STOD03ATPUR [STMICROELECTRONICS]

Dual DC-DC converter for powering AMOLED displays;
STOD03ATPUR
型号: STOD03ATPUR
厂家: ST    ST
描述:

Dual DC-DC converter for powering AMOLED displays

文件: 总22页 (文件大小:496K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STOD03A  
Dual DC-DC converter for powering AMOLED displays  
Datasheet  
-
production data  
Fast discharge outputs of the circuits after  
shutdown  
Package DFN12L (3 x 3) 0.6 mm height  
Applications  
Active matrix AMOLED power supply  
Cellular phones  
DFN12L (3 x 3 mm)  
Camcorders and digital still cameras  
Multimedia players  
Features  
Step-up and inverter converters  
Description  
Operating input voltage range from 2.3 V to  
The STOD03A is a dual DC-DC converter for  
AMOLED display panels. It integrates a step-up  
and an inverting DC-DC converter making it  
particularly suitable for battery operated products,  
in which the major concern is overall system  
efficiency. It works in pulse skipping mode during  
low load conditions and PWM-MODE at 1.5 MHz  
frequency for medium/high load conditions. The  
high frequency allows the value and size of  
external components to be reduced. The Enable  
pin allows the device to be turned off, therefore  
reducing the current consumption to less than  
1 µA. The negative output voltage can be  
4.5 V  
Synchronous rectification for both DC-DC  
converters  
200 mA output current  
4.6 V fixed positive output voltages  
Programmable negative voltage by SWIRE from  
- 2.4 V to - 5.4 V  
Typical efficiency: 85%  
Pulse skipping mode in light load condition  
1.5 MHz PWM mode control switching  
frequency  
programmed by an MCU through a dedicated pin  
which implements single-wire protocol. Soft-start  
with controlled inrush current limit and thermal  
shutdown are integrated functions of the device.  
Enable pin for shutdown mode  
Low quiescent current: < 1 µA in shutdown  
mode  
Soft-start with inrush current protection  
Overtemperature protection  
Temperature range: - 40 °C to 85 °C  
True-shutdown mode  
Table 1. Device summary  
Order code  
Positive voltage  
Negative voltage  
Package  
Packaging  
STOD03ATPUR  
4.6V  
-2.4V to -5.4V  
DFN12L (3 x 3mm)  
3000 parts per reel  
June 2013  
DocID17785 Rev 3  
1/22  
This is information on a product in full production.  
www.st.com  
 
Contents  
STOD03A  
Contents  
1
2
3
4
5
6
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Detailed description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6.1  
S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SWIRE features and benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
SWIRE protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
WIRE  
6.1.1  
6.1.2  
6.1.3  
SWIRE basic operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
6.2  
Negative output voltage levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
7
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.1  
External passive components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.1.1  
7.1.2  
Inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Input and output capacitor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
7.2  
7.3  
Recommended PCB layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
Multiple operation modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Enable pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Soft-start and inrush current limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Undervoltage lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Overtemperature protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Fast discharge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
8
9
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
2/22  
DocID17785 Rev 3  
STOD03A  
Schematic  
1
Schematic  
Figure 1. Application schematic  
L1  
VBAT  
CIN  
VINP  
LX1  
VMID  
VINA  
CMID  
SWIRE  
S-Wire  
STOD03A  
PGND AGND  
VO2  
EN  
CO2  
EN  
VREF  
LX2  
CREF  
L2  
Table 2. Typical external components  
Component Manufacturer  
Part number  
Value  
Size  
L1  
ABCO  
ABCO  
TDK  
LPF2807T-4R7M  
LPF3509T-4R7M  
4.7µH  
4.7µH  
4.7µH  
4.7µF  
4.7µF  
4.7µF  
1µF  
2.8 x 2.8 x 0.7mm  
3.5 x 3.5 x 1.0mm  
3.7 x 3.5 x 1.4mm  
0805  
(1)  
L2  
VLF4014AT-4R7M1R1  
GRM21BR61E475KA12  
GRM21BR61E475KA12  
GRM21BR61E475KA12  
GRM155R60J105KE19  
CIN  
CMID  
CO2  
Murata  
Murata  
Murata  
Murata  
0805  
0805  
CREF  
0402  
1. From - 5.0 V to -5.4 V, 200 mA load can be provided with inductor saturation current as a minimum of 1 A.  
Note:  
All the above components refer to the typical application performance characteristics.  
Operation of the device is not limited to the choice of these external components. Inductor  
values ranging from 2.2 µH to 6.8 µH can be used together with the STOD03A. See  
Section 7.1.1 for peak inductor current calculation.  
DocID17785 Rev 3  
3/22  
22  
Schematic  
STOD03A  
Figure 2. Block schematic  
LX1  
VINP  
DMD  
RING  
UVLO  
VINA  
KILLER  
VMID  
P1A  
P1B  
N1  
STEP-UP  
CONTROL  
FAST  
DISCHARGE  
LOGIC CONTROL  
OTP  
EN  
S-WIRE  
SWIRE  
OSC  
DMD  
VINP  
VO2  
N2  
P2  
S-wire  
control  
VREF  
VREF  
INVERTING  
CONTROL  
VREF  
AGND  
PGND  
FAST  
DISCHARGE  
LX2  
4/22  
DocID17785 Rev 3  
STOD03A  
Pin configuration  
2
Pin configuration  
Figure 3. Pin configuration (top view)  
Table 3. Pin description  
Description  
Pin name  
Pin number  
Lx1  
PGND  
VMID  
NC  
1
2
3
4
5
Switching node of the step-up converter  
Power ground pin  
Step-up converter output voltage (4.6V)  
Not internally connected  
AGND  
Signal ground pin. This pin must be connected to the power ground pin  
Voltage reference output. 1µF bypass capacitor must be connected between  
this pin and AGND  
VREF  
SWIRE  
EN  
6
7
8
Negative voltage setting pin. Uses SWIRE protocol, see details in  
Section 6.1.2  
Enable control pin. ON=VINA. When pulled low it puts the device in  
shutdown mode  
VO2  
Lx2  
9
Inverting converter output voltage (Default -4.9V).  
Switching node of the inverting converter  
Analogic input supply voltage  
10  
11  
12  
VIN A  
ViN P  
Power input supply voltage  
Internally connected to AGND. Exposed pad must be connected to AGND  
and PGND in the PCB layout in order to guarantee proper operation of the  
device  
Exposed pad  
DocID17785 Rev 3  
5/22  
22  
Maximum ratings  
STOD03A  
3
Maximum ratings  
Table 4. Absolute maximum ratings  
Parameter  
Symbol  
Value  
Unit  
VINA, VINP  
EN, SWIRE  
ILX2  
DC supply voltage  
Logic input pins  
-0.3 to 6  
-0.3 to 4.6  
V
V
Inverting converter switching current  
Inverting converter switching node voltage  
Inverting converter output voltage  
Step-up converter and output voltage  
Step-up converter switching node voltage  
Step-up converter switching current  
Reference voltage  
Internally limited  
-10 to VINP+0.3  
-10 to AGND+0.3  
-0.3 to 6  
A
LX2  
V
VO2  
V
VMID  
LX1  
V
-0.3 to VMID+0.3  
Internally limited  
-0.3 to 3  
V
ILX1  
A
VREF  
PD  
V
Power dissipation  
Internally limited  
-65 to 150  
mW  
°C  
°C  
kV  
TSTG  
TJ  
Storage temperature range  
Maximum junction temperature  
ESD protection HBM  
150  
ESD  
2
Note:  
Absolute maximum ratings are those values beyond which damage to the device may occur.  
Functional operation under these conditions is not implied.  
Table 5. Thermal data  
Symbol  
Parameter  
Value  
Unit  
RthJA  
RthJC  
Thermal resistance junction-ambient referred to the FR-4 PCB  
Thermal resistance junction-case  
48.8  
2.6  
°C/W  
°C/W  
6/22  
DocID17785 Rev 3  
 
 
STOD03A  
Electrical characteristics  
4
Electrical characteristics  
TJ = 25 °C, VINA = VINP = 3.7 V, IMID,O2 = 30 mA, CIN = 4.7 µF, CMID,O2 = 4.7 µF, CREF = 1  
µF, L1 = 4.7 µH, L2 = 4.7 µH, VEN = VINA = VINP, VMID = 4.6 V, VO2= -4.9 V unless otherwise  
specified.  
Table 6. Electrical characteristics  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
General Section  
V
INA, VINP Supply input voltage  
2.3  
1.9  
4.5  
V
V
V
UVLO_H  
Undervoltage lockout HIGH  
Undervoltage lockout LOW  
V
INA rising  
INA falling  
2.22  
2.18  
2.25  
UVLO_L  
I_VI  
V
No load condition (sum of  
VINA and VINP  
Input current  
1.3  
1.7  
1
mA  
µA  
)
VEN=GND (sum of VINA and  
VINP); TJ=-40°C to +85°C;  
IQ_SH  
Shutdown current  
VEN  
H
Enable high threshold  
Enable low threshold  
1.2  
1.2  
V
INA=2.3V to 4.5V,  
V
TJ=-40°C to +85°C;  
V
EN L  
0.4  
1
VEN=VINA=4.5V;  
TJ=-40°C to +85°C;  
IEN  
Enable input current  
Switching frequency  
µA  
fS  
PWM mode  
1.5  
87  
87  
1.7  
MHz  
%
D1MAX  
D2MAX  
Step-up maximum duty cycle No load  
Inverting maximum duty cycle No load  
%
IMID,O2=10 to 30mA,  
VMID=4.6V VO2=-4.9V  
80  
%
n
Total system efficiency  
IMID,O2=30 to 150mA,  
85  
%
V
V
MID=4.6V, VO2=-4.9V  
VREF  
IREF  
Voltage reference  
IREF=10µA  
1.208  
100  
1.220  
1.232  
4.65  
Voltage reference current  
capability  
At 98.5% of no load  
reference voltage  
µA  
Step-up converter section  
V
INA=VINP=2.5V to 4.5V;  
Positive voltage total variation IMID=5mA to 150mA, IO2 no  
load, TJ=-40°C to +85°C  
4.55  
4.6  
V
VMID  
V
INA=VINP=3.7V; IMID=5mA;  
Temperature accuracy  
Line transient  
IO2 no load;  
TJ=-40°C to +85°C  
±0.5  
-12  
%
VINA,P=3.5V to 3.0V,  
IMID=100mA; TR=TF=50µs  
Δ
VMID LT  
mV  
DocID17785 Rev 3  
7/22  
22  
Electrical characteristics  
STOD03A  
Table 6. Electrical characteristics (continued)  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
I
MID=3 to 30mA and IMID=30  
±20  
mV  
to 3mA, TR=TF=30µs  
Δ
VMIDT  
Load transient regulation  
IMID=10 to 100mA and  
I
MID=100 to 10mA,  
±25  
±20  
mV  
mV  
TR=TF=30µs  
I
MID=5 to 100mA; VINA,P  
TDMA noise line transient  
regulation  
VMID-PP  
=2.9V to 3.4V; F=200Hz;  
TR=TF=50µs; IO2 no load  
IMID MAX  
I-L1MAX  
Max. step-up load current  
VINA,P=2.9V to 4.5V  
-200  
0.9  
mA  
A
VMID 10% below nominal  
value  
Step-up inductor peak current  
1.1  
RDSONP1  
1.0  
0.4  
2.0  
1.0  
W
W
R
DSONN1  
Inverting converter section  
31 different values set by the  
Output negative voltage range SWIRE pin  
-5.4  
-2.4  
V
V
(see Section 6.1.2)  
VINA=VINP=2.5V to 4.5V;  
Output negative voltage total TJ=-40°C to +85°C;  
VO2  
-4.97  
-4.9  
-4.83  
variation on default value  
IO2=5mA to 150mA,  
MID no load  
I
V
INA=VINP=3.7V; TJ=-40°C  
Temperature accuracy  
to +85°C; IO2=5mA, IMID no  
load  
±0.5  
%
VINA,P=3.5V to 3.0V,  
IO2=100mA, TR=TF=50µs  
Δ
VO2 LT  
Line transient  
+12  
±20  
mV  
mV  
IO2=3 to 30mA and IO2=30 to  
3mA, TR=TF=100µs  
Load transient regulation  
Δ
VO2T  
IO2=10 to 100mA and  
Load transient regulation  
I
O2=100 to 10mA,  
±25  
±25  
mV  
mV  
TR=TF=100µs  
IO2=5 to 100mA; VINA,P  
=2.9V to 3.4V; F=200Hz;  
TR=TF=50µs; IMID no load  
TDMA noise line transient  
regulation  
VO2-PP  
Maximum inverting output  
current  
IO2  
V
INA,P=2.9V to 4.5V  
-200  
-1.2  
mA  
A
VO2 below 10% of nominal  
value  
I-L2MAX  
Inverting peak current  
-0.9  
RDSONP2  
0.42  
0.43  
W
W
R
DSONN2  
Thermal shutdown  
OTP  
Overtemperature protection  
140  
°C  
8/22  
DocID17785 Rev 3  
STOD03A  
Electrical characteristics  
Table 6. Electrical characteristics (continued)  
Symbol  
Parameter  
Test conditions  
Min.  
Typ.  
Max.  
Unit  
Overtemperature protection  
hysteresis  
OTPHYST  
15  
°C  
Discharge resistor  
RDIS Resistor value  
TDIS Discharge time  
400  
8
W
No load, VMID-VO2 at 10% of  
nominal value  
ms  
DocID17785 Rev 3  
9/22  
22  
Typical performance characteristics  
STOD03A  
5
Typical performance characteristics  
VO2 = - 4.9 V; TA = 25 °C; See Table 1 for external components used in the tests below.  
Figure 4. Efficiency vs. input voltage  
Figure 5. Efficiency vs. output current  
90%  
88%  
86%  
84%  
82%  
80%  
78%  
76%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
VIN=2.7V  
VIN=3.2V  
VIN=3.7V  
VIN=4.2V  
74%  
72%  
70%  
68%  
66%  
Io=50mA  
Io=100mA  
Io=150mA  
Io=200mA  
0
20 40 60 80 100 120 140 160 180 200  
IOUT [mA]  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5  
VIN [V]  
Figure 6. Quiescent current vs. VIN no load  
Figure 7. Max power output vs. VIN  
500  
450  
400  
350  
300  
250  
200  
150  
100  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
10.00  
9.00  
8.00  
7.00  
-40°C  
6.00  
25°C  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
85°C  
max IOUT at VO2 = -4.9V  
max POUT  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5  
2.5 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5  
VIN [V]  
VIN [V]  
Figure 8. Fast discharge VIN = 3.7 V, no load Figure 9. Startup and inrush VIN = 3.7 V, no load  
EN  
VMID  
VO2  
IIN  
10/22  
DocID17785 Rev 3  
STOD03A  
Typical performance characteristics  
Figure 11. Inverting CCM operation  
Figure 10. Step-up CCM operation  
V
= V  
= V  
= 3.7 V, I = 100 mA, T = 25 °C  
INP O2 A  
V
= V  
= V  
= 3.7 V, I  
= 100 mA, T = 25 °C  
EN  
INA  
EN  
INA  
INP  
MID A  
Figure 12. Line transient  
Figure 13. Output voltage vs. input voltage  
IMID,O2 = 200 mA, VO2 = - 4.9 V  
10.00  
9.00  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
-40 °C  
25 °C  
85 °C  
VIN  
VMID  
VO2  
1.6  
1.8  
2
2.2  
2.4  
2.6  
2.8  
3
VIN [V]  
V
= V  
= 2.9 to 3.4 V, I  
= 100 mA, T = T = 50 µs  
INA  
INP  
MID,O2 R F  
DocID17785 Rev 3  
11/22  
22  
Detailed description  
STOD03A  
6
Detailed description  
6.1  
S
WIRE  
Protocol: to digitally communicate over a single cable with single-wire components  
Single-wire’s 3 components:  
1. An external MCU  
2. Wiring and associated connectors  
3. STOD13AS device with a dedicated single-wire pin.  
6.1.1  
S
features and benefits  
WIRE  
Fully digital signal  
No handshake needed  
Protection against glitches and spikes though an internal low pass filter acting on falling  
edges  
Uses a single wire (plus analog ground) to accomplish both communication and power  
control transmission  
Simplify design with an interface protocol that supplies control and signaling over a  
single-wire connection to set the output voltages.  
6.1.2  
S
protocol  
WIRE  
Single-wire protocol uses conventional CMOS/TTL logic levels (maximum 0.6 V for  
logic “zero” and a minimum 1.2 V for logic “one”) with operation specified over a supply  
voltage range of 2.5 V to 4.5 V  
Both master (MCU) and slave (STOD13AS) are configured to permit bit sequential data  
to flow only in one direction at a time; master initiates and controls the device  
Data is bit-sequential with a START bit and a STOP bit  
Signal is transferred in real time  
System clock is not required; each single-wire pulse is self-clocked by the oscillator  
integrated in the master and is asserted valid within a frequency range of 250 kHz  
(maximum).  
6.1.3  
S
basic operations  
WIRE  
The negative output voltage levels are selectable within a wide range (steps of 100 mV)  
The device can be enabled / disabled via SWIRE in combination with the Enable pin.  
12/22  
DocID17785 Rev 3  
 
STOD03A  
Detailed description  
6.2  
Negative output voltage levels  
Table 7. Negative output voltage levels  
Pulse  
VO2  
Pulse  
VO2  
Pulse  
VO2  
1
2
-5.4  
-5.3  
-5.2  
-5.1  
-5.0  
-4.9  
-4.8  
-4.7  
-4.6  
-4.5  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
-4.4  
-4.3  
-4.2  
-4.1  
-4.0  
-3.9  
-3.8  
-3.7  
-3.6  
-3.5  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
-3.4  
-3.3  
-3.2  
-3.1  
-3.0  
-2.9  
-2.8  
-2.7  
-2.6  
-2.5  
-2.4  
3
4
5
6 (1)  
7
8
9
10  
1. Default output voltage.  
Table 8. EN and SWIRE operation table (1)  
SWIRE  
Enable  
Action  
Low  
Low  
Device off  
Low  
High  
Negative output set by SWIRE  
High  
Low  
Default negative output voltage  
Default negative output voltage  
High  
High  
1. The Enable pin must be set to AGND while using the S  
function.  
WIRE  
DocID17785 Rev 3  
13/22  
22  
 
Application information  
STOD03A  
7
Application information  
7.1  
External passive components  
7.1.1  
Inductor selection  
The inductor is the key passive component for switching converters.  
For the step-up converter an inductance between 4.7 µH and 6.8 µH is recommended.  
For the inverting stage the suggested inductance ranges from 2.2 µH to 4.7 µH.  
It is very important to select the right inductor according to the maximum current the inductor  
can handle to avoid saturation. The step-up and the inverting peak current can be calculated  
as follows:  
Equation 1  
VMID ×IOUT VINMIN ×(VMID VINMIN  
)
IPEAKBOOST  
=
+
η1× VINMIN  
2× VMID × fs×L1  
Equation 2  
-
x
x
VINMIN VO 2MIN  
(VINMIN VO2MIN ) I OUT  
=
+
I PEAK  
-
INVERTING  
x
-
x x  
fs L2  
η
x
2 VINMIN  
2 (VO 2MIN VINMIN  
)
where  
V
MID: step-up output voltage, fixed at 4.6 V;  
O2: inverting output voltage including sign (minimum value is the absolute maximum  
V
value);  
IO: output current for both DC-DC converters;  
VIN: input voltage for the STOD03A;  
fs: switching frequency. Use the minimum value of 1.2 MHz for the worst case;  
η1: efficiency of step-up converter. Typical value is 0.85;  
η2: efficiency of inverting converter. Typical value is 0.75.  
The negative output voltage can be set via SWIRE at - 5.4 V. Accordingly, the inductor peak  
current, at the maximum load condition, increases. A proper inductor, with a saturation  
current as a minimum of 1 A, is preferred.  
7.1.2  
Input and output capacitor selection  
It is recommended to use ceramic capacitors with low ESR as input and output capacitors in  
order to filter any disturbance present in the input line and to obtain stable operation for the  
two switching converters. A minimum real capacitance value of 2 µF must be guaranteed for  
C
MID and CO2 in all conditions. Considering tolerance, temperature variation, and DC  
polarization, a 4.7 µF 10 V capacitor can be used to achieve the required 2 µF.  
14/22  
DocID17785 Rev 3  
STOD03A  
Application information  
7.2  
Recommended PCB layout  
The STOD03A is a high frequency power switching device and therefore requires a proper  
PCB layout in order to obtain the necessary stability and optimize line/load regulation and  
output voltage ripple.  
Analog input (VINA) and power input (VINP) must be kept separated and connected together  
at the CIN pad only. The input capacitor must be as close as possible to the IC.  
In order to minimize ground noise, a common ground node for power ground and a different  
one for analog ground must be used. In the recommended layout, the AGND node is placed  
close to CREF ground while the PGND node is centered at CIN ground. They are connected  
by a separated layer routing on the bottom through vias.  
The exposed pad is connected to AGND through vias.  
Detailed description  
Figure 14. Top layer and top silkscreen top  
Figure 15. Bottom layer and silkscreen top  
DocID17785 Rev 3  
15/22  
22  
Application information  
STOD03A  
7.3  
General description  
The STOD03A is a high efficiency dual DC-DC converter which integrates a step-up and  
inverting power stages suitable for supplying AMOLED panels. Thanks to the high level of  
integration it needs only 6 external components to operate and it achieves very high  
efficiency using a synchronous rectification technique for each of the two DC-DC  
converters.  
The controller uses an average current mode technique in order to obtain good stability and  
precise voltage regulation in all possible conditions of input voltage, output voltage, and  
output current. In addition, the peak inductor current is monitored in order to avoid saturation  
of the coils.  
The STOD03A implements a power saving technique in order to maintain high efficiency at  
very light load and it switches to PWM operation as the load increases, in order to guarantee  
the best dynamic performance and low noise operation.  
The STOD03A avoids battery leakage thanks to the true-shutdown feature and it is self  
protected from overtemperature. Undervoltage lockout and soft-start guarantee proper  
operation during startup.  
7.3.1  
Multiple operation modes  
Both the step-up and the inverting stage of the STOD03A operate in three different modes:  
pulse skipping mode (PS), discontinuous conduction mode (DCM), and continuous  
conduction mode (CCM). It switches automatically between the three modes according to  
input voltage, output current, and output voltage conditions.  
Pulse skipping operation:  
The STOD03A works in pulse skipping mode when the load current is below some tens of  
mA. The load current level at which this way of operating occurs depends on input voltage  
only for the step-up converter and on input voltage and negative output voltage (VO2) for the  
inverting converter.  
Discontinuous conduction mode:  
When the load increases above some tens of mA, the STOD03A enters DCM operation.  
In order to obtain this type of operation the controller must avoid the inductor current going  
negative. The discontinuous mode detector (DMD) blocks sense the voltage across the  
synchronous rectifiers (P1B for the step-up and N2 for the inverting) and turn off the  
switches when the voltage crosses a defined threshold which, in turn, represents a certain  
current in the inductor. This current can vary according to the slope of the inductor current  
which depends on input voltage, inductance value, and output voltage.  
Continuous conduction mode:  
At medium/high output loads, the STOD03A enters full CCM at constant switching  
frequency mode for each of the two DC-DC converters.  
7.3.2  
Enable pin  
The device operates when the EN pin is set high. If the EN pin is set low, the device stops  
switching, and all the internal blocks are turned off. In this condition the current drawn from  
V
INP/VINA is below 1 µA in the whole temperature range. In addition, the internal switches  
16/22  
DocID17785 Rev 3  
STOD03A  
Application information  
are in an OFF state so the load is electrically disconnected from the input, this avoids  
unwanted current leakage from the input to the load.  
When the EN is pulled high, the P1B switch is turned on for 100 µs. In normal operation,  
during this time, apart from a small drop due to parasitic resistance, VMID reaches VIN.  
If, after this 100 µs, VMID stays below VIN, the P1B is turned off and stays off until a new  
pulse is applied to the EN. This mechanism avoids STOD03A starting if a short-circuit is  
present on VMID  
.
7.3.3  
Soft-start and inrush current limiting  
After the EN pin is pulled high, or after a suitable voltage is applied to VINP, VINA, and EN,  
the device initiates the startup phase.  
As a first step, the CMID capacitor is charged and the P1B switch implements a current  
limiting technique in order to keep the charge current below 400 mA. This avoids the battery  
overloading during startup.  
After VMID reaches VINP voltage level, the P1B switch is fully turned on and the soft-start  
procedure for the step-up is started. After about 2 ms the soft-start for the inverting is  
started. The positive and negative voltage is under regulation by around 6 ms after the EN  
pin is asserted high.  
7.3.4  
Undervoltage lockout  
The undervoltage lockout function avoids improper operation of STOD03A when the input  
voltage is not high enough. When the input voltage is below the UVLO threshold the device  
is in shutdown mode. The hysteresis of 50 mV avoids unstable operation when the input  
voltage is close to the UVLO threshold.  
7.3.5  
7.3.6  
Overtemperature protection  
An internal temperature sensor continuously monitors the IC junction temperature.  
If the IC temperature exceeds 140 °C, typical, the device stops operating. As soon as the  
temperature falls below 125 °C, typical, normal operation is restored.  
Fast discharge  
When ENABLE turns from high to low level, the device goes into shutdown mode and LX1  
and LX2 stop switching. Then, the discharge switch between VMID and VIN and the switch  
between VO2 and GND turn on and discharge the positive output voltage and negative  
output voltage. When the output voltages are discharged to 0 V, the switches turn off and  
the outputs are high impedance.  
DocID17785 Rev 3  
17/22  
22  
Package mechanical data  
STOD03A  
8
Package mechanical data  
In order to meet environmental requirements, ST offers these devices in different grades of  
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®  
specifications, grade definitions and product status are available at: www.st.com.  
ECOPACK® is an ST trademark.  
Table 9. DFN 12L 3X3 mechanical data  
mm  
Dim.  
Min.  
Typ.  
Max.  
A
A1  
A3  
b
0.51  
0
0.55  
0.02  
0.20  
0.25  
3
0.60  
0.05  
0.18  
2.85  
1.87  
2.85  
1.06  
0.30  
3.15  
2.12  
3.15  
1.31  
D
D2  
E
2.02  
3
E2  
e
1.21  
0.45  
0.40  
L
0.30  
0.50  
18/22  
DocID17785 Rev 3  
 
STOD03A  
Package mechanical data  
Figure 16.DFN 12L 3X3 drawing  
8085116_B  
DocID17785 Rev 3  
19/22  
22  
Package mechanical data  
STOD03A  
Figure 17. DFN 12L 3X3 footprint (a)  
8085116_B  
a. All dimensions are in millimeters  
20/22  
DocID17785 Rev 3  
STOD03A  
Revision history  
9
Revision history  
Table 10. Document revision history  
Changes  
Date  
Revision  
08-Sep-2010  
1
2
Initial release.  
06-Dec-2011  
Updated Section 6 on page 12.  
Updated Table 4: Absolute maximum ratings on page 6, Table 5: Thermal data  
on page 6, Table 7: Negative output voltage levels on page 13 and Section 8:  
Package mechanical data.  
19-Jun-2013  
3
DocID17785 Rev 3  
21/22  
22  
STOD03A  
Please Read Carefully:  
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the  
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any  
time, without notice.  
All ST products are sold pursuant to ST’s terms and conditions of sale.  
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no  
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.  
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this  
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products  
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such  
third party products or services or any intellectual property contained therein.  
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED  
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED  
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS  
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.  
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE  
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH  
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR  
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED  
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN  
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,  
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.  
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE  
CORRESPONDING GOVERNMENTAL AGENCY.  
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void  
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any  
liability of ST.  
ST and the ST logo are trademarks or registered trademarks of ST in various countries.  
Information in this document supersedes and replaces all information previously supplied.  
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.  
© 2013 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
22/22  
DocID17785 Rev 3  

相关型号:

STOD03B

Step-up with LDO and inverter converters
STMICROELECTR

STOD03BTPUR

Step-up with LDO and inverter converters
STMICROELECTR

STOD1317B

Very high efficiency at light load thanks to pulse skipping operation
STMICROELECTR

STOD1317BTPUR

Very high efficiency at light load thanks to pulse skipping operation
STMICROELECTR

STOD13AM

Step-up and inverter converters
STMICROELECTR

STOD13AMTPUR

Step-up and inverter converters
STMICROELECTR

STOD13AS

Synchronous rectification for both DC-DC converters
STMICROELECTR

STOD13ASTPUR

Synchronous rectification for both DC-DC converters
STMICROELECTR

STOD13ATPUR

250 mA dual DC-DC converter for powering AMOLED displays
STMICROELECTR

STOD13CM

250 mA dual DC-DC converter
STMICROELECTR

STOD13CMTPUR

250 mA dual DC-DC converter
STMICROELECTR

STOD14

700 mA dual DC-DC converter for powering AMOLED displays
ETC