STPS1L30 [STMICROELECTRONICS]

LOW DROP POWER SCHOTTKY RECTIFIER; 电力低压降肖特基整流器
STPS1L30
型号: STPS1L30
厂家: ST    ST
描述:

LOW DROP POWER SCHOTTKY RECTIFIER
电力低压降肖特基整流器

文件: 总7页 (文件大小:76K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STPS1L30  
®
LOW DROP POWER SCHOTTKY RECTIFIER  
Table 1: Main Product Characteristics  
IF(AV)  
VRRM  
1 A  
30 V  
Tj (max)  
VF(max)  
150°C  
0.3 V  
FEATURES AND BENEFITS  
SMA  
SMB  
Very low forward voltage drop for less power  
dissipation  
(JEDEC DO-214AC)  
STPS1L30A  
(JEDEC DO-214AA)  
STPS1L30U  
Optimized conduction/reverse losses trade-off  
which means the highest yield in the  
applications  
Surface mount miniature packages  
Avalanche capability specified  
Table 2: Order Codes  
Part Number  
DESCRIPTION  
Marking  
GB3  
G23  
Single Schottky rectifier suited to Switched Mode  
Power Supplies and high frequency DC to DC con-  
verters, freewheel diode and integrated circuit  
latch up protection.  
STPS1L30A  
STPS1L30U  
Packaged in SMA and SMB, this device is espe-  
cially intended for use in parallel with MOSFETs in  
synchronous rectification.  
Table 3: Absolute Ratings (limiting values)  
Symbol  
VRRM  
Parameter  
Repetitive peak reverse voltage  
Value  
Unit  
V
30  
IF(RMS)  
IF(AV)  
IFSM  
IRRM  
IRSM  
PARM  
Tstg  
RMS forward voltage  
10  
A
TL = 135°C δ = 0.5  
tp = 10ms sinusoidal  
tp = 2µs F = 1kHz square  
tp = 100µs square  
Average forward current  
1
A
Surge non repetitive forward current  
Repetitive peak reverse current  
Non repetitive peak reverse current  
Repetitive peak avalanche power  
Storage temperature range  
75  
A
1
1
A
A
tp = 1µs Tj = 25°C  
1500  
W
°C  
°C  
V/µs  
-65 to + 150  
150  
Tj  
Maximum operating junction temperature *  
dV/dt Critical rate of rise of reverse voltage  
10000  
dPtot  
* : --------------- > ------------------------- thermal runaway condition for a diode on its own heatsink  
dTj Rth(j a)  
1
August 2004  
REV. 6  
1/7  
STPS1L30  
Table 4: Thermal Resistance  
Symbol  
Parameter  
Value  
30  
Unit  
SMA  
SMB  
Rth(j-l)  
Junction to lead  
°C/W  
25  
Table 5: Static Electrical Characteristics  
Symbol  
Parameter  
Tests conditions  
Min.  
Typ  
6
Max.  
Unit  
Tj = 25°C  
µA  
200  
15  
IR *  
VR = VRRM  
IF = 1A  
Reverse leakage current  
Tj = 100°C  
Tj = 25°C  
Tj = 125°C  
Tj = 25°C  
Tj = 125°C  
mA  
0.395  
0.3  
0.26  
VF *  
Forward voltage drop  
V
0.445  
IF = 2A  
0.325 0.375  
Pulse test:  
* tp = 380 µs, δ < 2%  
2
To evaluate the conduction losses use the following equation: P = 0.225 x I  
+ 0.075 I  
F(AV)  
F (RMS)  
Figure 1: Average forward power dissipation  
versus average forward current  
Figure 2: Average forward current versus  
ambient temperature (δ = 0.5)  
P
(W)  
F(AV)  
I
(A)  
F(AV)  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.50  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
Rth(j-a)=Rth(j-I)  
δ = 0.1  
δ = 0.2  
δ = 0.5  
δ = 0.05  
Rth(j-a)=120°C/W  
Rth(j-a)=100°C/W  
δ = 1  
T
T
T
(°C)  
amb  
I
(A)  
F(AV)  
tp  
=tp/T  
δ
tp  
=tp/T  
δ
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
0
25  
50  
75  
100  
125  
150  
Figure 3: Normalized avalanche power  
derating versus pulse duration  
Figure 4: Normalized avalanche power  
derating versus junction temperature  
P
(t )  
p
(1µs)  
ARM  
P
ARM  
(t )  
p
(25°C)  
ARM  
P
ARM  
P
1
1.2  
1
0.1  
0.8  
0.6  
0.4  
0.2  
0.01  
T (°C)  
j
t (µs)  
p
0
0.001  
25  
50  
75  
100  
125  
150  
0.01  
0.1  
1
10  
100  
1000  
2/7  
STPS1L30  
Figure 5: Non repetitive surge peak forward  
current versus overload duration (maximum  
values) (SMA)  
Figure 6: Non repetitive surge peak forward  
current versus overload duration (maximum  
values) (SMB)  
I (A)  
M
I (A)  
M
10  
8
10  
8
Ta=25°C  
Ta=50°C  
Ta=100°C  
Ta=25°C  
Ta=50°C  
Ta=100°C  
6
6
4
4
IM  
IM  
2
2
t
t
δ=0.5  
δ=0.5  
t(s)  
t(s)  
0
0
1E-3  
1E-2  
1E-1  
1E+0  
1E-3  
1E-2  
1E-1  
1E+0  
Figure 7: Relative variation of thermal  
impedance junction to ambient versus pulse  
duration (epoxy printed circuit board,  
e(Cu)=35µm, recommended pad layout) (SMA)  
Figure 8: Relative variation of thermal  
impedance junction to ambient versus pulse  
duration (epoxy printed circuit board,  
e(Cu)=35µm, recommended pad layout) (SMB)  
Z
/R  
Z
/R  
th(j-c) th(j-c)  
th(j-c) th(j-c)  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
δ = 0.5  
δ = 0.2  
δ = 0.5  
δ = 0.2  
T
T
δ = 0.1  
δ = 0.1  
Single pulse  
Single pulse  
t (s)  
p
tp  
5E+2  
t (s)  
p
tp  
5E+2  
=tp/T  
=tp/T  
δ
δ
1E-2  
1E-1  
1E+0  
1E+1  
1E+2  
1E-2  
1E-1  
1E+0  
1E+1  
1E+2  
Figure 9: Reverse leakage current versus  
reverse voltage applied (typical values)  
Figure 10: Junction capacitance versus  
reverse voltage applied (typical values)  
I (mA)  
R
C(pF)  
1E+2  
500  
Tj=150°C  
F=1MHz  
Tj=25°C  
Tj=125°C  
1E+1  
Tj=100°C  
1E+0  
100  
1E-1  
Tj=25°C  
1E-2  
V (V)  
R
V (V)  
R
10  
1E-3  
1
2
5
10  
20  
30  
0
5
10  
15  
20  
25  
30  
3/7  
STPS1L30  
Figure 11: Forward voltage drop versus  
forward current (typical values, high level)  
Figure 12: Forward voltage drop versus  
forward current (maximum values, low level)  
I
(A)  
FM  
I
(A)  
FM  
10.00  
1.00  
0.10  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
Tj=100°C  
Tj=125°C  
Tj=100°C  
Tj=150°C  
(typical values)  
Tj=150°C  
Tj=25°C  
Tj=25°C  
V
(V)  
FM  
V
(V)  
FM  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
0.55  
0.60  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
Figure 13: Thermal resistance junction to  
ambient versus copper surface under each  
lead (Epoxy printed circuit board FR4, copper  
thickness: 35µm) (SMA)  
Figure 14: Thermal resistance junction to  
ambient versus copper surface under each  
lead (Epoxy printed circuit board FR4, copper  
thickness: 35µm) (SMB)  
R (°C/W)  
th(j-a)  
R (°C/W)  
th(j-a)  
140  
120  
100  
80  
120  
100  
80  
60  
40  
20  
0
60  
40  
20  
S(Cu)(cm²)  
S(Cu)(cm²)  
0
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
0
1
2
3
4
5
4/7  
STPS1L30  
Figure 15: SMA Package Mechanical Data  
DIMENSIONS  
Millimeters Inches  
Min.  
REF.  
E1  
Max.  
2.03  
0.20  
1.65  
0.41  
5.60  
4.60  
2.95  
1.60  
Min.  
0.075  
0.002  
0.049  
0.006  
0.189  
0.156  
0.089  
0.030  
Max.  
0.080  
0.008  
0.065  
0.016  
0.220  
0.181  
0.116  
0.063  
A1  
A2  
b
1.90  
0.05  
1.25  
0.15  
4.80  
3.95  
2.25  
0.75  
D
E
c
A1  
E
A2  
C
E1  
D
L
b
L
Figure 16: SMA Foot Print Dimensions  
(in millimeters)  
1.65  
1.45  
2.40  
1.45  
5/7  
STPS1L30  
Figure 17: SMB Package Mechanical Data  
DIMENSIONS  
Millimeters Inches  
Min. Min.  
REF.  
E1  
Max.  
2.45  
0.20  
2.20  
0.41  
5.60  
4.60  
3.95  
1.60  
Max.  
0.096  
0.008  
0.087  
0.016  
0.220  
0.181  
0.156  
0.063  
A1  
A2  
b
1.90  
0.05  
1.95  
0.15  
5.10  
4.05  
3.30  
0.75  
0.075  
0.002  
0.077  
0.006  
0.201  
0.159  
0.130  
0.030  
D
E
c
A1  
E
A2  
C
E1  
D
L
b
L
Figure 18: SMB Foot Print Dimensions  
(in millimeters)  
2.3  
1.52  
2.75  
1.52  
6/7  
STPS1L30  
Table 6: Ordering Information  
Ordering type  
STPS1L30A  
STPS1L30U  
Marking  
GB3  
G23  
Package  
SMA  
SMB  
Weight  
0.068 g  
0.107 g  
Base qty  
5000  
2500  
Delivery mode  
Tape & reel  
Tape & reel  
Band indicates cathode  
Epoxy meets UL94, V0  
Table 7: Revision History  
Date  
Revision  
Description of Changes  
Jul-2003  
5A  
Last update.  
SMA package dimensions update. Reference A1 max.  
changed from 2.70mm (0.106inc.) to 2.03mm (0.080).  
Aug-2004  
6
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences  
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted  
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject  
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not  
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics.  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics group of companies  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -  
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America  
www.st.com  
7/7  

相关型号:

STPS1L30A

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30AFN

Rectifier Diode
STMICROELECTR

STPS1L30AU

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30M

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30MF

Low drop power Schottky rectifier in flat package
STMICROELECTR

STPS1L30M_04

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30U

LOW DROP POWER SCHOTTKY RECTIFIER
STMICROELECTR

STPS1L30U

SCHOTTKY RECTIFIER
INFINEON

STPS1L30U

Schottky Rectifier, 1.0 A
VISHAY

STPS1L30UPBF

SCHOTTKY RECTIFIER
INFINEON

STPS1L30UPBF

Schottky Rectifier, 1.0 A
VISHAY

STPS1L30UPBF_12

Schottky Rectifier, 1.0 A
VISHAY