STM8S103K3P3TR [STMICROELECTRONICS]

Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash;
STM8S103K3P3TR
型号: STM8S103K3P3TR
厂家: ST    ST
描述:

Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash

文件: 总113页 (文件大小:1267K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STM8S103K3 STM8S103F3 STM8S103F2  
Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash, data  
EEPROM,10-bit ADC, 3 timers, UART, SPI, I²C  
Permanently active, low consumption power-on  
and power-down reset  
Interrupt management  
Nested interrupt controller with 32 interrupts  
UFQFPN32 5x5  
LQFP32 7x7  
Up to 27 external interrupts on 6 vectors  
Timers  
Advanced control timer: 16-bit, 4 CAPCOM  
channels, 3 complementary outputs, dead-time  
insertion and flexible synchronization  
16-bit general purpose timer, with 3 CAPCOM  
TSSOP20  
SO20W 300 mils  
channels (IC, OC or PWM)  
8-bit basic timer with 8-bit prescaler  
Auto wake-up timer  
UFQFPN20 3x3  
Features  
Core  
Window watchdog and independent watchdog  
timers  
16 MHz advanced STM8 core with Harvard  
architecture and 3-stage pipeline  
Communications interfaces  
UART with clock output for synchronous  
operation, Smartcard, IrDA, LIN master mode  
Extended instruction set  
SPI interface up to 8 Mbit/s  
I2C interface up to 400 Kbit/s  
Memories  
Program memory: 8 Kbytes Flash; data retention  
20 years at 55 °C after 10 kcycles  
Analog to digital converter (ADC)  
Data memory: 640 bytes true data EEPROM;  
endurance 300 kcycles  
10-bit, ±1 LSB ADC with up to 5 multiplexed  
channels, scan mode and analog watchdog  
RAM: 1 Kbytes  
I/Os  
Clock, reset and supply management  
Up to 28 I/Os on a 32-pin package including 21  
high sink outputs  
2.95 to 5.5 V operating voltage  
Flexible clock control, 4 master clock sources:  
Highly robust I/O design, immune against current  
injection  
Low power crystal resonator oscillator  
-
External clock input  
Development support  
-
Embedded single wire interface module  
(SWIM) for fast on-chip programming and  
non intrusive debugging  
Internal, user-trimmable 16 MHz RC  
-
-
Internal low power 128 kHz RC  
-
Clock security system with clock monitor  
Unique ID  
Power management:  
96-bit unique key for each device  
Low power modes (wait, active-halt, halt)  
-
Switch-off peripheral clocks individually  
-
September 2010  
1/113  
DocID15441 Rev 6  
www.st.com  
Contents  
STM8S103K3 STM8S103F3 STM8S103F2  
Contents  
1 Introduction ..............................................................................................................8  
2 Description ...............................................................................................................9  
3 Block diagram ........................................................................................................10  
4 Product overview ...................................................................................................11  
4.1 Central processing unit STM8 .....................................................................................11  
4.2 Single wire interface module (SWIM) and debug module (DM) ..................................11  
4.3 Interrupt controller .......................................................................................................12  
4.4 Flash program and data EEPROM memory ................................................................12  
4.5 Clock controller ............................................................................................................13  
4.6 Power management ....................................................................................................14  
4.7 Watchdog timers ..........................................................................................................14  
4.8 Auto wakeup counter ...................................................................................................15  
4.9 Beeper ........................................................................................................................15  
4.10 TIM1 - 16-bit advanced control timer .........................................................................15  
4.11 TIM2 - 16-bit general purpose timer ..........................................................................16  
4.12 TIM4 - 8-bit basic timer ..............................................................................................16  
4.13 Analog-to-digital converter (ADC1) ............................................................................16  
4.14 Communication interfaces .........................................................................................17  
4.14.1 UART1 ...............................................................................................17  
4.14.2 SPI .....................................................................................................18  
4.14.3 I²C ......................................................................................................18  
5 Pinout and pin description ...................................................................................19  
5.1 STM8S103Kx UFQFPN32/LQFP32 pinout and pin description ..................................19  
5.2 STM8S103Fx TSSOP20/SO20/UFQFPN20 pinout and pin description .....................22  
5.2.1 STM8S103Fx TSSOP20/SO20 pinout .................................................22  
5.2.2 STM8S103Fx UFQFPN20 pinout ........................................................23  
5.2.3 STM8S103Fx TSSOP20/SO20/UFQFPN20 pin description ................24  
5.3 Alternate function remapping .......................................................................................25  
6 Memory and register map .....................................................................................26  
6.1 Memory map ................................................................................................................26  
6.2 Register map ...............................................................................................................27  
6.2.1 I/O port hardware register map ............................................................27  
6.2.2 General hardware register map ..........................................................28  
6.2.3 CPU/SWIM/debug module/interrupt controller registers .....................38  
7 Interrupt vector mapping ......................................................................................40  
8 Option bytes ...........................................................................................................42  
8.1 Alternate function remapping bits ................................................................................44  
2/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Contents  
9 Unique ID ................................................................................................................47  
10 Electrical characteristics ....................................................................................48  
10.1 Parameter conditions .................................................................................................48  
10.1.1 Minimum and maximum values .........................................................48  
10.1.2 Typical values .....................................................................................48  
10.1.3 Typical curves ....................................................................................48  
10.1.4 Loading capacitor ...............................................................................48  
10.1.5 Pin input voltage .................................................................................49  
10.2 Absolute maximum ratings ........................................................................................49  
10.3 Operating conditions ..................................................................................................51  
10.3.1 VCAP external capacitor ....................................................................52  
10.3.2 Supply current characteristics ............................................................53  
10.3.3 External clock sources and timing characteristics .............................63  
10.3.4 Internal clock sources and timing characteristics ...............................65  
10.3.5 Memory characteristics ......................................................................68  
10.3.6 I/O port pin characteristics .................................................................69  
10.3.7 Reset pin characteristics ....................................................................77  
10.3.8 SPI serial peripheral interface ............................................................79  
10.3.9 I2C interface characteristics ...............................................................82  
10.3.10 10-bit ADC characteristics ................................................................83  
10.3.11 EMC characteristics .........................................................................87  
11 Package information ............................................................................................91  
11.1 32-pin LQFP package mechanical data .....................................................................91  
11.2 32-lead UFQFPN package mechanical data .............................................................93  
11.3 20-lead UFQFPN package mechanical data .............................................................94  
11.4 20-pin TSSOP package mechanical data ..................................................................96  
11.5 20-pin SO package mechanical data .........................................................................97  
11.6 UFQFPN recommended footprint ..............................................................................98  
12 Thermal characteristics ....................................................................................100  
12.1 Reference document ...............................................................................................101  
12.2 Selecting the product temperature range ................................................................101  
13 Ordering information .........................................................................................102  
13.1 STM8S103 FASTROM microcontroller option list ...................................................103  
14 STM8 development tools ..................................................................................108  
14.1 Emulation and in-circuit debugging tools .................................................................108  
14.2 Software tools ..........................................................................................................108  
14.2.1 STM8 toolset ....................................................................................109  
14.2.2 C and assembly toolchains ..............................................................109  
14.3 Programming tools ..................................................................................................109  
15 Revision history .................................................................................................110  
DocID15441 Rev 6  
3/113  
List of tables  
STM8S103K3 STM8S103F3 STM8S103F2  
List of tables  
Table 1. STM8S103xx access line features .............................................................................................9  
Table 2. Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers ..................................14  
Table 3. TIM timer features ....................................................................................................................16  
Table 4. Legend/abbreviations for pinout tables ...................................................................................19  
Table 5. UFQFPN32/LQFP32 pin description ........................................................................................20  
Table 6. STM8S103Fx pin description ...................................................................................................24  
Table 7. I/O port hardware register map ................................................................................................27  
Table 8. General hardware register map ...............................................................................................28  
Table 9. CPU/SWIM/debug module/interrupt controller registers .........................................................38  
Table 10. Interrupt mapping ...................................................................................................................40  
Table 11. Option bytes .........................................................................................................................110  
Table 12. Option byte description ...........................................................................................................42  
Table 13. STM8S103K alternate function remapping bits for 32-pin devices ........................................44  
Table 14. STM8S103F alternate function remapping bits for 20-pin devices ........................................45  
Table 15. Unique ID registers (96 bits) .................................................................................................110  
Table 16. Voltage characteristics ...........................................................................................................49  
Table 17. Current characteristics ...........................................................................................................50  
Table 18. Thermal characteristics ..........................................................................................................50  
Table 19. General operating conditions .................................................................................................51  
Table 20. Operating conditions at power-up/power-down ......................................................................52  
Table 21. Total current consumption with code execution in run mode at VDD = 5 V .............................53  
Table 22. Total current consumption with code execution in run mode at VDD = 3.3 V ..........................54  
Table 23. Total current consumption in wait mode at VDD = 5 V ............................................................55  
Table 24. Total current consumption in wait mode at VDD = 3.3 V .........................................................55  
Table 25. Total current consumption in active halt mode at VDD = 5 V ..................................................56  
Table 26. Total current consumption in active halt mode at VDD = 3.3 V ...............................................57  
Table 27. Total current consumption in halt mode at VDD = 5 V .............................................................58  
Table 28. Total current consumption in halt mode at VDD = 3.3 V ..........................................................58  
Table 29. Wakeup times .........................................................................................................................58  
Table 30. Total current consumption and timing in forced reset state ....................................................59  
Table 31. Peripheral current consumption .............................................................................................60  
Table 32. HSE user external clock characteristics .................................................................................63  
Table 33. HSE oscillator characteristics .................................................................................................64  
Table 34. HSI oscillator characteristics ..................................................................................................65  
Table 35. LSI oscillator characteristics ...................................................................................................67  
Table 36. RAM and hardware registers ..................................................................................................68  
Table 37. Flash program memory/data EEPROM memory ....................................................................68  
Table 38. I/O static characteristics .........................................................................................................69  
Table 39. Output driving current (standard ports) ..................................................................................71  
Table 40. Output driving current (true open drain ports) ........................................................................71  
Table 41. Output driving current (high sink ports) ..................................................................................72  
Table 42. NRST pin characteristics ........................................................................................................77  
Table 43. SPI characteristics ..................................................................................................................80  
Table 44. I2C characteristics ..................................................................................................................82  
Table 45. ADC characteristics ................................................................................................................84  
Table 46. ADC accuracy with RAIN < 10 kΩ , VDD= 5 V .........................................................................84  
Table 47. ADC accuracy with RAIN < 10 kΩ RAIN, VDD = 3.3 V ..............................................................85  
4/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
List of tables  
Table 48. EMS data ................................................................................................................................88  
Table 49. EMI data .................................................................................................................................88  
Table 50. ESD absolute maximum ratings .............................................................................................89  
Table 51. Electrical sensitivities .............................................................................................................90  
Table 52. 32-pin low profile quad flat package mechanical data ............................................................91  
Table 53. 32-lead, ultra thin, fine pitch quad flat no-lead package mechanical data .............................93  
Table 54. 20-lead, ultra thin, fine pitch quad flat no-lead package (3 x 3) package mechanical data ....95  
Table 55. 20-pin, 4.40 mm body, 0.65 mm pitch mechanical data .........................................................97  
Table 56. 20-lead, plastic small outline (300 mils) mechanical data ......................................................97  
Table 57. Thermal characteristics ........................................................................................................100  
Table 58. Document revision history ....................................................................................................110  
DocID15441 Rev 6  
5/113  
List of figures  
STM8S103K3 STM8S103F3 STM8S103F2  
List of figures  
Figure 1. Block diagram .........................................................................................................................10  
Figure 2. Flash memory organization ....................................................................................................13  
Figure 3. STM8S103Kx UFQFPN32/LQFP32 pinout .............................................................................19  
Figure 4. STM8S103Fx TSSOP20/SO20 pinout ....................................................................................22  
Figure 5. STM8S103Fx UFQFPN20-pin pinout .....................................................................................23  
Figure 6. Memory map ...........................................................................................................................26  
Figure 7. Pin loading conditions .............................................................................................................48  
Figure 8. Pin input voltage .....................................................................................................................49  
Figure 9. fCPUmax versus VDD ................................................................................................................52  
Figure 10. External capacitor CEXT .......................................................................................................53  
Figure 11. Typ IDD(RUN) vs. VDD HSE user external clock, fCPU = 16 MHz .............................................61  
Figure 12. Typ IDD(RUN) vs. fCPU HSE user external clock, VDD = 5 V ....................................................61  
Figure 13. Typ IDD(RUN) vs. VDD HSI RC osc, fCPU = 16 MHz .................................................................62  
Figure 14. Typ IDD(WFI) vs. VDD HSE user external clock, fCPU = 16 MHz ..............................................62  
Figure 15. Typ IDD(WFI) vs. fCPU HSE user external clock, VDD = 5 V .....................................................63  
Figure 16. Typ IDD(WFI) vs. VDD HSI RC osc, fCPU = 16 MHz .................................................................63  
Figure 17. HSE external clocksource .....................................................................................................64  
Figure 18. HSE oscillator circuit diagram ...............................................................................................65  
Figure 19. Typical HSI accuracy at VDD = 5 V vs 5 temperatures ..........................................................66  
Figure 20. Typical HSI frequency variation vs VDD @ 4 temperatures ..................................................67  
Figure 21. Typical LSI frequency variation vs VDD @ 4 temperatures ...................................................67  
Figure 22. Typical VIL and VIH vs VDD @ 4 temperatures ......................................................................70  
Figure 23. Typical pull-up resistance vs VDD @ 4 temperatures ............................................................70  
Figure 24. Typical pull-up current vs VDD @ 4 temperatures .................................................................71  
Figure 25. Typ. VOL @ VDD = 5 V (standard ports) ................................................................................72  
Figure 26. Typ. VOL @ VDD = 3.3 V (standard ports) .............................................................................73  
Figure 27. Typ. VOL @ VDD = 5 V (true open drain ports) ......................................................................73  
Figure 28. Typ. VOL @ VDD = 3.3 V (true open drain ports) ...................................................................74  
Figure 29. Typ. VOL @ VDD = 5 V (high sink ports) ................................................................................74  
Figure 30. Typ. VOL @ VDD = 3.3 V (high sink ports) .............................................................................75  
Figure 31. Typ. VDD - VOH@ VDD = 5 V (standard ports) .......................................................................75  
Figure 32. Typ. VDD - VOH @ VDD = 3.3 V (standard ports) ...................................................................76  
Figure 33. Typ. VDD - VOH@ VDD = 5 V (high sink ports) .......................................................................76  
Figure 34. Typ. VDD - VOH@ VDD = 3.3 V (high sink ports) ....................................................................77  
Figure 35. Typical NRST VIL and VIH vs VDD @ 4 temperatures ...........................................................78  
Figure 36. Typical NRST pull-up resistance vs VDD @ 4 temperatures .................................................78  
Figure 37. Typical NRST pull-up current vs VDD @ 4 temperatures ......................................................79  
Figure 38. Recommended reset pin protection ......................................................................................79  
Figure 39. SPI timing diagram - slave mode and CPHA = 0 ..................................................................81  
Figure 40. SPI timing diagram - slave mode and CPHA = 1 ..................................................................81  
Figure 41. SPI timing diagram - master mode(1) ...................................................................................82  
Figure 42. Typical application with I2C bus and timing diagram ............................................................86  
Figure 43. ADC accuracy characteristics ...............................................................................................86  
Figure 44. Typical application with ADC ................................................................................................87  
Figure 45. 32-pin low profile quad flat package (7 x 7) ..........................................................................91  
Figure 46. 32-lead, ultra thin, fine pitch quad flat no-lead package (5 x 5) ............................................93  
Figure 47. 20-lead, ultra thin, fine pitch quad flat no-lead package outline (3 x 3) ................................94  
6/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
List of figures  
Figure 48. 20-pin, 4.40 mm body, 0.65 mm pitch ...................................................................................97  
Figure 49. 20-lead, plastic small outline (300 mils) package .................................................................97  
Figure 50. Recommended footprint for on-board emulation ..................................................................98  
Figure 51. Recommended footprint without on-board emulation ...........................................................99  
Figure 52. STM8S103x access line ordering information scheme ......................................................102  
DocID15441 Rev 6  
7/113  
Introduction  
STM8S103K3 STM8S103F3 STM8S103F2  
1
Introduction  
This datasheet contains the description of the device features, pinout, electrical characteristics,  
mechanical data and ordering information.  
For complete information on the STM8S microcontroller memory, registers and peripherals,  
please refer to the STM8S microcontroller family reference manual (RM0016).  
For information on programming, erasing and protection of the internal Flash memory  
please refer to the STM8S Flash programming manual (PM0051).  
For information on the debug and SWIM (single wire interface module) refer to the STM8  
SWIM communication protocol and debug module user manual (UM0470).  
For information on the STM8 core, please refer to the STM8 CPU programming manual  
(PM0044).  
8/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Description  
2
Description  
The STM8S103x access line 8-bit microcontrollers offer 8 Kbytes Flash program memory,  
plus integrated true data EEPROM. The STM8S microcontroller family reference manual  
(RM0016) refers to devices in this family as low-density. They provide the following benefits:  
Reduced system cost  
Integrated true data EEPROM for up to 300 k write/erase cycles  
-
High system integration level with internal clock oscillators, watchdog and brown-out  
reset.  
-
Performance and robustness  
16 MHz CPU clock frequency  
-
Robust I/O, independent watchdogs with separate clock source  
-
Clock security system  
-
Full documentation and a wide choice of development tools  
Advanced core and peripherals made in a state-of-the art technology  
Table 1: STM8S103xx access line features  
Device  
STM8S103K3  
STM8S103F3  
STM8S103F2  
Pin count  
32  
20  
20  
Maximum number of GPIOs (I/Os) 28  
16  
16  
7
16  
16  
7
Ext. interrupt pins  
27  
7
Timer CAPCOM channels  
Timer complementary outputs  
A/D converter channels  
High sink I/Os  
3
2
2
4
5
5
21  
12  
12  
Low density Flash program  
memory (bytes)  
8K  
8K  
4K  
Data EEPROM (bytes)  
RAM (bytes)  
640(1)  
1K  
640(1)  
1K  
640(1)  
1K  
Multipurpose timer (TIM1), SPI, I2C, UART window  
WDG,independent WDG, ADC, PWM timer (TIM2), 8-bit  
timer (TIM4)  
Peripheral set  
(1) No read-while-write (RWW) capability  
DocID15441 Rev 6  
9/113  
Block diagram  
STM8S103K3 STM8S103F3 STM8S103F2  
3
Block diagram  
Figure 1: Block diagram  
Reset block  
Reset  
XTAL 1-16 MHz  
RC int. 16 MHz  
RC int. 128 kHz  
Clock controller  
Detector  
Reset  
POR  
BOR  
Clock to peripherals and core  
Window WDG  
STM8 core  
Independent WDG  
8 Kbytes  
program  
Flash  
Single wire  
debug interf.  
Debug/SWIM  
640 bytes  
data EEPROM  
400 Kbit/s  
8 Mbit/s  
2
1 Kbyte  
RAM  
I
C
Up to  
4 CAPCOM  
channels +3  
SPI  
complementary  
outputs  
16-bit advanced  
control timer (TIM1)  
LIN master  
SPI emul.  
UART1  
16-bit general purpose  
timer (TIM2)  
Up to  
3 CAPCOM  
channels  
8-bit basic timer  
(TIM4)  
Up to 5  
channels  
ADC1  
1/2/4 kHz  
beep  
AWU timer  
Beeper  
10/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Product overview  
4
Product overview  
The following section intends to give an overview of the basic features of the device functional  
modules and peripherals.  
For more detailed information please refer to the corresponding family reference manual  
(RM0016).  
4.1  
Central processing unit STM8  
The 8-bit STM8 core is designed for code efficiency and performance.  
It contains 6 internal registers which are directly addressable in each execution context, 20  
addressing modes including indexed indirect and relative addressing and 80 instructions.  
Architecture and registers  
Harvard architecture  
3-stage pipeline  
32-bit wide program memory bus - single cycle fetching for most instructions  
X and Y 16-bit index registers - enabling indexed addressing modes with or without offset  
and read-modify-write type data manipulations  
8-bit accumulator  
24-bit program counter - 16-Mbyte linear memory space  
16-bit stack pointer - access to a 64 K-level stack  
8-bit condition code register - 7 condition flags for the result of the last instruction  
Addressing  
20 addressing modes  
Indexed indirect addressing mode for look-up tables located anywhere in the address  
space  
Stack pointer relative addressing mode for local variables and parameter passing  
Instruction set  
80 instructions with 2-byte average instruction size  
Standard data movement and logic/arithmetic functions  
8-bit by 8-bit multiplication  
16-bit by 8-bit and 16-bit by 16-bit division  
Bit manipulation  
Data transfer between stack and accumulator (push/pop) with direct stack access  
Data transfer using the X and Y registers or direct memory-to-memory transfers  
4.2  
Single wire interface module (SWIM) and debug module (DM)  
The single wire interface module and debug module permits non-intrusive, real-time in-circuit  
debugging and fast memory programming.  
DocID15441 Rev 6  
11/113  
Product overview  
SWIM  
STM8S103K3 STM8S103F3 STM8S103F2  
Single wire interface module for direct access to the debug module and memory programming.  
The interface can be activated in all device operation modes. The maximum data transmission  
speed is 145 bytes/ms.  
Debug module  
The non-intrusive debugging module features a performance close to a full-featured emulator.  
Beside memory and peripherals, also CPU operation can be monitored in real-time by means  
of shadow registers.  
R/W to RAM and peripheral registers in real-time  
R/W access to all resources by stalling the CPU  
Breakpoints on all program-memory instructions (software breakpoints)  
Two advanced breakpoints, 23 predefined configurations  
4.3  
4.4  
Interrupt controller  
Nested interrupts with three software priority levels  
32 interrupt vectors with hardware priority  
Up to 27 external interrupts on 6 vectors including TLI  
Trap and reset interrupts  
Flash program and data EEPROM memory  
8 Kbytes of Flash program single voltage Flash memory  
640 bytes true data EEPROM  
User option byte area  
Write protection (WP)  
Write protection of Flash program memory and data EEPROM is provided to avoid unintentional  
overwriting of memory that could result from a user software malfunction.  
There are two levels of write protection. The first level is known as MASS (memory access  
security system). MASS is always enabled and protects the main Flash program memory,  
data EEPROM and option bytes.  
To perform in-application programming (IAP), this write protection can be removed by writing  
a MASS key sequence in a control register. This allows the application to write to data  
EEPROM, modify the contents of main program memory or the device option bytes.  
A second level of write protection, can be enabled to further protect a specific area of memory  
known as UBC (user boot code). Refer to the figure below.  
The size of the UBC is programmable through the UBC option byte, in increments of 1 page  
(64-byte block) by programming the UBC option byte in ICP mode.  
This divides the program memory into two areas:  
Main program memory: Up to 8 Kbytes minus UBC  
User-specific boot code (UBC): Configurable up to 8 Kbytes  
The UBC area remains write-protected during in-application programming. This means that  
the MASS keys do not unlock the UBC area. It protects the memory used to store the boot  
12/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Product overview  
program, specific code libraries, reset and interrupt vectors, the reset routine and usually the  
IAP and communication routines.  
Figure 2: Flash memory organization  
Data memory area ( 640 bytes)  
Data  
EEPROM  
memory  
Option bytes  
Programmable  
area from 64  
UBC area  
bytes(1 page)  
Remains write protected during IAP  
up to 8 Kbytes  
(in 1 page steps)  
Low density  
Flash program  
memory  
(8 Kbytes)  
Program memory area  
Write access possible for IAP  
Read-out protection (ROP)  
The read-out protection blocks reading and writing the Flash program memory and data  
EEPROM memory in ICP mode (and debug mode). Once the read-out protection is activated,  
any attempt to toggle its status triggers a global erase of the program and data memory. Even  
if no protection can be considered as totally unbreakable, the feature provides a very high  
level of protection for a general purpose microcontroller.  
4.5  
Clock controller  
The clock controller distributes the system clock (fMASTER) coming from different oscillators  
to the core and the peripherals. It also manages clock gating for low power modes and ensures  
clock robustness.  
Features  
Clock prescaler: To get the best compromise between speed and current consumption  
the clock frequency to the CPU and peripherals can be adjusted by a programmable  
prescaler.  
Safe clock switching: Clock sources can be changed safely on the fly in run mode  
through a configuration register. The clock signal is not switched until the new clock source  
is ready. The design guarantees glitch-free switching.  
Clock management: To reduce power consumption, the clock controller can stop the  
clock to the core, individual peripherals or memory.  
Master clock sources: Four different clock sources can be used to drive the master  
clock:  
1-16 MHz high-speed external crystal (HSE)  
-
DocID15441 Rev 6  
13/113  
Product overview  
STM8S103K3 STM8S103F3 STM8S103F2  
Up to 16 MHz high-speed user-external clock (HSE user-ext)  
-
-
-
16 MHz high-speed internal RC oscillator (HSI)  
128 kHz low-speed internal RC (LSI)  
Startup clock: After reset, the microcontroller restarts by default with an internal 2 MHz  
clock (HSI/8). The prescaler ratio and clock source can be changed by the application  
program as soon as the code execution starts.  
Clock security system (CSS): This feature can be enabled by software. If an HSE clock  
failure occurs, the internal RC (16 MHz/8) is automatically selected by the CSS and an  
interrupt can optionally be generated.  
Configurable main clock output (CCO): This outputs an external clock for use by the  
application.  
Table 2: Peripheral clock gating bit assignments in CLK_PCKENR1/2 registers  
Bit  
Peripheral Bit  
clock  
Peripheral Bit  
clock  
Peripheral Bit  
clock  
Peripheral  
clock  
PCKEN17 TIM1  
PCKEN13 UART1  
PCKEN27 Reserved PCKEN23 ADC  
PCKEN16 Reserved PCKEN12 Reserved PCKEN26 Reserved PCKEN22 AWU  
PCKEN15 TIM2  
PCKEN14 TIM4  
PCKEN11 SPI  
PCKEN10 I2C  
PCKEN25 Reserved PCKEN21 Reserved  
PCKEN24 Reserved PCKEN20 Reserved  
4.6  
Power management  
For efficent power management, the application can be put in one of four different low-power  
modes. You can configure each mode to obtain the best compromise between lowest power  
consumption, fastest start-up time and available wakeup sources.  
Wait mode: In this mode, the CPU is stopped, but peripherals are kept running. The  
wakeup is performed by an internal or external interrupt or reset.  
Active halt mode with regulator on: In this mode, the CPU and peripheral clocks are  
stopped. An internal wakeup is generated at programmable intervals by the auto wake up  
unit (AWU). The main voltage regulator is kept powered on, so current consumption is  
higher than in active halt mode with regulator off, but the wakeup time is faster. Wakeup  
is triggered by the internal AWU interrupt, external interrupt or reset.  
Active halt mode with regulator off: This mode is the same as active halt with regulator  
on, except that the main voltage regulator is powered off, so the wake up time is slower.  
Halt mode: In this mode the microcontroller uses the least power. The CPU and peripheral  
clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by  
external event or reset.  
4.7  
Watchdog timers  
The watchdog system is based on two independent timers providing maximum security to  
the applications.  
14/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Product overview  
Activation of the watchdog timers is controlled by option bytes or by software. Once activated,  
the watchdogs cannot be disabled by the user program without performing a reset.  
Window watchdog timer  
The window watchdog is used to detect the occurrence of a software fault, usually generated  
by external interferences or by unexpected logical conditions, which cause the application  
program to abandon its normal sequence.  
The window function can be used to trim the watchdog behavior to match the application  
perfectly.  
The application software must refresh the counter before time-out and during a limited time  
window.  
A reset is generated in two situations:  
1. Timeout: At 16 MHz CPU clock the time-out period can be adjusted between 75 µs up to  
64 ms.  
2. Refresh out of window: The downcounter is refreshed before its value is lower than the  
one stored in the window register.  
Independent watchdog timer  
The independent watchdog peripheral can be used to resolve processor malfunctions due to  
hardware or software failures.  
It is clocked by the 128 kHZ LSI internal RC clock source, and thus stays active even in case  
of a CPU clock failure  
The IWDG time base spans from 60 µs to 1 s.  
4.8  
Auto wakeup counter  
Used for auto wakeup from active halt mode  
Clock source: Internal 128 kHz internal low frequency RC oscillator or external clock  
LSI clock can be internally connected to TIM1 input capture channel 1 for calibration  
4.9  
Beeper  
The beeper function outputs a signal on the BEEP pin for sound generation. The signal is in  
the range of 1, 2 or 4 kHz.  
The beeper output port is only available through the alternate function remap option bit AFR7.  
4.10  
TIM1 - 16-bit advanced control timer  
This is a high-end timer designed for a wide range of control applications. With its  
complementary outputs, dead-time control and center-aligned PWM capability, the field of  
applications is extended to motor control, lighting and half-bridge driver  
16-bit up, down and up/down autoreload counter with 16-bit prescaler  
Four independent capture/compare channels (CAPCOM) configurable as input capture,  
output compare, PWM generation (edge and center aligned mode) and single pulse mode  
output  
Synchronization module to control the timer with external signals  
DocID15441 Rev 6  
15/113  
Product overview  
STM8S103K3 STM8S103F3 STM8S103F2  
Break input to force the timer outputs into a defined state  
Three complementary outputs with adjustable dead time  
Encoder mode  
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update, 1 x break  
4.11  
4.12  
TIM2 - 16-bit general purpose timer  
16-bit autoreload (AR) up-counter  
15-bit prescaler adjustable to fixed power of 2 ratios 1…32768  
3 individually configurable capture/compare channels  
PWM mode  
Interrupt sources: 3 x input capture/output compare, 1 x overflow/update  
TIM4 - 8-bit basic timer  
8-bit autoreload, adjustable prescaler ratio to any power of 2 from 1 to 128  
Clock source: CPU clock  
Interrupt source: 1 x overflow/update  
Table 3: TIM timer features  
Timer  
synchronization/  
chaining  
Counter  
size (bits)  
Counting CAPCOM Complem. Ext.  
Timer  
Prescaler  
mode  
channels outputs  
trigger  
Any integer  
from 1 to  
65536  
TIM1  
16  
16  
8
Up/down  
4
3
0
3
0
0
Yes  
Any power of  
2 from 1 to  
32768  
No  
TIM2  
TIM4  
Up  
Up  
No  
No  
Any power of  
2 from 1 to  
128  
4.13  
Analog-to-digital converter (ADC1)  
The STM8S103xx family products contain a 10-bit successive approximation A/D converter  
(ADC1) with up to 5 external multiplexed input channels and the following main features:  
Input voltage range: 0 to VDD  
Conversion time: 14 clock cycles  
Single and continuous and buffered continuous conversion modes  
Buffer size (n x 10 bits) where n = number of input channels  
Scan mode for single and continuous conversion of a sequence of channels  
16/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Product overview  
Analog watchdog capability with programmable upper and lower thresholds  
Analog watchdog interrupt  
External trigger input  
Trigger from TIM1 TRGO  
End of conversion (EOC) interrupt  
4.14  
Communication interfaces  
The following communication interfaces are implemented:  
UART1: Full feature UART, synchronous mode, SPI master mode, Smartcard mode, IrDA  
mode, single wire mode, LIN2.1 master capability  
SPI : Full and half-duplex, 8 Mbit/s  
I²C: Up to 400 Kbit/s  
4.14.1  
UART1  
Main features  
One Mbit/s full duplex SCI  
SPI emulation  
High precision baud rate generator  
Smartcard emulation  
IrDA SIR encoder decoder  
LIN master mode  
Single wire half duplex mode  
Asynchronous communication (UART mode)  
Full duplex communication - NRZ standard format (mark/space)  
Programmable transmit and receive baud rates up to 1 Mbit/s (fCPU/16) and capable of  
following any standard baud rate regardless of the input frequency  
Separate enable bits for transmitter and receiver  
Two receiver wakeup modes:  
Address bit (MSB)  
-
Idle line (interrupt)  
-
Transmission error detection with interrupt generation  
Parity control  
Synchronous communication  
Full duplex synchronous transfers  
SPI master operation  
8-bit data communication  
Maximum speed: 1 Mbit/s at 16 MHz (fCPU/16)  
DocID15441 Rev 6  
17/113  
Product overview  
LIN master mode  
STM8S103K3 STM8S103F3 STM8S103F2  
Emission: Generates 13-bit synch break frame  
Reception: Detects 11-bit break frame  
4.14.2  
SPI  
Maximum speed: 8 Mbit/s (fMASTER/2) both for master and slave  
Full duplex synchronous transfers  
Simplex synchronous transfers on two lines with a possible bidirectional data line  
Master or slave operation - selectable by hardware or software  
CRC calculation  
1 byte Tx and Rx buffer  
Slave/master selection input pin  
4.14.3  
I²C  
I²C master features:  
Clock generation  
-
Start and stop generation  
-
I²C slave features:  
Programmable I2C address detection  
-
Stop bit detection  
-
Generation and detection of 7-bit/10-bit addressing and general call  
Supports different communication speeds:  
Standard speed (up to 100 kHz)  
-
Fast speed (up to 400 kHz)  
-
18/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Pinout and pin description  
5
Pinout and pin description  
Table 4: Legend/abbreviations for pinout tables  
Type  
I= Input, O = Output, S = Power supply  
CM = CMOS  
Level  
Input  
Output  
HS = High sink  
Output speed  
O1 = Slow (up to 2 MHz)  
O2 = Fast (up to 10 MHz)  
O3 = Fast/slow programmability with slow as default state after reset  
O4 = Fast/slow programmability with fast as default state after reset  
Port and control  
configuration  
Input  
float = floating, wpu = weak pull-up  
Output  
T = True open drain, OD = Open drain, PP =  
Push pull  
Reset state  
Bold X (pin state after internal reset release).  
Unless otherwise specified, the pin state is the same during the reset  
phase and after the internal reset release.  
5.1  
STM8S103Kx UFQFPN32/LQFP32 pinout and pin description  
Figure 3: STM8S103Kx UFQFPN32/LQFP32 pinout  
32 31 30 29 28 27 26 25  
24  
23  
22  
21  
20  
19  
18  
17  
1
2
3
4
5
6
7
8
NRST  
OSCIN/PA1  
PC7 (HS)/SPI_MISO  
PC6 (HS)/SPI_MOSI  
OSCOUT/PA2  
PC5 (HS)/SPI_SCK  
V
PC4 (HS)/TIM1_CH4/CLK_CCO  
PC3 (HS)/TIM1_CH3  
SS  
VCAP  
V
PC2 (HS)/TIM1_CH2  
DD  
[SPI_NSS] TIM2_CH3/(HS)PA3  
PF4  
PC1 (HS)/TIM1_CH1/UART1_CK  
PE5 (HS)/SPI_NSS  
9
10 11 12 13 14 15 16  
DocID15441 Rev 6  
19/113  
Pinout and pin description  
STM8S103K3 STM8S103F3 STM8S103F2  
1. (HS) high sink capability.  
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it  
indicates an exclusive choice not a duplication of the function).  
Table 5: UFQFPN32/LQFP32 pin description  
Input  
Output  
Alternate  
function  
after remap  
[option bit]  
Main  
function  
(after reset) function  
Default  
alternate  
Pin  
Pin  
no.  
Type  
Ext.  
High  
name  
floating wpu  
Speed OD PP  
(1)  
interrupt sink  
1
2
NRST  
I/O  
I/O  
X
Reset  
(2)  
PA1/ OSCI  
X
X
X
X
X
X
O1  
O1  
X
X
X
X
Port A1  
Resonator/  
crystal in  
3
PA2/ OSCOUT I/O  
Port A2  
Resonator/  
crystal out  
4
5
6
7
V
S
Digital ground  
SS  
VCAP  
S
1.8 V regulator capacitor  
Digital power supply  
V
S
DD  
PA3/  
TIM2_CH3  
[SPI_NSS]  
I/O  
X
X
X
HS  
O3  
X
X
Port A3  
Timer 2  
channel 3  
SPI master/  
slave select  
[AFR1]  
8
PF4  
PB7  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
O1  
O1  
O1  
O1  
O1  
O3  
X
X
X
X
X
X
Port F4  
Port B7  
Port B6  
Port B5  
Port B4  
Port B3  
9
X
X
X
X
X
10  
11  
12  
13  
PB6  
2
(3)  
2
PB5/ I C_SDA I/O  
T
I C data  
2
(3)  
2
PB4/ I C_SCL I/O  
T
I C clock  
PB3/AIN3/  
TIM1_ETR  
I/O  
X
X
HS  
HS  
X
X
X
X
Analog input 3/  
Timer 1  
external trigger  
14  
PB2/AIN2/  
I/O  
X
X
O3  
Port B2  
Analog input 2/  
Timer 1 -  
TIM1_CH3N  
inverted  
channel 3  
20/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Pinout and pin description  
Input  
Output  
Alternate  
Default  
Main  
function  
Pin  
Pin  
function  
Type  
alternate  
(after reset) function  
no.  
after remap  
Ext.  
High  
name  
floating wpu  
Speed OD PP  
(1)  
[option bit]  
interrupt sink  
15  
PB1/AIN1/  
TIM1_CH2N  
I/O  
I/O  
X
X
X
HS  
O3  
X
X
Port B1  
Port B0  
Analog input 1/  
Timer 1 -  
inverted  
channel 2  
16  
PB0/AIN0/  
TIM1_CH1N  
X
X
X
HS  
O3  
X
X
Analog input 0/  
Timer 1 -  
inverted  
channel 1  
17  
18  
PE5/  
I/O  
I/O  
X
X
X
X
X
X
HS  
HS  
O3  
O3  
X
X
X
X
Port E5  
Port C1  
SPI  
master/slave  
select  
SPI_NSS  
PC1/  
Timer 1 -  
TIM1_CH1/  
UART1_CK  
channel 1  
UART1 clock  
19  
20  
21  
PC2/  
TIM1_CH2  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
O3  
O3  
O3  
X
X
X
X
X
X
Port C2  
Port C3  
Port C4  
Timer 1 -  
channel 2  
PC3/  
TIM1_CH3  
Timer 1 -  
channel 3  
PC4/  
Timer 1 -  
TIM1_CH4/  
CLK_CCO  
channel 4  
/configurable  
clock output  
22  
23  
PC5/ SPI_SCK I/O  
PC6/ PI_MOSI I/O  
X
X
X
X
X
X
HS  
HS  
O3  
O3  
X
X
X
X
Port C5  
Port C6  
SPI clock  
SPI master  
out/slave in  
24  
25  
PC7/ PI_MISO I/O  
X
X
X
X
X
X
HS  
HS  
O3  
O3  
X
X
X
X
Port C7  
Port D0  
SPI master in/  
slave out  
PD0/  
I/O  
Timer 1 - break Configurable  
TIM1_BKIN  
[CLK_CCO]  
input  
clock output  
[AFR5]  
26  
27  
PD1/ SWIM  
I/O  
I/O  
X
X
X
X
HS  
HS  
O4  
O3  
X
X
X
X
Port D1  
Port D2  
SWIM data  
interface  
(4)  
PD2  
[TIM2_CH3]  
X
X
Timer 2 -  
channel  
3[AFR1]  
DocID15441 Rev 6  
21/113  
Pinout and pin description  
STM8S103K3 STM8S103F3 STM8S103F2  
Input  
Output  
Alternate  
function  
after remap  
[option bit]  
Main  
function  
(after reset) function  
Default  
alternate  
Pin  
Pin  
Type  
no.  
Ext.  
High  
name  
floating wpu  
Speed OD PP  
(1)  
interrupt sink  
28  
29  
PD3/  
TIM2_CH2/  
ADC_ETR  
I/O  
I/O  
X
X
X
X
X
X
HS  
HS  
O3  
O3  
X
X
X
X
Port D3  
Port D4  
Timer 2 -  
channel 2/ADC  
external trigger  
PD4/BEEP/  
TIM2_CH1  
Timer 2 -  
channel  
1/BEEP output  
30  
31  
32  
PD5/  
UART1_TX  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
O3  
O3  
O3  
X
X
X
X
X
X
Port D5  
Port D6  
Port D7  
UART1 data  
transmit  
PD6/  
UART1_RX  
UART1 data  
receive  
PD7/ TLI  
[TIM1_CH4]  
Top level  
interrupt  
Timer 1 -  
channel 4  
[AFR6]  
(1)  
I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total  
driven current must respect the absolute maximum ratings (see Electrical characteristics).  
(2)  
When the MCU is in Halt/Active-halt mode, PA1 is automatically configured in input weak pull up and cannot be used for waking  
up the device. In this mode, the output state of PA1 is not driven. It is recommended to use PA1 only in input mode if Halt/Active-halt  
is used in the application.  
(3)  
In the open-drain output column, "T" defines a true open-drain I/O (P-buffer and protection diode to V  
are not implemented)  
DD  
(4)  
The PD1 pin is in input pull-up during the reset phase and after internal reset release.  
5.2  
STM8S103Fx TSSOP20/SO20/UFQFPN20 pinout and pin  
description  
5.2.1  
STM8S103Fx TSSOP20/SO20 pinout  
Figure 4: STM8S103Fx TSSOP20/SO20 pinout  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
UART1_CK/TIM2_CH1/BEEP/(HS)PD4  
UART1_TX/AIN5/(HS) PD5  
PD3 (HS)/AIN4/TIM2_CH2/ADC_ETR  
PD2 (HS)/AIN3/[TIM2_CH3]  
2
UART1_RX/AIN6/(HS) PD6  
NRST  
3
PD1(HS)/SWIM  
4
PC7 (HS)/SPI_MISO [TIM1_CH2]  
PC6 (HS)/SPI_MOSI [TIM1_CH1]  
PC5 (HS)/SPI_SCK [TIM2_CH1]  
PC4 (HS)/TIM1_CH4/CLK_CCO/AIN2/[TIM1_CH2N]  
PC3 (HS)/TIM1_CH3 [TLI] [TIM1_CH1N]  
OSCIN/PA1  
5
OSCOUT/PA2  
6
7
V
SS  
8
VCAP  
2
V
9
10  
DD  
PB4 (T)/I C_SCL [ADC_ETR]  
2
[SPI_NSS] TIM2_CH3/(HS) PA3  
PB5 (T)/I C_SDA [TIM1_BKIN]  
22/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Pinout and pin description  
1. HS high sink capability.  
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (If the same alternate function is shown twice, it  
indicates an exclusive choice not a duplication of the function).  
5.2.2  
STM8S103Fx UFQFPN20 pinout  
Figure 5: STM8S103Fx UFQFPN20-pin pinout  
20 19 18 17  
16  
15  
14  
13  
1
2
3
4
5
NRST  
PD1(HS)/SWIM  
OSCIN/PA1  
PC7(HS)/SPI_MISO[TIM1_CH2]  
PC6(HS)/SPI_MOSI [TIM1_CH1]  
PC5 (HS)/SPI_SCK [TIM2_CH1]  
PC4(HS)/TIM1_CH4/CLK_CCO/AIN2/[TIM1_CH2N]  
OSCOUT/PA2  
V
SS  
12  
11  
VCAP  
6
7
8
9
10  
1. HS high sink capability.  
2. (T) True open drain (P-buffer and protection diode to VDD not implemented).  
3. [ ] alternate function remapping option (if the same alternate function is shown twice, it  
indicates an exclusive choice not a duplication of the function).  
DocID15441 Rev 6  
23/113  
Pinout and pin description  
STM8S103K3 STM8S103F3 STM8S103F2  
5.2.3  
STM8S103Fx TSSOP20/SO20/UFQFPN20 pin description  
Table 6: STM8S103Fx pin description  
Pin no.  
Input  
Output  
Main  
function  
(after  
Default  
alternate  
function  
Alternate function  
after remap [option  
bit]  
Pin name  
Type  
Ext.  
interr.  
High sink  
TSSOP/SO20 UFQFPN20  
floating wpu  
Speed OD  
PP  
(1)  
reset)  
1
18  
PD4/ BEEP/  
TIM2_ CH1/  
UART1 _CK  
I/O  
X
X
X
HS  
O3  
X
X
Port D4  
Timer 2 -  
channel  
1/BEEP output/  
UART1 clock  
2
3
19  
20  
PD5/ AIN5/  
UART1 _TX  
I/O  
I/O  
X
X
X
X
X
X
HS  
HS  
O3  
O3  
X
X
X
X
Port D5  
Port D6  
Analog input 5/  
UART1 data  
transmit  
PD6/ AIN6/  
UART1 _RX  
Analog input 6/  
UART1 data  
receive  
4
5
1
2
NRST  
I/O  
I/O  
X
Reset  
(2)  
PA1/ OSCIN  
X
X
X
X
X
O1  
O1  
X
X
X
X
Port A1  
Resonator/  
crystal in  
6
3
PA2/ OSCOUT  
I/O  
X
Port A2  
Resonator/  
crystal out  
7
4
5
6
7
V
S
Digital ground  
SS  
8
VCAP  
S
1.8 V regulator capacitor  
Digital power supply  
9
V
S
DD  
10  
PA3/ TIM2_ CH3  
[SPI_ NSS]  
I/O  
X
X
X
X
X
X
X
X
X
HS  
O3  
O1  
O1  
O3  
X
X
Port A3  
Port B5  
Port B4  
Port C3  
Timer 2  
channel 3  
SPI master/ slave  
select [AFR1]  
2
2
11  
12  
13  
8
PB5/ I C_ SDA  
[TIM1_ BKIN]  
I/O  
I/O  
I/O  
T
I
I
C data  
Timer 1 - break  
input [AFR4]  
(3)  
2
2
9
PB4/ I C_ SCL  
T
C clock  
ADC external  
trigger [AFR4]  
(3)  
10  
PC3/ TIM1_CH3  
[TLI] [TIM1_  
CH1N]  
X
X
HS  
HS  
X
X
X
Timer 1 -  
channel 3  
Top level interrupt  
[AFR3] Timer 1 -  
inverted channel 1  
[AFR7]  
14  
11  
PC4/ CLK_CCO/  
TIM1_  
I/O  
X
X
O3  
X
Port C4  
Configurable  
clock  
Timer 1 - inverted  
channel 2 [AFR7]  
CH4/AIN2/[TIM1_  
CH2N]  
output/Timer 1  
- channel  
4/Analog input  
2
15  
16  
17  
18  
19  
20  
12  
13  
14  
15  
16  
17  
PC5/ SPI_SCK  
[TIM2_ CH1]  
I/O  
I/O  
I/O  
I/O  
I/O  
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
HS  
HS  
HS  
HS  
HS  
HS  
O3  
O3  
O3  
O4  
O3  
O3  
X
X
X
X
X
X
X
X
X
X
X
X
Port C5  
Port C6  
Port C7  
Port D1  
Port D2  
Port D3  
SPI clock  
Timer 2 - channel 1  
[AFR0]  
PC6/ SPI_MOSI  
[TIM1_ CH1]  
SPI master  
out/slave in  
Timer 1 - channel 1  
[AFR0]  
PC7/ SPI_MISO  
[TIM1_ CH2]  
SPI master in/  
slave out  
Timer 1 - channel 2  
[AFR0]  
PD1/ SWIM  
SWIM data  
interface  
PD2/AIN3/[TIM2_  
CH3]  
Analog input 3  
Timer 2 - channel 3  
[AFR1]  
PD3/ AIN4/ TIM2_ I/O  
CH2/ ADC_ ETR  
Analog input 4/  
Timer 2 -  
channel 2/ADC  
external trigger  
24/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Pinout and pin description  
(1)  
I/O pins used simultaneously for high current source/sink must be uniformly spaced around the package. In addition, the total driven current must respect the absolute  
maximum ratings.  
(2)  
When the MCU is in halt/active-halt mode, PA1 is automatically configured in input weak pull up and cannot be used for waking up the device. In this mode, the output  
state of PA1 is not driven. It is recommended to use PA1 only in input mode if halt/active-halt is used in the application.  
(3)  
In the open-drain output column, "T" defines a true open-drain I/O (P-buffer and protection diode to V  
are not implemented).  
DD  
5.3  
Alternate function remapping  
As shown in the rightmost column of the pin description table, some alternate functions can  
be remapped at different I/O ports by programming one of eight AFR (alternate function  
remap) option bits. When the remapping option is active, the default alternate function is no  
longer available.  
To use an alternate function, the corresponding peripheral must be enabled in the peripheral  
registers.  
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO  
section of the family reference manual, RM0016).  
DocID15441 Rev 6  
25/113  
Memory and register map  
STM8S103K3 STM8S103F3 STM8S103F2  
6
Memory and register map  
6.1  
Memory map  
Figure 6: Memory map  
0x00 0000  
RAM  
(1 Kbyte)  
513 bytes stack  
Reserved  
0x00 03FF  
0x00 0800  
0x00 3FFF  
0x00 4000  
640 bytes data EEPROM  
Reserved  
0x00 427F  
0x00 4280  
0x00 47FF  
0x00 4800  
0x00 480A  
0x00 480B  
0x00 4864  
Option bytes  
Reserved  
0x00 4865  
0x00 4870  
0x00 4871  
0x00 4FFF  
0x00 5000  
Unique ID  
Reserved  
GPIO and periph. reg.  
0x00 57FF  
0x00 5800  
Reserved  
0x00 7EFF  
0x00 7F00  
CPU/SWIM/debug/ITC  
registers  
0x00 7FFF  
0x00 8000  
32 interrupt vectors  
0x00 807F  
0x00 8080  
Flash program memory  
(8 Kbytes)  
0x00 9FFF  
0x00 A000  
Reserved  
0x02 7FFF  
26/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Memory and register map  
6.2  
Register map  
6.2.1  
I/O port hardware register map  
Table 7: I/O port hardware register map  
Reset  
status  
Address  
Block  
Register label  
Register name  
0x00 5000  
0x00 5001  
0x00 5002  
0x00 5003  
0x00 5004  
0x00 5005  
0x00 5006  
0x00 5007  
0x00 5008  
0x00 5009  
0x00 500A  
0x00 500B  
0x00 500C  
0x00 500D  
0x00 500E  
0x00 500F  
0x00 5010  
0x00 5011  
0x00 5012  
0x00 5013  
0x00 5014  
0x00 5015  
0x00 5016  
0x00 5017  
PA_ODR  
PA_IDR  
Port A data output latch register  
Port A input pin value register  
Port A data direction register  
Port A control register 1  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x00  
0x00  
0x00  
0xXX  
0x00  
0x02  
0x00  
0x00  
0xXX  
0x00  
0x00  
Port A  
PA_DDR  
PA_CR1  
PA_CR2  
PB_ODR  
PB_IDR  
PB_DDR  
PB_CR1  
PB_CR2  
PC_ODR  
PB_IDR  
PC_DDR  
PC_CR1  
PC_CR2  
PD_ODR  
PD_IDR  
PD_DDR  
PD_CR1  
PD_CR2  
PE_ODR  
PE_IDR  
PE_DDR  
PE_CR1  
Port A control register 2  
Port B data output latch register  
Port B input pin value register  
Port B data direction register  
Port B control register 1  
Port B  
Port B control register 2  
Port C data output latch register  
Port C input pin value register  
Port C data direction register  
Port C control register 1  
Port C  
Port C control register 2  
Port D data output latch register  
Port D input pin value register  
Port D data direction register  
Port D control register 1  
Port D  
Port D control register 2  
Port E data output latch register  
Port E input pin value register  
Port E data direction register  
Port E control register 1  
Port E  
DocID15441 Rev 6  
27/113  
Memory and register map  
STM8S103K3 STM8S103F3 STM8S103F2  
Reset  
Address  
Block  
Port E  
Register label  
Register name  
status  
0x00 5018  
0x00 5019  
0x00 501A  
0x00 501B  
0x00 501C  
0x00 501D  
PE_CR2  
PF_ODR  
PF_IDR  
PF_DDR  
PF_CR1  
PF_CR2  
Port E control register 2  
0x00  
Port F data output latch register  
Port F input pin value register  
Port F data direction register  
Port F control register 1  
0x00  
0xXX  
0x00  
0x00  
0x00  
Port F  
Port F control register 2  
6.2.2  
General hardware register map  
Table 8: General hardware register map  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 501E to  
0x00 5059  
Reserved area (60 bytes)  
FLASH_CR1  
FLASH_CR2  
FLASH_NCR2  
Flash control register 1  
Flash control register 2  
0x00  
0x00  
0x00 505A  
0x00 505B  
0x00 505C  
Flash  
Flash complementary control register 0xFF  
2
0x00 505D  
0x00 505E  
FLASH _FPR  
Flash protection register  
0x00  
0xFF  
FLASH _NFPR  
Flash complementary protection  
register  
0x00 505F  
FLASH _IAPSR Flash in-application programming  
status register  
0x00  
0x00 5060 to  
0x00 5061  
Reserved area (2 bytes)  
0x00 5062  
Flash  
FLASH _PUKR  
Flash program memory unprotection 0x00  
register  
28/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Memory and register map  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 5063  
0x00 5064  
Reserved area (1 byte)  
Flash  
FLASH _DUKR  
Data EEPROM unprotection register 0x00  
0x00 5065 to  
0x00 509F  
Reserved area (59 bytes)  
0x00 50A0  
0x00 50A1  
ITC  
EXTI_CR1  
EXTI_CR2  
External interrupt control register 1 0x00  
External interrupt control register 2 0x00  
0x00 50A2 to  
0x00 50B2  
Reserved area (17 bytes)  
0x00 50B3  
RST  
RST_SR  
Reset status register  
0xXX(1)  
0x00 50B4 to  
0x00 50BF  
Reserved area (12 bytes)  
0x00 50C0  
0x00 50C1  
0x00 50C2  
0x00 50C3  
0x00 50C4  
0x00 50C5  
0x00 50C6  
0x00 50C7  
0x00 50C8  
0x00 50C9  
CLK  
CLK_ICKR  
CLK_ECKR  
Internal clock control register  
External clock control register  
0x01  
0x00  
Reserved area (1 byte)  
CLK CLK_CMSR  
Clock master status register  
Clock master switch register  
Clock switch control register  
Clock divider register  
0xE1  
0xE1  
0xXX  
0x18  
0xFF  
0x00  
0x00  
CLK_SWR  
CLK_SWCR  
CLK_CKDIVR  
CLK_PCKENR1 Peripheral clock gating register 1  
CLK_CSSR  
CLK_CCOR  
Clock security system register  
Configurable clock control register  
DocID15441 Rev 6  
29/113  
Memory and register map  
STM8S103K3 STM8S103F3 STM8S103F2  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 50CA  
0x00 50CB  
0x00 50CC  
CLK_PCKENR2 Peripheral clock gating register 2  
0xFF  
0x00  
0x00  
CLK_CANCCR  
CAN clock control register  
CLK_HSITRIMR HSI clock calibration trimming  
register  
0x00 50CD  
CLK_SWIMCCR SWIM clock control register  
0bXXXX  
XXX0  
0x00 50CE to  
0x00 50D0  
Reserved area (3 bytes)  
0x00 50D1  
0x00 50D2  
WWDG  
WWDG_CR  
WWDG_WR  
WWDG control register  
WWDR window register  
0x7F  
0x7F  
0x00 50D3 to 00 Reserved area (13 bytes)  
50DF  
0x00 50E0  
0x00 50E1  
0x00 50E2  
IWDG  
IWDG_KR  
IWDG_PR  
IWDG_RLR  
IWDG key register  
0xXX(2)  
0x00  
IWDG prescaler register  
IWDG reload register  
0xFF  
0x00 50E3 to  
0x00 50EF  
Reserved area (13 bytes)  
0x00 50F0  
0x00 50F1  
AWU  
AWU_CSR1  
AWU_APR  
AWU control/status register 1  
0x00  
AWU asynchronous prescaler buffer 0x3F  
register  
0x00 50F2  
0x00 50F3  
AWU_TBR  
BEEP_CSR  
AWU timebase selection register  
BEEP control/status register  
0x00  
0x1F  
BEEP  
30/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Memory and register map  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 50F4 to  
0x00 50FF  
Reserved area (12 bytes)  
0x00 5200  
0x00 5201  
0x00 5202  
0x00 5203  
0x00 5204  
0x00 5205  
0x00 5206  
0x00 5207  
SPI  
SPI_CR1  
SPI control register 1  
SPI control register 2  
0x00  
0x00  
SPI_CR2  
SPI_ICR  
SPI interrupt control register  
SPI status register  
0x00  
0x02  
0x00  
0x07  
0xFF  
0xFF  
SPI_SR  
SPI_DR  
SPI data register  
SPI_CRCPR  
SPI_RXCRCR  
SPI_TXCRCR  
SPI CRC polynomial register  
SPI Rx CRC register  
SPI Tx CRC register  
0x00 5208 to  
0x00 520F  
Reserved area (8 bytes)  
0x00 5210  
0x00 5211  
0x00 5212  
0x00 5213  
0x00 5214  
0x00 5215  
0x00 5216  
0x00 5217  
I2C  
I2C_CR1  
I2C_CR2  
I2C_FREQR  
I2C_OARL  
I2C_OARH  
Reserved  
I2C_DR  
I2C control register 1  
0x00  
0x00  
0x00  
0x00  
0x00  
I2C control register 2  
I2C frequency register  
I2C Own address register low  
I2C Own address register high  
I2C data register  
0x00  
0x00  
I2C_SR1  
I2C status register 1  
DocID15441 Rev 6  
31/113  
Memory and register map  
STM8S103K3 STM8S103F3 STM8S103F2  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 5218  
0x00 5219  
0x00 521A  
0x00 521B  
0x00 521C  
0x00 521D  
0x00 521E  
I2C_SR2  
I2C status register 2  
0x00  
0x0X  
0x00  
0x00  
0x00  
0x02  
0x00  
I2C_SR3  
I2C status register 3  
I2C_ITR  
I2C interrupt control register  
I2C Clock control register low  
I2C Clock control register high  
I2C TRISE register  
I2C_CCRL  
I2C_CCRH  
I2C_TRISER  
I2C_PECR  
I2C packet error checking register  
0x00 521F to  
0x00 522F  
Reserved area (17 bytes)  
0x00 5230  
0x00 5231  
0x00 5232  
0x00 5233  
0x00 5234  
0x00 5235  
0x00 5236  
0x00 5237  
0x00 5238  
0x00 5239  
0x00 523A  
UART1  
UART1_SR  
UART1 status register  
0xC0  
0xXX  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
UART1_DR  
UART1 data register  
UART1_BRR1  
UART1_BRR2  
UART1_CR1  
UART1_CR2  
UART1_CR3  
UART1_CR4  
UART1_CR5  
UART1_GTR  
UART1_PSCR  
UART1 baud rate register 1  
UART1 baud rate register 2  
UART1 control register 1  
UART1 control register 2  
UART1 control register 3  
UART1 control register 4  
UART1 control register 5  
UART1 guard time register  
UART1 prescaler register  
32/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Memory and register map  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 523B to  
0x00 523F  
Reserved area (21 bytes)  
0x00 5250  
0x00 5251  
0x00 5252  
0x00 5253  
0x00 5254  
0x00 5255  
0x00 5256  
0x00 5257  
0x00 5258  
TIM1  
TIM1_CR1  
TIM1_CR2  
TIM1_SMCR  
TIM1_ETR  
TIM1_IER  
TIM1 control register 1  
TIM1 control register 2  
0x00  
0x00  
TIM1 slave mode control register  
TIM1 external trigger register  
TIM1 interrupt enable register  
TIM1 status register 1  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
TIM1_SR1  
TIM1_SR2  
TIM1_EGR  
TIM1_CCMR1  
TIM1 status register 2  
TIM1 event generation register  
TIM1 capture/compare mode register 0x00  
1
0x00 5259  
0x00 525A  
0x00 525B  
0x00 525C  
0x00 525D  
0x00 525E  
TIM1_CCMR2  
TIM1_CCMR3  
TIM1_CCMR4  
TIM1_CCER1  
TIM1_CCER2  
TIM1_CNTRH  
TIM1 capture/compare mode register 0x00  
2
TIM1 capture/compare mode register 0x00  
3
TIM1 capture/compare mode register 0x00  
4
TIM1 capture/compare enable  
register 1  
0x00  
0x00  
0x00  
TIM1 capture/compare enable  
register 2  
TIM1 counter high  
DocID15441 Rev 6  
33/113  
Memory and register map  
STM8S103K3 STM8S103F3 STM8S103F2  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 525F  
0x00 5260  
0x00 5261  
0x00 5262  
0x00 5263  
0x00 5264  
0x00 5265  
0x00 5266  
0x00 5267  
0x00 5268  
0x00 5269  
0x00 526A  
0x00 526B  
0x00 526C  
0x00 526D  
0x00 526E  
0x00 526F  
TIM1_CNTRL  
TIM1_PSCRH  
TIM1_PSCRL  
TIM1_ARRH  
TIM1_ARRL  
TIM1_RCR  
TIM1 counter low  
0x00  
0x00  
0x00  
0xFF  
0xFF  
0x00  
TIM1 prescaler register high  
TIM1 prescaler register low  
TIM1 auto-reload register high  
TIM1 auto-reload register low  
TIM1 repetition counter register  
TIM1_CCR1H  
TIM1_CCR1L  
TIM1_CCR2H  
TIM1_CCR2L  
TIM1_CCR3H  
TIM1_CCR3L  
TIM1_CCR4H  
TIM1_CCR4L  
TIM1_BKR  
TIM1 capture/compare register 1 high 0x00  
TIM1 capture/compare register 1 low 0x00  
TIM1 capture/compare register 2 high 0x00  
TIM1 capture/compare register 2 low 0x00  
TIM1 capture/compare register 3 high 0x00  
TIM1 capture/compare register 3 low 0x00  
TIM1 capture/compare register 4 high 0x00  
TIM1 capture/compare register 4 low 0x00  
TIM1 break register  
0x00  
0x00  
0x00  
TIM1_DTR  
TIM1 dead-time register  
TIM1 output idle state register  
TIM1_OISR  
0x00 5270 to  
0x00 52FF  
Reserved area (147 bytes)  
0x00 5300  
TIM2  
TIM2_CR1  
TIM2 control register 1  
0x00  
34/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Memory and register map  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 5301  
0x00 5302  
0x00 5303  
0x00 5304  
0x00 5305  
0x00 5306  
0x00 5307  
Reserved  
Reserved  
TIM2_IER  
TIM2_SR1  
TIM2_SR2  
TIM2_EGR  
TIM2_CCMR1  
TIM2 Interrupt enable register  
TIM2 status register 1  
0x00  
0x00  
0x00  
0x00  
TIM2 status register 2  
TIM2 event generation register  
TIM2 capture/compare mode register 0x00  
1
0x00 5308  
0x00 5309  
0x00 530A  
0x00 530B  
TIM2_CCMR2  
TIM2_CCMR3  
TIM2_CCER1  
TIM2_CCER2  
TIM2 capture/compare mode register 0x00  
2
TIM2 capture/compare mode register 0x00  
3
TIM2 capture/compare enable  
register 1  
0x00  
0x00  
TIM2 capture/compare enable  
register 2  
0x00 530C  
0x00 530D  
0x00 530E  
0x00 530F  
0x00 5310  
0x00 5311  
TIM2_CNTRH  
TIM2_CNTRL  
TIM2_PSCR  
TIM2_ARRH  
TIM2_ARRL  
TIM2_CCR1H  
TIM2 counter high  
0x00  
0x00  
0x00  
0xFF  
0xFF  
TIM2 counter low  
TIM2 prescaler register  
TIM2 auto-reload register high  
TIM2 auto-reload register low  
TIM2 capture/compare register 1 high 0x00  
DocID15441 Rev 6  
35/113  
Memory and register map  
STM8S103K3 STM8S103F3 STM8S103F2  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 5312  
0x00 5313  
0x00 5314  
0x00 5315  
0x00 5316  
TIM2_CCR1L  
TIM2_CCR2H  
TIM2_CCR2L  
TIM2_CCR3H  
TIM2_CCR3L  
TIM2 capture/compare register 1 low 0x00  
TIM2 capture/compare reg. 2 high  
0x00  
TIM2 capture/compare register 2 low 0x00  
TIM2 capture/compare register 3 high 0x00  
TIM2 capture/compare register 3 low 0x00  
0x00 5317 to  
0x00 533F  
Reserved area (43 bytes)  
0x00 5340  
0x00 5341  
0x00 5342  
0x00 5343  
0x00 5344  
0x00 5345  
0x00 5346  
0x00 5347  
0x00 5348  
TIM4  
TIM4_CR1  
Reserved  
TIM4 control register 1  
0x00  
Reserved  
TIM4_IER  
TIM4_SR  
TIM4 interrupt enable register  
TIM4 status register  
0x00  
0x00  
0x00  
0x00  
0x00  
0xFF  
TIM4_EGR  
TIM4_CNTR  
TIM4_PSCR  
TIM4_ARR  
TIM4 event generation register  
TIM4 counter  
TIM4 prescaler register  
TIM4 auto-reload register  
0x00 5349 to  
0x00 53DF  
Reserved area (153 bytes)  
0x00 53E0 to  
0x00 53F3  
ADC1  
ADC _DBxR  
ADC data buffer registers  
0x00  
0x00 53F4 to  
0x00 53FF  
Reserved area (12 bytes)  
36/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Memory and register map  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 5400  
0x00 5401  
0x00 5402  
0x00 5403  
0x00 5404  
0x00 5405  
0x00 5406  
ADC1  
ADC _CSR  
ADC_CR1  
ADC_CR2  
ADC_CR3  
ADC_DRH  
ADC_DRL  
ADC_TDRH  
ADC control/status register  
ADC configuration register 1  
ADC configuration register 2  
ADC configuration register 3  
ADC data register high  
0x00  
0x00  
0x00  
0x00  
0xXX  
0xXX  
ADC data register low  
ADC Schmitt trigger disable register 0x00  
high  
0x00 5407  
ADC_TDRL  
ADC Schmitt trigger disable register 0x00  
low  
0x00 5408  
0x00 5409  
0x00 540A  
0x00 540B  
0x00 540C  
ADC_HTRH  
ADC_HTRL  
ADC_LTRH  
ADC_LTRL  
ADC_AWSRH  
ADC high threshold register high  
ADC high threshold register low  
ADC low threshold register high  
ADC low threshold register low  
0x03  
0xFF  
0x00  
0x00  
ADC analog watchdog status register 0x00  
high  
0x00 540D  
0x00 540E  
0x00 540F  
ADC_AWSRL  
ADC _AWCRH  
ADC_AWCRL  
ADC analog watchdog status register 0x00  
low  
ADC analog watchdog control  
register high  
0x00  
0x00  
ADC analog watchdog control  
register low  
DocID15441 Rev 6  
37/113  
Memory and register map  
STM8S103K3 STM8S103F3 STM8S103F2  
Address  
Block  
Register label  
Register name  
Reset  
status  
0x00 5410 to  
0x00 57FF  
Reserved area (1008 bytes)  
(1)Depends on the previous reset source.  
(2)Write only register.  
6.2.3  
CPU/SWIM/debug module/interrupt controller registers  
Table 9: CPU/SWIM/debug module/interrupt controller registers  
Address  
Block  
Register label  
Register name  
Reset status  
0x00 7F00  
A
Accumulator  
0x00  
0x00 7F01  
0x00 7F02  
0x00 7F03  
0x00 7F04  
0x00 7F05  
0x00 7F06  
0x00 7F07  
0x00 7F08  
0x00 7F09  
0x00 7F0A  
PCE  
PCH  
PCL  
XH  
Program counter extended  
Program counter high  
Program counter low  
X index register high  
X index register low  
Y index register high  
Y index register low  
Stack pointer high  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x03  
0xFF  
0x28  
CPU(1)  
XL  
YH  
YL  
SPH  
SPL  
CCR  
Stack pointer low  
Condition code register  
0x00 7F0B to  
0x00 7F5F  
Reserved area (85 bytes)  
0x00 7F60  
0x00 7F70  
0x00 7F71  
0x00 7F72  
0x00 7F73  
0x00 7F74  
CPU  
ITC  
CFG_GCR  
ITC_SPR1  
ITC_SPR2  
ITC_SPR3  
ITC_SPR4  
ITC_SPR5  
Global configuration register  
0x00  
Interrupt software priority register 1 0xFF  
Interrupt software priority register 2 0xFF  
Interrupt software priority register 3 0xFF  
Interrupt software priority register 4 0xFF  
Interrupt software priority register 5 0xFF  
38/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Memory and register map  
Reset status  
Address  
Block  
Register label  
Register name  
0x00 7F75  
ITC_SPR6  
Interrupt software priority register 6 0xFF  
Interrupt software priority register 7 0xFF  
Interrupt software priority register 8 0xFF  
0x00 7F76  
0x00 7F77  
ITC_SPR7  
ITC_SPR8  
0x00 7F78 to  
0x00 7F79  
Reserved area (2 bytes)  
0x00 7F80  
SWIM  
SWIM_CSR  
DM_BK1RE  
SWIM control status register  
Reserved area (15 bytes)  
0x00  
0xFF  
0x00 7F81 to  
0x00 7F8F  
0x00 7F90  
DM breakpoint 1 register extended  
byte  
0x00 7F91  
0x00 7F92  
0x00 7F93  
DM_BK1RH  
DM_BK1RL  
DM_BK2RE  
DM breakpoint 1 register high byte  
DM breakpoint 1 register low byte  
0xFF  
0xFF  
0xFF  
DM breakpoint 2 register extended  
byte  
0x00 7F94  
0x00 7F95  
0x00 7F96  
0x00 7F97  
0x00 7F98  
DM_BK2RH  
DM_BK2RL  
DM_CR1  
DM breakpoint 2 register high byte  
DM breakpoint 2 register low byte  
0xFF  
0xFF  
DM  
DM debug module control register 1 0x00  
DM debug module control register 2 0x00  
DM_CR2  
DM_CSR1  
DM debug module control/status  
register 1  
0x10  
0x00  
0xFF  
0x00 7F99  
0x00 7F9A  
DM_CSR2  
DM debug module control/status  
register 2  
DM_ENFCTR  
DM enable function register  
Reserved area (5 bytes)  
0x00 7F9B to  
0x00 7F9F  
(1) Accessible by debug module only  
DocID15441 Rev 6  
39/113  
Interrupt vector mapping  
STM8S103K3 STM8S103F3 STM8S103F2  
7
Interrupt vector mapping  
Table 10: Interrupt mapping  
IRQ Source  
no. block  
Description  
Wakeup from Wakeup from  
Vector address  
halt mode  
active-halt mode  
RESET Reset  
Yes  
Yes  
0x00 8000  
0x00 8004  
0x00 8008  
0x00 800C  
0x00 8010  
0x00 8014  
0x00 8018  
0x00 801C  
0x00 8020  
0x00 8024  
0x00 8028  
0x00 802C  
0x00 8030  
0x00 8034  
TRAP  
TLI  
Software interrupt  
-
-
0
External top level interrupt  
Auto wake up from halt  
Clock controller  
-
-
1
AWU  
CLK  
-
Yes  
2
-
-
3
EXTI0  
EXTI1  
EXTI2  
EXTI3  
EXTI4  
Port A external interrupts  
Port B external interrupts  
Port C external interrupts  
Port D external interrupts  
Port E external interrupts  
Reserved  
Yes(1)  
Yes  
Yes  
Yes  
Yes  
-
Yes(1)  
Yes  
Yes  
Yes  
Yes  
-
4
5
6
7
8
9
Reserved  
-
-
10  
11  
SPI  
End of transfer  
Yes  
-
Yes  
-
TIM1 update/ overflow/ underflow/  
trigger/ break  
TIM1  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
TIM1  
TIM2  
TIM2  
TIM1 capture/ compare  
TIM2 update/ overflow  
TIM2 capture/ compare  
Reserved  
-
-
0x00 8038  
0x00 803C  
0x00 8040  
0x00 8044  
0x00 8048  
0x00 804C  
0x00 8050  
0x00 8054  
0x00 8058  
0x00 805C  
0x00 8060  
-
-
-
-
-
-
Reserved  
-
-
UART1 Tx complete  
-
-
UART1 Receive register DATA FULL  
-
-
I2C  
I2C interrupt  
Reserved  
Reserved  
Yes  
Yes  
-
-
-
-
-
-
ADC1 end of conversion/ analog  
watchdog interrupt  
ADC1  
40/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Interrupt vector mapping  
IRQ Source  
no. block  
Description  
Wakeup from Wakeup from  
Vector address  
halt mode  
active-halt mode  
23  
24  
TIM4  
Flash  
TIM4 update/ overflow  
EOP/WR_PG_DIS  
-
-
0x00 8064  
0x00 8068  
-
-
0x00 806C to  
0x00 807C  
Reserved  
(1) Except PA1  
DocID15441 Rev 6  
41/113  
Option bytes  
STM8S103K3 STM8S103F3 STM8S103F2  
8
Option bytes  
Option bytes contain configurations for device hardware features as well as the memory  
protection of the device. They are stored in a dedicated block of the memory. Except for the  
ROP (read-out protection) byte, each option byte has to be stored twice, in a regular form  
(OPTx) and a complemented one (NOPTx) for redundancy.  
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address  
shown in the table below.  
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the ROP  
option that can only be modified in ICP mode (via SWIM).  
Refer to the STM8S Flash programming manual (PM0051) and STM8 SWIM communication  
protocol and debug module user manual (UM0470) for information on SWIM programming  
procedures.  
Table 11: Option bytes  
Addr.  
Option  
name  
Option Option bits  
byte no.  
Factory  
default  
setting  
7
6
5
4
3
2
1
0
0x4800 Read-out  
protection  
OPT0  
ROP [7:0]  
00h  
(ROP)  
0x4801 User boot  
code(UBC)  
0x4802  
OPT1  
UBC [7:0]  
00h  
FFh  
00h  
NOPT1 NUBC [7:0]  
OPT2 AFR7 AFR6  
NOPT2 NAFR7  
AFR5  
AFR4  
AFR3  
AFR2  
AFR1  
AFR0  
0x4803 Alternate  
function  
0x4804  
NAFR6 NAFR5 NAFR4  
NAFR3  
NAFR2 NAFR1  
NAFR0 FFh  
remapping  
(AFR)  
0x4805h Miscell.  
option  
OPT3  
Reserved  
HSI  
TRIM  
LSI_ EN  
IWDG  
_HW  
WWDG WWDG 00h  
_HW _HALT  
0x4806  
NOPT3 Reserved  
NHSI  
TRIM  
NLSI_  
EN  
NIWDG NWWDG NWW  
_HW _HW G_HALT  
FFh  
0x4807 Clock  
option  
OPT4  
Reserved  
EXT CLK CKAWU PRS C1 PRS C0 00h  
SEL  
0x4808  
NOPT4 Reserved  
NEXT  
CLK  
NCKA  
WUSEL  
NPRSC1 NPR  
SC0  
FFh  
0x4809 HSE clock OPT5  
startup  
HSECNT [7:0]  
00h  
FFh  
0x480A  
NOPT5 NHSECNT [7:0]  
Table 12: Option byte description  
Description  
ROP[7:0] Memory readout protection (ROP)  
Option byte no.  
OPT0  
0xAA: Enable readout protection (write access via SWIM protocol)  
42/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Option bytes  
Option byte no.  
Description  
Note: Refer to the family reference manual (RM0016) section on  
Flash/EEPROM memory readout protection for details.  
OPT1  
UBC[7:0] User boot code area  
0x00: no UBC, no write-protection  
0x01: Page 0 defined as UBC, memory write-protected  
0x02: Pages 0 to 1 defined as UBC, memory write-protected.  
Page 0 and 1 contain the interrupt vectors.  
...  
0x7F: Pages 0 to 126 defined as UBC, memory write-protected  
Other values: Pages 0 to 127 defined as UBC, memory  
write-protected  
Note: Refer to the family reference manual (RM0016) section on  
Flash write protection for more details.  
OPT2  
OPT3  
AFR[7:0]  
Refer to following section for alternate function remapping decriptions  
of bits [7:2] and [1:0] respectively.  
HSITRIM:High speed internal clock trimming register size  
0: 3-bit trimming supported in CLK_HSITRIMR register  
1: 4-bit trimming supported in CLK_HSITRIMR register  
LSI_EN:Low speed internal clock enable  
0: LSI clock is not available as CPU clock source  
1: LSI clock is available as CPU clock source  
IWDG_HW: Independent watchdog  
0: IWDG Independent watchdog activated by software  
1: IWDG Independent watchdog activated by hardware  
WWDG_HW: Window watchdog activation  
0: WWDG window watchdog activated by software  
1: WWDG window watchdog activated by hardware  
WWDG_HALT: Window watchdog reset on halt  
DocID15441 Rev 6  
43/113  
Option bytes  
STM8S103K3 STM8S103F3 STM8S103F2  
Option byte no.  
Description  
0: No reset generated on halt if WWDG active  
1: Reset generated on halt if WWDG active  
OPT4  
EXTCLK: External clock selection  
0: External crystal connected to OSCIN/OSCOUT  
1: External clock signal on OSCIN  
CKAWUSEL:Auto wake-up unit/clock  
0: LSI clock source selected for AWU  
1: HSE clock with prescaler selected as clock source for for AWU  
PRSC[1:0] AWU clock prescaler  
0x: 16 MHz to 128 kHz prescaler  
10: 8 MHz to 128 kHz prescaler  
11: 4 MHz to 128 kHz prescaler  
OPT5  
HSECNT[7:0]:HSE crystal oscillator stabilization time  
0x00: 2048 HSE cycles  
0xB4: 128 HSE cycles  
0xD2: 8 HSE cycles  
0xE1: 0.5 HSE cycles  
8.1  
Alternate function remapping bits  
Table 13: STM8S103K alternate function remapping bits for 32-pin devices  
Option byte no.  
Description(1)  
OPT2  
AFR7 Alternate function remapping option 7  
Reserved.  
AFR6 Alternate function remapping option 6  
0: AFR6 remapping option inactive: Default alternate function(2)  
1: Port D7 alternate function = TIM1_CH4.  
AFR5 Alternate function remapping option 5  
0: AFR5 remapping option inactive: Default alternate function(2)  
.
.
44/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Description(1)  
Option bytes  
Option byte no.  
1: Port D0 alternate function = CLK_CCO.  
AFR[4:2] Alternate function remapping options 4:2  
Reserved.  
AFR1 Alternate function remapping option 1  
0: AFR1 remapping option inactive: Default alternate functions(2)  
.
1: Port A3 alternate function = SPI_NSS; port D2 alternate function  
= TIM2_CH3.  
AFR0 Alternate function remapping option 0  
Reserved.  
(1) Do not use more than one remapping option in the same port. It is forbidden to enable  
both AFR1 and AFR0.  
(2) Refer to pinout description.  
Table 14: STM8S103F alternate function remapping bits for 20-pin devices  
Option byte no.  
Description  
OPT2  
AFR7 Alternate function remapping option 7  
0: AFR7 remapping option inactive: Default alternate  
functions(1)  
.
1: Port C3 alternate function = TIM1_CH1N; port C4  
alternate function = TIM1_CH2N.  
AFR6 Alternate function remapping option 6  
Reserved.  
AFR5 Alternate function remapping option 5  
Reserved.  
AFR4 Alternate function remapping option 4  
0: AFR4 remapping option inactive: Default alternate  
functions(1)  
.
1: Port B4 alternate function = ADC_ETR; port B5  
alternate function = TIM1_BKIN.  
AFR3 Alternate function remapping option 3  
0: AFR3 remapping option inactive: Default alternate  
function(1)  
.
1: Port C3 alternate function = TLI.  
AFR2 Alternate function remapping option 2  
DocID15441 Rev 6  
45/113  
Option bytes  
STM8S103K3 STM8S103F3 STM8S103F2  
Option byte no.  
Description  
Reserved  
AFR1 Alternate function remapping option 1(2)  
0: AFR1 remapping option inactive: Default alternate  
functions(1)  
.
1: Port A3 alternate function = SPI_NSS; port D2  
alternate function = TIM2_CH3.  
AFR0 Alternate function remapping option 0(2)  
0: AFR0 remapping option inactive: Default alternate  
functions(1)  
.
1: Port C5 alternate function = TIM2_CH1; port C6  
alternate function = TIM1_CH1; port C7 alternate  
function = TIM1_CH2.  
(1) Refer to pinout description.  
(2) Do not use more than one remapping option in the same port. It is forbidden to enable  
both AFR1 and AFR0.  
46/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Unique ID  
9
Unique ID  
The devices feature a 96-bit unique device identifier which provides a reference number that  
is unique for any device and in any context. The 96 bits of the identifier can never be altered  
by the user.  
The unique device identifier can be read in single bytes and may then be concatenated using  
a custom algorithm.  
The unique device identifier is ideally suited:  
For use as serial numbers  
For use as security keys to increase the code security in the program memory while using  
and combining this unique ID with software cryptograhic primitives and protocols before  
programming the internal memory.  
To activate secure boot processes  
Table 15: Unique ID registers (96 bits)  
Address Content  
description  
Unique ID bits  
7
6
5
4
3
2
1
0
0x4865  
0x4866  
0x4867  
0x4868  
U_ID[7:0]  
X co-ordinate  
on the wafer  
U_ID[15:8]  
U_ID[23:16]  
U_ID[31:24]  
U_ID[39:32]  
U_ID[47:40]  
U_ID[55:48]  
U_ID[63:56]  
U_ID[71:64]  
U_ID[79:72]  
U_ID[87:80]  
U_ID[95:88]  
Y co-ordinate  
on the wafer  
0x4869 Wafer number  
0x486A  
0x486B  
0x486C  
Lot number  
0x486D  
0x486E  
0x486F  
0x4870  
DocID15441 Rev 6  
47/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
10  
Electrical characteristics  
10.1  
Parameter conditions  
Unless otherwise specified, all voltages are referred to VSS  
.
10.1.1  
Minimum and maximum values  
Unless otherwise specified the minimum and maximum values are guaranteed in the worst  
conditions of ambient temperature, supply voltage and frequencies by tests in production on  
100 % of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by  
the selected temperature range).  
Data based on characterization results, design simulation and/or technology characteristics  
are indicated in the table footnotes and are not tested in production. Based on characterization,  
the minimum and maximum values refer to sample tests and represent the mean value plus  
or minus three times the standard deviation (mean ± 3 Σ).  
10.1.2  
Typical values  
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5 V. They are given  
only as design guidelines and are not tested.  
Typical ADC accuracy values are determined by characterization of a batch of samples from  
a standard diffusion lot over the full temperature range, where 95% of the devices have an  
error less than or equal to the value indicated (mean ± 2 Σ).  
10.1.3  
10.1.4  
Typical curves  
Unless otherwise specified, all typical curves are given only as design guidelines and are not  
tested.  
Loading capacitor  
The loading conditions used for pin parameter measurement are shown in the following figure.  
Figure 7: Pin loading conditions  
STM8 PIN  
50 pF  
48/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
10.1.5  
Pin input voltage  
The input voltage measurement on a pin of the device is described in the following figure.  
Figure 8: Pin input voltage  
STM8 PIN  
V
IN  
10.2  
Absolute maximum ratings  
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage  
to the device. This is a stress rating only and functional operation of the device under these  
conditions is not implied. Exposure to maximum rating conditions for extended periods may  
affect device reliability.  
Table 16: Voltage characteristics  
Symbol  
Ratings  
Min  
Max  
Unit  
VDDx - VSS  
Supply voltage(1)  
-0.3  
6.5  
VIN  
Input voltage on true open drain pins(2)  
Input voltage on any other pin(2)  
VSS - 0.3  
VSS - 0.3  
6.5  
V
VDD + 0.3  
50  
|VDDx - VDD  
|
Variations between different power pins  
mV  
|VSSx - VSS  
|
Variations between all the different ground  
pins  
50  
VESD  
See "Absolute  
maximum ratings  
(electrical sensitivity)"  
Electrostatic discharge voltage  
(1) All power (VDD) and ground (VSS) pins must always be connected to the external power supply  
(2)  
I
must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
INJ(PIN)  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected  
DocID15441 Rev 6  
49/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Table 17: Current characteristics  
Symbol  
Ratings  
Unit  
Max(1)  
IVDD  
Total current into VDD power lines (source)(2)  
Total current out of VSS ground lines (sink)(2)  
Output current sunk by any I/O and control pin  
Output current source by any I/Os and control pin  
Injected current on NRST pin  
100  
80  
IVSS  
IIO  
20  
- 20  
± 4  
± 4  
± 4  
± 20  
mA  
(3) (4)  
IINJ(PIN)  
Injected current on OSCIN pin  
Injected current on any other pin(5)  
(3)  
ΣI INJ(PIN)  
Total injected current (sum of all I/O and control pins)(5)  
(1) Data based on characterization results, not tested in production.  
(2) All power (VDD) and ground (VSS) pins must always be connected to the external supply.  
(3)  
I
must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum  
INJ(PIN)  
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive  
injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. For true open-drain  
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected  
(4) ADC accuracy vs. negative injection current: Injecting negative current on any of the analog input pins  
should be avoided as this significantly reduces the accuracy of the conversion being performed on  
another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins  
which may potentially inject negative current. Any positive injection current within the limits specified for  
IINJ(PIN) and ΣIINJ(PIN) in the I/O port pin characteristics section does not affect the ADC accuracy.  
(5) When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum  
of the positive and negative injected currents (instantaneous values). These results are based on  
characterization with ΣIINJ(PIN) maximum current injection on four I/O port pins of the device.  
Table 18: Thermal characteristics  
Symbol Ratings  
TSTG Storage temperature range  
TJ Maximum junction temperature  
Value  
Unit  
-65 to +150  
°C  
150  
50/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
10.3  
Operating conditions  
Table 19: General operating conditions  
Symbol  
Parameter  
Conditions  
Min  
Max Unit  
fCPU  
Internal CPU clock frequency  
0
16  
MHz  
V
VDD  
Standard operating voltage  
2.95  
5.5  
VCAP  
CEXT: capacitance of  
external capacitor(1)  
470 3300 nF  
ESR of external  
capacitor(1)  
at 1 MHz  
-
-
0.3  
15  
Ω
ESL of external  
capacitor(1)  
nH  
(2)  
PD  
TSSOP20  
-
-
-
-
-
-
-
-
-
-
238  
220  
220  
330  
526  
59  
SO20W  
Power dissipation at TA = 85 °C  
for suffix 6  
UFQFPN20  
LQFP32  
UFQFPN32  
TSSOP20  
mW  
SO20W  
55  
Power dissipation at TA = 125 °C  
for suffix 3  
UFQFPN20  
LQFP32  
55  
83  
UFQFPN32  
Maximum power dissipation  
132  
TA  
TA  
TJ  
Ambient temperature for 6 suffix  
version  
-40  
85  
Ambient temperature for 3 suffix  
version  
Maximum power dissipation  
°C  
-40  
-40  
125  
105  
6 suffix version  
3 suffix version  
Junction temperature range  
-40 130(3)  
(1) This parameter range must be respected for the full application range, and taking into account the  
physical capacitor characteristics and tolerance.  
DocID15441 Rev 6  
51/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
(2)To calculate PDmax(TA), use the formula PDmax =(TJmax- TA)/ΘJA (see Thermal characteristics ) with the  
value for TJmax given in the previous table and the value for ΘJA given in Thermal characteristics.  
(3)  
Τ
is given by the test limit. Above this value the product behavior is not guaranteed.  
Jmax  
Figure 9: fCPUmax versus VDD  
f
(MHz)  
CPU  
Functionality  
16  
12  
8
not  
guaranteed  
in this area  
Functionality guaranteed  
@T -40 to 125 °C  
A
4
0
4.0  
Supply voltage  
2.95  
5.0  
5.5  
Table 20: Operating conditions at power-up/power-down  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD rise time rate  
2
tVDD  
μs/V  
VDD fall time rate(1)  
2
tTEMP  
VIT+  
VIT-  
Reset release delay  
VDD rising  
1.7  
2.85  
2.8  
ms  
V
Power-on reset threshold  
Brown-out reset threshold  
2.6  
2.5  
2.7  
2.65  
70  
VHYS(BOR) Brown-out reset hysteresis  
mV  
(1) Reset is always generated after a tTEMP delay. The application must ensure that VDD is still above the  
minimum ooperating voltage (VDD min) when the tTEMP delay has elapsed.  
10.3.1  
VCAP external capacitor  
Stabilization for the main regulator is achieved connecting an external capacitor CEXT to the  
VCAP pin. CEXT is specified in the Operating conditions section. Care should be taken to limit  
the series inductance to less than 15 nH.  
52/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Figure 10: External capacitor CEXT  
ESL  
C
ESR  
R
Leak  
1. ESR is the equivalent series resistance and ESL is the equivalent inductance.  
10.3.2  
Supply current characteristics  
The current consumption is measured as described in Pin input voltage.  
10.3.2.1 Total current consumption in run mode  
The MCU is placed under the following conditions:  
All I/O pins in input mode with a static value at VDD or VSS (no load)  
All peripherals are disabled (clock stopped by peripheral clock gating registers) except if  
explicitly mentioned.  
Subject to general operating conditions for VDD and TA.  
Table 21: Total current consumption with code execution in run mode at VDD = 5 V  
Max(1)  
Symbol  
Parameter  
Conditions  
Typ  
2.3  
Unit  
HSE crystal osc. (16 MHz)  
HSE user ext. clock (16 MHz) 2  
HSI RC osc. (16 MHz) 1.7  
fCPU = fMASTER  
16 MHz  
=
2.35  
2
fCPU = fMASTER/128 = HSE user ext. clock (16 MHz) 0.86  
125 kHz  
Supply current  
in run mode,  
code executed  
from RAM  
HSI RC osc. (16 MHz)  
0.7  
0.87  
0.58  
fCPU = fMASTER/128 =  
15.625 kHz  
IDD(RUN)  
HSI RC osc. (16 MHz/8)  
0.46  
mA  
fCPU = fMASTER  
128 kHz  
=
LSI RC osc. (128 kHz)  
0.41  
4.5  
0.55  
HSE crystal osc. (16 MHz)  
Supply current  
in run mode,  
code executed  
from Flash  
fCPU = fMASTER  
16 MHz  
=
HSE user ext. clock (16 MHz) 4.3  
HSI RC osc. (16 MHz) 3.7  
4.75  
4.5  
DocID15441 Rev 6  
53/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Max(1)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
fCPU = fMASTER  
2 MHz  
=
HSI RC osc. (16 MHz/8)(2)  
HSI RC osc. (16 MHz)  
HSI RC osc. (16 MHz/8)  
LSI RC osc. (128 kHz)  
0.84  
1.05  
fCPU = fMASTER/128 =  
125 kHz  
0.72  
0.46  
0.42  
0.9  
Supply current  
in run mode,  
code executed  
from Flash  
IDD(RUN)  
mA  
fCPU = fMASTER/128 =  
15.625 kHz  
0.58  
0.57  
fCPU = fMASTER  
128 kHz  
=
(1) Data based on characterization results, not tested in production.  
(2) Default clock configuration measured with all peripherals off.  
Table 22: Total current consumption with code execution in run mode at VDD = 3.3 V  
Symbol Parameter  
Conditions  
Typ  
Unit  
Max(1)  
HSE crystal osc. (16 MHz)  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
1.8  
2
fCPU = fMASTER  
16 MHz  
=
2.3  
2
1.5  
0.81  
0.7  
fCPU = fMASTER  
/
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
Supply current  
in run mode,  
code executed  
from RAM  
128 = 125 kHz  
0.87  
0.58  
fCPU = fMASTER  
/
HSI RC osc. (16 MHz/8)  
LSI RC osc. (128 kHz)  
0.46  
0.41  
128 = 15.625 kHz  
IDD(RUN)  
fCPU = fMASTER  
128 kHz  
=
=
=
mA  
0.55  
HSE crystal osc. (16 MHz)  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
4
fCPU = fMASTER  
16 MHz  
3.9  
3.7  
4.7  
4.5  
Supply current  
in run mode,  
code executed  
from Flash  
fCPU = fMASTER  
2 MHz  
HSI RC osc. (16 MHz/8)(2)  
HSI RC osc. (16 MHz)  
0.84  
0.72  
1.05  
0.9  
fCPU = fMASTER  
/
54/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Symbol Parameter  
Conditions  
Typ  
Unit  
Max(1)  
128 = 125 kHz  
fCPU = fMASTER  
/
0.46  
0.42  
0.58  
0.57  
HSI RC osc. (16 MHz/8)  
LSI RC osc. (128 kHz)  
128 = 15.625 kHz  
fCPU = fMASTER  
128 kHz  
=
(1) Data based on characterization results, not tested in production.  
(2) Default clock configuration measured with all peripherals off.  
10.3.2.2 Total current consumption in wait mode  
Table 23: Total current consumption in wait mode at VDD = 5 V  
Symbol Parameter Conditions Typ  
Unit  
Max(1)  
HSE crystal osc. (16 MHz)  
HSE user ext. clock (16 MHz)  
HSI RC osc. (16 MHz)  
1.6  
1.1  
fCPU = fMASTER  
16 MHz  
=
1.3  
0.89 1.1  
fCPU = fMASTER/128 =  
125 kHz  
Supply  
IDD(WFI) current in  
wait mode  
HSI RC osc. (16 MHz)  
HSI RC osc. (16 MHz/8)(2)  
LSI RC osc. (128 kHz)  
0.7  
0.88  
mA  
fCPU = fMASTER/128 =  
15.625 kHz  
0.45 0.57  
fCPU = fMASTER  
128 kHz  
=
0.4  
0.54  
(1) Data based on characterization results, not tested in production.  
(2) Default clock configuration measured with all peripherals off.  
Table 24: Total current consumption in wait mode at VDD = 3.3 V  
Symbol Parameter  
Conditions  
Typ  
Unit  
Max (1)  
fCPU = fMASTER  
16 MHz  
=
HSE crystal osc.  
(16 MHz)  
Supply current  
in wait mode  
IDD(WFI)  
1.1  
mA  
DocID15441 Rev 6  
55/113  
Electrical characteristics  
Symbol Parameter  
STM8S103K3 STM8S103F3 STM8S103F2  
Conditions  
Typ  
Unit  
Max (1)  
HSE user ext. clock  
(16 MHz)  
1.1  
1.3  
HSI RC osc.  
(16 MHz)  
0.89  
0.7  
1.1  
fCPU = fMASTER/ 128 = HSI RC osc.  
125 kHz (16 MHz)  
0.88  
0.57  
0.54  
fCPU = fMASTER/ 128 = HSI RC osc.  
0.45  
0.4  
15.625 kHz  
(16 MHz/8)(2)  
fCPU = fMASTER  
=
LSI RC osc.  
(128 kHz)  
128 kHz  
(1) Data based on characterization results, not tested in production.  
(2) Default clock configuration measured with all peripherals off.  
10.3.2.3 Total current consumption in active halt mode  
Table 25: Total current consumption in active halt mode at VDD = 5 V  
Conditions  
Max Max  
at 85 at 125  
Main  
Symbol Parameter  
Typ  
Unit  
°C  
°C  
voltage  
regulator  
(MVR)(2)  
Flash mode(3)  
Clock source  
(1)  
(1)  
Supply current  
IDD(AH) in active halt  
mode  
HSE crystal osc.  
(16 MHz)  
On  
On  
On  
On  
Operating mode  
Operating mode  
Power-down mode  
Power-down mode  
1030  
200  
970  
150  
Supply current  
IDD(AH) in active halt  
mode  
LSI RC osc.  
(128 kHz)  
260 300  
μA  
Supply current  
IDD(AH) in active halt  
mode  
HSE crystal osc.  
(16 MHz)  
Supply current  
IDD(AH) in active halt  
mode  
LSI RC osc.  
(128 kHz)  
200 230  
56/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Conditions  
Main  
voltage  
regulator  
(MVR)(2)  
Max Max  
at 85 at 125  
Symbol Parameter  
Typ  
Unit  
°C  
°C  
Flash mode(3)  
Clock source  
(1)  
(1)  
Supply current  
IDD(AH) in active halt  
mode  
LSI RC osc.  
(128 kHz)  
Operating mode  
66  
10  
85  
20  
110  
40  
Off  
Supply current  
IDD(AH) in active halt  
mode  
LSI RC osc.  
(128 kHz)  
Power-down mode  
(1) Data based on characterization results, not tested in production  
(2) Configured by the REGAH bit in the CLK_ICKR register.  
(3) Configured by the AHALT bit in the FLASH_CR1 register.  
Table 26: Total current consumption in active halt mode at VDD = 3.3 V  
Conditions  
Max at Max at  
Main  
85 °C  
125 °C  
Symbol Parameter  
Typ  
Unit  
voltage  
regulator  
(MVR)(2)  
Flash mode(3) Clock source  
(1)  
(1)  
Supply current  
HSE crystal  
IDD(AH) in active halt  
mode  
On  
On  
Operating mode osc. (16 MHz)  
550  
μA  
LSI RC osc.  
IDD(AH)  
Operating mode  
200  
970  
150  
260  
200  
290  
230  
Supply current  
(128 kHz)  
in active halt  
mode  
HSE crystal  
IDD(AH)  
osc. (16 MHz)  
Power-down  
μA  
mode  
LSI RC osc.  
(128 kHz)  
IDD(AH)  
Supply current  
in active halt  
IDD(AH)  
Operating mode LSI RC osc.  
66  
10  
80  
18  
105  
35  
mode  
Off  
(128 kHz)  
Power-down  
IDD(AH)  
mode  
(1) Data based on characterization results, not tested in production  
(2) Configured by the REGAH bit in the CLK_ICKR register.  
(3) Configured by the AHALT bit in the FLASH_CR1 register.  
DocID15441 Rev 6  
57/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
10.3.2.4 Total current consumption in halt mode  
Table 27: Total current consumption in halt mode at VDD = 5 V  
Max at Max at  
85 °C(1) 125 °C(1)  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Supply current in  
halt mode  
Flash in operating mode, HSI  
clock after wakeup  
63  
75  
20  
105  
55  
IDD(H)  
μA  
Flash in power-down mode, HSI  
clock after wakeup  
6.0  
(1) Data based on characterization results, not tested in production  
Table 28: Total current consumption in halt mode at VDD = 3.3 V  
Max at Max at  
85 °C(1) 125 °C(1)  
Symbol Parameter  
Conditions  
Typ  
Unit  
Supply current in  
halt mode  
Flash in operating mode, HSI  
clock after wakeup  
60  
75  
17  
100  
30  
IDD(H)  
μA  
Flash in power-down mode, HSI  
clock after wakeup  
4.5  
(1) Data based on characterization results, not tested in production  
10.3.2.5 Low power mode wakeup times  
Table 29: Wakeup times  
Max(1)  
Symbol Parameter  
Wakeup time from  
Conditions  
Typ  
Unit  
See  
0 to 16 MHz  
note(2)  
wait mode to run  
mode(3)  
tWU(WFI)  
tWU(AH)  
58/113  
fCPU = fMASTER = 16 MHz  
0.56  
1(6)  
Wakeup time active MVR voltage  
HSI  
Flash in operating  
mode(5)  
2(6)  
halt mode to run  
mode(3)  
regulator  
on(4)  
(after  
μs  
wakeup)  
Wakeup time active MVR voltage Flash in  
HSI  
3(6)  
halt mode to run  
mode(3)  
regulator  
on(4)  
power-down  
mode(5)  
(after  
wakeup)  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Max(1)  
Symbol Parameter  
Conditions  
Typ  
Unit  
Wakeup time active MVR voltage  
HSI  
Flash in operating  
mode(5)  
48(6)  
halt mode to run  
mode(3)  
regulator  
off(4)  
(after  
wakeup)  
Wakeup time active MVR voltage Flash in  
HSI  
50(6)  
halt mode to run  
mode(3)  
regulator  
off(4)  
power-down  
mode(5)  
(after  
wakeup)  
Wakeup time from  
halt mode to run  
mode(3)  
Flash in operating mode(5)  
52  
54  
tWU(H)  
Flash in power-down mode(5)  
(1) Data guaranteed by design, not tested in production.  
(2)  
t
= 2 x 1/fmaster + 6 x 1/fCPU.  
WU(WFI)  
(3) Measured from interrupt event to interrupt vector fetch.  
(4) Configured by the REGAH bit in the CLK_ICKR register.  
(5) Configured by the AHALT bit in the FLASH_CR1 register.  
(6) Plus 1 LSI clock depending on synchronization.  
10.3.2.6 Total current consumption and timing in forced reset state  
Table 30: Total current consumption and timing in forced reset state  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
Max(1)  
IDD(R)  
Supply current in reset  
state(2)  
VDD = 5 V  
400  
300  
μA  
μs  
VDD = 3.3 V  
tRESETBL  
Reset pin release to  
vector fetch  
150  
(1) Data guaranteed by design, not tested in production.  
(2) Characterized with all I/Os tied to VSS  
.
10.3.2.7 Current consumption of on-chip peripherals  
Subject to general operating conditions for VDD and TA.  
DocID15441 Rev 6  
59/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
HSI internal RC/fCPU = fMASTER = 16 MHz, VDD = 5 V  
Table 31: Peripheral current consumption  
Symbol  
Parameter  
Typ.  
Unit  
IDD(TIM1)  
210  
130  
50  
TIM1 supply current(1)  
IDD(TIM2)  
IDD(TIM4)  
IDD(UART1)  
IDD(SPI)  
TIM2 supply current(1)  
TIM4 timer supply current(1)  
UART1 supply current(2)  
SPI supply current(2)  
120  
45  
μA  
2
IDD(I C)  
65  
I2C supply current(2)  
IDD(ADC1)  
1000  
ADC1 supply current when converting(3)  
(1) Data based on a differential IDD measurement between reset configuration and timer counter running  
at 16 MHz. No IC/OC programmed (no I/O pads toggling). Not tested in production.  
(2) Data based on a differential IDD measurement between the on-chip peripheral when kept under reset  
and not clocked and the on-chip peripheral when clocked and not kept under reset. No I/O pads toggling.  
Not tested in production.  
(3) Data based on a differential IDD measurement between reset configuration and continuous A/D  
conversions. Not tested in production.  
10.3.2.8 Current consumption curves  
The following figures show typical current consumption measured with code executing in  
RAM.  
60/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Figure 11: Typ IDD(RUN) vs. VDD HSE user external clock, fCPU = 16 MHz  
Figure 12: Typ IDD(RUN) vs. fCPU HSE user external clock, VDD = 5 V  
DocID15441 Rev 6  
61/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Figure 13: Typ IDD(RUN) vs. VDD HSI RC osc, fCPU = 16 MHz  
Figure 14: Typ IDD(WFI) vs. VDD HSE user external clock, fCPU = 16 MHz  
62/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Figure 15: Typ IDD(WFI) vs. fCPU HSE user external clock, VDD = 5 V  
Figure 16: Typ IDD(WFI) vs. VDD HSI RC osc, fCPU = 16 MHz  
10.3.3  
External clock sources and timing characteristics  
HSE user external clock  
Subject to general operating conditions for VDD and TA.  
Table 32: HSE user external clock characteristics  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
fHSE_ext  
User external clock source  
frequency  
0
16  
MHz  
(1)  
VHSEH  
OSCIN input pin high level  
voltage  
0.7 x VDD  
VDD + 0.3 V  
V
(1)  
VHSEL  
ILEAK_HSE  
OSCIN input pin low level  
voltage  
VSS  
-1  
0.3 x VDD  
+1  
OSCIN input leakage current VSS < VIN < VDD  
μA  
DocID15441 Rev 6  
63/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
(1) Data based on characterization results, not tested in production.  
Figure 17: HSE external clocksource  
V
V
HSEH  
HSEL  
f
HSE  
External clock  
source  
OSCIN  
STM8  
HSE crystal/ceramic resonator oscillator  
The HSE clock can be supplied with a 1 to 16 MHz crystal/ceramic resonator oscillator. All  
the information given in this paragraph is based on characterization results with specified  
typical external components. In the application, the resonator and the load capacitors have  
to be placed as close as possible to the oscillator pins in order to minimize output distortion  
and start-up stabilization time. Refer to the crystal resonator manufacturer for more details  
(frequency, package, accuracy...).  
Table 33: HSE oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min Typ Max  
Unit  
fHSE  
External high speed  
oscillator frequency  
1
16  
20  
MHz  
RF  
Feedback resistor  
220  
kΩ  
pF  
C(1)  
Recommended load  
capacitance(2)  
IDD(HSE)  
HSE oscillator power  
consumption  
C = 20 pF,  
6 (startup)  
1.6 (stabilized)(3)  
fOSC = 16 MHz  
mA  
C = 10 pF,  
6 (startup)  
fOSC =16 MHz  
1.2 (stabilized)(3)  
gm  
Oscillator  
5
mA/V  
ms  
transconductance  
(4)  
tSU(HSE)  
Startup time  
VDD is stabilized  
1
64/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
(1) C is approximately equivalent to 2 x crystal Cload.  
(2) The oscillator selection can be optimized in terms of supply current using a high quality resonator with  
small Rm value. Refer to crystal manufacturer for more details  
(3) Data based on characterization results, not tested in production.  
(4)  
t
is the start-up time measured from the moment it is enabled (by software) to a stabilized 16  
SU(HSE)  
MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary  
significantly with the crystal manufacturer.  
Figure 18: HSE oscillator circuit diagram  
R
m
f
to core  
HSE  
C
O
R
g
L
m
F
C
L1  
C
m
OSCIN  
m
Resonator  
Consumption  
control  
Resonator  
OSCOUT  
C
L2  
STM8  
HSE oscillator critical g m equation  
gmcrit= (2 × Π × fHSE)2 × Rm(2Co + C)2  
Rm: Notional resistance (see crystal specification)  
Lm: Notional inductance (see crystal specification)  
Cm: Notional capacitance (see crystal specification)  
Co: Shunt capacitance (see crystal specification)  
CL1= CL2 = C: Grounded external capacitance  
gm >> gmcrit  
10.3.4  
Internal clock sources and timing characteristics  
Subject to general operating conditions for VDD and TA.  
High speed internal RC oscillator (HSI)  
Table 34: HSI oscillator characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fHSI  
Frequency  
16  
MHz  
DocID15441 Rev 6  
65/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Symbol  
Parameter  
Accuracy of HSI User-trimmed with  
oscillator CLK_HSITRIMR register for  
Conditions  
Min  
Typ  
Max  
Unit  
ACCHSI  
1.0(3)  
given VDD and TA  
conditions(1)  
Accuracy of HSI VDD = 5 V, TA = 25°C(2)  
-1.0  
-2.0  
1.0  
2.0  
%
oscillator (factory  
VDD = 5 V, 25 °C ≤  
calibrated)  
TA ≤ 85 °C  
2.95 ≤ VDD≤ 5.5 V,-40 °C  
≤ TA ≤ 125 °C  
-3.0(2)  
3.0(2)  
tsu(HSI)  
HSI oscillator  
wakeup time  
including  
1.0(3)  
μs  
calibration  
IDD(HSI)  
HSI oscillator  
power  
250(2)  
170  
μA  
consumption  
(1) Refer to application note.  
(2) Data based on characterization results, not tested in production.  
(3) Guaranteed by design, not tested in production.  
Figure 19: Typical HSI accuracy at VDD = 5 V vs 5 temperatures  
66/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Figure 20: Typical HSI frequency variation vs VDD @ 4 temperatures  
Low speed internal RC oscillator (LSI)  
Subject to general operating conditions for VDD and TA.  
Table 35: LSI oscillator characteristics  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
fLSI  
Frequency  
110  
128  
150  
kHz  
tsu(LSI)  
LSI oscillator wake-up time  
7
μs  
IDD(LSI)  
LSI oscillator power consumption  
5
μA  
Figure 21: Typical LSI frequency variation vs VDD @ 4 temperatures  
DocID15441 Rev 6  
67/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
10.3.5  
Memory characteristics  
RAM and hardware registers  
Table 36: RAM and hardware registers  
Symbol  
Parameter  
Data retention mode(1)  
Conditions  
Min  
Unit  
(2)  
VRM  
VIT-max  
Halt mode (or reset)  
V
(1) Minimum supply voltage without losing data stored in RAM (in halt mode or under reset)  
or in hardware registers (only in halt mode). Guaranteed by design, not tested in production.  
(2) Refer to the Operating conditions section for the value of VIT-max  
Flash program memory/data EEPROM memory  
Table 37: Flash program memory/data EEPROM memory  
Symbol Parameter  
Conditions  
Typ  
Max  
Unit  
Min(1)  
VDD Operating voltage  
(all modes, execution/  
write/erase)  
fCPU ≤ 16 MHz  
2.95  
5.5  
V
tprog  
Standard programming time  
(including erase) for  
6
6.6  
byte/word/block (1 byte/  
4 bytes/64 bytes)  
ms  
Fast programming time for  
1 block (64 bytes)  
3
3
3.33  
3.33  
terase  
Erase time for 1 block  
(64 bytes)  
NRW  
Erase/write cycles(2)  
(program memory)  
TA = +85 °C  
10 k  
cycles  
years  
Erase/write cycles  
(data memory)(2)  
TA = +125 °C  
300 k 1 M  
tRET  
Data retention (program  
and data memory) after 10k  
erase/write cycles at  
TA = +55 °C  
TRET = 55°C  
20  
68/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Symbol Parameter  
Electrical characteristics  
Conditions  
Typ  
Max  
Unit  
Min(1)  
Data retention (data  
memory) after 300k  
erase/write cycles at  
TA = +125 °C  
TRET = 85°C  
1
IDD  
Supply current (Flash  
programming or erasing  
for 1 to 128 bytes)  
2
mA  
(1) Data based on characterization results, not tested in production.  
(2) The physical granularity of the memory is 4 bytes, so cycling is performed on 4 bytes  
even when a write/erase operation addresses a single byte.  
10.3.6  
I/O port pin characteristics  
General characteristics  
Subject to general operating conditions for VDD and TA unless otherwise specified. All unused  
pins must be kept at a fixed voltage: using the output mode of the I/O for example or an  
external pull-up or pull-down resistor.  
Table 38: I/O static characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
0.3 x  
VDD  
Unit  
VIL  
VDD = 5 V  
Input low level voltage  
-0.3 V  
V
VIH  
VDD  
0.3  
+
0.7 x  
VDD  
Input high level voltage  
Vhys  
Rpu  
Hysteresis(1)  
700  
45  
mV  
kΩ  
VDD = 5 V, VIN = VSS  
30  
60  
Pull-up resistor  
tR, tF  
Fast I/Os  
20 (2)  
Rise and fall time  
(10 % - 90 %)  
Load = 50 pF  
ns  
Standard and high sink  
I/Os  
125 (2)  
Load = 50 pF  
±1 (2)  
Ilkg  
VSS ≤ VIN ≤VDD  
μA  
Digital input leakage current  
DocID15441 Rev 6  
69/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
±250 (2)  
Ilkg ana  
VSS ≤ VIN ≤ VDD  
nA  
Analog input leakage current  
Ilkg(inj)  
Injection current ±4 mA  
±1 (2)  
Leakage current in adjacent  
I/O  
μA  
(1) Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not  
tested in production.  
(2)Data based on characterisation results, not tested in production.  
Figure 22: Typical VIL and VIH vs VDD @ 4 temperatures  
Figure 23: Typical pull-up resistance vs VDD @ 4 temperatures  
70/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Figure 24: Typical pull-up current vs VDD @ 4 temperatures  
Table 39: Output driving current (standard ports)  
Symbol Parameter  
Conditions  
IIO= 10 mA,  
VDD = 5 V  
Min  
Max Unit  
Output low level with 8 pins sunk  
Output low level with 4 pins sunk  
Output high level with 8 pins sourced  
Output high level with 4 pins sourced  
2.0  
VOL  
IIO = 4 mA,  
VDD = 3.3 V  
1.0(1)  
V
IIO = 10 mA,  
VDD = 5 V  
2.8  
VOH  
IIO = 4 mA,  
VDD = 3.3 V  
2.1(1)  
(1) Data based on characterization results, not tested in production  
Table 40: Output driving current (true open drain ports)  
Symbol Parameter  
Conditions  
Max  
Unit  
IIO = 10 mA, VDD = 5 V  
VOL  
VOL  
VOL  
1 .0  
Output low level with 2 pins sunk  
Output low level with 2 pins sunk  
IIO = 10 mA, VDD = 3.3  
V
1.5(1)  
2.0(1)  
V
IIO = 20 mA, VDD = 5 V  
Output low level with 2 pins sunk  
DocID15441 Rev 6  
71/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
(1) Data based on characterization results, not tested in production  
Table 41: Output driving current (high sink ports)  
Symbol Parameter  
Conditions  
IIO = 10 mA,  
VDD = 5 V  
Min  
Max Unit  
Output low level with 8 pins sunk  
VOL  
0.8  
V
IIO = 10 mA,  
VDD = 3.3 V  
1.0(1)  
1.5(1)  
Output low level with 4 pins sunk  
Output low level with 4 pins sunk  
Output high level with 8 pins sourced  
Output high level with 4 pins sourced  
Output high level with 4 pins sourced  
VOL  
IIO = 20 mA,  
VDD = 5 V  
IIO = 10 mA,  
VDD = 5 V  
V
4.0  
IIO = 10 mA,  
VDD = 3.3 V  
2.1(1)  
3.3(1)  
VOH  
IIO = 20 mA,  
VDD = 5 V  
(1) Data based on characterization results, not tested in production  
Figure 25: Typ. VOL @ VDD = 5 V (standard ports)  
72/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Figure 26: Typ. VOL @ VDD = 3.3 V (standard ports)  
Figure 27: Typ. VOL @ VDD = 5 V (true open drain ports)  
DocID15441 Rev 6  
73/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Figure 28: Typ. VOL @ VDD = 3.3 V (true open drain ports)  
Figure 29: Typ. VOL @ VDD = 5 V (high sink ports)  
74/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Figure 30: Typ. VOL @ VDD = 3.3 V (high sink ports)  
Figure 31: Typ. VDD - VOH@ VDD = 5 V (standard ports)  
DocID15441 Rev 6  
75/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Figure 32: Typ. VDD - VOH @ VDD = 3.3 V (standard ports)  
Figure 33: Typ. VDD - VOH@ VDD = 5 V (high sink ports)  
76/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Figure 34: Typ. VDD - VOH@ VDD = 3.3 V (high sink ports)  
10.3.7  
Reset pin characteristics  
Subject to general operating conditions for VDD and TA unless otherwise specified.  
Table 42: NRST pin characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIL(NRST)  
NRST input low  
level voltage(1)  
-0.3 V  
0.3 x VDD  
VIH(NRST)  
VOL(NRST)  
RPU(NRST)  
tI FP(NRST)  
tIN FP(NRST)  
NRST input high  
level voltage (1)  
IOL=2 mA  
0.7 x VDD  
VDD + 0.3  
V
NRST output low  
level voltage (1)  
0.5  
60  
75  
NRST pull-up  
resistor(2)  
30  
40  
kΩ  
ns  
NRST input filtered  
pulse(3)  
NRST input not  
filtered pulse(3)  
500  
DocID15441 Rev 6  
77/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tOP(NRST)  
NRST output  
pulse (3)  
μs  
20  
(1) Data based on characterization results, not tested in production.  
(2) The RPU pull-up equivalent resistor is based on a resistive transistor  
(3) Data guaranteed by design, not tested in production.  
Figure 35: Typical NRST VIL and VIH vs VDD @ 4 temperatures  
Figure 36: Typical NRST pull-up resistance vs VDD @ 4 temperatures  
78/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Figure 37: Typical NRST pull-up current vs VDD @ 4 temperatures  
The reset network shown in the following figure protects the device against parasitic resets.  
The user must ensure that the level on the NRST pin can go below the VIL max. level specified  
in the I/O port pin characteristics section. Otherwise the reset is not taken into account  
internally.  
Figure 38: Recommended reset pin protection  
STM8  
VDD  
RPU  
External  
reset  
Internal reset  
NRST  
Filter  
circuit  
0.1 μF  
(optional)  
10.3.8  
SPI serial peripheral interface  
Unless otherwise specified, the parameters given in the following table are derived from tests  
performed under ambient temperature, fMASTER frequency and VDD supply voltage conditions.  
tMASTER = 1/fMASTER  
.
Refer to I/O port characteristics for more details on the input/output alternate function  
characteristics (NSS, SCK, MOSI, MISO).  
DocID15441 Rev 6  
79/113  
Electrical characteristics  
Symbol  
STM8S103K3 STM8S103F3 STM8S103F2  
Table 43: SPI characteristics  
Parameter  
Min  
Max  
Unit  
Conditions(1)  
fSCK1/  
tc(SCK)  
SPI clock  
frequency  
Master mode  
0
8
MHz  
fSCK1/  
tc(SCK)  
fSCK1/ tc(SCK)  
SPI clock frequency  
0
7(2)  
25  
MHz  
tr(SCK)  
tf(SCK)  
SPI clock rise and Capacitive load: C = 30 pF  
fall time  
(3)  
tsu(NSS)  
NSS setup time  
Slave mode  
4 x  
tMASTER  
(3)  
th(NSS)  
NSS hold time  
Slave mode  
70  
(3)  
tw(SCKH)  
SCK high and low Master mode  
time  
tSCK  
/
tSCK/  
(3)  
tw(SCKL)  
2 - 15  
2 +15  
(3)  
tsu(MI)  
Data input setup Master mode  
5
(3)  
tsu(SI)  
time  
Slave mode  
5
(3)  
th(MI)  
Data input hold  
time  
Master mode  
Slave mode  
Slave mode  
7
(3)  
th(SI)  
10  
(3) (4)  
ns  
ta(SO)  
Data output  
access time  
3 x  
tMASTER  
(3) (5)  
tdis(SO)  
Data output  
disable time  
Slave mode  
25  
(3)  
tv(SO)  
Data output valid Slave mode  
65(2)  
30  
time  
(after enable edge)  
(3)  
tv(MO)  
Data output valid Master mode  
time  
(after enable edge)  
(3)  
th(SO)  
Data output hold Slave mode  
27(2)  
11(2)  
time  
(after enable edge)  
(3)  
th(MO)  
Data output hold Master mode  
time  
(after enable edge)  
80/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
(1) Parameters are given by selecting 10 MHz I/O output frequency.  
(2) Data characterization in progress.  
(3) Values based on design simulation and/or characterization results, and not tested in  
production.  
(4) Min time is for the minimum time to drive the output and the max time is for the maximum  
time to validate the data.  
(5) Min time is for the minimum time to invalidate the output and the max time is for the  
maximum time to put the data in Hi-Z.  
Figure 39: SPI timing diagram - slave mode and CPHA = 0  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
c(SCK)  
CPHA=0  
CPOL=0  
t
t
w(SCKH)  
w(SCKL)  
CPHA=0  
CPOL=1  
t
t
t
t
t
dis(SO)  
v(SO)  
r(SCK)  
f(SCK)  
h(SO)  
t
a(SO)  
MISO  
MSB O UT  
BIT6 OUT  
BIT1 IN  
LSB OUT  
OUT PUT  
t
su(SI)  
MOSI  
M SB IN  
LSB IN  
INPUT  
t
h(SI)  
ai14134  
Figure 40: SPI timing diagram - slave mode and CPHA = 1  
NSS input  
t
t
t
h(NSS)  
SU(NSS)  
t
c(SCK)  
CPHA=1  
CPOL=0  
w(SCKH)  
CPHA=1  
CPOL=1  
t
w(SCKL)  
t
t
r(SCK)  
f(SCK)  
t
t
t
v(SO)  
h(SO)  
dis(SO)  
t
a(SO)  
MISO  
MSB O UT  
BIT6 OUT  
LSB OUT  
OUT PUT  
t
t
su(SI)  
h(SI)  
MOSI  
M SB IN  
BIT1 IN  
LSB IN  
INPUT  
ai14135  
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD.  
DocID15441 Rev 6  
81/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Figure 41: SPI timing diagram - master mode(1)  
High  
NSS input  
t
c(SCK)  
CPHA=0  
CPOL=0  
CPHA=0  
CPOL=1  
CPHA=1  
CPOL=0  
CPHA=1  
CPOL=1  
t
t
t
t
w(SCKH)  
w(SCKL)  
r(SCK)  
f(SCK)  
t
su(MI)  
MISO  
MSBIN  
t
BIT6 IN  
LSB IN  
INPUT  
h(MI)  
MOSI  
M SB OUT  
BIT1 OUT  
LSB OUT  
OUTUT  
t
t
v(MO)  
h(MO)  
ai14136  
1. Measurement points are made at CMOS levels: 0.3 VDD and 0.7 VDD.  
10.3.9  
I2C interface characteristics  
Table 44: I2C characteristics  
Symbol Parameter  
Unit  
Standard mode I2C  
Fast mode I2C(1)  
Min(2)  
4.7  
Max(2) Min(2)  
Max(2)  
tw(SCLL) SCL clock low time  
tw(SCLH) SCL clock high time  
tsu(SDA) SDA setup time  
1.3  
0.6  
100  
μs  
4.0  
250  
0(3)  
th(SDA)  
SDA data hold time  
0(4)  
900(3)  
300  
tr(SDA)  
tr(SCL)  
SDA and SCL rise time  
1000  
300  
ns  
μs  
tf(SDA)  
tf(SCL)  
SDA and SCL fall time  
300  
th(STA)  
START condition hold time  
4.0  
0.6  
0.6  
tsu(STA) Repeated START condition setup time 4.7  
82/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Symbol Parameter  
Electrical characteristics  
Unit  
Standard mode I2C  
Fast mode I2C(1)  
Min(2)  
Max(2) Min(2)  
Max(2)  
tsu(STO) STOP condition setup time  
4.0  
0.6  
1.3  
tw(STO:STA) STOP to START condition time  
(bus free)  
4.7  
μs  
pF  
Cb  
Capacitive load for each bus line  
400  
400  
(1)  
f
, must be at least 8 MHz to achieve max fast I2C speed (400kHz)  
MASTER  
(2) Data based on standard I2C protocol requirement, not tested in production  
(3) The maximum hold time of the start condition has only to be met if the interface does not stretch the  
low time  
(4) The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge  
the undefined region of the falling edge of SCL  
Figure 42: Typical application with I2C bus and timing diagram  
V
V
DD  
DD  
STM8S  
4.7k  
4.7kΩ  
100Ω  
100Ω  
SDA  
SCL  
2
I
C bus  
REPEATED  
START  
START  
t
t
w(STO:STA)  
su(STA)  
START  
SDA  
t
t
r(SDA)  
f(SDA)  
t
t
h(SDA)  
su(SDA)  
STOP  
SCL  
t
t
t
t
t
su(STO)  
t
h(STA)  
w(SCLH)  
w(SCLL)  
r(SCL)  
f(SCL)  
ai17490  
1. Measurement points are made at CMOS levels: 0.3 x VDD and 0.7 x VDD.  
10.3.10 10-bit ADC characteristics  
Subject to general operating conditions for VDD, fMASTER, and TA unless otherwise specified.  
DocID15441 Rev 6  
83/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Table 45: ADC characteristics  
Symbol Parameter  
Conditions  
Min  
Typ Max Unit  
fADC ADC clock frequency  
VDD =2.95 to 5.5 V  
1
4
MHz  
6
VDD =4.5 to 5.5 V  
1
VAIN Conversion voltage range(1)  
VSS  
VDD  
V
CADC Internal sample and hold  
capacitor  
3
pF  
(1)  
tS  
Minimum sampling time  
fADC = 4 MHz  
fADC = 6 MHz  
0.75  
0.5  
7
μs  
tSTAB Wake-up time from standby  
μs  
tCONV Minimum total conversion time fADC = 4 MHz  
(including sampling time,  
3.5  
2.33  
14  
μs  
10-bit resolution)  
fADC = 6 MHz  
μs  
1/fADC  
(1) During the sample time the input capacitance CAIN (3 pF max) can be charged/discharged  
by the external source. The internal resistance of the analog source must allow the  
capacitance to reach its final voltage level within tS. After the end of the sample time tS,  
changes of the analog input voltage have no effect on the conversion result. Values for the  
sample clock tS depend on programming.  
Table 46: ADC accuracy with RAIN < 10 kΩ , VDD= 5 V  
Symbol  
Parameter  
Conditions  
Typ  
Max(1) Unit  
|ET|  
Total unadjusted error(2)  
fADC = 2 MHz  
1.6  
3.5  
fADC = 4 MHz  
fADC = 6 MHz  
fADC = 2 MHz  
2.2  
2.4  
1.1  
4
LSB  
4.5  
|EO|  
Offset error(2)  
2.5  
84/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Max(1) Unit  
fADC = 4 MHz  
1.5  
3
fADC = 6 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 6 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 6 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 6 MHz  
1.8  
1.5  
2.1  
2.2  
0.7  
0.7  
0.7  
0.6  
0.8  
0.8  
3
|EG|  
Gain error(2)  
3
3
4
|ED|  
Differential linearity error(2)  
1.5  
1.5  
1.5  
1.5  
2
|EL|  
Integral linearity error(2)  
2
(1) Data based on characterization results, not tested in production.  
(2) ADC accuracy vs. negative injection current: Injecting negative current on any of the  
analog input pins should be avoided as this significantly reduces the accuracy of the  
conversion being performed on another analog input. It is recommended to add a Schottky  
diode (pin to ground) to standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in the I/O  
port pin characteristics section does not affect the ADC accuracy.  
Table 47: ADC accuracy with RAIN < 10 kΩ RAIN, VDD = 3.3 V  
Symbol Parameter  
Conditions  
Typ  
Max(1) Unit  
|ET|  
Total unadjusted error(2)  
fADC = 2 MHz  
1.6  
3.5  
fADC = 4 MHz  
fADC = 2 MHz  
1.9  
1
4
LSB  
|EO|  
Offset error(2)  
2.5  
DocID15441 Rev 6  
85/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
Symbol Parameter  
Conditions  
Typ  
Max(1) Unit  
fADC = 4 MHz  
1.5  
2.5  
|EG|  
|ED|  
|EL|  
Gain error(2)  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
fADC = 2 MHz  
fADC = 4 MHz  
1.3  
2
3
3
Differential linearity error(2)  
Integral linearity error(2)  
0.7  
0.7  
0.6  
0.8  
1
1.5  
1.5  
2
(1) Data based on characterization results, not tested in production.  
(2) ADC accuracy vs. negative injection current: Injecting negative current on any of the  
analog input pins should be avoided as this significantly reduces the accuracy of the  
conversion being performed on another analog input. It is recommended to add a Schottky  
diode (pin to ground) to standard analog pins which may potentially inject negative current.  
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in I/O port  
pin characteristics does not affect the ADC accuracy.  
Figure 43: ADC accuracy characteristics  
1. Example of an actual transfer curve.  
2. The ideal transfer curve  
86/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
3. End point correlation line  
ET = Total unadjusted error: maximum deviation between the actual and the ideal transfer  
curves.  
EO = Offset error: deviation between the first actual transition and the first ideal one.  
EG = Gain error: deviation between the last ideal transition and the last actual one.  
ED = Differential linearity error: maximum deviation between actual steps and the ideal  
one.  
EL = Integral linearity error: maximum deviation between any actual transition and the end  
point correlation line.  
Figure 44: Typical application with ADC  
V
STM8  
DD  
V
T
V
0.6 V  
R
AIN  
AIN  
AINx  
10-bit A/D  
conversion  
V
T
0.6 V  
I
L
± 1 µA  
C
C
AIN  
ADC  
10.3.11 EMC characteristics  
Susceptibility tests are performed on a sample basis during product characterization.  
10.3.11.1 Functional EMS (electromagnetic susceptibility)  
While executing a simple application (toggling 2 LEDs through I/O ports), the product is  
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).  
FESD: Functional electrostatic discharge (positive and negative) is applied on all pins of  
the device until a functional disturbance occurs. This test conforms with the IEC 61000-4-2  
standard.  
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS  
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with  
the IEC 61000-4-4 standard.  
A device reset allows normal operations to be resumed. The test results are given in the table  
below based on the EMS levels and classes defined in application note AN1709 (EMC design  
guide for STMicrocontrollers).  
10.3.11.2 Designing hardened software to avoid noise problems  
EMC characterization and optimization are performed at component level with a typical  
application environment and simplified MCU software. It should be noted that good EMC  
performance is highly dependent on the user application and the software in particular.  
Therefore it is recommended that the user applies EMC software optimization and  
prequalification tests in relation with the EMC level requested for his application.  
DocID15441 Rev 6  
87/113  
Electrical characteristics  
Prequalification trials  
STM8S103K3 STM8S103F3 STM8S103F2  
Most of the common failures (unexpected reset and program counter corruption) can be  
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.  
To complete these trials, ESD stress can be applied directly on the device, over the range of  
specification values. When unexpected behavior is detected, the software can be hardened  
to prevent unrecoverable errors occurring. See application note AN1015 (Software techniques  
for improving microcontroller EMC performance).  
Table 48: EMS data  
Symbol Parameter  
Conditions  
Level/  
class  
VFESD Voltage limits to be  
applied on any I/O pin to  
induce a functional  
2/B (1)  
VDD = 3.3 V, TA = 25 °C, fMASTER = 16 MHz  
(HSI clock), conforming to IEC 61000-4-2  
disturbance  
VEFTB  
Fast transient voltage  
burst limits to be applied  
through 100 pF on VDD  
and VSS pins to induce a  
functional disturbance  
4/A (1)  
VDD= 3.3 V, TA = 25 °C ,fMASTER = 16 MHz  
(HSI clock),conforming to IEC 61000-4-4  
(1)Data obtained with HSI clock configuration, after applying HW recommendations described  
in AN2860 (EMC guidelines for STM8S microcontrollers).  
10.3.11.3 Electromagnetic interference (EMI)  
Based on a simple application running on the product (toggling 2 LEDs through the I/O ports),  
the product is monitored in terms of emission. This emission test is in line with the norm SAE  
IEC 61967-2 which specifies the board and the loading of each pin.  
Table 49: EMI data  
Conditions  
(1)  
Max fHSE/fCPU  
Symbol Parameter  
Unit  
General  
Monitored  
16 MHz/ 16 MHz/  
conditions  
frequency band  
8 MHz  
16 MHz  
Peak level VDD = 5 V  
TA = 25 °C  
0.1 MHz to  
30 MHz  
5
5
SEMI  
dBμV  
LQFP32  
package  
4
5
30 MHz to  
88/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Electrical characteristics  
Conditions  
(1)  
Max fHSE/fCPU  
Symbol Parameter  
Unit  
General  
Monitored  
16 MHz/ 16 MHz/  
conditions  
frequency band  
8 MHz  
16 MHz  
Conforming to 130 MHz  
SAE IEC  
61967-2  
130 MHz to  
5
5
1 GHz  
SAE EMI  
level  
2.5  
2.5  
SAE EMI level  
(1) Data based on characterisation results, not tested in production.  
10.3.11.4 Absolute maximum ratings (electrical sensitivity)  
Based on three different tests (ESD, DLU and LU) using specific measurement methods, the  
product is stressed to determine its performance in terms of electrical sensitivity. For more  
details, refer to the application note AN1181.  
10.3.11.5 Electrostatic discharge (ESD)  
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied  
to the pins of each sample according to each pin combination. The sample size depends on  
the number of supply pins in the device (3 parts*(n+1) supply pin). One model can be simulated:  
Human body model. This test conforms to the JESD22-A114A/A115A standard. For more  
details, refer to the application note AN1181.  
Table 50: ESD absolute maximum ratings  
Symbol  
Ratings  
Conditions  
Class Maximum Unit  
value(1)  
VESD(HBM)  
Electrostatic discharge  
voltage  
TA = 25°C, conforming to  
JESD22-A114  
A
4000  
1000  
(Human body model)  
V
VESD(CDM)  
Electrostatic discharge  
voltage  
TA LQFP32 package =  
25°C, conforming to  
SD22-C101  
IV  
(Charge device model)  
DocID15441 Rev 6  
89/113  
Electrical characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
(1) Data based on characterization results, not tested in production  
10.3.11.6 Static latch-up  
Two complementary static tests are required on 10 parts to assess the latch-up performance:  
A supply overvoltage (applied to each power supply pin)  
A current injection (applied to each input, output and configurable I/O pin) are performed  
on each sample.  
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the  
application note AN1181.  
Table 51: Electrical sensitivities  
Symbol Parameter  
Conditions  
Class(1)  
TA = 25 °C  
TA = 85 °C  
TA = 125 °C  
A
A
A
LU  
Static latch-up class  
(1) Class description: A Class is an STMicroelectronics internal specification. All its limits  
are higher than the JEDEC specifications, that means when a device belongs to class A it  
exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international  
standard).  
90/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Package information  
11  
Package information  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com. ECOPACK®  
is an ST trademark.  
11.1  
32-pin LQFP package mechanical data  
Figure 45: 32-pin low profile quad flat package (7 x 7)  
ccc  
C
D
D1  
D3  
A
A2  
24  
17  
16  
25  
32  
L1  
b
E3  
E1 E  
9
L
Pin 1  
identification  
A1  
K
1
8
c
5V_ME  
Table 52: 32-pin low profile quad flat package mechanical data  
Dim.  
mm  
Min  
inches(1)  
Min  
Typ  
Max  
Typ  
Max  
A
1.600  
0.150  
1.450  
0.450  
0.200  
9.200  
7.200  
0.0630  
0.0059  
0.0571  
0.0177  
0.0079  
0.3622  
0.2835  
A1  
A2  
b
0.050  
1.350  
0.300  
0.090  
8.800  
6.800  
0.0020  
0.0531  
0.0118  
0.0035  
0.3465  
0.2677  
1.400  
0.370  
0.0551  
0.0146  
c
D
9.000  
7.000  
0.3543  
0.2756  
D1  
DocID15441 Rev 6  
91/113  
Package information  
Dim.  
STM8S103K3 STM8S103F3 STM8S103F2  
inches(1)  
mm  
Min  
Typ  
Max  
Min  
Typ  
Max  
D3  
E
5.600  
9.000  
7.000  
5.600  
0.800  
0.600  
1.000  
3.5°  
0.2205  
0.3543  
0.2756  
0.2205  
0.0315  
0.0236  
0.0394  
3.5°  
8.800  
6.800  
9.200  
7.200  
0.3465  
0.2677  
0.3622  
0.2835  
E1  
E3  
e
L
0.450  
0.0°  
0.750  
0.0177  
0.0°  
0.0295  
L1  
k
7.0°  
7.0°  
ccc  
0.100  
0.0039  
(1) Values in inches are converted from mm and rounded to 4 decimal digits  
92/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Package information  
11.2  
32-lead UFQFPN package mechanical data  
Figure 46: 32-lead, ultra thin, fine pitch quad flat no-lead package (5 x 5)  
AOB8_ME  
1. Drawing is not to scale.  
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint  
life.  
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended  
to connect and solder this backside pad to PCB ground.  
4. Dimensions are in millimeters.  
Table 53: 32-lead, ultra thin, fine pitch quad flat no-lead package mechanical data  
Dim.  
mm  
inches(1)  
Min  
0.500  
0
Typ  
Max  
Min  
Typ  
Max  
A
0.550  
0.020  
0.200  
0.600  
0.050  
0.0197  
0.0217  
0.0008  
0.0079  
0.0236  
0.0020  
A1  
A3  
DocID15441 Rev 6  
93/113  
Package information  
Dim.  
STM8S103K3 STM8S103F3 STM8S103F2  
inches(1)  
mm  
Min  
Typ  
Max  
Min  
Typ  
Max  
b
0.180  
4.850  
3.200  
4.850  
3.200  
0.250  
5.000  
3.450  
5.000  
3.450  
0.500  
0.400  
0.300  
5.150  
3.700  
5.150  
3.700  
0.0071  
0.1909  
0.1260  
0.1909  
0.1260  
0.0098  
0.1969  
0.0118  
0.2028  
0.1457  
0.2028  
0.1457  
D
D2  
E
0.1969  
0.1358  
0.0197  
0.0157  
E2  
e
L
0.300  
0.500  
0.080  
0.0118  
0.0197  
0.0031  
ddd  
(1) Values in inches are converted from mm and rounded to 4 decimal digits.  
11.3  
20-lead UFQFPN package mechanical data  
Figure 47: 20-lead, ultra thin, fine pitch quad flat no-lead package outline (3 x 3)  
L1  
D
e
ddd  
L4  
10  
11  
A3  
L2  
5
1
e
b
E
15  
16  
20  
L3  
A1  
A
103_A0A5_ME  
1. Drawing is not to scale.  
94/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Package information  
Table 54: 20-lead, ultra thin, fine pitch quad flat no-lead package (3 x 3) package  
mechanical data  
Dim.  
mm  
Min  
inches(1)  
Typ  
Max  
Min  
Typ  
Max  
D
3.000  
0.1181  
E
3.000  
0.550  
0.020  
0.152  
0.500  
0.550  
0.350  
0.150  
0.200  
0.250  
0.1181  
0.0217  
0.0008  
0.0060  
0.0197  
0.0217  
0.0138  
0.0059  
0.0079  
0.0098  
A
0.500  
0.000  
0.600  
0.050  
0.0197  
0.0000  
0.0236  
0.0020  
A1  
A3  
e
L1  
L2  
L3  
L4  
b
0.500  
0.300  
0.600  
0.400  
0.0197  
0.0118  
0.0236  
0.0157  
0.180  
0.050  
0.300  
0.0071  
0.0020  
0.0118  
ddd  
(1) Values in inches are converted from mm and rounded to 4 decimal digits.  
DocID15441 Rev 6  
95/113  
Package information  
STM8S103K3 STM8S103F3 STM8S103F2  
11.4  
20-pin TSSOP package mechanical data  
Figure 48: 20-pin, 4.40 mm body, 0.65 mm pitch  
D
20  
11  
c
E1  
E
1
10  
k
aaa  
CP  
A1  
L
A
A2  
L1  
b
e
YA_ME  
Table 55: 20-pin, 4.40 mm body, 0.65 mm pitch mechanical data  
Dim.  
mm  
Min  
inches(1)  
Min  
Typ  
Max  
Typ  
Max  
A
1.200  
0.150  
1.050  
0.300  
0.200  
6.600  
6.600  
4.500  
0.0472  
0.0059  
0.0413  
0.0118  
0.0079  
0.2598  
0.2598  
0.1772  
A1  
A2  
b
0.050  
0.800  
0.190  
0.090  
6.400  
6.200  
4.300  
0.0020  
0.0315  
0.0075  
0.0035  
0.2520  
0.2441  
0.1693  
1.000  
0.0394  
c
D
6.500  
6.400  
4.400  
0.650  
0.600  
1.000  
0.2559  
0.2520  
0.1732  
0.0256  
0.0236  
0.0394  
E
E1  
e
L
0.450  
0.750  
0.0177  
0.0295  
L1  
96/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Package information  
Dim.  
mm  
inches(1)  
Min  
Typ  
Max  
8.0°  
Min  
Typ  
Max  
k
0.0°  
0.0°  
8.0°  
aaa  
0.100  
0.0039  
(1) Values in inches are converted from mm and rounded to 4 decimal digits  
11.5  
20-pin SO package mechanical data  
Figure 49: 20-lead, plastic small outline (300 mils) package  
D
20  
11  
h x 45°  
C
E
H
1
10  
A
ddd  
A1  
B
e
A1  
k
L
Z7_ME  
Table 56: 20-lead, plastic small outline (300 mils) mechanical data  
Dim.  
mm  
inches(1)  
Min  
Typ  
Max  
Min  
Typ  
Max  
A
2.350  
0.100  
0.330  
0.230  
12.600  
7.400  
2.650  
0.300  
0.510  
0.320  
13.000  
7.600  
0.0925  
0.0039  
0.013  
0.1043  
0.0118  
0.0201  
0.0126  
0.5118  
0.2992  
A1  
B
C
D
E
0.0091  
0.4961  
0.2913  
e
1.270  
0.0500  
DocID15441 Rev 6  
97/113  
Package information  
Dim.  
STM8S103K3 STM8S103F3 STM8S103F2  
inches(1)  
mm  
Min  
Typ  
Max  
Min  
Typ  
Max  
H
10.000  
0.250  
0.400  
0.0°  
10.650  
0.750  
1.270  
8.0°  
0.3937  
0.0098  
0.0157  
0.0°  
0.4193  
0.0295  
0.0500  
8.0°  
h
L
k
ddd  
0.100  
0.0039  
(1) Values in inches are converted from mm and rounded to 4 decimal digits  
11.6  
UFQFPN recommended footprint  
Figure 50: Recommended footprint for on-board emulation  
0.5mm  
0.8mm  
[0.032"]  
4mm  
[0.157"]  
0.5mm  
1.65mm [0.065"]  
0.9mm  
[0.035"]  
0.3mm [0.012"]  
4mm [0.157"]  
ai15319  
Bottom view  
1. Drawing is not to scale  
98/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Package information  
Figure 51: Recommended footprint without on-board emulation  
1. Drawing is not to scale  
2. Dimensions are in millimeters  
DocID15441 Rev 6  
99/113  
Thermal characteristics  
STM8S103K3 STM8S103F3 STM8S103F2  
12  
Thermal characteristics  
The maximum chip junction temperature (TJ max) must never exceed the values given in  
Operating conditions.  
The maximum chip-junction temperature, TJmax, in degrees Celsius, may be calculated using  
the following equation:  
TJmax = TAmax + (PDmax x ΘJA)  
Where:  
TAmax is the maximum ambient temperature in °C  
ΘJA is the package junction-to-ambient thermal resistance in °C/W  
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax  
)
PINTmax is the product of IDD andVDD, expressed in Watts. This is the maximum chip internal  
power.  
PI/Omax represents the maximum power dissipation on output pins  
Where: PI/Omax =Σ (VOL*IOL) + Σ((VDD-VOH)*IOH), taking into account the actual VOL/IOL and  
VOH/IOH of the I/Os at low and high level in the application.  
Table 57: Thermal characteristics  
Symbol  
Parameter(1)  
Value  
Unit  
ΘJA  
ΘJA  
ΘJA  
ΘJA  
ΘJA  
Thermal resistance junction-ambient  
TSSOP20 - 4.4 mm  
84  
°C/W  
Thermal resistance junction-ambient  
SO20W (300 mils)  
91  
90  
60  
38  
°C/W  
°C/W  
°C/W  
°C/W  
Thermal resistance junction-ambient  
UFQFPN20 - 3 x 3 mm  
Thermal resistance junction-ambient  
LQFP32 - 7 x 7 mm  
Thermal resistance junction-ambient  
UFQFPN32 - 5 x 5 mm  
(1)Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural  
convection environment.  
100/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Thermal characteristics  
12.1  
12.2  
Reference document  
JESD51-2 integrated circuits thermal test method environment conditions - natural convection  
(still air). Available from www.jedec.org.  
Selecting the product temperature range  
When ordering the microcontroller, the temperature range is specified in the order code.  
The following example shows how to calculate the temperature range needed for a given  
application.  
Assuming the following application conditions:  
Maximum ambient temperature TAmax= 75 °C (measured according to JESD51-2)  
IDDmax = 8 mA, VDD = 5 V  
Maximum 20 I/Os used at the same time in output at low level with  
IOL = 8 mA, VOL= 0.4 V  
PINTmax = 8 mA x 5 V = 400 mW  
Amax  
PDmax = 400 mW + 64 mW  
Thus: PDmax = 464 mW  
TJmax for LQFP32 can be calculated as follows, using the thermal resistance ΘJA:  
TJmax = 75 °C + (60 °C/W x 464 mW) = 75 °C + 27.8 °C = 102.8 °C  
This is within the range of the suffix 6 version parts (-40 < TJ < 105 °C).  
In this case, parts must be ordered at least with the temperature range suffix 6.  
DocID15441 Rev 6  
101/113  
Ordering information  
STM8S103K3 STM8S103F3 STM8S103F2  
13  
Ordering information  
Figure 52: STM8S103x access line ordering information scheme  
Example:  
STM8  
S
103  
K
3
T
6
TR  
Product class  
STM8 microcontroller  
Family type  
S = Standard  
Sub-family type  
10x = Access line  
103 sub-family  
Pin count  
K = 32 pins  
F = 20 pins  
Program memory size  
3 = 8 Kbytes  
2 = 4 Kbytes  
Package type 1  
T = LQFP  
U = UFQFPN  
P = TSSOP  
M = SO  
Temperature range  
3 = -40 °C to 125 °C  
6 = -40 °C to 85 °C  
Package type 2  
Blank = UFQFPN  
Packing  
No character = Tray or tube  
TR = Tape and reel  
1. A dedicated ordring information scheme will be released if, in the future, memory  
programming service (FastROM) is required The letter "P" will be added after STM8S.  
Three unique letters identifying the customer application code will also be visible in the  
codification. Example: STM8SP103K3MACTR.  
For a list of available options (e.g. memory size, package) and orderable part numbers or for  
further information on any aspect of this device, please go to www.st.com or contact the ST  
Sales Office nearest to you.  
102/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Ordering information  
13.1  
STM8S103 FASTROM microcontroller option list  
(last update: April 2010)  
Customer  
Address  
Contact  
.............................................................................................  
.............................................................................................  
.............................................................................................  
.............................................................................................  
Phone no.  
Reference FASTROM codea .............................................................................................  
Preferable format for programing code is .Hex (.s19 is accepted)  
If data EEPROM programing is required, a seperate file must be sent with the requested data.  
Important: See the option byte section in the datasheet for authorized option byte  
combinations and a detailed explanation. Do not use more than one remapping option  
in the same port. It is forbidden to enable both AFR1 and AFR0.  
Device type/memory size/package (check only one option)  
FASTROM device  
LQFP32  
4 Kbyte  
8 Kbyte  
[ ] STM8S103K3  
[ ] STM8S103K3  
[ ] STM8S103F3  
[ ] STM8S103F3  
UFQFPN32  
TSSOP20  
[ ] STM8S103F2  
[ ] STM8S103F2  
SO20W  
Conditioning (check only one option)  
[ ] Tape & reel or [ ] Tray  
Special marking (check only one option)  
[ ] No [ ] Yes  
Authorized characters are letters, digits, '.', '-', '/' and spaces only. Maximum character counts  
are:  
UFQFPN32: 1 line of 7 characters max: "_ _ _ _ _ _ _"  
LQFP32: 2 lines of 7 characters max: "_ _ _ _ _ _ _" and "_ _ _ _ _ _ _"  
TSSOP20/SO20: 1 line of 10 characters max: "_ _ _ _ _ _ _ _ _ _"  
Three characters are reserved for code identification.  
Temperature range  
[ ] -40°C to +85°C or [ ] -40°C to +125°C  
Padding value for unused program memory (check only one option)  
[ ]0xFF  
Fixed value  
a
FASTROM code name is assigned by STMicroelectronics.  
DocID15441 Rev 6  
103/113  
Ordering information  
STM8S103K3 STM8S103F3 STM8S103F2  
[ ]0x83  
[ ]0x75  
TRAP instruction opcode  
Illegal opcode (causes a reset when executed)  
OPT0 memory readout protection (check only one option)  
[ ] Disable or [ ] Enable  
OPT1 user boot code area (UBC)  
0x(_ _) fill in the hexadecimal value, refering to the datasheet and the binary format below.  
UBC, bit0  
[ ] 0: Reset  
[ ] 1: Set  
UBC bit1  
[ ] 0: Reset  
[ ] 1: Set  
UBC bit2  
[ ] 0: Reset  
[ ] 1: Set  
UBC bit3  
[ ] 0: Reset  
[ ] 1: Set  
UBC bit4  
[ ] 0: Reset  
[ ] 1: Set  
UBC bit5  
[ ] 0: Reset  
[ ] 1: Set  
UBC bit6  
[ ] 0: Reset  
[ ] 1: Set  
UBC bit7  
[ ] 0: Reset  
[ ] 1: Set  
OPT2 alternate function remapping for STM8S103K  
Do not use more than one remapping option in the same port. It is forbidden to enable both  
AFR1 and AFR0.  
AFR0  
Reserved  
AFR1  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
(check only one option)  
[ ] 1: Port A3 alternate function = SPI_NSS and port D2  
alternate function = TIM2_CH3  
AFR2  
Reserved  
104/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Ordering information  
AFR3  
Reserved  
Reserved  
AFR4  
AFR5  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
(check only one option)  
[ ] 1: Port D0 alternate function = CLK_CCO  
AFR6  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
(check only one option)  
[ ] 1: Port D7 alternate function = TIM1_CH4  
Reserved  
AFR7  
OPT2 alternate function remapping for STM8S103F  
Do not use more than one remapping option in the same port. It is forbidden to enable both  
AFR1 and AFR0.  
AFR0  
[ ] 0: Remapping option inactive. Default alternate functions  
(check only one option)  
used. Refer to pinout description  
[ ] 1: Port C5 alternate function = TIM2_CH1, port C6 alternate  
function = TIM1_CH1, and port C7 alternate function =  
TIM1_CH2  
AFR1  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
(check only one option)  
[ ] 1: Port A3 alternate function = SPI_NSS and port D2 alternate  
function = TIM2_CH3  
AFR2  
Reserved  
AFR3  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
(check only one option)  
[ ] 1: Port C3 alternate function = TLI  
AFR4  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
(check only one option)  
[ ] 1: Port B4 alternate function = ADC_ETR and port B5 alternate  
function = TIM1_BKIN  
AFR5  
Reserved  
Reserved  
AFR6  
AFR7  
[ ] 0: Remapping option inactive. Default alternate functions  
used. Refer to pinout description  
(check only one option)  
[ ] 1: Port C3 alternate function = TIM1_CH1N and port C4  
alternate function = TIM1_CH2N  
DocID15441 Rev 6  
105/113  
Ordering information  
OPT3 watchdog  
STM8S103K3 STM8S103F3 STM8S103F2  
WWDG_HALT  
[ ] 0: No reset generated on halt if WWDG active  
[ ] 1: Reset generated on halt if WWDG active  
(check only one option)  
WWDG_HW  
[ ] 0: WWDG activated by software  
[ ] 1: WWDG activated by hardware  
(check only one option)  
IWDG_HW  
[ ] 0: IWDG activated by software  
[ ] 1: IWDG activated by hardware  
(check only one option)  
LSI_EN  
[ ] 0: LSI clock is not available as CPU clock source  
[ ] 1: LSI clock is available as CPU clock source  
(check only one option)  
HSITRIM  
[ ] 0: 3-bit trimming supported in CLK_HSITRIMR register  
[ ] 1: 4-bit trimming supported in CLK_HSITRIMR register  
(check only one option)  
OPT4 wakeup  
PRSC  
[ ] for 16 MHz to 128 kHz prescaler  
[ ] for 8 MHz to 128 kHz prescaler  
[ ] for 4 MHz to 128 kHz prescaler  
(check only one option)  
CKAWUSEL  
[ ] LSI clock source selected for AWU  
(check only one option)  
[ ] HSE clock with prescaler selected as clock source for  
for AWU  
EXTCLK  
[ ] External crystal connected to OSCIN/OSCOUT  
[ ] External clock signal on OSCIN  
(check only one option)  
OPT5 crystal oscillator stabilization HSECNT (check only one option)  
[ ] 2048 HSE cycles  
[ ] 128 HSE cycles  
[ ] 8 HSE cycles  
[ ] 0.5 HSE cycles  
OPT6 is reserved  
Comments:  
...........................................................................................................  
Supply operating range ...........................................................................................................  
in the application:  
Notes:  
...........................................................................................................  
106/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Ordering information  
Date:  
...........................................................................................................  
...........................................................................................................  
Signature:  
DocID15441 Rev 6  
107/113  
STM8 development tools  
STM8S103K3 STM8S103F3 STM8S103F2  
14  
STM8 development tools  
Development tools for the STM8 microcontrollers include the full-featured STice emulation  
system supported by a complete software tool package including C compiler, assembler and  
integrated development environment with high-level language debugger. In addition, the  
STM8 is to be supported by a complete range of tools including starter kits, evaluation boards  
and a low-cost in-circuit debugger/programmer.  
14.1  
Emulation and in-circuit debugging tools  
The STice emulation system offers a complete range of emulation and in-circuit debugging  
features on a platform that is designed for versatility and cost-effectiveness. In addition, STM8  
application development is supported by a low-cost in-circuit debugger/programmer.  
The STice is the fourth generation of full featured emulators from STMicroelectronics. It offers  
new advanced debugging capabilities including profiling and coverage to help detect and  
eliminate bottlenecks in application execution and dead code when fine tuning an application.  
In addition, STice offers in-circuit debugging and programming of STM8 microcontrollers via  
the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of an  
application while it runs on the target microcontroller.  
For improved cost effectiveness, STice is based on a modular design that allows you to order  
exactly what you need to meet your development requirements and to adapt your emulation  
system to support existing and future ST microcontrollers.  
STice key features  
Occurrence and time profiling and code coverage (new features)  
Advanced breakpoints with up to 4 levels of conditions  
Data breakpoints  
Program and data trace recording up to 128 KB records  
Read/write on the fly of memory during emulation  
In-circuit debugging/programming via SWIM protocol  
8-bit probe analyzer  
1 input and 2 output triggers  
Power supply follower managing application voltages between 1.62 to 5.5 V  
Modularity that allows you to specify the components you need to meet your development  
requirements and adapt to future requirements  
Supported by free software tools that include integrated development environment (IDE),  
programming software interface and assembler for STM8.  
14.2  
Software tools  
STM8 development tools are supported by a complete, free software package from  
STMicroelectronics that includes ST Visual Develop (STVD) IDE and the ST Visual  
Programmer (STVP) software interface. STVD provides seamless integration of the Cosmic  
and Raisonance C compilers for STM8, which are available in a free version that outputs up  
to 16 Kbytes of code.  
108/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
STM8 development tools  
14.2.1  
STM8 toolset  
STM8 toolset with STVD integrated development environment and STVP programming  
software is available for free download at www.st.com/mcu. This package includes:  
ST Visual Develop – Full-featured integrated development environment from ST, featuring  
Seamless integration of C and ASM toolsets  
Full-featured debugger  
Project management  
Syntax highlighting editor  
Integrated programming interface  
Support of advanced emulation features for STice such as code profiling and coverage  
ST Visual Programmer (STVP) – Easy-to-use, unlimited graphical interface allowing read,  
write and verify of your STM8 microcontroller’s Flash program memory, data EEPROM and  
option bytes. STVP also offers project mode for saving programming configurations and  
automating programming sequences.  
14.2.2  
C and assembly toolchains  
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated  
development environment, making it possible to configure and control the building of your  
application directly from an easy-to-use graphical interface.  
Available toolchains include:  
Cosmic C compiler for STM8 – Available in a free version that outputs up to 16 Kbytes  
of code. For more information, see www.cosmic-software.com.  
Raisonance C compiler for STM8 – Available in a free version that outputs up to  
16 Kbytes of code. For more information, see www.raisonance.com.  
STM8 assembler linker – Free assembly toolchain included in the STVD toolset, which  
allows you to assemble and link your application source code.  
14.3  
Programming tools  
During the development cycle, STice provides in-circuit programming of the STM8 Flash  
microcontroller on your application board via the SWIM protocol. Additional tools are to include  
a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated  
programming platforms with sockets for programming your STM8.  
For production environments, programmers will include a complete range of gang and  
automated programming solutions from third-party tool developers already supplying  
programmers for the STM8 family.  
DocID15441 Rev 6  
109/113  
Revision history  
STM8S103K3 STM8S103F3 STM8S103F2  
15  
Revision history  
Table 58: Document revision history  
Date  
Revision  
Changes  
02-Mar-2009  
1
Initial revision  
10-Apr-2009  
2
Added Table 2: Peripheral clock gating bit assignments in  
CLK_PCKENR1/2 registers.  
Updated Auto wakeup counter.  
Modified description of PB4 and PB5 (removed X in PP column)  
and added footnote concerning HS I/Os in VFQFPN32/LQFP32  
pin description and STM8S103Kx UFQFPN32/LQFP32 pinout  
and pin description.  
Removed TIM3 and UART from Table 10: Interrupt mapping.  
Updated VCAP specifications in VCAP external capacitor.  
Corrected block size in Table 37: Flash program memory/data  
EEPROM memory.  
Updated Electrical characteristics.  
Updated Table 57: Thermal characteristics.  
10-Jun-2009  
3
Document status changed from “preliminary data” to  
“datasheet”.  
Replaced WFQFPN20 package with UFQFPN package.  
Replaced ‘VFQFN’ with ‘VFQFPN’.  
Added bullet point on the unique identifier to Features.  
Updated Auto wakeup counter.  
Updated wpu and PP status of PB5/12C_SDA and  
PB4/12C_SCL pins in VFQFPN32/LQFP32 pin description and  
STM8S103Fx TSSOP20/SO20/UFQFPN20 pin description.  
Removed Table 7: Pin-to-pin comparison of pin 7 to 12 in 32-pin  
access line devices.  
Updated Figure 6: Memory map.  
Updated reset status of port D CR1 register in Table 7: I/O port  
hardware register map.  
Updated alternate function remapping descriptions in Table  
13: STM8S103K alternate function remapping bits for 32-pin  
devices and Table 14: STM8S103F alternate function  
remapping bits for 20-pin devices.  
Added Unique ID.  
110/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Revision history  
Date  
Revision  
Changes  
Updated Table 19: General operating conditions.  
Updated name of Figure 19: Typical HSI accuracy at VDD = 5  
V vs 5 temperatures.  
Updated Table 43: SPI characteristics and added TBD data.  
Added max values to Table 46: ADC accuracy with RAIN < 10  
kΩ , VDD= 5 V and Table 47: ADC accuracy with RAIN < 10  
kΩ RAIN, VDD = 3.3 V in the 10-bit ADC characteristics.  
Updated EMC characteristics.  
16-Oct-2009  
4
Replaced VFQFPN32 package with UFQFPN32 package.  
Clock controller: replaced "TIM2" and "TIM3" with "reserved"  
and "TIM2" respectively in "Peripheral clock gating bit  
assignments in CLK_PCKENR1/2 registers" table.  
Total current consumption in halt mode: changed the maximum  
current consumption limit at 125 °C (and VDD = 5 V) from 35  
µA to 55 µA.  
Functional EMS (electromagnetic susceptibility) : "ESD"  
changed to "FESD" (functional); added name of AN1709;  
replaced "IEC 1000" with "IEC 61000".  
Designing hardened software to avoid noise problems: replaced  
"IEC 1000" with "IEC 61000", added title of AN1015, and added  
footnote to EMS data table.  
Electromagnetic interference (EMI): replaced "J 1752/3" with  
"IEC 61967-2" and updated data of the EMI data table.  
Selecting the product temperature range: changed the value  
of LQFP32 7x7 mm thermal resistance from 59 °C/W to 60  
°C/W.  
Added STM8S103 FASTROM microcontroller option list.  
22-Apr-2010  
5
Added VFQFPN32 and SO20 packages.  
Updated Px_IDR reset value in Table 7: I/O port hardware  
register map.  
Operating conditions: updated VCAP and ESR low limit, added  
ESL parameter, and Note 1 below Table 19: General operating  
conditions.  
Updated ACCHSI in Table 34: HSI oscillator characteristics  
table. Modified IDD(H) in Table 27: Total current consumption  
in halt mode at VDD = 5 V and Table 28: Total current  
consumption in halt mode at VDD = 3.3 V. Removed note 3  
related to Accuracy of HSI oscillator.  
DocID15441 Rev 6  
111/113  
Revision history  
Date  
STM8S103K3 STM8S103F3 STM8S103F2  
Revision  
Changes  
Updated maximum power dissipation in Table 19: General  
operating conditions.  
Updated ΘJA in Table 57: Thermal characteristics.  
Replaced package pitch digit by VFQFPN/UFQFPN package  
digit in Figure 52: STM8S103x access line ordering information  
scheme, and removed note 1.  
09-Sep-2010  
6
Removed VFQFPN32 package.  
Updated "reset state" of Table 4: Legend/abbreviations for  
pinout tables in Pinout and pin description.  
Added footnote to PD1/SWIM pin in STM8S103Kx  
UFQFPN32/LQFP32 pinout and pin description.  
Updated pins 14 and 19 (TSSOP20/SO20) / pins 11 and 16  
(UFQFPN20) in STM8S103Fx TSSOP20/SO20/UFQFPN20  
pin description.  
General hardware register map : Standardized all reset state  
values; updated the reset state values of the RST_SR,  
CLK_SWCR, CLK_HSITRIMR, CLK_SWIMCCR, IWDG_KR,  
and ADC_DRx registers in the "General hardware register  
map" table.  
Updated AFR2 description of OPT 2 in Table 14: STM8S103F  
alternate function remapping bits for 20-pin devices.  
Replaced 0.01 µF with 0.1 µf in Figure 38: Recommended  
reset pin protection.  
Added "Typical application with I2C bus and timing diagram in  
I2C interface characteristics.  
Updated footnote 1 in Table 46: ADC accuracy with RAIN <  
10 kΩ , VDD= 5 V and Table 47: ADC accuracy with RAIN <  
10 kΩ RAIN, VDD = 3.3 V .  
STM8S103 FASTROM microcontroller option list: updated  
"special marking" section and AFR2 description of OPT2  
alternate function remapping for STM8S103F.  
32-lead UFQFPN package mechanical data: updated existing  
footnote and added three additional footnotes.  
112/113  
DocID15441 Rev 6  
STM8S103K3 STM8S103F3 STM8S103F2  
Please Read Carefully  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries  
(“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products  
and services described herein at anytime, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein,  
and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described  
herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document.  
If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for  
the use of such third party products or services, or any intellectual property contained therein or considered as a warranty  
covering the use in any manner whatsoever of such third party products or services or any intellectual property contained  
therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS  
OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT  
LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND  
THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT,  
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE  
NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING,  
OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION  
MAY RESULT IN PERSONAL INJURY,DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST  
PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVEGRADE" MAY ONLY BE USED IN AUTOMOTIVE  
APPLICATIONS AT USER’S OWN RISK.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document  
shall immediately voidany warranty granted by ST for the ST product or service described herein and shall not create or  
extend in any manner whatsoever, any liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
©
2010 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel  
- Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom -  
United States of America  
www.st.com  
DocID15441 Rev 6  
113/113  

相关型号:

STM8S103K3P6TR

Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S103K3T3TR

Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S103K3T6

8-BIT, FLASH, 16MHz, MICROCONTROLLER, PQFP32, 7 X 7 MM, ROHS COMPLIANT, LQFP-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S103K3T6C

Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash, data EEPROM,10-bit ADC, 3 timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S103K3T6TR

Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S103K3U3TR

Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S103K3U6TR

Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S103K3U6V

8-BIT, FLASH, 16MHz, MICROCONTROLLER, QCC32, 5 X 5 MM, ROHS COMPLIANT, VFQFPN-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S103K3U6VTR

8-BIT, FLASH, 16MHz, MICROCONTROLLER, QCC32, 5 X 5 MM, ROHS COMPLIANT, VFQFPN-32

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S103XX

Access line, STM8S 8-bit MCU, up to 32 Kbytes Flash, 10-bit ADC, timers, USART, SPI, IC

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S105

Access line, 16 MHz STM8S 8-bit MCU, up to 32 Kbytes Flash, integrated EEPROM,10-bit ADC, timers, UART, SPI, I²C

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

STM8S105C4

Extended instruction set

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR