Os is not included in this limitation.  
Doc ID 17659 Rev 8  
57/121  
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 21. Current consumption in Low power sleep mode  
Max  
Symbol Parameter  
Conditions  
Typ  
Unit  
(1)  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
Flash OFF  
TA = -40 °C to 25 °C 4.4  
TA = -40 °C to 25 °C 17.5 25  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
Flash ON  
TA = 85 °C  
22  
31  
27  
39  
26  
28  
40  
30  
32  
34  
45  
All  
TA = 105 °C  
peripherals  
OFF, VDD  
from1.65 V  
to 3.6 V  
TA = -40 °C to 25 °C 18  
MSI clock, 65 kHz  
TA = 85 °C  
23  
31  
fHCLK = 65 kHz,  
Flash ON  
TA = 105 °C  
TA = -40 °C to 25 °C 22  
MSI clock, 131 kHz  
Supply  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
24  
26  
34  
current in  
Low power  
sleep  
fHCLK = 131 kHz,  
Flash ON  
IDD (LP  
Sleep)  
mode  
TA = -40 °C to 25 °C 17.5 25  
µA  
MSI clock, 65 kHz  
fHCLK = 32 kHz  
TA = 85 °C  
22  
31  
27  
39  
26  
28  
40  
30  
32  
34  
45  
TA = 105 °C  
TIM9 and  
USART1  
enabled,  
Flash ON,  
VDD from  
1.65 V to  
3.6 V  
TA = -40 °C to 25 °C 18  
MSI clock, 65 kHz  
TA = 85 °C  
23  
31  
f
HCLK = 65 kHz  
TA = 105 °C  
TA = -40 °C to 25 °C 22  
TA = 55 °C  
TA = 85 °C  
TA = 105 °C  
24  
26  
34  
MSI clock, 131 kHz  
fHCLK = 131 kHz  
Max  
allowed  
current in  
(LP Sleep) Low power  
VDD from  
1.65 V to  
3.6 V  
I
DD Max  
200  
Sleep  
mode  
1. Based on characterization, not tested in production, unless otherwise specified.  
58/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
Table 22. Typical and maximum current consumptions in Stop mode  
Max  
(1)(2)  
Symbol  
Parameter  
Conditions  
Typ(1)  
Unit  
TA = -40°C to 25°C  
VDD = 1.8 V  
1.2 2.75  
TA = -40°C to 25°C 1.4  
4
LCD OFF  
TA = 55°C  
TA= 85°C  
TA = 105°C  
2.6  
4.8  
6
10  
23  
6
10.2  
RTC clocked by LSI,  
regulator in LP mode,  
HSI and HSE OFF  
(no independent  
watchdog)  
TA = -40°C to 25°C 3.3  
LCD ON  
(static  
TA = 55°C  
TA= 85°C  
TA = 105°C  
4.5  
6.6  
8
duty)(3)  
12  
27  
10  
12  
16  
40  
4
13.6  
TA = -40°C to 25°C 7.7  
LCD ON  
(1/8  
TA = 55°C  
TA= 85°C  
TA = 105°C  
8.6  
duty)(4)  
10.7  
19.8  
TA = -40°C to 25°C 1.6  
Supply current in  
Stop mode with  
RTC enabled  
IDD (Stop  
TA = 55°C  
TA= 85°C  
TA = 105°C  
2.7  
4.8  
6
µA  
LCD OFF  
with RTC)  
10  
23  
6
10.3  
RTC clocked by LSE  
TA = -40°C to 25°C 3.6  
external clock (32.768  
kHz), regulator in LP  
mode, HSI and HSE  
OFF (no independent  
watchdog)  
LCD ON  
(static  
TA = 55°C  
TA= 85°C  
TA = 105°C  
4.6  
6.7  
8
duty)(3)  
12  
23  
10  
12  
16  
40  
10.9  
TA = -40°C to 25°C 7.6  
LCD ON  
(1/8  
TA = 55°C  
TA= 85°C  
TA = 105°C  
8.6  
duty)(4)  
10.7  
19.8  
TA = -40°C to 25°C  
VDD = 1.8 V  
1.45  
1.9  
RTC clocked by LSE  
(no independent  
watchdog)(5)  
TA = -40°C to 25°C  
VDD = 3.0 V  
LCD OFF  
TA = -40°C to 25°C  
VDD = 3.6 V  
2.2  
Doc ID 17659 Rev 8  
59/121  
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 22. Typical and maximum current consumptions in Stop mode  
Max  
(1)(2)  
Symbol  
Parameter  
Conditions  
Typ(1)  
Unit  
Regulator in LP mode, HSI and  
HSE OFF, independent watchdog TA = -40°C to 25°C 1.1  
and LSI enabled  
2.2  
Supply current in  
IDD (Stop) Stop mode (  
RTC disabled)  
TA = -40°C to 25°C 0.5  
0.9  
5
µA  
Regulator in LP mode, LSI, HSI  
and HSE OFF (no independent  
watchdog)  
TA = 55°C  
TA= 85°C  
TA = 105°C  
1.9  
3.7  
8
8.9 20(6)  
RMS (root mean MSI = 4.2 MHz  
2
square) supply  
IDD (WU current during  
from Stop) wakeup time  
when exiting  
MSI = 1.05 MHz  
1.45  
VDD = 3.0 V  
TA = -40°C to 25°C  
mA  
MSI = 65 kHz(7)  
1.45  
from Stop mode  
1. The typical values are given for VDD = 3.0 V and max values are given for VDD = 3.6 V, unless otherwise  
specified.  
2. Based on characterization, not tested in production, unless otherwise specified  
3. LCD enabled with external VLCD, static duty, division ratio = 256, all pixels active, no LCD connected  
4. LCD enabled with external VLCD, 1/8 duty, 1/3 bias, division ratio = 64, all pixels active, no LCD connected.  
5. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY)  
with two 6.8pF loading capacitors.  
6. Tested in production  
7. When MSI = 64 kHz, the RMS current is measured over the first 15 µs following the wakeup event. For the  
remaining time of the wakeup period, the current is similar to the Run mode current.  
60/121  
Doc ID 17659 Rev 8  
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
Table 23. Typical and maximum current consumptions in Standby mode  
Max  
(1)(2)  
Symbol  
Parameter  
Conditions  
Typ(1)  
Unit  
TA = -40 °C to 25 °C  
VDD = 1.8 V  
0.9  
TA = -40 °C to 25 °C  
TA = 55 °C  
1.1  
1.8  
2.5  
3
RTC clocked by LSI (no  
independent watchdog)  
1.42  
1.87  
2.78  
TA= 85 °C  
IDD  
TA = 105 °C  
5
Supply current in Standby  
mode with RTC enabled  
(Standby  
TA = -40 °C to 25 °C  
with RTC)  
1
VDD = 1.8 V  
TA = -40 °C to 25 °C  
1.33  
1.59  
2.01  
3.27  
2.9  
3.4  
4.3  
6.3  
RTC clocked by LSE (no  
independent watchdog)(3) TA = 55 °C  
µA  
TA= 85 °C  
TA = 105 °C  
Independent watchdog and  
LSI enabled  
TA = -40 °C to 25 °C  
1.1  
1.6  
TA = -40 °C to 25 °C  
TA = 55 °C  
0.3  
0.5  
1
0.55  
0.8  
IDD  
(Standby)  
Supply current in Standby  
mode with RTC disabled  
Independent watchdog and  
LSI OFF  
TA = 85 °C  
1.7  
TA = 105 °C  
2.5  
4(4)  
RMS supply current during  
wakeup time when exiting  
from Standby mode  
IDD (WU  
from  
Standby)  
VDD = 3.0 V  
TA = -40 °C to 25 °C  
1
µA  
1. The typical values are given for VDD = 3.0 V and max values are given for VDD = 3.6 V, unless otherwise specified.  
2. Based on characterization, not tested in production, unless otherwise specified.  
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8pF  
loading capacitors.  
4. Tested in production.  
Doc ID 17659 Rev 8  
61/121  
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Wakeup time from Low power mode  
The wakeup times given in the following table are measured with the MSI RC oscillator. The  
clock source used to wake up the device depends on the current operating mode:  
Sleep mode: the clock source is the clock that was set before entering Sleep mode  
Stop mode: the clock source is the MSI oscillator in the range configured before  
entering Stop mode  
Standby mode: the clock source is the MSI oscillator running at 2.1 MHz  
All timings are derived from tests performed under ambient temperature and V supply  
DD  
voltage conditions summarized in Table 14.  
Table 24. Typical and maximum timings in Low power modes  
Max(1)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
tWUSLEEP  
Wakeup from Sleep mode fHCLK = 32 MHz  
fHCLK = 262 kHz  
0.36  
32  
34  
Wakeup from Low power  
Flash enabled  
sleep mode  
tWUSLEEP_LP  
fHCLK = 262 kHz  
fHCLK = 262 kHz  
Flash switched OFF  
Wakeup from Stop mode,  
fHCLK = fMSI = 4.2 MHz  
regulator in Run mode  
8.2  
8.2  
fHCLK = fMSI = 4.2 MHz  
Voltage range 1 and 2  
9.3  
fHCLK = fMSI = 4.2 MHz  
Voltage range 3  
µs  
7.8  
10  
11.2  
tWUSTOP  
fHCLK = fMSI = 2.1 MHz  
12  
20  
Wakeup from Stop mode,  
fHCLK = fMSI = 1.05 MHz 15.5  
regulator in low power mode  
fHCLK = fMSI = 524 kHz  
fHCLK = fMSI = 262 kHz  
fHCLK = fMSI = 131 kHz  
fHCLK = MSI = 65 kHz  
29  
53  
35  
63  
105  
210  
118  
237  
Wakeup from Standby mode  
FWU bit = 1  
fHCLK = MSI = 2.1 MHz  
fHCLK = MSI = 2.1 MHz  
50  
103  
3.2  
tWUSTDBY  
Wakeup from Standby mode  
FWU bit = 0  
2.5  
ms  
1. Based on characterization, not tested in production, unless otherwise specified  
62/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
On-chip peripheral current consumption  
The current consumption of the on-chip peripherals is given in the following table. The MCU  
is placed under the following conditions:  
all I/O pins are in input mode with a static value at V or V (no load)  
DD SS  
all peripherals are disabled unless otherwise mentioned  
the given value is calculated by measuring the current consumption  
with all peripherals clocked off  
with only one peripheral clocked on  
(1)  
Table 25. Peripheral current consumption  
Typical consumption, VDD = 3.0 V, TA = 25 °C  
Range 1,  
Range 2,  
Range 3,  
VCORE  
1.8 V  
=
VCORE  
1.5 V  
=
VCORE  
1.2 V  
=
Low power  
sleep and  
run  
Peripheral  
Unit  
VOS[1:0] = VOS[1:0] = VOS[1:0] =  
01  
10  
11  
TIM2  
TIM3  
TIM4  
TIM6  
TIM7  
LCD  
13  
14  
10.5  
12  
10.5  
4.5  
5
8
9
10.5  
12  
11  
4.5  
4.5  
5
12.5  
5.5  
5.5  
5.5  
4
8
3.5  
3.5  
3.5  
2.5  
4
5
WWDG  
3.5  
5
3.5  
5
SPI2  
5.5  
9
µA/MHz  
APB1  
(fHCLK  
)
USART2  
USART3  
I2C1  
8
5.5  
6
8.5  
8
10.5  
8.5  
8.5  
12.5  
4.5  
9
9
7
5.5  
5.5  
6.5  
3
7.5  
6.5  
10  
3.5  
7
I2C2  
7
USB  
10  
4
PWR  
DAC  
7.5  
4
6
COMP  
4.5  
3.5  
4.5  
Doc ID 17659 Rev 8  
63/121  
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
(1)  
Table 25. Peripheral current consumption (continued)  
Typical consumption, VDD = 3.0 V, TA = 25 °C  
Range 1,  
Range 2,  
VCORE  
1.5 V  
Range 3,  
VCORE  
1.2 V  
VCORE  
=
=
=
Low power  
sleep and  
run  
Peripheral  
Unit  
1.8 V  
VOS[1:0] = VOS[1:0] = VOS[1:0] =  
01  
10  
11  
SYSCFG &  
RI  
3
2.5  
2
2.5  
TIM9  
9
6.5  
7
7.5  
5.5  
6
6
4.5  
4.5  
8
7
5.5  
5.5  
9
TIM10  
TIM11  
ADC(2)  
SPI1  
APB2  
11.5  
5
9.5  
4.5  
7.5  
4.5  
4.5  
4.5  
4.5  
4.5  
4
3
4
USART1  
GPIOA  
GPIOB  
GPIOC  
GPIOD  
GPIOE  
GPIOH  
CRC  
9
6
7.5  
4
5
3.5  
3.5  
3.5  
3.5  
3.5  
3
µA/MHz  
(fHCLK)  
5
4.5  
4.5  
4.5  
4.5  
3.5  
0.5  
18.5  
10.5  
130  
5
5
AHB  
5
4
1
0.5  
11.5  
10  
0.5  
9
FLASH  
DMA1  
13  
12  
166  
8
All enabled  
IDD (RTC)  
IDD (LCD)  
138  
106  
0.47  
3.1  
1450  
340  
0.16  
2
(3)  
IDD (ADC)  
(4)  
IDD (DAC)  
IDD (COMP1)  
IDD (COMP2)  
µA  
Slow mode  
Fast mode  
5
(5)  
IDD (PVD / BOR)  
IDD (IWDG)  
2.6  
0.25  
1. Data based on differential IDD measurement between all peripherals OFF an one peripheral with clock  
enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz  
(range 3), fHCLK = 64kHz (Low power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for  
each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production.  
2. HSI oscillator is OFF for this measure.  
3. Data based on a differential IDD measurement between ADC in reset configuration and continuous ADC  
conversion (HSI consumption not included).  
64/121  
Doc ID 17659 Rev 8  
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
4. Data based on a differential IDD measurement between DAC in reset configuration and continuous DAC  
conversion of VDD/2. DAC is in buffered mode, output is left floating.  
5. Including supply current of internal reference voltage.  
6.3.5  
External clock source characteristics  
High-speed external user clock generated from an external source  
(1)  
Table 26. High-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fHSE_ext  
1
8
32  
MHz  
VHSEH  
VHSEL  
tw(HSE)  
OSC_IN input pin high level voltage  
OSC_IN input pin low level voltage  
0.7VDD  
VSS  
VDD  
V
0.3VDD  
OSC_IN high or low time  
OSC_IN rise or fall time  
12  
45  
tw(HSE)  
ns  
tr(HSE)  
tf(HSE)  
20  
Cin(HSE) OSC_IN input capacitance  
DuCy(HSE) Duty cycle  
2.6  
pF  
%
55  
1
VSS VIN VD  
IL  
OSC_IN Input leakage current  
µA  
D
1. Guaranteed by design, not tested in production.  
Doc ID 17659 Rev 8  
65/121  
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Low-speed external user clock generated from an external source  
The characteristics given in the following table result from tests performed using a low-  
speed external clock source, and under ambient temperature and supply voltage conditions  
summarized in Table 14.  
(1)  
Table 27. Low-speed external user clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
User external clock source  
frequency  
fLSE_ext  
1
32.768  
1000  
kHz  
OSC32_IN input pin high level  
voltage  
VLSEH  
VLSEL  
tw(LSE)  
0.7VDD  
VSS  
465  
-
VDD  
0.3VDD  
-
V
OSC32_IN input pin low level  
voltage  
OSC32_IN high or low time  
OSC32_IN rise or fall time  
-
-
tw(LSE)  
ns  
tr(LSE)  
tf(LSE)  
10  
CIN(LSE) OSC32_IN input capacitance  
DuCy(LSE) Duty cycle  
-
45  
-
0.6  
-
pF  
%
-
-
55  
1
IL  
OSC32_IN Input leakage current VSS VIN VDD  
µA  
1. Guaranteed by design, not tested in production  
Figure 14. Low-speed external clock source AC timing diagram  
V
LSEH  
90%  
10%  
V
LSEL  
t
t
t
W(LSE)  
t
t
W(LSE)  
r(LSE)  
f(LSE)  
T
LSE  
f
LSE_ext  
EXTERNAL  
I
L
OSC32_IN  
CLOCK SOURCE  
STM32Lxx  
ai18233  
66/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
Figure 15. High-speed external clock source AC timing diagram  
V
HSEH  
90%  
10%  
V
HSEL  
t
t
t
W(HSE)  
t
t
W(HSE)  
r(HSE)  
f(HSE)  
T
HSE  
f
HSE_ext  
EXTERNAL  
I
L
OSC _IN  
CLOCK SOURCE  
STM32Lxx  
ai18232  
High-speed external clock generated from a crystal/ceramic resonator  
The high-speed external (HSE) clock can be supplied with a 1 to 24 MHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 28. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
Doc ID 17659 Rev 8  
67/121  
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
(1)(2)  
Table 28. HSE 1-24 MHz oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ  
Max  
Unit  
fOSC_IN Oscillator frequency  
1
24  
MHz  
RF  
C
Feedback resistor  
200  
kΩ  
Recommended load  
capacitance versus  
RS = 30 Ω  
20  
pF  
equivalent serial resistance  
of the crystal (RS)(3)  
V
DD= 3.3 V, VIN = VSS  
with 30 pF load  
IHSE  
IDD(HSE)  
gm  
HSE driving current  
3
mA  
C = 20 pF  
2.5 (startup)  
fOSC = 16 MHz  
0.7 (stabilized)  
HSE oscillator power  
consumption  
mA  
C = 10 pF  
2.5 (startup)  
fOSC = 16 MHz  
0.46 (stabilized)  
mA  
/V  
Oscillator transconductance  
Startup time  
Startup  
3.5  
tSU(HSE)  
VDD is stabilized  
1
ms  
(4)  
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.  
2. Based on characterization results, not tested in production.  
3. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a  
humid environment, due to the induced leakage and the bias condition change. However, it is  
recommended to take this point into account if the MCU is used in tough humidity conditions.  
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz  
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly  
with the crystal manufacturer.  
For C and C , it is recommended to use high-quality external ceramic capacitors in the  
L1  
L2  
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match  
the requirements of the crystal or resonator (see Figure 16). C and C are usually the  
L1  
L2  
same size. The crystal manufacturer typically specifies a load capacitance which is the  
series combination of C and C . PCB and MCU pin capacitance must be included (10 pF  
L1  
L2  
can be used as a rough estimate of the combined pin and board capacitance) when sizing  
and C . Refer to the application note AN2867 “Oscillator design guide for ST  
C
L1  
L2  
microcontrollers” available from the ST website www.st.com.  
68/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Figure 16. HSE oscillator circuit diagram  
Electrical characteristics  
f
to core  
HSE  
R
m
R
F
C
O
L
m
C
L1  
OSC_IN  
C
m
g
m
Resonator  
Consumption  
control  
Resonator  
STM32  
ai18235  
OSC_OUT  
C
L2  
1. REXT value depends on the crystal characteristics.  
Low-speed external clock generated from a crystal/ceramic resonator  
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic  
resonator oscillator. All the information given in this paragraph are based on characterization  
results obtained with typical external components specified in Table 29. In the application,  
the resonator and the load capacitors have to be placed as close as possible to the oscillator  
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal  
resonator manufacturer for more details on the resonator characteristics (frequency,  
package, accuracy).  
(1)  
Table 29. LSE oscillator characteristics (fLSE = 32.768 kHz)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
Low speed external oscillator  
frequency  
fLSE  
RF  
C(2)  
ILSE  
32.768  
1.2  
kHz  
Feedback resistor  
MΩ  
Recommended load capacitance  
versus equivalent serial  
RS = 30 kΩ  
8
pF  
resistance of the crystal (RS)(3)  
LSE driving current  
VDD = 3.3 V, VIN = VSS  
VDD = 1.8 V  
1.1  
µA  
nA  
450  
600  
750  
LSE oscillator current  
consumption  
IDD (LSE)  
VDD = 3.0 V  
VDD = 3.6V  
gm  
Oscillator transconductance  
Startup time  
3
µA/V  
s
(4)  
tSU(LSE)  
VDD is stabilized  
1
1. Based on characterization, not tested in production.  
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator  
design guide for ST microcontrollers”.  
3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with  
small RS value for example MSIV-TIN32.768kHz. Refer to crystal manufacturer for more details;  
4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized  
32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer.  
Doc ID 17659 Rev 8  
69/121  
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Note:  
For C and C , it is recommended to use high-quality ceramic capacitors in the 5 pF to  
L1  
L2  
15 pF range selected to match the requirements of the crystal or resonator (see Figure 17).  
and C are usually the same size. The crystal manufacturer typically specifies a load  
C
L1  
L2,  
capacitance which is the series combination of C and C .  
L1  
L2  
Load capacitance C has the following formula: C = C x C / (C + C ) + C where  
L
L
L1  
L2  
L1  
L2  
stray  
C
is the pin capacitance and board or trace PCB-related capacitance. Typically, it is  
stray  
between 2 pF and 7 pF.  
Caution:  
To avoid exceeding the maximum value of C and C (15 pF) it is strongly recommended  
L1  
L2  
to use a resonator with a load capacitance C 7 pF. Never use a resonator with a load  
L
capacitance of 12.5 pF.  
Example: if you choose a resonator with a load capacitance of C = 6 pF and C  
= 2 pF,  
stray  
L
then C = C = 8 pF.  
L1  
L2  
Figure 17. Typical application with a 32.768 kHz crystal  
Resonator with  
integrated capacitors  
C
L1  
f
OSC32_IN  
LSE  
Bias  
controlled  
gain  
32.768 kHz  
resonator  
R
F
STM32L15xxx  
OSC32_OUT  
C
L2  
ai17853  
70/121  
Doc ID 17659 Rev 8  
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
6.3.6  
Internal clock source characteristics  
The parameters given in Table 30 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 14.  
DD  
High-speed internal (HSI) RC oscillator  
Table 30. HSI oscillator characteristics  
Symbol  
Parameter  
Frequency  
Conditions  
Min  
Typ Max Unit  
fHSI  
VDD = 3.0 V  
16  
MHz  
%
Trimming code is not a multiple of 16  
Trimming code is a multiple of 16  
0.4 0.7  
HSI user-trimmed  
resolution  
(1)(2)  
TRIM  
1.5  
%
V
DDA = 3.0 V, TA = 25 °C  
-1(3)  
-1.5  
-2  
1(3)  
1.5  
2
%
VDDA = 3.0 V, TA = 0 to 55 °C  
VDDA = 3.0 V, TA = -10 to 70 °C  
%
%
Accuracy of the  
factory-calibrated  
HSI oscillator  
(2)  
ACCHSI  
V
DDA = 3.0 V, TA = -10 to 85 °C  
VDDA = 3.0 V, TA = -10 to 105 °C  
DDA = 1.65 V to 3.6 V  
TA = -40 to 105 °C  
-2.5  
-4  
2
%
2
%
V
-4  
3
6
%
µs  
µA  
HSI oscillator  
startup time  
(2)  
tSU(HSI)  
3.7  
HSI oscillator  
power consumption  
(2)  
IDD(HSI)  
100  
140  
1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are  
multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0).  
2. Based on characterization, not tested in production.  
3. Tested in production.  
Low-speed internal (LSI) RC oscillator  
Table 31. LSI oscillator characteristics  
Symbol  
Parameter  
LSI frequency  
Min  
Typ  
Max  
Unit  
(1)  
fLSI  
26  
38  
56  
kHz  
%
LSI oscillator frequency drift  
(2)  
DLSI  
-10  
4
0°C TA 85°C  
(3)  
tsu(LSI)  
LSI oscillator startup time  
200  
510  
µs  
(3)  
IDD(LSI)  
LSI oscillator power consumption  
400  
nA  
1. Tested in production.  
2. This is a deviation for an individual part, once the initial frequency has been measured.  
3. Guaranteed by design, not tested in production.  
Doc ID 17659 Rev 8  
71/121  
 
 
 
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Multi-speed internal (MSI) RC oscillator  
Table 32. MSI oscillator characteristics  
Symbol  
Parameter  
Condition  
Typ Max Unit  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
MSI range 6  
65.5  
131  
kHz  
262  
Frequency after factory calibration, done at  
VDD= 3.3 V and TA = 25 °C  
fMSI  
524  
1.05  
2.1  
4.2  
0.5  
MHz  
ACCMSI  
Frequency error after factory calibration  
%
%
MSI oscillator frequency drift  
0 °C TA 85 °C  
(1)  
DTEMP(MSI)  
3
MSI oscillator frequency drift  
1.65 V VDD 3.6 V, TA = 25 °C  
(1)  
DVOLT(MSI)  
2.5 %/V  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
MSI range 6  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
0.75  
1
1.5  
2.5  
4.5  
8
(2)  
IDD(MSI)  
MSI oscillator power consumption  
µA  
15  
30  
20  
15  
10  
6
tSU(MSI)  
MSI oscillator startup time  
µs  
5
MSI range 6,  
Voltage range 1  
and 2  
3.5  
5
MSI range 6,  
Voltage range 3  
72/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Table 32. MSI oscillator characteristics (continued)  
Electrical characteristics  
Symbol  
Parameter  
Condition  
Typ Max Unit  
MSI range 0  
MSI range 1  
MSI range 2  
MSI range 3  
MSI range 4  
MSI range 5  
40  
20  
10  
4
2.5  
µs  
2
(2)  
tSTAB(MSI)  
MSI oscillator stabilization time  
MSI range 6,  
Voltage range 1  
and 2  
2
3
MSI range 3,  
Voltage range 3  
Any range to  
range 5  
4
fOVER(MSI)  
MSI oscillator frequency overshoot  
MHz  
6
Any range to  
range 6  
1. This is a deviation for an individual part, once the initial frequency has been measured.  
2. Based on characterization, not tested in production.  
6.3.7  
PLL characteristics  
The parameters given in Table 33 are derived from tests performed under ambient  
temperature and V supply voltage conditions summarized in Table 14.  
DD  
Table 33. PLL characteristics  
Value  
Symbol  
Parameter  
Unit  
Min  
Typ  
Max(1)  
PLL input clock(2)  
2
45  
2
24  
55  
32  
MHz  
%
fPLL_IN  
fPLL_OUT  
PLL input clock duty cycle  
PLL output clock  
MHz  
Worst case PLL lock time  
PLL input = 2 MHz  
tLOCK  
100  
130  
µs  
PLL VCO = 96 MHz  
Jitter  
Cycle-to-cycle jitter  
600  
450  
150  
ps  
IDDA(PLL)  
IDD(PLL)  
Current consumption on VDDA  
Current consumption on VDD  
220  
120  
µA  
1. Based on characterization, not tested in production.  
2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with  
the range defined by fPLL_OUT  
.
Doc ID 17659 Rev 8  
73/121  
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
6.3.8  
Memory characteristics  
The characteristics are given at T = -40 to 105 °C unless otherwise specified.  
A
RAM memory  
Table 34. RAM and hardware registers  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VRM Data retention mode(1)  
STOP mode (or RESET)  
1.65  
V
1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware  
registers (only in Stop mode).  
Flash memory and data EEPROM  
Table 35. Flash memory and data EEPROM characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max(1) Unit  
Operating voltage  
VDD  
1.65  
3.6  
V
Read / Write / Erase  
Erasing  
3.28  
3.28  
3.94  
3.94  
Programming time for  
word or half-page  
tprog  
ms  
Programming  
Average current during  
whole programme/erase  
operation  
300  
1.5  
µA  
IDD  
TA = 25 °C, VDD = 3.6 V  
Maximum current (peak)  
during programme/erase  
operation  
2.5  
mA  
1. Guaranteed by design, not tested in production.  
74/121  
Doc ID 17659 Rev 8  
 
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
Table 36. Flash memory, data EEPROM endurance and data retention  
Value  
Symbol  
Parameter  
Conditions  
Unit  
Min(1) Typ Max  
Cycling (erase / write )  
Program memory  
10  
300  
30  
TA = -40°C to  
(2)  
NCYC  
kcycles  
105 °C  
Cycling (erase / write )  
EEPROM data memory  
Data retention (program memory) after  
10 kcycles at TA = 85 °C  
TRET = +85 °C  
Data retention (EEPROM data memory)  
after 300 kcycles at TA = 85 °C  
30  
(2)  
tRET  
years  
Data retention (program memory) after  
10 kcycles at TA = 105 °C  
10  
TRET = +105 °C  
Data retention (EEPROM data memory)  
after 300 kcycles at TA = 105 °C  
10  
1. Based on characterization not tested in production.  
2. Characterization is done according to JEDEC JESD22-A117.  
6.3.9  
EMC characteristics  
Susceptibility tests are performed on a sample basis during device characterization.  
Functional EMS (electromagnetic susceptibility)  
While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the  
device is stressed by two electromagnetic events until a failure occurs. The failure is  
indicated by the LEDs:  
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until  
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.  
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V and  
DD  
V
through a 100 pF capacitor, until a functional disturbance occurs. This test is  
SS  
compliant with the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed.  
The test results are given in Table 37. They are based on the EMS levels and classes  
defined in application note AN1709.  
Table 37. EMS characteristics  
Level/  
Class  
Symbol  
Parameter  
Conditions  
VDD = 3.3 V, LQFP100, TA = +25 °C,  
fHCLK = 32 MHz  
Voltage limits to be applied on any I/O pin to  
induce a functional disturbance  
VFESD  
2B  
4A  
conforms to IEC 61000-4-2  
Fast transient voltage burst limits to be  
applied through 100 pF on VDD and VSS  
pins to induce a functional disturbance  
VDD = 3.3 V, LQFP100, TA = +25 °C,  
fHCLK = 32 MHz  
conforms to IEC 61000-4-4  
VEFTB  
Doc ID 17659 Rev 8  
75/121  
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
Software recommendations  
The software flowchart must include the management of runaway conditions such as:  
Corrupted program counter  
Unexpected reset  
Critical data corruption (control registers...)  
Prequalification trials  
Most of the common failures (unexpected reset and program counter corruption) can be  
reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1  
second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring (see application note AN1015).  
Electromagnetic Interference (EMI)  
The electromagnetic field emitted by the device are monitored while a simple application is  
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with  
IEC 61967-2 standard which specifies the test board and the pin loading.  
Table 38. EMI characteristics  
Max vs. frequency range  
Monitored  
4 MHz 16 MHz  
32MHz  
voltage  
range 1  
Symbol Parameter  
Conditions  
Unit  
frequency band  
voltage voltage  
range 3 range 2  
0.1 to 30 MHz  
30 to 130 MHz  
130 MHz to 1GHz  
SAE EMI Level  
3
-6  
4
-5  
-7  
-7  
1
VDD = 3.3 V,  
TA = 25 °C,  
LQFP100 package  
compliant with IEC  
61967-2  
18  
15  
2.5  
dBµV  
-
SEMI  
Peak level  
5
2
76/121  
Doc ID 17659 Rev 8  
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
6.3.10  
Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, LU) using specific measurement methods, the device is  
stressed in order to determine its performance in terms of electrical sensitivity.  
Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are  
applied to the pins of each sample according to each pin combination. The sample size  
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test  
conforms to the JESD22-A114/C101 standard.  
Table 39. ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum value(1) Unit  
Electrostatic discharge  
voltage (human body model) to JESD22-A114  
TA = +25 °C, conforming  
VESD(HBM)  
2
II  
2000  
500  
V
Electrostatic discharge  
TA = +25 °C, conforming  
V
ESD(CDM) voltage (charge device model) to JESD22-C101  
1. Based on characterization results, not tested in production.  
Static latch-up  
Two complementary static tests are required on six parts to assess the latch-up  
performance:  
A supply overvoltage is applied to each power supply pin  
A current injection is applied to each input, output and configurable I/O pin  
These tests are compliant with EIA/JESD 78A IC latch-up standard.  
Table 40. Electrical sensitivities  
Symbol  
Parameter  
Conditions  
Class  
LU  
Static latch-up class  
TA = +105 °C conforming to JESD78A  
II level A  
6.3.11  
I/O current injection characteristics  
As a general rule, current injection to the I/O pins, due to external voltage below V or  
SS  
above V (for standard pins) should be avoided during normal product operation. However,  
DD  
in order to give an indication of the robustness of the microcontroller in cases when  
abnormal injection accidentally happens, susceptibility tests are performed on a sample  
basis during device characterization.  
Doc ID 17659 Rev 8  
77/121  
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Functional susceptibility to I/O current injection  
While a simple application is executed on the device, the device is stressed by injecting  
current into the I/O pins programmed in floating input mode. While current is injected into the  
I/O pin, one at a time, the device is checked for functional failures.  
The failure is indicated by an out of range parameter: ADC error, out of spec current  
injection on adjacent pins or other functional failure (for example reset, oscillator frequency  
deviation, LCD levels, etc.).  
The test results are given in the following table.  
Table 41. I/O current injection susceptibility  
Functional susceptibility  
Symbol  
Description  
Unit  
Negative  
injection  
Positive  
injection  
Injected current on true open-drain pins  
Injected current on all 5 V tolerant (FT) pins  
Injected current on any other pin  
-5  
-5  
-5  
+0  
+0  
+5  
IINJ  
mA  
78/121  
Doc ID 17659 Rev 8  
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
6.3.12  
I/O port characteristics  
General input/output characteristics  
Unless otherwise specified, the parameters given in Table 42 are derived from tests  
performed under conditions summarized in Table 14. All I/Os are CMOS and TTL compliant.  
Table 42. I/O static characteristics  
Symbol  
Parameter  
Input low level voltage  
Conditions  
Min  
Typ  
Max  
Unit  
VIL  
VSS - 0.3  
0.8  
VDD+0.3  
5.5V  
TTL ports  
2.7 V VDD3.6 V  
Standard I/O input high level voltage  
FT(2) I/O input high level voltage  
VIH  
VIL  
2(1)  
CMOS ports  
1.65 V VDD3.6 V  
(3)  
Input low level voltage  
–0.3  
0.3VDD  
CMOS ports  
1.65 V VDD3.6 V  
Standard I/O Input high level voltage  
VDD+0.3  
5.25  
V
CMOS ports  
1.65 V VDD2.0 V  
0.7  
VDD  
VIH  
(3)(4)  
FT(5) I/O input high level voltage  
CMOS ports  
2.0 VVDD3.6 V  
5.5  
Standard I/O Schmitt trigger voltage  
hysteresis(6)  
(7)  
Vhys  
10% VDD  
VSS VIN VDD  
I/Os with LCD  
50  
50  
VSS VIN VDD  
I/Os with analog switches  
VSS VIN VDD  
I/Os with analog switches  
and LCD  
Ilkg  
Input leakage current (8)(3)  
50  
nA  
VSS VIN VDD  
I/Os with USB  
TBD  
50  
VSS VIN VDD  
Standard I/Os  
RPU  
RPD  
CIO  
Weak pull-up equivalent resistor(9)(3)  
Weak pull-down equivalent resistor(9)(3)  
I/O pin capacitance  
VIN = VSS  
VIN = VDD  
30  
30  
45  
45  
5
60  
60  
kΩ  
kΩ  
pF  
1. Guaranteed by design.  
2. FT = 5V tolerant. To sustain a voltage higher than VDD +0.5 the internal pull-up/pull-down resistors must be disabled.  
3. Tested in production  
4. 0.7VDD for 5V-tolerant receiver  
5. FT = Five-volt tolerant.  
6. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization, not tested in production.  
7. With a minimum of 200 mV. Based on characterization, not tested in production.  
8. The max. value may be exceeded if negative current is injected on adjacent pins.  
Doc ID 17659 Rev 8  
79/121  
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
9. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This  
MOS/NMOS contribution to the series resistance is minimum (~10% order).  
Output driving current  
The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or  
source up to 20 mA (with the non-standard V /V specifications given in Table 43.  
OL OH  
in the user application, the number of I/O pins which can drive current must be limited to  
respect the absolute maximum rating specified in Section 6.2:  
The sum of the currents sourced by all the I/Os on V  
plus the maximum Run  
DD,  
consumption of the MCU sourced on V  
cannot exceed the absolute maximum rating  
DD,  
I
(see Table 12).  
VDD  
The sum of the currents sunk by all the I/Os on V plus the maximum Run  
SS  
consumption of the MCU sunk on V cannot exceed the absolute maximum rating  
SS  
I
(see Table 12).  
VSS  
Output voltage levels  
Unless otherwise specified, the parameters given in Table 43 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 14. All I/Os are CMOS and TTL compliant.  
Table 43. Output voltage characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(2)  
VOL  
0.4  
IIO = +8 mA  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(3)(2)  
VOH  
2.4  
Output low level voltage for an I/O pin  
when 8 pins are sunk at same time  
(1)(4)  
VOL  
0.45  
V
I
IO =+ 4 mA  
1.65 V < VDD  
2.7 V  
<
Output high level voltage for an I/O pin  
when 8 pins are sourced at same time  
(3)(4)  
VOH  
VDD-0.45  
VDD-1.3  
Output low level voltage for an I/O pin  
when 4 pins are sunk at same time  
(1)(4)  
VOL  
1.3  
IIO = +20 mA  
2.7 V < VDD < 3.6 V  
Output high level voltage for an I/O pin  
when 4 pins are sourced at same time  
(3)(4)  
VOH  
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12  
and the sum of IIO (I/O ports and control pins) must not exceed IVSS  
.
2. Tested in production.  
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in  
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD  
.
4. Based on characterization data, not tested in production.  
80/121  
Doc ID 17659 Rev 8  
 
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
Input/output AC characteristics  
The definition and values of input/output AC characteristics are given in Figure 18 and  
Table 44, respectively.  
Unless otherwise specified, the parameters given in Table 44 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 14.  
(1)  
Table 44. I/O AC characteristics  
OSPEEDRx  
[1:0] bit  
Symbol  
Parameter  
Conditions  
Min Max(2) Unit  
value(1)  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 50 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
CL = 30 pF, VDD = 2.7 V to 3.6 V  
CL = 50 pF, VDD = 1.65 V to 2.7 V  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
400  
400  
625  
625  
2
fmax(IO)out Maximum frequency(3)  
kHz  
ns  
00  
01  
10  
tf(IO)out  
Output rise and fall time  
tr(IO)out  
fmax(IO)out Maximum frequency(3)  
MHz  
ns  
1
125  
250  
10  
2
tf(IO)out  
Output rise and fall time  
tr(IO)out  
Fmax(IO)out Maximum frequency(3)  
MHz  
ns  
25  
125  
50  
8
tf(IO)out  
Output rise and fall time  
tr(IO)out  
Fmax(IO)out Maximum frequency(3)  
MHz  
11  
-
5
tf(IO)out  
Output rise and fall time  
tr(IO)out  
30  
ns  
Pulse width of external  
tEXTIpw  
signals detected by the  
EXTI controller  
8
-
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32L15xxx reference manual for a description  
of GPIO Port configuration register.  
2. Guaranteed by design. Not tested in production.  
3. The maximum frequency is defined in Figure 18.  
Doc ID 17659 Rev 8  
81/121  
 
 
 
Electrical characteristics  
Figure 18. I/O AC characteristics definition  
STM32L151x6/8/B, STM32L152x6/8/B  
90%  
10 %  
50%  
50%  
90%  
10%  
External  
Output  
on 50pF  
t
t
r(IO)out  
f(IO)out  
T
Maximum frequency is achieved if (t + t ) 2/3)T and if the duty cycle is (45-55%)  
r
f
when loaded by 50 pF  
ai14131b  
6.3.13  
NRST pin characteristics  
The NRST pin input driver uses CMOS technology.  
Unless otherwise specified, the parameters given in Table 45 are derived from tests  
performed under ambient temperature and V supply voltage conditions summarized in  
DD  
Table 14.  
Table 45. NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ Max Unit  
(1)  
VIL(NRST)  
NRST input low level voltage  
NRST input high level voltage  
VSS  
1.4  
0.8  
(1)  
VIH(NRST)  
VDD  
IOL = 2 mA  
V
2.7 V < VDD < 3.6 V  
NRST output low level  
voltage  
(1)  
VOL(NRST)  
0.4  
IOL = 1.5 mA  
1.65 V < VDD < 2.7 V  
NRST Schmitt trigger voltage  
hysteresis  
(1)  
(1)  
(2)  
Vhys(NRST)  
10%VDD  
30  
mV  
Weak pull-up equivalent  
resistor(3)  
RPU  
VIN = VSS  
45  
60  
50  
kΩ  
(1)  
VF(NRST)  
NRST input filtered pulse  
ns  
ns  
VNF(NRST)  
NRST input not filtered pulse  
350  
1. Guaranteed by design, not tested in production.  
2. 200 mV minimum value  
3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to  
the series resistance is around 10%.  
82/121  
Doc ID 17659 Rev 8  
 
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Figure 19. Recommended NRST pin protection  
Electrical characteristics  
V
DD  
External  
reset circuit(1)  
R
PU  
(2)  
Internal reset  
NRST  
Filter  
0.1 μF  
STM32L15xxx  
ai17854  
1. The reset network protects the device against parasitic resets.  
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in  
Table 45. Otherwise the reset will not be taken into account by the device.  
6.3.14  
TIM timer characteristics  
The parameters given in the following table are guaranteed by design.  
Refer to Section 6.3.11: I/O current injection characteristics for details on the input/output  
alternate function characteristics (output compare, input capture, external clock, PWM  
output).  
(1)  
Table 46. TIMx characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tTIMxCLK  
ns  
1
tres(TIM)  
Timer resolution time  
fTIMxCLK = 32 MHz 31.25  
0
fTIMxCLK/2  
16  
MHz  
Timer external clock  
frequency on CH1 to CH4  
fEXT  
fTIMxCLK = 32 MHz  
0
MHz  
ResTIM  
Timer resolution  
16  
bit  
16-bit counter clock period  
when internal clock is  
selected (timer’s prescaler  
disabled)  
tTIMxCLK  
1
65536  
tCOUNTER  
fTIMxCLK = 32 MHz 0.0312  
2048  
µs  
tTIMxCLK  
s
65536 × 65536  
134.2  
tMAX_COUNT  
Maximum possible count  
fTIMxCLK = 32 MHz  
1. TIMx is used as a general term to refer to the TIM2, TIM3 and TIM4 timers.  
Doc ID 17659 Rev 8  
83/121  
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
6.3.15  
Communications interfaces  
I2C interface characteristics  
2
2
I
The line C interface meets the requirements of the standard I C communication protocol  
with the following restrictions: SDA and SCL are not “true” open-drain I/O pins. When  
configured as open-drain, the PMOS connected between the I/O pin and V is disabled,  
DD  
but is still present.  
2
The I C characteristics are described in Table 47. Refer also to Section 6.3.11: I/O current  
for more details on the input/output alternate function characteristics  
injection characteristics  
(SDA and SCL)  
.
2
Table 47. I C characteristics  
Standard mode I2C(1)  
Fast mode I2C(1)(2)  
Symbol  
Parameter  
Unit  
Min  
Max  
Min  
Max  
tw(SCLL)  
tw(SCLH)  
tsu(SDA)  
th(SDA)  
SCL clock low time  
SCL clock high time  
SDA setup time  
4.7  
4.0  
250  
0
1.3  
0.6  
100  
0
µs  
SDA data hold time  
900(3)  
300  
tr(SDA)  
tr(SCL)  
ns  
SDA and SCL rise time  
1000  
300  
20 + 0.1Cb  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
Start condition hold time  
300  
th(STA)  
tsu(STA)  
4.0  
4.7  
4.0  
4.7  
0.6  
0.6  
0.6  
1.3  
µs  
Repeated Start condition  
setup time  
tsu(STO)  
Stop condition setup time  
μs  
μs  
Stop to Start condition time  
(bus free)  
tw(STO:STA)  
Capacitive load for each bus  
line  
Cb  
400  
400  
pF  
Guaranteed by design, not tested in production.  
1.  
2. fPCLK1 must be at least 2 MHz to achieve standard mode I²C frequencies. It must be at least 4 MHz to  
achieve fast mode I²C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I²C fast  
mode clock.  
The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL  
signal.  
3.  
84/121  
Doc ID 17659 Rev 8  
 
 
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
2
Figure 20. I C bus AC waveforms and measurement circuit  
V
V
DD  
DD  
STM32L15xxx  
SDA  
4.7k  
4.7k  
100  
100  
I2C bus  
SCL  
START REPEATED  
START  
START  
t
su(STA)  
SDA  
t
t
t
r(SDA)  
f(SDA)  
su(SDA)  
t
su(STA:STO)  
STOP  
t
t
t
w(SCKL)  
h(SDA)  
h(STA)  
SCL  
t
t
t
su(STO)  
r(SCK)  
t
f(SCK)  
w(SCKH)  
ai17855  
Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
1.  
(1)(2)  
Table 48. SCL frequency (f  
fSCL (kHz)  
= 32 MHz, VDD = 3.3 V)  
PCLK1  
I2C_CCR value  
RP = 4.7 kΩ  
400  
300  
200  
100  
50  
0x801B  
0x8024  
0x8035  
0x00A0  
0x0140  
0x0320  
20  
1. RP = External pull-up resistance, fSCL = I2C speed.  
2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the  
tolerance on the achieved speed is 2%. These variations depend on the accuracy of the external  
components used to design the application.  
Doc ID 17659 Rev 8  
85/121  
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
SPI characteristics  
Unless otherwise specified, the parameters given in the following table are derived from  
tests performed under ambient temperature, f  
frequency and V supply voltage  
PCLKx  
DD  
conditions summarized in Table 14.  
Refer to Section 6.3.11: I/O current injection characteristics for more details on the  
input/output alternate function characteristics (NSS, SCK, MOSI, MISO).  
(1)  
Table 49. SPI characteristics  
Symbol  
Parameter  
Conditions  
Master mode  
Min  
Max(2) Unit  
-
-
-
16  
fSCK  
1/tc(SCK)  
SPI clock frequency  
Slave mode  
16  
MHz  
Slave transmitter  
12(3)  
(2)  
tr(SCK)  
tf(SCK)  
SPI clock rise and fall  
time  
Capacitive load: C = 30 pF  
Slave mode  
-
6
ns  
%
(2)  
SPI slave input clock duty  
cycle  
DuCy(SCK)  
30  
70  
tsu(NSS)  
th(NSS)  
NSS setup time  
NSS hold time  
Slave mode  
Slave mode  
4tHCLK  
2tHCLK  
-
-
(2)  
tw(SCKH)  
tw(SCKL)  
tSCK/2 tSCK/2+  
SCK high and low time  
Data input setup time  
Master mode  
(2)  
5  
3
(2)  
tsu(MI)  
Master mode  
Slave mode  
Master mode  
Slave mode  
5
-
(2)  
tsu(SI)  
6
-
(2)  
th(MI)  
5
-
ns  
Data input hold time  
(2)  
th(SI)  
5
-
(4)  
ta(SO)  
Data output access time Slave mode  
0
3tHCLK  
(2)  
tv(SO)  
Data output valid time  
Data output valid time  
Slave mode  
Master mode  
Slave mode  
Master mode  
-
33  
6.5  
-
(2)  
tv(MO)  
-
(2)  
th(SO)  
17  
0.5  
Data output hold time  
(2)  
th(MO)  
-
1. The characteristics above are given for voltage range 1.  
2. Based on characterization, not tested in production.  
3. The maximum SPI clock frequency in slave transmitter mode is given for an SPI slave input clock duty  
cycle (DuCy(SCK)) ranging between 40 to 60%.  
4. Min time is for the minimum time to drive the output and max time is for the maximum time to validate the  
data.  
86/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Figure 21. SPI timing diagram - slave mode and CPHA = 0  
NSS input  
Electrical characteristics  
t
c(SCK)  
t
t
h(NSS)  
SU(NSS)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
t
dis(SO)  
r(SCK)  
f(SCK)  
v(SO)  
a(SO)  
h(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
BIT1 IN  
LSB OUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134c  
(1)  
Figure 22. SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
SU(NSS)  
t
c(SCK)  
h(NSS)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
OUT PUT  
MSB O UT  
BI T6 OUT  
LSB OUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
Doc ID 17659 Rev 8  
87/121  
 
 
Electrical characteristics  
Figure 23. SPI timing diagram - master mode  
STM32L151x6/8/B, STM32L152x6/8/B  
(1)  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
INPUT  
MSBIN  
t
BIT6 IN  
LSB IN  
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTPUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD  
.
USB characteristics  
The USB interface is USB-IF certified (full speed).  
Table 50. USB startup time  
Symbol  
Parameter  
Max  
Unit  
µs  
(1)  
tSTARTUP  
USB transceiver startup time  
1
1. Guaranteed by design, not tested in production.  
88/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
Table 51. USB DC electrical characteristics  
Symbol  
Parameter  
Conditions  
Min.(1)  
Max.(1) Unit  
Input levels  
VDD  
USB operating voltage(2)  
Differential input sensitivity  
3.0  
0.2  
0.8  
1.3  
3.6  
V
V
(3)  
VDI  
I(USB_DP, USB_DM)  
(3)  
VCM  
Differential common mode range Includes VDI range  
Single ended receiver threshold  
2.5  
2.0  
(3)  
VSE  
Output levels  
(4)  
VOL  
VOH  
Static output level low  
Static output level high  
RL of 1.5 kΩ to 3.6 V(5)  
0.3  
3.6  
V
(4)  
(5)  
RL of 15 kΩ to VSS  
2.8  
1. All the voltages are measured from the local ground potential.  
2. To be compliant with the USB 2.0 full speed electrical specification, the USB_DP (D+) pin should be pulled  
up with a 1.5 kΩ resistor to a 3.0-to-3.6 V voltage range.  
3. Guaranteed by characterization, not tested in production.  
4. Tested in production.  
RL is the load connected on the USB drivers.  
5.  
Figure 24. USB timings: definition of data signal rise and fall time  
Crossover  
points  
Differential  
Data Lines  
V
CR S  
V
SS  
t
t
r
f
ai14137  
Table 52.  
Symbol  
USB: full speed electrical characteristics  
Driver characteristics(1)  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
tf  
Rise time(2)  
Fall Time(2)  
CL = 50 pF  
CL = 50 pF  
tr/tf  
4
4
20  
20  
ns  
ns  
%
V
trfm  
VCRS  
Rise/ fall time matching  
90  
1.3  
110  
2.0  
Output signal crossover voltage  
1. Guaranteed by design, not tested in production.  
Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB  
Specification - Chapter 7 (version 2.0).  
2.  
Doc ID 17659 Rev 8  
89/121  
 
 
 
 
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
6.3.16  
12-bit ADC characteristics  
Unless otherwise specified, the parameters given in Table 54 are guaranteed by design.  
Table 53. ADC clock frequency  
Symbol Parameter  
Conditions  
Min  
Max  
Unit  
VREF+ = VDDA  
16  
VREF+ < VDDA  
8
4
2.4 V VDDA 3.6 V VREF+ > 2.4 V  
Voltage  
range 1 & 2  
VREF+ < VDDA  
VREF+ 2.4 V  
ADC clock  
fADC  
0.480  
MHz  
frequency  
V
REF+ = VDDA  
8
4
4
1.8 V VDDA 2.4 V  
VREF+ < VDDA  
Voltage range 3  
Table 54. ADC characteristics  
Symbol  
Parameter  
Power supply  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA  
1.8  
3.6  
2.4 V VDDA 3.6 V  
VREF+ must be below  
or equal to VDDA  
VREF+  
Positive reference voltage  
1.8(1)  
VDDA  
V
VREF-  
IVDDA  
Negative reference voltage  
VSSA  
1000  
Current on the VDDA input  
pin  
1450  
µA  
Peak  
700  
450  
VREF+  
1
Current on the VREF input  
pin  
(2)  
IVREF  
400  
Average  
Conversion voltage range(3)  
0(4)  
0.03  
0.03  
0.03  
0.03  
0.03  
0.03  
0.03  
0.03  
V
VAIN  
Direct channels  
Multiplexed channels  
Direct channels  
12-bit sampling rate  
Msps  
0.76  
1.07  
0.8  
10-bit sampling rate  
8-bit sampling rate  
6-bit sampling rate  
Msps  
Msps  
Msps  
Multiplexed channels  
Direct channels  
fS  
1.23  
0.89  
1.45  
1
Multiplexed channels  
Direct channels  
Multiplexed channels  
90/121  
Doc ID 17659 Rev 8  
 
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Table 54. ADC characteristics (continued)  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Direct channels  
0.25  
2.4 V VDDA 3.6 V  
Multiplexed channels  
0.56  
0.56  
1
2.4 V VDDA 3.6 V  
µs  
tS  
Sampling time  
Direct channels  
1.8 V VDDA 2.4 V  
Multiplexed channels  
1.8 V VDDA 2.4 V  
4
1
384  
1/fADC  
µs  
fADC = 16 MHz  
24.75  
Total conversion time  
(including sampling time)  
4 to 384 (sampling  
phase) +12 (successive  
approximation)  
tCONV  
1/fADC  
Direct channels  
Multiplexed channels  
12-bit conversions  
6/8/10-bit conversions  
12-bit conversions  
6/8/10-bit conversions  
Internal sample and hold  
capacitor  
CADC  
fTRIG  
fTRIG  
16  
pF  
Tconv+1 1/fADC  
Tconv 1/fADC  
Tconv+2 1/fADC  
Tconv+1 1/fADC  
External trigger frequency  
Regular sequencer  
External trigger frequency  
Injected sequencer  
RAIN  
tlat  
External input impedance  
50  
281  
4.5  
219  
3.5  
3.5  
kΩ  
ns  
fADC = 16 MHz  
fADC = 16 MHz  
219  
3.5  
156  
2.5  
Injection trigger conversion  
latency  
1/fADC  
ns  
Regular trigger conversion  
latency  
tlatr  
1/fADC  
µs  
tSTAB  
Power-up time  
1. The Vref+ input can be grounded iif neither the ADC nor the DAC are used (this allows to shut down an  
external voltage reference).  
2. The current consumption through VREF is composed of two parameters:  
- one constant (max 300 µA)  
- one variable (max 400 µA), only during sampling time + 2 first conversion pulses.  
So, peak consumption is 300+400 = 700 µA and average consumption is 300 + [(4 sampling + 2) /16] x  
400 = 450 µA at 1Msps  
3. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on  
the package. Refer to Section 4: Pin descriptions for further details.  
4. VSSA or VREF- must be tied to ground.  
Doc ID 17659 Rev 8  
91/121  
Electrical characteristics  
Table 55. ADC accuracy  
STM32L151x6/8/B, STM32L152x6/8/B  
(1)(2)  
Symbol  
Parameter  
Test conditions  
Min(3)  
Typ  
Max(3)  
Unit  
ET  
EO  
EG  
ED  
EL  
Total unadjusted error  
Offset error  
-
2
1
4
2
2.4 V VDDA 3.6 V  
2.4 V VREF+ 3.6 V  
fADC = 8 MHz, RAIN = 50 Ω  
TA = -40 to 105 °C  
-
Gain error  
-
-
1.5  
1
3.5  
2
LSB  
Differential linearity error  
Integral linearity error  
-
1.7  
10  
3
ENOB Effective number of bits  
9.2  
-
bits  
dB  
2.4 V VDDA 3.6 V  
VDDA = VREF+  
Signal-to-noise and  
SINAD  
57.5  
62  
-
distorsion ratio  
fADC = 16 MHz, RAIN = 50 Ω  
TA = -40 to 105 °C  
1 kHz Finput 100 kHz  
SNR  
THD  
ET  
Signal-to-noise ratio  
Total harmonic distorsion  
Total unadjusted error  
Offset error  
57.5  
62  
-75  
4
-
-
-74  
-
-
-
-
-
6.5  
4
2.4 V VDDA 3.6 V  
1.8 V VREF+ 2.4 V  
EO  
EG  
ED  
EL  
2
Gain error  
4
6
LSB  
LSB  
fADC = 4 MHz, RAIN = 50 Ω  
Differential linearity error  
Integral linearity error  
Total unadjusted error  
Offset error  
1
2
TA = -40 to 105 °C  
1.5  
2
3
ET  
3
1.8 V VDDA 2.4 V  
1.8 V VREF+ 2.4 V  
fADC = 4 MHz, RAIN = 50 Ω  
TA = -40 to 105 °C  
EO  
EG  
ED  
EL  
1
1.5  
2
Gain error  
1.5  
1
Differential linearity error  
Integral linearity error  
2
1
1.5  
1. ADC DC accuracy values are measured after internal calibration.  
2. ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this  
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a  
Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 6.3.11 does not affect the ADC  
accuracy.  
3. Based on characterization, not tested in production.  
92/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Figure 25. ADC accuracy characteristics  
Electrical characteristics  
VREF+  
VDDA  
4096  
[1LSBIDEAL  
=
(or  
depending on package)]  
4096  
E
G
(1) Example of an actual transfer curve  
4095  
4094  
4093  
(2) The ideal transfer curve  
(3) End point correlation line  
(2)  
E =Total Unadjusted Error: maximum deviation  
T
E
between the actual and the ideal transfer curves.  
T
(3)  
7
6
5
4
3
2
1
E
=Offset Error: deviation between the first actual  
O
(1)  
transition and the first ideal one.  
=Gain Error: deviation between the last ideal  
E
G
transition and the last actual one.  
E
O
E
L
E =Differential Linearity Error: maximum deviation  
D
between actual steps and the ideal one.  
E =Integral Linearity Error: maximum deviation  
L
E
between any actual transition and the end point  
correlation line.  
D
1 LSB  
IDEAL  
0
1
2
3
4
5
6
7
4093 4094 4095 4096  
V
V
DDA  
SSA  
ai14395b  
Figure 26. Typical connection diagram using the ADC  
VDD  
STM32L15xxx  
Sample and hold ADC  
converter  
VT  
0.6 V  
R
AIN(1)  
AINx  
12-bit  
converter  
IL 50 nA  
C
VT  
0.6 V  
parasitic  
VAIN  
C
ADC(1)  
ai17856c  
1. Refer to Table 56: RAIN max for fADC = 16 MHz for the value of RAIN and Table 54: ADC characteristics for  
the value of CADC  
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the  
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy  
this, fADC should be reduced.  
Doc ID 17659 Rev 8  
93/121  
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
supply pin during ADC  
Figure 27. Maximum dynamic current consumption on V  
REF+  
conversion  
Sampling (n cycles)  
Conversion (12 cycles)  
ADC clock  
I
ref+  
700µA  
300µA  
(1)  
Table 56.  
R
max for f  
= 16 MHz  
ADC  
AIN  
RAIN max (kohm)  
Ts  
(cycles)  
Ts  
(µs)  
Multiplexed channels  
Direct channels  
2.4 V < VDDA < 3.6 V 1.8 V < VDDA < 2.4 V 2.4 V < VDDA < 3.3 V 1.8 V < VDDA < 2.4 V  
4
9
0.25  
Not allowed  
0.8  
Not allowed  
Not allowed  
0.8  
0.7  
2.0  
Not allowed  
1.0  
0.5625  
16  
24  
48  
96  
192  
384  
1
1.5  
3
2.0  
4.0  
3.0  
3.0  
1.8  
6.0  
4.5  
6.8  
4.0  
15.0  
30.0  
50.0  
50.0  
10.0  
6
15.0  
32.0  
50.0  
10.0  
20.0  
12  
24  
25.0  
40.0  
50.0  
50.0  
1. Guaranteed by design, not tested in production.  
General PCB design guidelines  
Power supply decoupling should be performed as shown in Figure 28 or Figure 29,  
depending on whether V is connected to V or not. The 10 nF capacitors should be  
REF+  
DDA  
ceramic (good quality). They should be placed as close as possible to the chip.  
94/121  
Doc ID 17659 Rev 8  
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
Figure 28. Power supply and reference decoupling (V  
not connected to V  
)
DDA  
REF+  
STM32L15xxx  
VREF+  
(see note 1)  
1 μF // 100 nF  
VDDA  
1 μF // 100 nF  
VSSA /VREF–  
(see note 1)  
ai17857b  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
Figure 29. Power supply and reference decoupling (V  
connected to V  
)
REF+  
DDA  
STM32L15xxx  
V
/V  
REF+ DDA  
(See note 1)  
1 μF // 100 nF  
V
/V  
REF– SSA  
(See note 1)  
ai17858a  
1. VREF+ and VREF– inputs are available only on 100-pin packages.  
Doc ID 17659 Rev 8  
95/121  
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
6.3.17  
DAC electrical specifications  
Data guaranteed by design, not tested in production, unless otherwise specified.  
Table 57. DAC characteristics  
Symbol  
VDDA  
VREF+  
VREF-  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Analog supply voltage  
1.8  
3.6  
V
VDDA  
REF+ must always be below  
V
Reference supply voltage  
Lower reference voltage  
1.8  
3.6  
VSSA  
Current consumption on No load, middle code (0x800)  
VREF+ supply  
130  
220  
210  
320  
220  
350  
320  
520  
(1)  
IDDVREF+  
No load, worst code (0x000)  
VREF+ = 3.3 V  
µA  
Current consumption on No load, middle code (0x800)  
VDDA supply  
(1)  
IDDA  
No load, worst code (0xF1C)  
VDDA = 3.3 V  
(2)  
RL  
Resistive load  
5
kΩ  
pF  
kΩ  
DAC output buffer ON  
Capacitive load  
(2)  
CL  
50  
10  
RO  
Output impedance  
DAC output buffer OFF  
6
8
DAC output buffer ON  
0.2  
VDDA – 0.2  
V
Voltage on DAC_OUT  
output  
VDAC_OUT  
DAC output buffer OFF  
0.5  
VREF+ – 1LSB mV  
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
1.5  
3
DNL(1)  
Differential non linearity(3)  
Integral non linearity(4)  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
1.5  
2
3
4
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
INL(1)  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
LSB  
4
2
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
10  
5
25  
8
Offset error at code 0x800  
Offset(1)  
(5)  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
Offset error at code  
0x001(6)  
Offset1(1)  
1.5  
5
96/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
Table 57. DAC characteristics (continued)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDA = 3.3V  
VREF+ = 3.0V  
TA = 0 to 50 °C  
-20  
-10  
0
DAC output buffer OFF  
Offset error temperature  
coefficient (code 0x800)  
dOffset/dT(1)  
µV/°C  
VDDA = 3.3V  
VREF+ = 3.0V  
TA = 0 to 50 °C  
DAC output buffer ON  
0
20  
50  
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
+0.1 / -0.2% +0.2 / -0.5%  
Gain(1)  
Gain error(7)  
%
No RLOAD, CL 50 pF  
DAC output buffer OFF  
+0 / -0.2%  
-2  
+0 / -0.4%  
VDDA = 3.3V  
VREF+ = 3.0V  
TA = 0 to 50 °C  
DAC output buffer OFF  
-10  
-40  
0
Gain error temperature  
coefficient  
dGain/dT(1)  
µV/°C  
VDDA = 3.3V  
VREF+ = 3.0V  
TA = 0 to 50 °C  
DAC output buffer ON  
-8  
0
CL 50 pF, RL 5 kΩ  
DAC output buffer ON  
12  
8
30  
12  
TUE(1)  
Total unadjusted error  
LSB  
µs  
No RLOAD, CL 50 pF  
DAC output buffer OFF  
Settling time (full scale: for  
a 12-bit code transition  
between the lowest and  
the highest input codes till  
DAC_OUT reaches final  
value 1LSB  
tSETTLING  
CL 50 pF, RL 5 kΩ  
7
12  
1
Max frequency for a  
correct DAC_OUT change  
Update rate (95% of final value) with 1 CL 50 pF, RL 5 kΩ  
Msps  
LSB variation in the input  
code  
Wakeup time from off  
state (setting the ENx bit  
tWAKEUP  
PSRR+  
CL 50 pF, RL 5 kΩ  
CL 50 pF, RL 5 kΩ  
9
15  
µs  
in the DAC Control  
register)(8)  
VDDA supply rejection ratio  
(static DC measurement)  
-60  
-35  
dB  
1. Data based on characterization results.  
2. Connected between DAC_OUT and VSSA  
.
3. Difference between two consecutive codes - 1 LSB.  
Doc ID 17659 Rev 8  
97/121  
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
4. Difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and  
last Code 4095.  
5. Difference between the value measured at Code (0x800) and the ideal value = VREF+/2.  
6. Difference between the value measured at Code (0x001) and the ideal value.  
7. Difference between ideal slope of the transfer function and measured slope computed from code 0x000 and  
0xFFF when buffer is OFF, and from code giving 0.2 V and (VDDA – 0.2) V when buffer is ON.  
8. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).  
Figure 30. 12-bit buffered /non-buffered DAC  
Buffered/Non-buffered DAC  
Buffer(1)  
R
LOAD  
DAC_OUTx  
12-bit  
digital to  
analog  
converter  
C
LOAD  
ai17157V2  
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly  
without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the  
DAC_CR register.  
6.3.18  
Temperature sensor characteristics  
Table 58. Temperature sensor characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
(1)  
TL  
VSENSE linearity with temperature  
1
1.61  
626.8  
3.4  
2
1.75  
641.5  
6
°C  
mV/°C  
mV  
Avg_Slope(1) Average slope  
1.48  
612  
V110  
Voltage at 110°C 5°C(2)  
(3)  
IDDA(TEMP)  
Current consumption  
Startup time  
µA  
(3)  
tSTART  
10  
µs  
ADC sampling time when reading the  
temperature  
(4)(3)  
TS_temp  
10  
1. Guaranteed by characterization, not tested in production.  
2. Measured at VDD = 3 V 10 mV. V110 ADC conversion result is stored in the TSENSE_CAL2 byte.  
3. Guaranteed by design, not tested in production.  
4. Shortest sampling time can be determined in the application by multiple iterations.  
98/121  
Doc ID 17659 Rev 8  
 
 
 
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
6.3.19  
Comparator  
Table 59. Comparator 1 characteristics  
Symbol  
Parameter  
Conditions  
Min(1) Typ  
Max(1)  
Unit  
VDDA  
R400K  
R10K  
Analog supply voltage  
R400K value  
1.65  
400  
10  
3.6  
V
kΩ  
R10K value  
Comparator 1 input  
voltage range  
VIN  
0.6  
VDDA  
V
tSTART  
td  
Comparator startup time  
Propagation delay(2)  
Comparator offset  
7
3
3
10  
10  
10  
µs  
Voffset  
mV  
VDDA = 3.6 V  
VIN+ = 0 V  
Comparator offset  
dVoffset/dt variation in worst voltage  
stress conditions  
0
1.5  
10  
mV/1000 h  
nA  
VIN- = VREFINT  
TA = 25 °C  
ICOMP1  
Current consumption(3)  
160  
260  
1. Based on characterization, not tested in production.  
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-  
inverting input set to the reference.  
3. Comparator consumption only. Internal reference voltage not included.  
Doc ID 17659 Rev 8  
99/121  
 
 
 
 
Electrical characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 60. Comparator 2 characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max(1) Unit  
VDDA  
VIN  
Analog supply voltage  
1.65  
0
3.6  
VDDA  
20  
V
V
Comparator 2 input voltage range  
Fast mode  
15  
20  
tSTART  
Comparator startup time  
Slow mode  
25  
1.65 V VDDA  
1.8  
2.5  
0.8  
3.5  
6
2.7 V  
td slow  
Propagation delay(2) in slow mode  
µs  
2.7 V VDDA 3.6 V  
1.65 V VDDA  
2.7 V  
2
td fast  
Propagation delay(2) in fast mode  
Comparator offset error  
2.7 V VDDA 3.6 V  
1.2  
4
4
Voffset  
20  
mV  
VDDA = 3.3V  
TA = 0 to 50 °C  
V- = VREF+, 3/4  
dThreshold/ Threshold voltage temperature  
ppm  
/°C  
15  
30  
dt  
coefficient  
VREF+  
,
1/2 VREF+, 1/4 VREF+  
.
Fast mode  
3.5  
0.5  
5
2
ICOMP2  
Current consumption(3)  
µA  
Slow mode  
1. Based on characterization, not tested in production.  
2. The delay is characterized for 100 mV input step with 10 mV overdrive on the inverting input, the non-  
inverting input set to the reference.  
3. Comparator consumption only. Internal reference voltage (necessary for comparator operation) is not  
included.  
100/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Electrical characteristics  
6.3.20  
LCD controller (STM32L152xx only)  
The STM32L152xx embeds a built-in step-up converter to provide a constant LCD reference  
voltage independently from the V voltage. An external capacitor C must be connected  
DD  
ext  
to the V  
pin to decouple this converter.  
LCD  
Table 61. LCD controller characteristics  
Symbol  
Parameter  
LCD external voltage  
Min  
Typ  
Max  
Unit  
VLCD  
VLCD0  
VLCD1  
VLCD2  
VLCD3  
VLCD4  
VLCD5  
VLCD6  
VLCD7  
Cext  
3.6  
LCD internal reference voltage 0  
LCD internal reference voltage 1  
LCD internal reference voltage 2  
LCD internal reference voltage 3  
LCD internal reference voltage 4  
LCD internal reference voltage 5  
LCD internal reference voltage 6  
LCD internal reference voltage 7  
VLCD external capacitance  
2.6  
2.73  
2.86  
2.98  
3.12  
3.26  
3.4  
V
3.55  
0.1  
2
µF  
µA  
Supply current at VDD = 2.2 V  
3.3  
3.1  
6.6  
240  
(1)  
ILCD  
Supply current at VDD = 3.0 V  
(2)  
RHtot  
Low drive resistive network overall value  
High drive resistive network total value  
Segment/Common highest level voltage  
Segment/Common 3/4 level voltage  
Segment/Common 2/3 level voltage  
Segment/Common 1/2 level voltage  
Segment/Common 1/3 level voltage  
Segment/Common 1/4 level voltage  
Segment/Common lowest level voltage  
5.28  
192  
7.92  
288  
MΩ  
kΩ  
V
(2)  
RL  
V44  
V34  
V23  
V12  
V13  
V14  
V0  
VLCD  
3/4 VLCD  
2/3 VLCD  
1/2 VLCD  
1/3 VLCD  
1/4 VLCD  
V
0
Segment/Common level voltage error  
ΔVxx(3)  
50  
mV  
TA = -40 to 85 °C  
1. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio= 64, all pixels active, no LCD  
connected  
2. Guaranteed by design, not tested in production.  
3. Based on characterization, not tested in production.  
Doc ID 17659 Rev 8  
101/121  
 
 
 
Package characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
7
Package characteristics  
7.1  
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
®
®
ECOPACK packages, depending on their level of environmental compliance. ECOPACK  
specification  
ECOPACK is an ST trademark.  
s, grade definitions and product status are available at: www.st.com.  
®
102/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Package characteristics  
Figure 31. LQFP100, 14 x 14 mm, 100-pin low-profile quad flat package outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
L
D
L1  
D1  
D3  
51  
75  
50  
76  
100  
26  
PIN 1  
IDENTIFICATION  
25  
1
e
1L_ME_V3  
1. Drawing is not to scale.  
Doc ID 17659 Rev 8  
103/121  
 
Package characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 62. LQPF100, 14 x 14 mm, 100-pin low-profile quad flat package mechanical  
data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
16.200  
14.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.6378  
0.5591  
0.050  
1.350  
0.170  
0.090  
15.800  
13.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.6220  
0.5433  
1.400  
0.220  
0.0551  
0.0087  
c
D
16.000  
14.000  
12.000  
16.000  
14.000  
12.000  
0.500  
0.6299  
0.5512  
0.4724  
0.6299  
0.5512  
0.4724  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
15.800  
13.800  
16.200  
14.200  
0.6220  
0.5433  
0.6378  
0.5591  
E1  
E3  
e
L
0.450  
0.0°  
0.600  
0.750  
0.0177  
0.0°  
0.0295  
L1  
k
1.000  
3.5°  
7.0°  
7.0°  
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 32. Recommended footprint  
75  
51  
76  
50  
0.5  
0.3  
16.7 14.3  
100  
26  
1.2  
1
25  
12.3  
16.7  
ai14906  
1. Dimensions are in millimeters.  
104/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Package characteristics  
Figure 33. LQFP64, 10 x 10 mm, 64-pin low-profile quad flat package outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
L
D
L1  
D1  
D3  
33  
48  
32  
49  
b
64  
17  
16  
1
PIN 1  
IDENTIFICATION  
e
5W_ME_V2  
1. Drawing is not to scale.  
Doc ID 17659 Rev 8  
105/121  
 
Package characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 63. LQFP64, 10 x 10 mm 64-pin low-profile quad flat package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
12.200  
10.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.4803  
0.4016  
0.050  
1.350  
0.170  
0.090  
11.800  
9.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.4646  
0.3858  
1.400  
0.220  
0.0551  
0.0087  
c
D
12.000  
10.000  
7.500  
12.000  
10.000  
7.500  
0.500  
0.600  
1.000  
0.4724  
0.3937  
0.2953  
0.4724  
0.3937  
0.2953  
0.0197  
0.0236  
0.0394  
D1  
D3  
E
11.800  
9.800  
12.200  
10.200  
0.4646  
0.3858  
0.4803  
0.4016  
E1  
E3  
e
L
0.450  
0.750  
0.0177  
0.0  
0.0295  
L1  
ccc  
K
0.080  
7.0  
0.0031  
7.0  
3.5  
0.0  
3.5  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 34. Recommended footprint  
48  
33  
0.3  
49  
32  
0.5  
12.7  
10.3  
10.3  
64  
17  
1.2  
1
16  
7.8  
12.7  
ai14909  
1. Dimensions are in millimeters.  
106/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Package characteristics  
Figure 35. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package outline  
SEATING  
PLANE  
C
0.25 mm  
GAUGE PLANE  
ccc  
C
D
L
D1  
D3  
L1  
36  
25  
37  
24  
b
48  
13  
PIN 1  
IDENTIFICATION  
1
12  
e
5B_ME_V2  
1. Drawing is not to scale.  
Doc ID 17659 Rev 8  
107/121  
 
Package characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 64. LQFP48, 7 x 7 mm, 48-pin low-profile quad flat package mechanical data  
millimeters  
inches(1)  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
A1  
A2  
b
1.600  
0.150  
1.450  
0.270  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0106  
0.0079  
0.3622  
0.2835  
0.050  
1.350  
0.170  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0067  
0.0035  
0.3465  
0.2677  
1.400  
0.220  
0.0551  
0.0087  
c
D
9.000  
7.000  
5.500  
9.000  
7.000  
5.500  
0.500  
0.600  
1.000  
3.5°  
0.3543  
0.2756  
0.2165  
0.3543  
0.2756  
0.2165  
0.0197  
0.0236  
0.0394  
3.5°  
D1  
D3  
E
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
L
0.450  
0°  
0.750  
0.0177  
0°  
0.0295  
L1  
k
7°  
7°  
ccc  
0.080  
0.0031  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 36. Recommended footprint  
0.50  
1.20  
0.30  
36  
25  
37  
24  
0.20  
7.30  
9.70 5.80  
7.30  
48  
13  
12  
1
1.20  
5.80  
9.70  
ai14911b  
1. Dimensions are in millimeters.  
108/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Package characteristics  
Figure 37. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package outline  
Pin 1 indentifier  
laser marking area  
D
A
E
Y
E
Seating  
plane  
T
ddd  
A1  
b
e
Detail Y  
D
Exposed pad  
area  
D2  
1
L
48  
C 0.500x45°  
pin1 corner  
R 0.125 typ.  
Detail Z  
E2  
1
48  
Z
A0B9_ME_V3  
1. Drawing is not to scale.  
1. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.  
1. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and  
solder this back-side pad to PCB ground.  
Doc ID 17659 Rev 8  
109/121  
 
Package characteristics  
Symbol  
STM32L151x6/8/B, STM32L152x6/8/B  
Table 65. UFQFPN48 7 x 7 mm, 0.5 mm pitch, package mechanical data  
millimeters  
Typ  
inches(1)  
Min  
Max  
Min  
Typ  
Max  
A
A1  
D
E
L
0.500  
0.000  
6.900  
6.900  
0.300  
0.550  
0.020  
7.000  
7.000  
0.400  
0.152  
0.250  
0.500  
0.600  
0.050  
7.100  
7.100  
0.500  
0.0197  
0.0000  
0.2717  
0.2717  
0.0118  
0.0217  
0.0008  
0.2756  
0.2756  
0.0157  
0.0060  
0.0098  
0.0197  
0.0236  
0.0020  
0.2795  
0.2795  
0.0197  
T
b
0.200  
0.300  
0.0079  
0.0118  
e
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Figure 38. Recommended footprint  
7.30  
48  
37  
1
36  
6.20  
5.60  
5.80  
0.20  
7.30  
6.20  
5.60  
5.80  
0.30  
0.55  
12  
25  
13  
24  
0.75  
0.50  
ai15697  
1. Dimensions are in millimeters.  
110/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Package characteristics  
Figure 39. UFBGA100 - 7 x 7 x 0.6 mm, 0.5 mm pitch, package outline  
Z Seating plane  
ddd Z  
A4  
A2  
A
A3  
A1  
A
E1  
X
A1 ball  
A1 ball  
E
identifier index area  
e
F
F
D1  
D
e
Y
M
12  
1
Øb (100 balls)  
Øeee M Z Y X  
Øfff M Z  
BOTTOM VIEW  
TOP VIEW  
A0C2_ME_V2  
1. Drawing is not to scale.  
Table 66. UFBGA100 - 7 x 7 x 0.6 mm, 0.5 mm pitch, package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
0.530  
0.460  
0.050  
0.400  
0.080  
0.270  
0.200  
6.950  
5.450  
6.950  
5.450  
0.600  
0.0209  
0.0181  
0.0236  
A1  
A2  
A3  
A4  
b
0.080  
0.450  
0.130  
0.320  
0.250  
7.000  
5.500  
7.000  
5.500  
0.110  
0.500  
0.180  
0.370  
0.300  
7.050  
5.550  
7.050  
5.550  
0.0031  
0.0177  
0.0051  
0.0126  
0.0098  
0.2756  
0.2165  
0.2756  
0.2165  
0.0020  
0.0157  
0.0031  
0.0106  
0.0079  
0.2736  
0.2146  
0.2736  
0.2146  
0.0043  
0.0197  
0.0071  
0.0146  
0.0118  
0.2776  
0.2185  
0.2776  
0.2185  
D
D1  
E
E1  
e
0.500  
0.750  
0.0197  
0.0295  
F
0.700  
0.800  
0.100  
0.0276  
0.0315  
0.0039  
ddd  
eee  
fff  
0.150  
0.050  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
Doc ID 17659 Rev 8  
111/121  
 
 
Package characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
Figure 40. TFBGA64 - 8.0x8.0x1.2 mm, 0.5 mm pitch, package outline  
Z Seating plane  
ddd Z  
A4  
A2  
A1  
A
E1  
X
A1 ball  
A1 ball  
E
identifier index area  
e
F
A
H
F
D1  
D
e
Y
8
1
Øb (64 balls)  
Øeee M Z Y X  
Øfff M Z  
BOTTOM VIEW  
TOP VIEW  
R8_ME_V3  
1. Drawing is not to scale.  
Table 67. TFBGA64 - 8.0x8.0x1.2 mm, 0.5 mm pitch, package mechanical data  
millimeters  
Typ  
inches(1)  
Symbol  
Min  
Max  
Min  
Typ  
Max  
A
A1  
A2  
A4  
b
1.200  
0.0472  
0.150  
0.0059  
0.200  
0.0079  
0.600  
0.350  
5.150  
0.0236  
0.0138  
0.2028  
0.300  
5.000  
3.500  
5.000  
3.500  
0.500  
0.750  
0.250  
4.850  
0.0118  
0.1969  
0.1378  
0.1969  
0.1378  
0.0197  
0.0295  
0.0098  
0.1909  
D
D1  
E
4.850  
5.150  
0.1909  
0.2028  
E1  
e
F
ddd  
eee  
fff  
0.080  
0.150  
0.050  
0.0031  
0.0059  
0.0020  
1. Values in inches are converted from mm and rounded to 4 decimal digits.  
112/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Package characteristics  
Figure 41. Recommended PCB design rules for pads (0.5 mm pitch BGA)  
0.5 mm  
Pitch  
D pad  
0.27 mm  
0.35 mm typ (depends on  
the soldermask registration  
tolerance)  
Dsm  
Solder paste  
0.27 mm aperture diameter  
Dpad  
Dsm  
ai15495  
1. Non solder mask defined (NSMD) pads are recommended  
2. 4 to 6 mils solder paste screen printing process  
Doc ID 17659 Rev 8  
113/121  
 
Package characteristics  
STM32L151x6/8/B, STM32L152x6/8/B  
7.2  
Thermal characteristics  
The maximum chip-junction temperature, T max, in degrees Celsius, may be calculated  
J
using the following equation:  
T max = T max + (P max × Θ )  
J
A
D
JA  
Where:  
T max is the maximum ambient temperature in °C,  
A
Θ
is the package junction-to-ambient thermal resistance, in °C/W,  
JA  
P max is the sum of P  
max and P max (P max = P  
max + P max),  
INT I/O  
D
INT  
I/O  
D
P
max is the product of I and V , expressed in Watts. This is the maximum chip  
DD DD  
INT  
internal power.  
P
max represents the maximum power dissipation on output pins where:  
I/O  
P
max = Σ (V × I ) + Σ((V – V ) × I ),  
OL OL DD OH OH  
I/O  
taking into account the actual V / I and V / I of the I/Os at low and high level in the  
OL OL  
OH OH  
application.  
Table 68. Thermal characteristics  
Symbol  
Parameter  
Value  
Unit  
Thermal resistance junction-ambient  
BGA100 - 7 x 7 mm  
59  
Thermal resistance junction-ambient  
LQFP100 - 14 x 14 mm / 0.5 mm pitch  
46  
65  
45  
55  
16  
Thermal resistance junction-ambient  
TFBGA64 - 5 x 5 mm  
ΘJA  
°C/W  
Thermal resistance junction-ambient  
LQFP64 - 10 x 10 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
LQFP48 - 7 x 7 mm / 0.5 mm pitch  
Thermal resistance junction-ambient  
UFQFPN48 - 7 x 7 mm / 0.5 mm pitch  
114/121  
Doc ID 17659 Rev 8  
 
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Figure 42. Thermal resistance  
Package characteristics  
3000.00  
'PSCJEEFOꢅBSFB  
5+ꢅꢆꢅ5+ꢅNBY  
2500.00  
2000.00  
UQFN48 7x7mm  
LQFP48 7x7mm  
PD (mW)  
1500.00  
LQFP64 10x10mm  
LQFP100 14x14mm  
UFBGA100 7x7mm  
1000.00  
500.00  
0.00  
100  
75  
50  
25  
0
Temperature(°C)  
.4ꢀꢁꢂꢃꢄ7ꢁ  
7.2.1  
Reference document  
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural  
Convection (Still Air). Available from www.jedec.org.  
Doc ID 17659 Rev 8  
115/121  
 
 
Ordering information scheme  
STM32L151x6/8/B, STM32L152x6/8/B  
8
Ordering information scheme  
Table 69. Ordering information scheme  
Example:  
STM32 L 151 C  
8
T
6
D xxx  
Device family  
STM32 = ARM-based 32-bit microcontroller  
Product type  
L = Low power  
Device subfamily  
151: Devices without LCD  
152: Devices with LCD  
Pin count  
C = 48 pins  
R = 64 pins  
V = 100 pins  
Flash memory size  
6 = 32 Kbytes of Flash memory  
8 = 64 Kbytes of Flash memory  
B = 128 Kbytes of Flash memory  
Package  
H = BGA  
T = LQFP  
U = UFQFPN  
Temperature range  
6 = Industrial temperature range, –40 to 85 °C  
Options  
No character = VDD range: 1.8 to 3.6 V and BOR enabled  
D = VDD range: 1.65 to 3.6 V and BOR disabled  
Packing  
TR = tape and reel  
No character = tray or tube  
For a list of available options (speed, package, etc.) or for further information on any aspect  
of this device, please contact your nearest ST sales office.  
116/121  
Doc ID 17659 Rev 8  
 
 
STM32L151x6/8/B, STM32L152x6/8/B  
Revision history  
9
Revision history  
on  
Table 70. Document revision history  
Date  
Revision  
Changes  
02-Jul-2010  
1
Initial release.  
Removed 5 V tolerance (FT) from PA3, PB0 and PC3 in Table 9:  
STM32L15xxx pin definitions on page 36  
Updated Table 15: Embedded reset and power control block  
characteristics on page 51  
01-Oct-2010  
16-Dec-2010  
2
3
Updated Table 16: Embedded internal reference voltage on page 53  
Added Table 53: ADC clock frequency on page 90  
Updated Table 54: ADC characteristics on page 90  
Modified consumptions on page 1 and in Section 3.1: Low power  
modes on page 13  
LED_SEG8 removed on PB6  
Updated Section 6: Electrical characteristics on page 47  
VFQFPN48 replaced by UFQFPN48  
Features: updated value of Low-power sleep.  
Section 3.3.2: Power supply supervisor: updated note.  
Table 9: STM32L15xxx pin definitions: modified main function (after  
reset) and alternate function for OSC_IN and OSC_OUT pins; modified  
footnote 5; added footnote to OSC32_IN and OSC32_OUT pins; C1  
and D1 removed on PD0 and PD1 pins (TFBGA64 column).  
Section 3.11: DAC (digital-to-analog converter): updated bullet list.  
Table 11: Voltage characteristics on page 49: updated footnote 3  
regarding IINJ(PIN)  
.
Table 12: Current characteristics on page 49: updated footnote 4  
regarding positive and negative injection.  
Table 15: Embedded reset and power control block characteristics on  
page 51: updated typ and max values for TRSTTEMPO (VDD rising, BOR  
enabled).  
Table 17: Current consumption in Run mode, code with data  
processing running from Flash on page 54: removed values for HSI  
clock source (16 MHz), Range 3.  
25-Feb-2011  
4
Table 18: Current consumption in Run mode, code with data  
processing running from RAM on page 55: removed values for HSI  
clock source (16 MHz), Range 3.  
Table 19: Current consumption in Sleep mode on page 56: removed  
values for HSI clock source (16 MHz), Range 3 for both RAM and  
Flash; changed units.  
Table 20: Current consumption in Low power run mode on page 57:  
updated parameter and max value of IDD Max (LP Run).  
Table : on page 58: updated symbol, parameter, and max value of IDD  
Max (LP Sleep).  
Table 18: Typical and maximum current consumptions in Stop mode:  
updated values for IDD (Stop with RTC) - RTC clocked by LSE external  
clock (32.768 kHz), regulator in LP mode, HSI and HSE OFF (no  
independent watchdog).  
Doc ID 17659 Rev 8  
117/121  
 
Revision history  
STM32L151x6/8/B, STM32L152x6/8/B  
Changes  
Table 70. Document revision history (continued)  
Date  
Revision  
Updated Table 23: Typical and maximum current consumptions in  
Standby mode on page 61 (IDD (WU from Standby) instead of (IDD (WU  
from Stop).  
Table 24: Typical and maximum timings in Low power modes on  
page 62: updated condition for Wakeup from Stop mode, regulator in  
Run mode; updated max values for Wakeup from Stop mode, regulator  
in low power mode; updated max values for tWUSTDBY  
.
Table 25: Peripheral current consumption on page 63: updated values  
for column Low power sleep and run; updated Flash values; renamed  
ADC1 to ADC; updated IDD (LCD) value; updated units; added values for  
IDD (RTC) and IDD (IWDG); updated footnote 1 and 3; added foot note 2  
concerning ADC.  
Table 26: High-speed external user clock characteristics on page 65:  
added min value for tw(HSE) w(HSE)  
max value for tr(HSE)/tf(HSE) OSC_IN rise or fall time; updated IL for typ  
and max values.  
/t  
OSC_IN high or low time; added  
Table 27: Low-speed external user clock characteristics on page 66:  
updated max value for IL.  
Table 28: HSE 1-24 MHz oscillator characteristics on page 68:  
renamed i2 as IHSE and updated max value; updated max values for  
IDD(HSE)  
Table 29: LSE oscillator characteristics (fLSE = 32.768 kHz) on page 69:  
updated max value for ILSE  
Table 30: HSI oscillator characteristics on page 71: updated some min  
and max values for ACCHSI  
Table 32: MSI oscillator characteristics on page 72: updated parameter,  
typ, and max values for DVOLT(MSI)  
Table 35: Flash memory and data EEPROM characteristics on  
page 74: updated typ values for tprog  
.
4
.
25-Feb-2011  
cont’d  
.
.
.
Table 44: I/O AC characteristics on page 81: updated some max values  
for 01, 10, and 11; updated min value; updated footnotes.  
Table 55: ADC accuracy on page 92: updated typ values and some of  
the test conditions for ENOB, SINAD, SNR, and THD.  
Table 57: DAC characteristics on page 96: updated footnote 7 and  
added footnote 8.  
Updated leakage value in Figure 26: Typical connection diagram using  
the ADC.  
Added Figure 27: Maximum dynamic current consumption on VREF+  
supply pin during ADC conversion.  
Added Table 56: RAIN max for fADC = 16 MHz on page 94  
Figure 28: Power supply and reference decoupling (VREF+ not  
connected to VDDA): replaced all 10 nF capacitors with 100 nF  
capacitors.  
Figure 29: Power supply and reference decoupling (VREF+ connected to  
VDDA): replaced 10 nF capacitor with 100 nF capacitor.  
118/121  
Doc ID 17659 Rev 8  
STM32L151x6/8/B, STM32L152x6/8/B  
Revision history  
Table 70. Document revision history (continued)  
Date Revision  
Changes  
Modified 1st page (low power features)  
Added STM32L15xC6 and STM32L15xR6 devices (32 Kbytes of Flash  
memory).  
Modified Section 3.6: GPIOs (general-purpose inputs/outputs) on  
page 22  
17-June-2011  
5
Modified Section 6.3: Operating conditions on page 50  
Modified Table 55: ADC accuracy on page 92, Table 57: DAC  
characteristics on page 96 and Table 59: Comparator 1 characteristics  
on page 99  
Features: updated internal multispeed low power RC.  
Table 2: Ultra-low-power STM32L15xxx device features and peripheral  
counts: LCD 4x44 and 8x40 available for both 64- and 128-Kbyte  
devices; two comparators available for all devices.  
Figure 8: STM32L15xCx UFQFPN48 pinout: replaced VFQPN48 by  
UFQFPN48 as name of package.  
Table 9: STM32L15xxx pin definitions: replaced PH0/PH1 by  
PC14/PC15.  
Table 10: Alternate function input/output: removed EVENT OUT from  
PH2 port, AFIO15 column.  
Table 13: Functionalities depending on the operating power supply  
range: added footnote 1.  
Table 19: Current consumption in Sleep mode: updated MSI conditions  
and fHCLK  
.
Table 20: Current consumption in Low power run mode: updated some  
temperature conditions; added footnote 2.  
Table : : updated some temperature conditions and one of the MSI  
clock conditions.  
Table 22: Typical and maximum current consumptions in Stop mode:  
updated IDD (WU from Stop) parameter.  
25-Jan-2012  
6
Table 23: Typical and maximum current consumptions in Standby  
mode: updated IDD (WU from Standby) parameter.  
Table 24: Typical and maximum timings in Low power modes: updated  
fHCLK value for tWUSLEEP_LP; updated typical value of parameter  
“Wakeup from Stop mode, regulator in Run mode”.  
Table 25: Peripheral current consumption: replaced GPIOF by GPIOH.  
Table 33: PLL characteristics: updated “PLL output clock”  
Table 35: Flash memory and data EEPROM characteristics: updated all  
information for IDD  
.
Figure 18: I/O AC characteristics definition: replaced the falling edge  
“tr(IO)out” by “tf(IO)out”.  
Table 47: I2C characteristics: amended footnote 2.  
Table 54: ADC characteristics: updated fS max value for direct  
channels, 6-bit sampling rate.  
Table 55: ADC accuracy: Updated the first, third and fourth fADC test  
condition.  
Table 58: Temperature sensor characteristics: updated typ, min, and  
max values of the TS_temp parameter.  
Doc ID 17659 Rev 8  
119/121  
Revision history  
STM32L151x6/8/B, STM32L152x6/8/B  
Changes  
Table 70. Document revision history (continued)  
Date  
Revision  
Updated cover page  
Updated Section 3.10: ADC (analog-to-digital converter)  
Updated Table 3: Functionalities depending on the operating power  
supply range, added Table 4: CPU frequency range depending on  
dynamic voltage scaling and Table 5: Functionalities depending on the  
working mode (from Run/active down to standby)  
Updated Table 27: Low-speed external user clock characteristics  
Added footnote 2. in Table 15: Embedded reset and power control block  
characteristics  
Updated Table 22: Typical and maximum current consumptions in Stop  
mode and Table 23: Typical and maximum current consumptions in  
Standby mode  
Updated footnote 4. in Table 22: Typical and maximum current  
consumptions in Stop mode  
26-Oct-2012  
7
Updated Table 44: I/O AC characteristics  
Updated Table 47: I2C characteristics  
Updated Table 49: SPI characteristics  
Updated Section 6.3.8: Memory characteristics  
Updated “non-robust” Table 54: ADC characteristics  
Removed the note “position of 4.7 µf capacitor” in Section 6.1.6: Power  
supply scheme  
Updated Table 65: UFQFPN48 7 x 7 mm, 0.5 mm pitch, package  
mechanical data  
Updated Table 64: LQFP48, 7 x 7 mm, 48-pin low-profile quad flat  
package mechanical data  
Added the resistance of TFBGA in Table 68: Thermal characteristics  
Added Figure 42: Thermal resistance  
Removed AHB1/AHB2 in Figure 1: Ultra-low-power STM32L15xxx  
block diagram  
Added IWDG and WWDG rows in Table 5: Functionalities depending  
on the working mode (from Run/active down to standby)  
Updated IDD (Supply current during wakeup time from Standby mode)  
in Table 23: Typical and maximum current consumptions in Standby  
mode  
The comment "HSE = 16 MHz(2) (PLL ON for fHCLK above 16 MHz)"  
replaced by "fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2  
above 16 MHz (PLL ON)(2)” in Table 19: Current consumption in Sleep  
mode  
07-Feb-2013  
8
Updated Stop mode current to 1.2 µA in Ultra-low-power platform  
Updated entire Section 7: Package characteristics  
Removed alternate function “I2C2_SMBA” for GPIO pin “PH2” in  
Table 9: STM32L15xxx pin definitions  
Updated Figure 26: Typical connection diagram using the ADC and  
definition of symbol “RAIN” in Table 54: ADC characteristics  
Removed first sentence in Section : I2C interface characteristics  
120/121  
Doc ID 17659 Rev 8  
STM32L151x6/8/B, STM32L152x6/8/B  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT  
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING  
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,  
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE  
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
Doc ID 17659 Rev 8  
121/121  

相关型号:

STM32L151RBU6DTR

Ultra-low-power 32-bit MCU ARM-based Cortex-M3
STMICROELECTR

STM32L151RC

Reset and supply management
STMICROELECTR

STM32L151RC-A

Ultra-low-power platform
STMICROELECTR

STM32L151RCT6

Ultra-low-power ARM Cortex-M3 MCU with 256 Kbytes Flash, 32 MHz CPU, USB, 3xOp-amp
STMICROELECTR

STM32L151RCT6A

Ultra-low-power 32-bit MCU ARM-based Cortex-M3, 256KB Flash, 32KB SRAM, 8KB EEPROM, LCD, USB, ADC, DAC
STMICROELECTR

STM32L151RCY6

Ultra-low-power platform
STMICROELECTR

STM32L151RD

Ultra-low-power 32-bit MCU ARM-based Cortex-M3, 384KB Flash
STMICROELECTR

STM32L151RDT6

Ultra-low-power 32-bit MCU ARM-based Cortex-M3, 384KB Flash, 48KB SRAM, 12KB EEPROM, LCD, USB, ADC, DAC, memory I/F
STMICROELECTR

STM32L151RDT6TR

Ultra-low-power ARM Cortex-M3 MCU with 384 Kbytes Flash, 32 MHz CPU, USB, 3xOp-amp
STMICROELECTR

STM32L151RE

Ultra-low-power platform
STMICROELECTR

STM32L151UC

Reset and supply management
STMICROELECTR

STM32L151UCY6

Reset and supply management
STMICROELECTR