STV0056A [STMICROELECTRONICS]

SATELLITE SOUND AND VIDEO PROCESSORS; 卫星声音和视频处理器
STV0056A
型号: STV0056A
厂家: ST    ST
描述:

SATELLITE SOUND AND VIDEO PROCESSORS
卫星声音和视频处理器

文件: 总26页 (文件大小:249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
STV0056A  
SATELLITE SOUND AND VIDEO PROCESSOR  
ADVANCE DATA  
SOUND  
.
TWO INDEPENDENT SOUND DEMODULA-  
TORS  
PLL DEMODULATION WITH 5-10MHz FRE-  
QUENCY SYNTHESIS  
PROGRAMMABLE FM DEMODULATOR  
BANDWIDTH ACCOMODATING FM DEVIA-  
TIONS FROM ±30kHz TILL ±400kHz  
PROGRAMMABLE 50/75µs, J17 OR NO DE-  
EMPHASIS  
WEGENER PANDA SYSTEM  
TWO AUXILIARY AUDIO INPUTS AND OUT-  
PUTS  
GAIN CONTROLLED AND MUTEABLE  
AUDIO OUTPUTS  
HIGH IMPEDANCE MODE AUDIO OUTPUTS  
FOR TWIN TUNER APPLICATIONS  
.
.
SHRINK56  
(Plastic Package)  
.
ORDER CODE : STV0056A  
.
.
PIN CONNECTIONS  
.
.
FC R  
1
A GND R  
FC L  
56  
55  
54  
53  
52  
51  
PK IN R  
LEVEL R  
2
PK IN L  
LEVEL L  
PK OUT L  
PK OUT R  
IREF  
3
S1 VID RTN  
S3 VID RTN  
VOL R  
4
VIDEO  
5
.
COMPOSITE VIDEO 6-bit 0 to 12.7dB GAIN  
CONTROL  
COMPOSITE VIDEO SELECTABLE IN-  
VERTER  
TWO SELECTABLE VIDEO DE-EMPHASIS  
NETWORKS  
6
S3 VID OUT  
S1 VID OUT  
S2 VID OUT  
VOL L  
7
50  
49  
48  
47  
46  
45  
.
.
CPUMP R  
U75 R  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
DET R  
AMPLK R  
A 12V  
S2 VID RTN  
S2 OUT L  
CLAMP IN  
S2 OUT R  
UNCLDEEM  
VIDEEM2/22kHz  
V 12V  
.
.
6 x 3 VIDEO MATRIX  
BLACK LEVEL ADJUSTABLE OUTPUT FOR  
ON-BOARD VIDEOCRYPT DECODER  
HIGH IMPEDANCE MODE VIDEO OUTPUTS  
FOR TWIN TUNER APPLICATIONS  
VREF  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
A GND L  
AGC R  
AMPLK L  
U75 L  
.
MISCELLANEOUS  
.
.
22kHz TONE GENERATION FOR LNB CON-  
VIDEEM1  
V GND  
DET L  
TROL  
CPUMP L  
GND 5V  
VDD 5V  
XTL  
2
.
I C BUS CONTROL  
B-BAND IN  
S2 RTN L  
S2 RTN R  
FM IN  
CHIP ADDRESSES = 06HEX OR 46HEX  
LOW POWER STAND-BY MODE WITH AC-  
TIVE AUDIO AND VIDEO MATRIXES  
J17 L  
S3 RTN L  
S3 RTN R  
AGC L  
J17 R  
DESCRIPTION  
HA  
SDA  
The STV0056ABICMOS integrated circuit realizes  
all the necessary signal processing from the tuner  
to the Audio/Video input and output connectors  
regardless the satellite system.  
S3 OUT L  
S3 OUT R  
SCL  
I/O/22kHz  
1/26  
September 1996  
This is advance informationon a new product now in development or undergoingevaluation. Detailsare subject to change without notice.  
STV0056A  
PIN ASSIGNMENT  
Pin Number  
Name  
FC R  
Function  
1
Audio Roll-off Right  
2
PK IN R  
LEVEL R  
S1 VID RTN  
S3 VID RTN  
VOL R  
Noise Reduction Peak Detector Input Right  
Noise Reduction Level Right  
TV-Scart 1 Video Return  
3
4
5
Decoder-Scart Video Return  
Volume Controlled Audio Out Right  
Decoder-Scart Video Output  
TV-Scart 1 Video Output  
6
7
S3 VID OUT  
S1 VID OUT  
S2 VID OUT  
VOL L  
8
9
VCR-Scart 2 Video Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
Volume Controlled Audio Out Left  
VCR-Scart 2 Video Return  
S2 VID RTN  
S2 OUT L  
CLAMP IN  
S2 OUT R  
UNCL DEEM  
VIDEEM2/22kHz  
V 12V  
Fixed Level Audio Output Left (to VCR)  
Sync-Tip Clamp Input  
Fixed Level Audio Output Right (to VCR)  
Unclamped Deemphasized Video Output  
Video Deemphasis 2 or 22kHz Output  
Video 12V Supply  
VIDEEM1  
V GND  
Video Deemphasis 1  
Video Ground  
B-BAND IN  
S2 RTN L  
S2 RTN R  
FM IN  
Base Band Input  
Auxiliary Audio Return Left (from VCR)  
Auxiliary Audio Return Right (from VCR)  
FM Demodulator Input  
S3 RTN L  
S3 RTN R  
AGC L  
Auxiliary Audio Return Left (from decoder)  
Auxiliary Audio Return Right (from decoder)  
AGC Peak Detector Capacitor Left  
Auxiliary Audio Output L (to decoder)  
Auxiliary Audio Output R (to decoder)  
Digital Input/Output or 22kHz Output  
I2C Bus Clock  
S3 OUT L  
S3 OUT R  
I/O/22kHz  
SCL  
SDA  
I2C Bus Data  
HA  
Hardware Address  
J17 R  
J17 Deemphasis Time Constant Right  
J17 Deemphasis Time Constant Left  
4/8MHz Quartz Crystal or Clock Input  
Digital 5V Power Supply  
J17 L  
XTL  
VDD 5V  
GND 5V  
CPUMP L  
DET L  
Digital Power Ground  
FM PLL Charge Pump Capacitor Left  
FM PLL Filter Left  
U75 L  
Deemphasis Time Constant Left  
Amplitude Detector Capacitor Left  
AGC Peak Detector Capacitor Right  
Audio Ground  
AMPLK L  
AGC R  
A GND L  
VREF  
2.4V Reference  
2/26  
STV0056A  
PIN ASSIGNMENT (continued)  
Pin Number  
Name  
A 12V  
Function  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
Audio 12V Supply  
AMPLK R  
DET R  
Amplitude Detector Capacitor Left  
FM PLL Filter Right  
U75 R  
Deemphasis Time Constant Right  
FM PLL Charge Pump Capacitor Right  
Current Reference Resistor  
CPUMP R  
IREF  
PK OUT R  
PK OUT L  
LEVEL L  
PK IN L  
FC L  
Noise Reduction Peak Detector Output Right  
Noise Reduction Peak Detector Output Left  
Noise Reduction Level Left  
Noise Reduction Peak Detector Input  
Audio Roll-off Left  
A GND R  
Audio Ground  
PIN DESCRIPTION  
SOUND DETECTION  
FMIN  
DET L, DET R  
Respectively the outputs of the FM phasedetector  
left and right.  
This is for the connection of an external loop filter  
for the PLL. The output is a push-pull current  
source.  
This is the input to the two FM demodulators. It  
feeds two AGC amplifiers with a bandwidth of at  
least 5-10MHz. There is one amplifier for each  
channel both with the same input. The AGC ampli-  
fiers have a 0dB to +40dB range.  
CPUMP L, CPUMP R  
ZIN = 5k, Min input = 2mVPP per subcarrier.  
Max input = 500mVPP (max when all inputs are  
added together,when their phasescoincide).  
The output from the frequency synthesizer is a  
push-pullcurrent sourcewhich requiresacapacitor  
to ground to derive a voltage to pull the VCO to the  
target frequency.The output is ±100µA to achieve  
lockand±2µAduring lock toprovidea trackingtime  
constant of approximately10Hz.  
AGC L, AGC R  
AGC amplifiers peak detector capacitor connec-  
tions. The output current has an attack/decayratio  
of 1:32. That is the ramp up current is approxi-  
mately 5µA and decay current is approximately  
160µA. 11V gives maximum gain. These pins are  
also driven by a circuit monitoring the voltage on  
AMPLK L and AMPLK R respectively.  
VREF  
This is the audio processor voltage referenceused  
through out the FM/audio section of the chip. As  
such it is essential that it is well decoupled to  
ground to reduce as far as possible the risk of  
crosstalk and noise injection. This voltage is de-  
rived directly from the bandgap reference of 2.4V.  
The VREF output can sink up to 500µA in normal  
operation and 100µAwhen in stand-by.  
AMPLK L, AMPLK R  
The outputs of amplitude detectors LEFT and  
RIGHT. Each requires a capacitor and a resistor to  
GND. The voltage across this is used to decide  
whether there is a signal being received by the FM  
detector. The level detector output drives a bit in  
the detectorI2C bus control block.  
IREF  
This is a buffered VREF outputto an off-chip resistor  
to produce an accurate current reference, within  
the chip, for the biasing of amplifiers with current  
outputs into filters. It is also required for the Noise  
reduction circuit to provide accurate roll-off fre-  
quencies. This pin should not be decoupledas it  
would inject current noise. The target current is  
50µA ±2% thus a 47.5k±1% is required.  
AMPLK L and AMPLK R drive also respectively  
AGC L and AGC R. For instance when the voltage  
on AMPLKL is > (VREF + 1 VBE) it sinks current to  
VREF from pin AGCL to reduce the AGC gain.  
3/26  
STV0056A  
PIN DESCRIPTION (continued)  
A 12V  
serieswith a capacitoris connectedto groundfrom  
these two pins.  
Double bonded main power pin for the audio/FM  
section of the chip. The two bond connectionsare  
to the ESD and to power the circuit and on chip  
regulators/references.  
J17 L, J17 R  
The external J17 de-emphasisnetworks for chan-  
nels left and right. The amplifier for this filter is  
voltage input, current output. Output with ±500mV  
input will be ±55µA.  
To performJ17 de-emphasiswith the STV0042,an  
external circuit is required.  
A GND L  
This ground pin is double bonded :  
1) to channelLEFT : RF section & VCO,  
2) to both AGC amplifiers, channel LEFT and  
RIGHT audio filter section.  
U75 L, U75 R  
External deemphasis networks for channels left  
and right. Foreachchannelacapacitorand resistor  
in parallel of 75µs time constant are connected  
betweenhere andVREF to provide75µs de-empha-  
sis. Internallyselectable is an internal resistor that  
can be programmed tobe added in parallel thereby  
converting the network to approx 50µs de-empha-  
sis (see control block map). The value of the inter-  
nal resistors is 54k±30 %. The amplifier for this  
filter is voltage input, current output ; with ±500mV  
input the output will be ±55µA.  
A GND R  
This ground pin is double bonded :  
1) to the volume control, noise reduction system,  
ESD + Mux + VREF  
2) to channel right : RF section & VCO  
BASEBAND AUDIO PROCESSING  
PK OUT L, PK OUT R, PK OUT  
The noise reduction control loop peak detector  
output requires a capacitorto ground from this pin,  
and a resistor to VREF pin to give some accurate  
decaytimeconstant.Anonchip5k±25 %resistor  
and external capacitor give the attack time.  
VOL L, VOL R  
The main audio output from the volume control  
amplifier the signal to get output signals as high as  
2VRMS (+12dB) on a DC bias of 4.8V. Control is  
from +12dB to -26.75dB plus Mute with 1.25dB  
steps.This amplifier hasshortcircuitprotectionand  
is intendedto drive a SCARTconnector directlyvia  
AC coupling and meets the standardSCART drive  
requirements. These outputs feature high imped-  
ance mode for parallel connection.  
PK IN L, PK IN R or PK IN  
Each ofthesepinsis an inputto acontrollooppeak  
detector and is connected to the output of the  
offchip control loop bandpass filter.  
LEVEL L, LEVEL R  
Respectively the audio left and right signals of the  
FM demodulatorsare output to level L and level R  
pins through an input follower buffer. The off-chip  
filters driven by these pins must include AC cou-  
pling to the next stage (PK IN L and PK IN R pins  
respectively).  
S2 OUT L, S2 OUT R, S3 OUT L, S3 OUT R  
These audio outputs are sourced directly from the  
audio MUX, and as a result do not include any  
volume control function. They will output a 1VRMS  
signal biased at 4.8V. They are short circuit pro-  
tected. These outputs feature high impedance  
mode for parallel connection and meet SCART  
drive requirement.  
FC L, FC R  
The variable bandwidth transconductance ampli-  
fier hasa current output which is variable depend-  
ing on the input signal amplitude as defined by the  
control loop of the noise reduction. The output  
current is then dumped into an off-chip capacitor  
which togetherwith the accurate current reference  
define the min/max rolloff frequencies. Aresistor in  
S2 RTN L, S2 RTN R, S3 RTN L, S3 RTN R  
These pins allow auxiliary audio signals to be con-  
nected to the audio processor and hence makes  
use of the on-chip volume control. For additional  
details please refer to the audio switching table.  
4/26  
STV0056A  
PIN DESCRIPTION (continued)  
VIDEO PROCESSING  
B-BAND IN  
a 150load. The average DC voltage to be 1.5V  
on the O/P. The signal is video 2.0VPP 5.5MHz BW  
with sync tip = 1.2V. These pins get signals from  
the Video Matrix. The signal selected from the  
Video Matrix for output on this pin is controlled by  
a control register. This output also feature a high  
impedance mode for parallel connection.  
AC-coupled video input from a tuner.  
ZIN > 10k±25%. This drives an on-chip video  
amplifier. The other input of this amp is AC  
grounded by being connected to an internal VREF  
.
The video amplifier has selectable gain from 0dB  
to 12.7dB in 63 steps and its output signal can be  
selected normal or inverted.  
S3 VID OUT  
This output can drive for instance a decoder.Also  
it is able to pass 10MHz ; ZOUT < 75. Video on  
this pin will be 2VPP. The black level of the ouput  
video signal can be adjusted through I2C bus con-  
trol to easily interface with on-board Videocrypt  
decoder. This output feature an high impedance  
mode for parallelconnection.  
UNCL DEEM  
Deemphasizedstill unclamped output. It is also an  
input of the video matrix.  
VIDEEM1  
Connected to an external de-emphasis network  
(for instance 625 lines PAL de-emphasis).  
V 12V  
+ 12Vdouble bonded: ESD+guardrings and video  
circuit power.  
VIDEEM2 / 22kHz  
Connected to an external de-emphasis network  
(for instance525 lines NTSC orother video de-em-  
phasis). Alternativelya precise 22kHz tone may be  
output by I2C bus control.  
V GND  
Doubled bonded.Clean VID IN GND. Strategically  
placed video power ground connection to reduce  
video currents getting into the rest of the circuit.  
CLAMP IN  
This pin clamps the most negative extreme of the  
input (the sync tips) to 2.7VDC (or appropriate volt-  
age). The video at the clamp input is only 1VPP.  
This clamped video which is de-emphasised, fil-  
tered and clamped (energy dispersal removed) is  
normal, negative syncs, video. This signal drives  
the VideoMatrix input called Normal Video.  
It has a weak (1.0µA ±15 %) stable current source  
pulling the inputtowards GND. Otherwise the input  
impedance is very high at DC to 1kHz ZIN > 2M.  
Video bandwidth through this is -1dB at 5.5MHz.  
The CLAMPinput DC restore voltage is then used  
as a means for getting the correct DC voltage on  
the SCART outputs.  
CONTROL BLOCK  
GND 5V  
The main power ground connection for the control  
logic, registers, the I2C bus interface, synthesizer  
& watchdogand XTLOSC.  
V
DD 5V  
Digital +5V power supply.  
SCL  
Thisis theI2C busclockline. Clock= DC to 100kHz.  
Requires external pull up eg. 10kto 5V.  
SDA  
This is the I2C bus data line. Requires external pull  
up eg. 10kto 5V.  
S3 VID RTN  
This input can be driven for instance by the de-  
coder. This input has a DC restoration clamp on its  
input. The clamp sink current is 1µA±15% with the  
buffer ZIN > 1M.  
I/O / 22kHz  
General purpose input output pin or 22kHz output.  
XTL  
This pin allows forthe on-chiposcillator tobe either  
used with a crystal to ground of 4MHz or 8MHz, or  
to be driven by an external clock source. The  
external source can be either 4MHz or 8MHz. A  
programmablebit in the controlblock removesa÷2  
block when the 4MHz option is selected.  
S2 VID RTN, S1 VID RTN  
External videoinput1.0Vpp ACcoupled75source  
impedance. This input has a DC restoration clamp  
on its input. The clamp sink current is 1µA ±15%  
with the buffer ZIN > 1M. This signal is an input to  
the VideoMatrix.  
HA  
S1 VID OUT, S2 VID OUT  
Video drivers for SCART 1 and SCART 2. An  
external emitter follower buffer is required to drive  
Hardware address with internal 135µA pull down.  
Chip address is 06 when this pin is grouded and  
chip address is 46 when connected to VDD  
.
5/26  
STV0056A  
GENERAL BLOCK DIAGRAM  
B-BAND  
Video  
Processing  
2
4
From Tuner  
6 x 3  
Video  
Matrix  
3
3
From TV,  
VCR/Decoder  
2
To TV, VCR/Decoder  
FM  
From Tuner  
Demodulation  
2 Channels  
Audio  
Matrix  
+
Volume  
Wegener  
Panda +  
Deemphasis  
I2C Bus  
Interface  
22kHz to LNB  
Active in Stand-by  
STV0056A  
VIDEO PROCESSING BLOCK DIAGRAM  
LPF  
NTSC  
PAL  
UNCL DEEM  
15  
VIDEEM2/22kHz  
16  
VIDEEM1  
18  
29  
20  
I/O/22kHz  
22kHz  
TONE  
Deemphasized  
2
B-BAND IN  
CLAMP IN  
± 1  
G
Baseband  
Normal  
CLAMP  
13  
5
Decoder Return  
VCR Return  
TV Return  
CLAMP  
CLAMP  
CLAMP  
S3 VID RTN  
11  
4
S2 VID RTN  
S1 VID RTN  
BLACK LEVEL  
ADJUST  
STV0056A  
7
8
9
S3 VID OUT  
To Decoder  
S2 VID OUT  
To VCR  
To TV  
6/26  
STV0056A  
AUDIO PROCESSING BLOCK DIAGRAM (CHANNEL RIGHT)  
STV0056A  
K2  
a
b
a
b
K1  
c
a
AUDIO  
DEEMPHASIS  
c
ANRS  
4
AUDIO R  
MONO  
STEREO  
K3  
b
K4  
b
a b  
c
a
b c  
a
K5  
K6  
6dB  
6dB  
14  
-6dB  
-6dB  
22  
47  
28  
25 51  
2
3
1
33  
48  
6
PLL  
FILTER  
Audio  
Decoder Out  
Audio  
Decoder Return  
DECODER  
VCR  
TV  
AUDIO PROCESSING BLOCK DIAGRAM (CHANNEL LEFT)  
STV0056A  
K2  
a
b
a
b
K1  
c
a
AUDIO  
DEEMPHASIS  
c
ANRS  
4
AUDIO L  
MONO  
STEREO  
K3  
b
K4  
b
a
b c  
a b  
c
a
K5  
K6  
6dB  
27  
6dB  
12  
-6dB  
-6dB  
21  
39  
24 52 54 53 55  
32  
40  
10  
PLL  
FILTER  
Audio  
Decoder Out  
Audio  
Decoder Return  
DECODER  
VCR  
TV  
7/26  
STV0056A  
AUDIO SWITCHING  
AUDIO  
K1a  
K5b  
K5c  
K5a  
K6c  
K4 : a ANRS input non-scrambled audio  
b ANRS input descrambled audio  
DEEMPHASIS  
+ ANRS  
K2  
K3  
AUDIO PLL  
DEC RTN  
AUX IN  
K6a  
a
b1  
b2  
c
a
a
a
a
No ANRS, No De-emphasis  
No ANRS, 50µs  
No ANRS, 75µs  
No ANRS, J17  
K1b  
a
b1  
b2  
c
b
b
b
b
ANRS, No De-emphasis  
ANRS, 50µs  
ANRS, 75µs  
K1c  
K6b  
ANRS, J17  
VOL OUT AUX OUT DEC OUT  
FM DEMODULATION BLOCK DIAGRAM  
Phase  
Detect  
DET R  
SW1  
AGC  
FM IN  
AGC R  
AUDIO R  
FM dev.  
Select.  
LEVEL  
DETECTOR 1  
Bias  
CPUMP R  
LEVEL  
DETECTOR 2  
VREF  
Amp. Detect  
AMPLKR  
90  
VCO  
0
SW2  
SW4  
WATCHDOG  
VREF  
Reg8 b4  
SYNTHESIZER  
AUDIO L  
Phase  
Detect  
DET L  
SW3  
AGC  
FM dev.  
Select.  
LEVEL  
DETECTOR 1  
Bias  
AGC L  
CPUMP L  
LEVEL  
DETECTOR 2  
VREF  
Amp. Detect  
AMPLK L  
90  
VCO  
0
WATCHDOG  
VREF  
Reg8 b0  
STV0042/STV0056A  
8/26  
STV0056A  
CIRCUIT DESCRIPTION  
Video Section  
a synchronous amplitude detector, which is also  
used for the audio input AGC.  
In order to maintain constant amplitude of the  
recovered audio regardless of variations between  
satellites or subcarriers, the PLL loop gain may be  
programmed from 56 values.  
The compositevideo is first set to a standardlevel  
by means of a 64 step gain controlled amplifier. In  
the casethatthe modulationisnegative,an inverter  
can be switched in.  
One of two different external video de-emphasis  
networks (for instance PAL and NTSC) is select-  
able by an integrated bus controlled switch.  
Any frequency deviation can be accomodated  
(from ±30kHz till ±400kHz).  
Two different networks can be permanently con-  
nected for either 75µs or J17 de-emphasis. If 50µs  
de-emphasisis required, this can be inserted by an  
internal switch, thus allowing a worldwide applica-  
tion.  
Then energy dispersal is removed by a sync tip  
clamping circuit, which is used on all inputs to a  
video switching matrix, thus making sure that no  
DC steps occur when switching video sources.  
The matrix can be used to feed video to and from  
decoders, VCR’s and TV’s.  
The STV0056A is intended to be compatible with  
Wegener Panda System.  
A bus controlled black level adjustment circuit is  
provided on the decoder output allowing a direct  
connection to an on-board Videocrypt decoder.  
Two types of audio outputs are provided: one is a  
fixed 1VRMS and the other is a gain controlled  
2VRMS max. The control range being from +12dB  
to -26.75dBwith1.25dBsteps.This outputcanalso  
be muted.  
Additionaly all the video outputs are tristate type  
(high impedance mode is supported), allowing a  
simple parallel connections to the scarts (Twin  
tuner applications).  
A matrix is implemented to feed audio to and from  
decoders VCR’s and TV’s.  
Noise reduction system and de-emphasis can be  
inserted or by-passed through bus control.  
Also all the audio outputs are tristate-type (high  
impedance mode is supported), allowing a simple  
parallelconnectionsto thescarts (Twin tuner appli-  
cations).  
Audio Section  
The two audio channels are totally independent  
except for the possibility given to output on both  
channelsonly oneofthe selectedinputaudiochan-  
nels.  
To allow a very cost effective application, each  
channel uses PLL demodulation. Neither external  
complex filter nor ceramic filters are needed.  
Others  
A 22kHz tone is generated for LNB control.  
The frequency of the demodulated subcarrier is  
chosen by a frequencysynthesizer which sets the  
frequency of the internal local oscillator by com-  
paring its phase with the internally generated  
reference. When the frequency is reached, the  
microprocessor switches in the PLL and the de-  
modulationstarts. Atany momentthemicroproces-  
sor can read from the device (watchdog registers)  
the actualfrequency to which the PLL is locked. It  
can alsoverify thatacarrieris presentatthewanted  
frequency (by reading AMPLK status bit) thanksto  
It is selectable by bus control and available on one  
of the two pins connected to the external video  
de-emphasis networks. One general purpose I/O  
is also available on the STV0056A.  
By means of the I2C bus there is the possibility to  
drive the ICs into a low power consumption mode  
with active audio and video matrixes. Inde-  
pendantly from the main power mode, each indi-  
vidual audio and video outputcan be driven to high  
impedance mode.  
9/26  
STV0056A  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Value  
Unit  
VCC  
VDD  
Supply Voltage  
15  
7.0  
V
V
Ptot  
Toper  
Tstg  
Total Power Dissipation  
900  
mW  
oC  
oC  
Operating Ambient Temperature  
Storage Temperature  
0, + 70  
-55, + 150  
THERMAL DATA  
Symbol  
Parameter  
Thermal Resistance Junction-ambient  
Value  
Unit  
oC/W  
Rth(j-a)  
Max.  
55  
DC AND AC ELECTRICAL CHARACTERISTICS  
(VCC = 12V, VDD = 5V, Tamb = 25oC unless otherwise specified)  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
VCC  
VDD  
Sypply Voltage  
Supply Current  
11.4  
4.75  
12  
12.6  
5.25  
V
V
5.0  
IQCC  
IQDD  
All audio and all video outputs  
activated  
55  
8
70  
15  
mA  
mA  
IQLPCC Supply Current at Low Power Mode  
IQLPDD  
All audio and all video outputs  
are in high impedance mode  
27  
6
35  
9
mA  
mA  
AUDIO DEMODULATOR  
FMIN  
DETH  
FM Subcarrier Input Level  
(Pin FMIN for AGC action)  
VCO locked on carrier at 6MHz  
560kload on AMPLOCK Pins  
180kload on DET Pins  
5
500 mVPP  
Detector 1 and 2 (AMPLOCK Pins)  
(Threshold for activating Level Detector 2) Carrier without modulation  
8mVPP FMIN 500mVPP  
2.90 3.10 3.30  
V
VCOMI VCO Mini Frequency  
VCOMA VCO Maxi Frequency  
VCC : 11.4 to 12.6V,  
Tamb : 0 to 70oC  
5
MHz  
MHz  
VPP  
10  
AP50  
1kHz Audio Level at PLL output  
(DET Pins)  
0.5VPP 50kHz dev. FM input,  
Coarse deviation set to 50kHz  
0.6  
1
1.35  
(Reg. 05 = 36HEX  
)
APA50 1kHz Audio Level at PLL output  
(DET Pins)  
0.5VPP 50kHz dev. FM input,  
Coarse and fine settings used  
0.92  
0
1
1.08  
1
VPP  
dB  
FMBW FM Demodulator Bandwidth  
Gain at 12kHz versus 1kHz  
180k, 82k22pF on DET Pins  
0.3  
60  
DPCO Digital Phase Comparator Output  
Current (CPUMP Pins)  
Average sink and source  
current to external capacitor  
µA  
AUTOMATIC NOISE REDUCTION SYSTEM  
LRS  
Output Level (Pins LEVEL)  
1VPP on left and right channel  
0.9  
4.0  
1
1.1  
6.8  
VPP  
LDOR Level Detector Output Resistance  
(Pins PK OUT)  
5.4  
kΩ  
NDFT  
Level Detector Fall Time Constant  
(Pins PK OUT)  
External 22nF to GND and  
1.2Mto VREF  
26.4  
ms  
NDLL  
LLCF  
Bias Level (Pins PK OUT)  
No audio in  
2.40  
0.85  
V
Noise Reduction Cut-off Frequency at  
Low Level Audio  
100mVPP on DET Pins, External  
capacitor 330pF (FC Pins)  
kHz  
HLCF  
Noise Reduction Cut-off Frequency at  
High Level Audio  
1VPP on DET Pins, External  
capacitor 330pF (FC Pins)  
7
kHz  
10/26  
STV0056A  
DC AND AC ELECTRICAL CHARACTERISTICS (continued)  
(VCC = 12V, VDD = 5V, Tamb = 25oC unless otherwise specified)  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
AUDIO OUTPUT (Pins VOL OUT R, VOL OUT L)  
DCOL  
AOLN  
DC Output Level  
4.8  
V
Audio Output Level  
with Reg 00 = 1A  
FM input as for APA50  
1.5  
2.0  
2.0  
2.0  
60  
1.9 2.34 VPP  
No de-emphasis, No pre-emphasis  
No noise reduction  
AOL50 Audio Output Level  
with Reg 00 = 1A  
FM input as for APA50  
50µs de-emphasis, 27k//2.7nF load  
No pre-emphasis, No noise reduction  
3.3  
3.3  
3.2  
4.0  
4.0  
4.0  
VPP  
VPP  
VPP  
AOL75 Audio Output Level  
with Reg 00 = 1A  
FM input as for APA50  
75µs de-emphasis, 27k//2.7nF load  
No pre-emphasis, No noise reduction  
AOL17 Audio Output Level  
with Reg 00 = 1A  
FM input as for APA50  
J17 de-emphasis, 36k4.7k8.2nF load  
No pre-emphasis, No noise reduction  
AMA1  
MXAT  
Audio Output Attenuation  
with Mute-on. Reg 00 = 00.  
1VPP - 1kHz from S2 RTN Pins  
65  
dB  
dB  
Max Attenuation before Mute.  
Reg 00 = 01.  
1kHz, from S2 RTN Pins  
32.75  
MXAG Audio Gain. Reg 00 = 1F.  
1kHz, from S2 RTN Pins  
1kHz  
5
6
7
dB  
dB  
ASTP  
Attenuation of each of the 31  
steps  
1.25  
THDA1 THD with Reg 00 = 1A  
THDA2 THD with Reg 00 = 1A  
THDFM THD with Reg 00 = 1A  
1VPP -1kHz from S2 RTN Pins  
2VPP -1kHz from S2 RTN Pins  
0.15  
0.3  
%
%
%
1
1
FM input as for APA50  
75µs de-emphasis, ANRS ON  
0.3  
ACS  
Audio Channel Separation  
1VPP -1kHz on S2 RTN Pins  
60  
74  
60  
dB  
dB  
ACSFM Audio Channel Separation at 1kHz - 0.5 VPP - 50kHz deviation FM input on  
one channel  
- 0.5VPP no deviation FM input on the  
other channel  
- Reg 05 = 36HEX  
- 75µs de-emphasis, no ANRS  
SNFM  
Signal to Noise Ratio  
FM input as for APA50,  
75µs de-emphasis,  
56  
69  
dB  
dB  
no ANRS, Unweighted  
SNFMNR Signal to Noise Ratio  
FM input as for APA50  
75µs de-emphasis,  
ANRS ON, Unweighted  
ZOUTL  
ZOUT H  
Audio Output Impedance  
Low impedance mode  
High impedance mode  
18  
44  
kΩ  
30  
55  
AUXILIARY AUDIO OUTPUT (Pins S2 OUT R, S2 OUT L, S3 OUT R, S3 OUT L)  
DCOLAO DC output level  
Aux. input pins open circuit  
4.8  
2
V
AOLNS Audio Output Level  
on S2 and S3  
FM input as for APA50  
No de-emphasis, No pre-emphasis  
No noise reduction  
1.55  
2.0  
2.0  
2.0  
-1  
2.42 VPP  
AOL50S Audio Output Level  
on S2 and S3  
FM input as for APA50  
50µs de-emphasis, 27k//2.7nF load  
No pre-emphasis, No noise reduction  
3.4  
3.4  
3.3  
4.0  
4.0  
4.0  
VPP  
VPP  
VPP  
AOL75S Audio Output Level  
on S2 and S3  
FM input as for APA50  
75µs de-emphasis, 27k//2.7nF load  
No pre-emphasis, No noise reduction  
AOL17S Audio Output Level  
on S2 and S3  
FM input as for APA50  
J17 de-emphasis, 36k4.7k8.2nF load  
No pre-emphasis, No noise reduction  
AGAO S2 to S3 Audio Gain  
and S3 to S2 Audio Gain  
1kHz  
0
+1  
dB  
%
THDA02 THD on S2, Input in S3  
2VPP - 1kHz from Aux input pins  
0.04  
0.2  
11/26  
STV0056A  
DC AND AC ELECTRICAL CHARACTERISTICS (continued)  
(VCC = 12V, VDD = 5V, Tamb = 25oC unless otherwise specified)  
Symbol  
Parameter  
Test Conditions  
Min. Typ. Max. Unit  
AUXILIARY AUDIO OUTPUT (Pins S2 OUT R, S2 OUT L, S3 OUT R, S3 OUT L) (continued)  
THDAOFM THD on S2 or S3  
FM input as for APA50  
75µs de-emphasis, no ANRS  
0.3  
1
%
ZOUT L  
ZOUT H  
Audio Output Impedance  
Low impedance mode  
High impedance mode  
60  
44  
100  
55  
kΩ  
30  
I/O  
VIL  
VIH  
Low Level Input  
High Level Input  
0.8  
0.4  
V
V
2.4  
3.2  
VOL  
VOH  
Low Level Output  
High Level Output  
Isink= 2mA  
Isource = 2mA  
0.2  
4.6  
V
V
LNBT  
LNBD  
Tone Frequency  
22.2 22.2 22.2 kHz  
Tone Signal Duty Cycle  
No load connected on I/O  
49  
50  
51  
%
RESET  
RTCCU  
End of Reset Threshold for VCC VDD = 5V, VCC going up  
Start of Reset Threshold for VCC VDD = 5V, VCC going down  
End of Reset Threshold for VDD VCC = 12V, VDD going up  
Start of Reset Threshold for VDD VCC = 12V, VDD going down  
8.7  
7.9  
3.8  
3.5  
V
V
V
V
RTCCD  
RTDDU  
RTDDD  
COMPOSITE SIGNAL PROCESSING  
VIDC  
ZVI  
VID IN  
External load current < 1µA  
2.25 2.45 2.65  
11 14  
V
kΩ  
V
VID IN Input Impedance  
DC Output Level (Pins VIDEEM)  
7
DEODC  
DEOMX  
2.25 2.45 2.65  
2
Max AC Level before Clipping  
(Pins VIDEEM)  
GV = 0dB, Reg 01 = 00  
VPP  
DGV  
INVG  
Gain error vs GV @ 100kHz  
Inverter Gain  
GV = 0 to 12.7dB, Reg 01 = 00 3F  
-0.5  
-0.9  
-1  
0
-1  
0
0.5  
-1.1  
1
dB  
VISOG  
Video Input to SCART Outputs  
Gain  
De-emphasis amplifier mounted in unity  
gain, Normal video selected  
dB  
MHz  
%
DEBW  
DFG  
Bandwidth for 1VPP input  
measured on Pins VIDEEM  
@ - 3dB with GV = 0dB, Reg 01 = 00  
10  
Differential Gain on Sync Pulses GV = 0dB, 1VPP CVBS + 0.5VPP  
measured on Pins VIDEEM  
1
25Hz sawtooth (input : VID IN)  
ITMOD  
Intermodulation of FM subcar-  
riers with chroma subcarrier  
7.02 and 7.2MHz sub-carriers,  
12.2dB lower than chroma  
-60  
dB  
CLAMP STAGES (Pins CLAMP IN, S1, S2, S3 VID RTN)  
ISKC  
ISCC  
Clamp Input Sink Current  
V
V
IN = 3V  
IN = 2V  
0.5  
40  
1
1.5  
60  
µA  
µA  
Clamp Input Source Current  
50  
VIDEO MATRIX  
XTK  
BFG  
Output Level on any Output  
@ 5MHz  
-60  
2
dB  
when 1VPP CVBS input is  
selected for any other output  
Output Buffer Gain (Pins S1 VID  
OUT, S2 VID OUT, S2 VID OUT)  
@ 100kHz  
1.87  
16  
2.13  
DCOLVH DC Output Level  
High impedance mode  
0
0.2  
30  
V
kΩ  
V
ZOUT HV  
VCL  
Video Output Impedance  
High impedance mode  
23  
Sync Tip Level on Selected  
Outputs (Pins S1 VID OUT, S2  
VID OUT)  
1VPP CVBS through 10nF on input  
1.05 1.3 1.55  
VCL S3  
Sync Tip Level at S3 VID OUT  
with Black Level Adjust  
Register 4  
b6 b7  
0
0
1
1
0
1
0
1
1.36  
1.52  
1.67  
1.84  
V
V
V
V
12/26  
STV0056A  
PIN INTERNAL CIRCUITRY  
S1 VID RTN, S2 VID RTN, S3 VID RTN,  
CLAMP IN  
50µA source is active only when VIDIN < 2.7V.  
UNCL DEEM  
Same as above but with no black level adjustment  
and slightly different gain.  
Figure 4  
Figure 1  
VDD 9V  
60Ω  
50µA  
VCC 12V  
S1 VID RTN  
S2 VID RTN  
10kΩ  
4
S3 VID RTN  
CLAMPIN  
UNCL DEEM  
VREF 2.4V  
1
1µA  
2.3mA  
IN  
10kΩ  
25kΩ  
1
GND 0V  
V
DD 5V  
16.7kΩ  
GND 0V  
GND 0V  
S3 VID OUT  
I blacklevelisI2C programmablefromsource16µA  
to sink 33µA equivalent to an offset voltage of  
-150mV to + 300mV.  
The 60collector resistor is for short cct. protec-  
tion.  
VIDEEM1  
Ron of the transistor gate is 10k.  
Figure 5  
Figure 2  
6µ/2µ  
60Ω  
VCC 12V  
10µ/2µ  
VIDEEM1  
4
1
S3 VID OUT  
125µA  
2.3mA  
VID MUX  
10kΩ  
25kΩ  
GND 0V  
VREF 2.4V  
16.7kΩ  
I Black Level  
VIDEEM2 / 22kHz  
Ron of the transistor gate is 10k.  
GND 0V  
Figure 6  
S1 VID OUT, S2 VID OUT  
Same asabove but with no black level adjustment.  
6µ/2µ  
10µ/2µ  
Figure 3  
60Ω  
VIDEEM2/22kHz  
1
V
CC 12V  
125µA  
4
S1 VID OUT  
S2 VID OUT  
VDD 5V  
2.3mA  
VID MUX  
10kΩ  
20kΩ  
100µ/2µ  
60µ/2µ  
22kHz  
GND 0V  
VREF 2.4V  
20kΩ  
GND 0V  
13/26  
STV0056A  
PIN INTERNAL CIRCUITRY (continued)  
VID IN  
Figure 7  
VREF 2.4V  
S2 OUT L, S2 OUT R, S3 OUT L, S3 OUT R  
Same as above but with gain fixed at +6dB.  
Figure 11  
S2 OUT L  
S2 OUT R  
S3 OUT L  
Audio  
2.4V Bias  
10kΩ  
S3 OUT R  
VID IN  
1
20kΩ  
6.5k  
+
0.5pF  
85µA  
GND 0V  
20kΩ  
PK OUT R, PK OUT L  
Figure 8  
GND 0V  
S2 RTN L, S2 RTN R, S3 RTN L, S3 RTN R  
4.8V bias voltage is the same as the bias level on  
the audio outputs.  
VDD 9V  
Clamp  
3.4V  
Audio  
1
Figure 12  
1
5kΩ  
Peak Detector  
PK OUT R  
PK OUT L  
25kΩ  
4.8V  
S2 RTN L  
S2 RTN R  
S3 RTN L  
S3 RTN R  
FC L, FC R  
1
Ivar is controlled by the peak det audio level max.  
±15µA (1VPP audio).  
50µA  
Figure 9  
VDD 9V  
FM IN  
Theotherinputforeachchannelis internallybiased  
FC L  
FC R  
in the same way via 10kto the 2.4V VREF  
.
1
Figure 13  
1
10kΩ  
2.4V  
Left Channel  
Ivar  
FM IN  
10kΩ  
1
50µA  
VOL OUT R, VOL OUT L  
1
Right Channel  
Audio output with volume and scart driver with  
+12dB of gain for up to 2VRMS. The opamp has a  
push-pull output stage.  
50µA  
Figure 10  
IREF  
Audio  
2.4V Bias  
VOL OUT R  
VOL OUT L  
The optimum value if IREF is 50µA ±2% so an  
external resistor of 47.5k±1% is required.  
30kΩ  
Figure 14  
30kΩ  
4.8V  
2.4V  
15kΩ  
1
IREF  
GND 0V  
14/26  
STV0056A  
PIN INTERNAL CIRCUITRY (continued)  
I/O / 22kHz  
HA  
The input is TTL compatible.  
The outputis tri-stateable.  
Figure 15  
Pull-down current for SDIP42.  
Input with CMOS levels.  
Figure 19  
25µ/2µ  
10µ/2µ  
180µ/2µ  
100µ/2µ  
10µ/2µ  
91µ/2µ  
205Ω  
I/O/22kHz  
205Ω  
HA  
MUX  
IIC Reg  
ESD  
150µA  
22kHz  
ESD  
GND 0V  
SCL  
XTL  
This is the input to a Schmittinput buffer made with  
a CMOS amplifier.  
Figure 20  
Figure 16  
3
3
460Ω  
460Ω  
205Ω  
SCL  
24µ/4µ  
2
2
XTL  
5pF  
ESD  
GND 0V  
750µA  
750µA  
500µA  
CPUMP L, CPUMP R  
SDA  
Input same as above.  
Output pull down only : relies on external resistor  
for pull-up.  
An offset on the PLL loop filter will cause an offset  
in the two 1µA currents that will prevent the PLL  
from drifting-off frequency.  
Figure 21  
Figure 17  
SDA  
100µA  
205Ω  
24µ/4µ  
ESD  
CPUMP L  
CPUMP R  
600µ/2µ  
1µA  
GND 0V  
Dig Synth  
Loop Filter Tracking  
1µA  
J17 L, J17 R, U75 L, U75 R  
I1 - I2 = 2 x audio / 18k.  
eg 1VPP audio : ±55µA.  
VCO Input  
100µA  
The are internal switches to match the audio level  
of the different standards.  
DET L, DET R  
I2 - I1 = f (phaseerror).  
Figure 18  
Figure 22  
I1  
J17 L  
I2  
J17 R  
U75 L  
U75 R  
DET L  
DET R  
I2  
I1  
15/26  
STV0056A  
PIN INTERNAL CIRCUITRY (continued)  
AMPLK L, AMPLK R, AGC L, AGC R  
V GND  
I2 and I1 from the amplitude detectingmixer.  
Doubled bonded:  
- Onepad is connectedtopower-up allof thevideo  
mux and I/O.  
- The second pad is only as a low noise GND for  
the video input.  
Figure 23  
To VCA  
I2  
I1  
5µA  
AMPLK L  
AMPLK R  
AGC L  
AGC R  
VDD 5V, GND 5V  
Connected to XTL oscillator and the bulk of the  
CMOS logic and 5V ESD.  
2
10kΩ  
A GND  
160µA  
Doubled bonded:  
VREF 2.4V  
- One pad connected to the left VCO, dividers,  
mixers and guard ring. the guard connection is  
star connected directly to the pad.  
- The second pad is connected to both AGC amps  
and the deemphasis amplifiers, frequency syn-  
thesis and FM deviation selection circuit for both  
channels.  
VREF  
The 400µA source is off during stand-by mode.  
Figure 24  
VREF (2.4V)  
Vbg 1.2V  
4
10kΩ  
A 12V  
Doubled bonded:  
400µA  
- One pad connected to the ESD and guard ring.  
- The second pad is connected to the main power  
for all of the audio parts.  
10kΩ  
GND 0V  
A GND R  
Boubled bonded :  
LEVEL L, LEVEL R  
Figure 25  
- One pad connected to the right VCO, dividers,  
mixers and guard ring. The guard connection is  
star connected directly to the pad.  
- The second pad is connected to the bias block,  
audio noise reduction, volume, mux and ESD.  
V
REF 2.4V  
SW  
1
LEVEL R  
LEVEL L  
A third bond wire on this pin is connected directly  
to the die pad (substrate).  
Audio  
49kΩ  
49kΩ  
50kΩ  
100µA  
Figure 27  
PK IN L, PK IN R  
Figure 26  
V 12V  
Video Pads  
VREF 2.4V  
V GND  
VDD 5V  
1
PK IN R  
PK IN L  
To Peak Det  
100µA  
Vpp  
BIP 10vpl  
Vmm  
205Ω  
67kΩ  
Digital Pads  
DZPN1  
DZPN1  
DZPN1  
GND 5V  
V 12V  
A GND L  
A 12V  
Doubled bonded (two bond wires and two pads for  
one package pin) :  
- One pad is connected to all of the 12V ESD and  
video guard rings.  
- The second pad is connected to power up the  
video block.  
+
BIP  
12V  
-
Audio Pads  
Substrate  
A GND R  
16/26  
STV0056A  
I2C PROTOCOL  
1) WRITING to the chip  
S-Start Condition  
P-Stop Condition  
CHIP ADDR - 7 bits. Programmable 06H or 46H (STV0056A only) with Pin HA.  
W-Write/Read bit is the 8th bit of the chip address.  
A-ACKNOWLEDGE after receiving8 bits of data/adress.  
REG ADDR  
Address of register to be written to, 8 bits of which bits 3, 4, 5, 6 & 7 are ’X’ or  
don’t care ie only the first 3 bits are used.  
DATA  
8 bitsof data being written to the register. All8 bits must be written to atthe same  
time.  
REG ADDR/A/DATA/A can be repeated, the write process can continue untill terminated with a STOP  
condition. If the REG ADDR is higher than 07 then IIC PROTOCOL will still be  
met (ie an A generated).  
Example :  
S
06  
W
A
00  
A
55  
A
01  
A
8F  
A
P
2) READING from the chip  
When reading,there is an auto-incrementfeature. This means anyread command always starts by reading  
Reg 8 and will continue to read the following registers in orderafter each acknowledgeor until there is no  
acknowledge or a stop. This function is cyclic that is it will read the same set of registers without  
re-addressing the chip. There are two modes of operation as set by writing to bit 7 of register 0. Read 3  
registers in a cyclic fashion or all 5 registers in a cyclic fashion. Note only the last 5 of the 11 registers can  
be read.  
Reg0 bit 7 =L  
Start / chip add / R / A/ Reg8 / A / Reg 9 / A/ Reg 0A/ A/ Reg 8 / A/ Reg 9 / A / Reg 0A  
/... / P /  
Reg0 bit 7 =H  
Start / chip add / R / A/ Reg 8 / A / Reg 9 / A/ Reg0A / A / Reg 7 / A / Reg 6 / A / Reg 8  
/ A/ Reg 9 / A / Reg 0A / A/ Reg 7 / A/ Reg 6 / ... / P /  
CONTROL REGISTERS  
Reg 0  
write only  
Bit (default 00HEX  
)
0
1
2
3
4
5
6
7
L
L
L
L
L
L
L
L
Select 5 bits audio volume control 00H = MUTE  
Select 5 bits audio volume control 01H = -26.75dB  
Select 5 bits audio volume control : : : :  
:
Select 5 bits audio volume control 1.25dB steps up to  
Select 5 bits audio volume control 1FH = +12dB  
Audio mux switch K4 - ANRS I/P select (L = PLL)  
Audio mux switch K3 - ANRS select (L = no ANRS, H = ANRS)  
L = read 3 registers, H = read 5 registers  
Reg 1  
write only  
Bit (default 00HEX  
)
0
1
2
3
4
5
6
7
L
L
L
L
L
L
L
L
Select video gain bits  
Select video gain bits  
Select video gain bits  
Select video gain bits  
Select video gain bits  
Select video gain bits  
00H = 0dB  
01H = +0.202dB  
02H = +0.404dB  
n
= + 0.202 dB * n  
3FH = + 12.73 dB  
Selected video invert (H = inverted, L = non inverted)  
Video deemphasis 1 / Video deemphasis2 (L : VID De-em 1)  
17/26  
STV0056A  
CONTROL REGISTERS (continued)  
Reg 2  
write only  
Bit (default F7HEX  
)
0
1
2
3
4
5
6
7
H
H
H
L
H
H
H
H
Select video source for scart 1 O/P  
Select video source for scart 1 O/P  
Select video source for scart 1 O/P  
Select 4.000MHz or 8.000MHz clock speed (L = 8MHz)  
Select audio source for volume output (Switch K1)  
Select audio source for volume output (Switch K1)  
Select Left/Right/Stereofor volume output  
Select Left/Right/Stereofor volume output  
Reg 3  
write only  
Bit (default F7HEX  
)
0
1
2
3
4
5
6
7
H
H
H
L
H
H
H
H
Select video source for scart 2 O/P  
Select video source for scart 2 O/P  
Select video source for scart 2 O/P  
Video deemphais 2 / 22kHz(H : 22kHz)  
Select audio source for Scart 2 output (Switch K5)  
Select audio source for Scart 2 output (Switch K5)  
Audio deemphasisselect (Switch K2)  
Audio deemphasisselect (Switch K2)  
Reg 4  
write only  
Bit (default BFHEX  
)
0
1
2
3
4
5
6
7
H
H
H
H
H
H
L
Select source for video decoder O/P  
Select source for video decoder O/P  
Select source for video decoder O/P  
Stand-by or low power mode (H = low power)  
Select audio source for Scart 3 output (Switch K6)  
Select audio source for Scart 3 output (Switch K6)  
Black level adjust on Scart 3 video  
H
Black level adjust on Scart 3 video  
Reg 5  
write only  
Bit (default B5HEX  
)
0
1
2
3
4
5
6
7
H
L
H
L
H
H
L
FM deviation selection -- default value for 50kHz modulation  
FM deviation selection  
FM deviation selection  
FM deviation selection  
FM deviation selection  
FM deviation selection (L = double the FM deviation)  
Select 22kHz for I/O (Pin 29 / STV0056A)  
Select TP50a (H) or I/O (Pin 29 / STV0056A). TP50a for test only.  
H
Reg 6  
write/read  
Bit (default 86HEX  
)
0
1
2
3
4
5
6
7
L
Status of I/O  
H
H
L
L
L
L
H
Select data direction of I/O1 ( H = output)  
Select frequency synthesizer 1 OFF/ON (L = OFF)  
Select frequency synthesizer 2 OFF/ON (L = OFF)  
Select RF source (L = OFF) to FM det 1  
Select RF source (L = OFF) to FM det 2  
Select frequency for PLLsynthesizer - LSB (bit 0) of 10-bit value  
Select frequency for PLLsynthesizer - bit 1 of 10-bit value  
18/26  
STV0056A  
CONTROL REGISTERS (continued)  
Reg 7 write/read  
Bit (default AFHEX  
)
0
1
2
3
4
5
6
7
H
H
H
H
L
H
L
Select frequency for PLLsynthesizer - bit 2 of 10-bit value  
Select frequency for PLLsynthesizer  
Select frequency for PLLsynthesizer  
Select frequency for PLLsynthesizer  
Select frequency for PLLsynthesizer  
Select frequency for PLLsynthesizer  
Select frequency for PLLsynthesizer  
Select frequency for PLLsynthesizer - bit 9, MSB (10th bit) of 10-bit value  
H
Reg 8  
read only  
Bit  
0
1
Subcarrier detection (DET 1) (L = No subcarrier)  
Not used  
2
3
4
5
Read frequency of watchdog 1 - LSB (bit 0) of 10-bit value  
Read frequency of watchdog 1 - bit 1 of 10-bit value  
Subcarrier detection (DET 2) (L = No subcarrier)  
Not used  
6
7
Read frequency of watchdog 2 - bit 0 of 10-bit value  
Read frequency of watchdog 2 - bit 1 of 10-bit value  
Reg 9  
read only  
Bit (default AFHEX  
)
0
1
2
3
4
5
6
7
Read frequency of watchdog 1 - bit 2 of 10-bit value  
Read frequency of watchdog 1  
Read frequency of watchdog 1  
Read frequency of watchdog 1  
Read frequency of watchdog 1  
Read frequency of watchdog 1  
Read frequency of watchdog 1  
Read frequency of watchdog 1 - bit 9, MSB (10th bit) of 10-bit  
Reg 0A read only  
Bit  
0
1
2
3
4
5
6
7
Read frequency of watchdog 2 - bit 2 of 10-bit value  
Read frequency of watchdog 2  
Read frequency of watchdog 2  
Read frequency of watchdog 2  
Read frequency of watchdog 2  
Read frequency of watchdog 2  
Read frequency of watchdog 2  
Read frequency of watchdog 2 - bit 9, MSB (10th bit) of 10-bit  
19/26  
STV0056A  
CONTROL REGISTERS (continued)  
Video Mux Truth Tables  
Register 2 <0:2>  
Register 3 <0:2>  
Register 4 <0:2>  
Scart 1 video output control  
Scart 2 video output control  
Scart 3 decoder output control  
The truth table for the three scart outputs are the same.  
Register 2/3/4  
Video Output  
Bit<2>  
Bit<1>  
Bit<0>  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Baseband video  
De-emphasized video  
Normal video  
Scart 3 return  
Scart 2 return  
Scart 1 return  
Nothing selected  
High Z or low power (default)  
Register 4  
Black Level Adjust on Scart 3  
Bit <7>  
Bit <6>  
0
1
0
1
0
0
1
1
-150mV  
0 (default)  
+150mV  
+300mV  
Audio Mux Truth Tables  
Register 2  
Switch K1/Audio Source Selection for Volume Output  
Bit <5>  
Bit <4>  
Volume Output  
0
1
0
1
0
0
1
1
A
C
B
-
Audio deemphasis (K2 switch O/P)  
Scart 2 return  
Scart 3 return  
High Z or low power (default)  
Register 3  
Switch K2/Audio Deemphasis  
Bit <7>  
Bit <6>  
Audio Deemphasis  
No deemphasis  
J17  
0
1
0
1
0
0
1
1
A
C
B
B
50µs  
75µs (default)  
Register 0  
Switch K3 & K4  
Bit <6>  
Bit <5>  
ANRS I/O Select  
Noise reduction OFF  
Noise reduction ON (default)  
I/P = PLL  
0
1
X
X
0
1
A
B
A
B
X
X
I/P = Scart 3 return  
Register 3  
Switch K5/Audio Source Selection for Scart 2  
Bit <5>  
Bit <4>  
Aux Audio Output  
0
1
0
1
0
0
1
1
C
A
B
-
PLL output  
Scart 3 return  
Audio deemphasis (K2 switch O/P)  
High Z or low power state (default)  
Register 4  
Switch K6/Audio Source Selection for Scart 3  
Bit <5>  
Bit <4>  
Audio Decoder Output  
PLL output  
Audio deemphasis (K2 switch O/P)  
Scart 2 return  
High Z or low power state (default)  
0
1
0
1
0
0
1
1
A
C
B
-
20/26  
STV0056A  
CONTROL REGISTERS (continued)  
Register 2  
Left / Right / Stereo on Volume Output  
Bit <7>  
Bit <6>  
0
1
1
0
0
1
Mono left / channel 1  
Mono right / channel 2  
Stereo left & right (default)  
Register 5 : FM Deviation Selection  
Selected Nominal Carrier Modulation  
Bit 5 = 1  
4
3
2
1
0
Bit 5 = 0  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Do not use  
Do not use  
Do not use  
Cal. set. (2V)  
592kHz  
534kHz  
484kHz  
436kHz  
396kHz  
358kHz  
322kHz  
292kHz  
266kHz  
240kHz  
218kHz  
196kHz  
179kHz  
161kHz  
146kHz  
122kHz  
120kHz  
109kHz  
98kHz  
cal : do not use = 0.3373V offset on VCO  
cal : do not use = 0.3053V offset on VCO  
cal : do not use = 0.2763V offset on VCO  
calibration setting (1V offset on VCO)  
296kHz modulation  
267kHz modulation  
242kHz  
218kHz  
198kHz  
179kHz  
161kHz  
146kHz  
133kHz  
120kHz  
109kHz  
98.3kHz  
89.7kHz  
80.9kHz  
73.1kHz  
66.0kHz  
60.0kHz  
54.4kHz = default power up state  
49.1kHz  
89kHz  
44.3kHz  
78kHz  
39.8kHz  
71kHz  
35.9kHz  
65kHz  
32.4kHz  
58kHz  
29.1kHz  
53kHz  
26.7kHz  
48.6kHz  
43.8kHz  
39.6kHz  
24.3kHz  
21.9kHz  
19.7kHz  
Example : Default power up state 54.4kHz  
±54.4kHz.  
Register 1  
Bit <7>  
Register 3  
Bit <3>  
Video Deemphasis/22kHz  
0
0
1
1
0
1
0
1
Deemphasis 1 (default)  
Deemphasis 1 + 22kHz  
Deemphasis 2  
Deemphasis 2  
Register 5  
Digital I/O (STV0056A pin 29)  
Bit <7>  
Bit <6>  
0
0
1
1
0
1
0
1
I/O (refer to Register 6 Bit <0> Bit <1>)  
22kHz  
Do not use (for test only) (default)  
22kHz  
21/26  
STV0056A  
FM DEMODULATION SOFTWARE ROUTINE  
With the STV0056A circuit, for eachchannel, three  
steps are required to acheive a FM demodulation :  
- 1st step :To set the demodulation parameters :  
FM deviation selection,  
two completesequenceshavetobe doneone after  
the other when demodulating stereo pairs.  
Detailed Description  
Subcarrier frequency selection.  
Conventions:  
- R = Stands for Register  
- B = Stands for Bit  
- 2nd step : To implement a waiting loop to check  
the actual VCO frequency.  
- 3rd step :To close the demodulationphase locked  
loop (PLL).  
Example : R05 B2 = Register 05, Bit 2  
Refering to the FM demodulation block diagram  
(page 12), the frequency synthesis block is com-  
mon tobothchannels(leftand right); consequently  
For clarity, the explanationsare based on the fol-  
lowing example : stereo pair 7.02MHz/L  
7.20MHz/R, deviation ±50kHz max.  
1st STEP (LEFT) : SETTING THE DEMODULATION PARAMETERS  
A. The FM deviationis selected by loading R5 with  
The Table 1 givesthe settingfor themost common  
the appropriatevalue. (see R5 truth table).  
subcarrier frequencies.  
NB : Very wide deviations (up to ±592kHz) can be  
accomodatedwhen R5 B5 is low.  
Table 1 : Frequency Synthesis Register Setting  
for the Most Common SubcarrierFrequencies  
Corresponding bandwidth can be calculated as  
follows :  
Bw 2 (FM deviation + audio bandwidth)  
Bw 2 (value given in table + audio bandwidth)  
Register 6  
Subcarrier Frequency  
(MHz)  
Register 7  
(Hex)  
Bit 7 Bit 6  
In the example :  
5.58  
5.76  
5.8  
8B  
90  
1
0
0
1
0
1
0
0
1
0
0
0
0
1
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
0
0
1
0
0
0
1
0
0
1
R5Bits 7  
X
6
X
5
1
4
1
3
0
2
1
1
1
0
0
91  
B. The subcarrier frequency is selected by  
launchinga frequencysynthesis (the VCOis driven  
to the wanted frequency). This operation requires  
two actions :  
- To connect the VCO to the frequency synthesis  
loop.Referingto the FMblockdiagram(page12):  
5.94  
6.2  
94  
9B  
9D  
A0  
A2  
A2  
A5  
A6  
AA  
AB  
AF  
B4  
B5  
B8  
BD  
C1  
C4  
C6  
CD  
D8  
6.3  
6.4  
6.48  
6.5  
SW4 closed  
SW3 to bias  
SW2 to bias  
SW1 opened  
R6 B2 = H  
R6 B4 = L  
R6 B3 = L  
R6 B5 = L  
6.6  
6.65  
6.8  
- To load R7 and R6 B6 B7 with the value corre-  
sponding to the left channel frequency. This 10  
bits value is calculated as follows :  
Subcarrierfrequency = coded value x 10kHz  
(10kHz is the minimum step of the frequency  
synthesis function)  
Considering that the tunning range is comprised  
between5to 10MHz,thecodedvalueis anumber  
between 500 and 1000 (210 = 1024) then 10 bits  
are required.  
6.85  
7.02  
7.20  
7.25  
7.38  
7.56  
7.74  
7.85  
7.92  
8.2  
Example :  
7.02MHz = 702 x 10kHz  
702  
1010 1111 10  
AF + 10  
8.65  
R7 is loaded with AF and R6 B6 : L, R6 B7 : H.  
22/26  
STV0056A  
FM DEMODULATION SOFTWARE ROUTINE (continued)  
2nd STEP (LEFT) :  
VCO FREQUENCY CHECKING (VCO)  
In practice :  
- SW3 closed  
- SW4 opened R6 B2 = L  
R6 B4 = H  
This second step is actuallya waiting loop in which  
the actual running frequency of the VCO is meas-  
ured.  
After this sequence of 3 steps for left channel,  
a similar sequence is neededfor the right channel.  
To exit of this loop is allowed when : Subcarrier  
Frequency - 10kHz Measured Frequency Sub-  
carrier Frequency + 10kHz (± 10kHz is the maxi-  
mum dispersion of the frequency synthesis  
function).  
Note :  
In the sequence for the right, there is no need to  
again select the FM deviation (once is enough for  
the pair).  
General Remark  
In practice, R8 B2 B3 and R9 are read and com-  
pared to the value loaded in R6 B6 B7 and R7  
±1 bit.  
Before to enable the demodulated signal to the  
audiooutput, it isrecommandedto keepthe muting  
and to check whether a subcarrier is present at the  
wantedfrequency.Suchan informationis available  
in R8 B0 and R8 B4 which can be read.  
Note :  
The duration of this step depends on how large is  
frequency difference between the start frequency  
and the targeted frequency. Typically :  
- the rate of change of the VCO frequencyis about  
3.75MHz/s (Cpump = 10µF)  
- In addition to this settling time, 100ms must be  
addedto takeinto accountthe samplingperiodof  
the watchdog.  
Two differentstrategies can be adoptedwhen ena-  
bling the output :  
- Eitherboth left andright demodulatedsignals are  
simultaneously authorized when both channel  
are ready.  
- Orwhile the right channelsequenceis running,the  
already ready left signal is sentto the left and right  
outputs and the real stereo sound L/R is output  
when bothchannelsare ready. This second option  
gives sound a fewhundredsof ms before the first  
one.  
3rd STEP (LEFT)  
The FMdemodulationcan bestartedbyconnecting  
the VCO to the phase locked loop (PLL).  
23/26  
STV0056A  
TYPICAL APPLICATION (3 SCARTS, PAL/SECAM Europe Apllication)  
24/26  
STV0056A  
TWIN TUNER APPLICATION  
Easy parallel connectionof the outputs to the scarts without any additionalswitching hardware.  
This configuration is possible due to the high impedance mode that can be selected for each audio and  
video outputs.  
Video  
8
S
T
V
0
TUNER 1  
9
7
TV  
SCART  
Audio  
2
6-10  
0
32  
5
12-14  
27-28  
6
I2 C Bus  
A
Video  
VCR  
SCART  
Audio  
2
Video  
8
9
7
S
T
V
0
TUNER 2  
DECODER  
SCART  
Audio  
2
6-10  
0
5V 32  
5
12-14  
27-28  
6
A
25/26  
STV0056A  
PACKAGE MECHANICAL DATA  
56 PINS - PLASTIC SHRINK DIP  
mm  
Typ  
inches  
Typ  
Dim.  
Min  
Max  
Min  
Max  
A
5.08  
0.200  
A1  
B
0.51  
0.35  
0.75  
0.20  
0.020  
0.014  
0.030  
0.008  
0.59  
1.42  
0.36  
0.023  
0.056  
0.014  
B1  
C
D
52.12  
2.052  
D1  
E
0.730  
0.540  
18.54  
E1  
K1  
K2  
L
13.72  
2.54  
3.81  
.100  
0.150  
e1  
1.78  
0.070  
Number of Pins  
56  
N
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility  
for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result  
from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.  
Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all  
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life  
support devices or systems without express written approval of SGS-THOMSON Microelectronics.  
1996 SGS-THOMSON Microelectronics - All Rights Reserved  
Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips  
I2C Patent. Rights to use these components in a I2C system, is granted provided that the system conforms to  
the I2C Standard Specifications as defined by Philips.  
SGS-THOMSON Microelectronics GROUP OF COMPANIES  
Australia - Brazil -Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco  
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.  
26/26  

相关型号:

STV0056AF

SATELLITE SOUND AND VIDEO PROCESSOR
STMICROELECTR

STV0116

Color Encoder Circuit
ETC

STV0116FN

Color Encoder Circuit
ETC

STV0117

Color Encoder Circuit
ETC

STV0117A

Color Encoder Circuit
ETC

STV0118

PAL/NTSC HIGH PERFORMANCE DIGITAL ENCODER
STMICROELECTR

STV0119

Color Encoder Circuit
ETC

STV0119A

PAL/NTSC HIGH PERFORMANCE DIGITAL ENCODER
STMICROELECTR

STV0180

Analog-to-Digital Converter, 8-Bit
ETC

STV0190

DUAL 40 MSPS 6-BIT ANALOG TO DIGITAL CONVERTER
STMICROELECTR

STV0196

QPSK/BPSK DEMODULATOR AND FEC IC
STMICROELECTR

STV0196B

QPSK/BPSK DEMODULATOR AND FEC IC
STMICROELECTR