STV9326 [STMICROELECTRONICS]

Vertical Deflection Booster for 3-APPTV/Monitor Applications with 60-V Flyback Generator; 垂直偏转助推器3 APPTV /监控应用程序与60 -V型反激式发电机组
STV9326
型号: STV9326
厂家: ST    ST
描述:

Vertical Deflection Booster for 3-APPTV/Monitor Applications with 60-V Flyback Generator
垂直偏转助推器3 APPTV /监控应用程序与60 -V型反激式发电机组

消费电路 商用集成电路 偏转集成电路 电视 监视器 电机 监控 局域网
文件: 总14页 (文件大小:321K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
®
STV9326  
Vertical Deflection Booster  
for 3-A TV/Monitor Applications with 60-V Flyback Generator  
PP  
DATASHEET  
Main Features  
Power Amplifier  
HEPTAWATT  
(Plastic Package)  
ORDER CODE: STV9326  
Flyback Generator  
Stand-by Control  
Output Current up to 3 App  
Thermal Protection  
Description  
Input (Non Inverting)  
Output Stage Supply  
Output  
Ground Or Negative Supply  
Flyback Generator  
Supply Voltage  
7
6
5
4
3
2
1
The STV9326 is a vertical deflection booster  
designed for TV and monitor applications.  
This device, supplied with up to 30 V, provides up to  
3 App output current to drive the vertical deflection  
yoke.  
Input (Inverting)  
Tab connected  
to pin 4  
The internal flyback generator delivers flyback  
voltages up to 65 V.  
In double-supply applications, a stand-by state will  
be reached by stopping the (+) supply alone.  
Output Stage  
Flyback  
Supply  
Supply  
Generator Voltage  
2
3
6
Flyback  
Generator  
Non-Inverting  
Input  
7
1
+
Power  
5
Output  
Amplifier  
Inverting  
Input  
-
Thermal  
Protection  
STV9326  
4
Ground or Negative Supply  
June 2004  
Revision 1.1  
Absolute Maximum Ratings  
STV9326  
1
Absolute Maximum Ratings  
Symbol  
Voltage  
Parameter  
Value  
Unit  
V
Supply Voltage (pin 2) - Note 1 and Note 2  
Flyback Peak Voltage - Note 2  
40  
65  
V
V
V
V
S
V , V  
5
6
V
Voltage at Pin 3 - Note 2, Note 3 and Note 6  
Amplifier Input Voltage - Note 2, Note 6 and Note 7  
-0.4 to (V + 3)  
S
3
V , V  
- 0.4 to (V + 2) or +40  
1
7
S
Current  
I (1)  
Output Peak Current at f = 50 to 200 Hz, t 10µs - Note 4  
Output Peak Current non-repetitive - Note 5  
Sink Current, t<1ms - Note 3  
±5  
±2  
2
A
A
A
A
A
0
I (2)  
0
I Sink  
3
I Source  
Source Current, t < 1ms  
2
3
I
Flyback pulse current at f=50 to 200 Hz, t10µs - Note 4  
±5  
3
ESD Susceptibility  
ESD1  
Human body model (100 pF discharged through 1.5 k)  
EIAJ Standard (200 pF discharged through 0 )  
2
kV  
V
ESD2  
300  
Temperature  
T
Storage Temperature  
Junction Temperature  
-40 to 150  
+150  
°C  
°C  
s
T
j
Note:1. Usually the flyback voltage is slightly more than 2 x VS. This must be taken into consideration when  
setting VS.  
2. Versus pin 4  
3. V3 is higher than VS during the first half of the flyback pulse.  
4. Such repetitive output peak currents are usually observed just before and after the flyback pulse.  
5. This non-repetitive output peak current can be observed, for example, during the Switch-On/Switch-  
Off phases. This peak current is acceptable providing the SOA is respected (Figure 8 and Figure 9).  
6. All pins have a reverse diode towards pin 4, these diodes should never be forward-biased.  
7. Input voltages must not exceed the lower value of either VS + 2 or 40 volts.  
2
Thermal Data  
Symbol  
Parameter  
Junction-to-Case Thermal Resistance  
Temperature for Thermal Shutdown  
Recommended Max. Junction Temperature  
Value  
3
Unit  
°C/W  
°C  
R
thJC  
T
150  
120  
T
T
°C  
J
2/14  
STV9326  
Electrical Characteristics  
3
Electrical Characteristics  
(VS = 29 V, TAMB = 25°C, unless otherwise specified)  
Parameter Test Conditions  
Symbol  
Supply  
Min. Typ. Max. Unit Fig.  
V
Operating Supply Voltage Range (V -V )  
Note 8  
I = 0, I = 0  
10  
8
30  
20  
50  
V
S
2
4
I
I
Pin 2 Quiescent Current  
Pin 6 Quiescent Current  
5
mA  
mA  
1
1
2
3
5
I = 0, I = 0, V =30v  
19  
6
3
5
6
Input  
I
I
Input Bias Current  
V = 1 V, V = 2.2 V  
- 0.6  
- 0.6  
-1.5  
-1.5  
µA  
µA  
1
1
1
7
Input Bias Current  
V = 2.2 V, V = 1 V  
1 7  
7
V
Operating Input Voltage Range  
Offset Voltage  
0
V
- 2  
S
V
IR  
V
2
mV  
µV/°C  
I0  
V /dt Offset Drift versus Temperature  
10  
I0  
Output  
o
0o<Tcase<125 C  
I
Operating Peak Output Current  
Output Saturation Voltage to pin 4  
Output Saturation Voltage to pin 6  
A
V
V
1.5  
0
V
I = 1.5 A  
1
1.7  
2.3  
3
2
5L  
5
V
I = -1.5 A  
1.8  
5H  
5
Stand-by  
V = V = V = 0  
1
7
S
V
V
- 2  
Output Voltage in Stand-by  
V
5STBY  
S
See Note 9  
Miscellaneous  
G
Voltage Gain  
80  
dB  
V
V
V
Diode Forward Voltage Between pins 5-6  
Diode Forward Voltage between pins 3-2  
Saturation Voltage on pin 3  
I = 1.5 A  
1.8  
1.6  
0.4  
2.1  
2.3  
2.2  
1
D5-6  
D3-2  
5
I = 1.5 A  
V
V
V
3
V
I = 20 mA  
3
3SL  
3
V
Saturation Voltage to pin 2 (2nd part of flyback)  
I = -1.5 A  
2.8  
3SH  
3
8. In normal applications, the peak flyback voltage is slightly greater than 2 x (VS - V4). Therefore, (VS  
- V4) = 30 V is not allowed without special circuitry.  
9. Refer to Figure 4, Stand-by condition.  
3/14  
Electrical Characteristics  
STV9326  
Figure 1: Measurement of I1, I2 and I6  
+Vs  
I2  
I6  
6
2
5
1
7
2.2V  
39k  
(a)  
STV9326  
S
(b)  
4
I1  
5.6kΩ  
(a): I2 and I6 measurement  
(b): I1 measurement  
1V  
Figure 2: Measurement of V5H  
+Vs  
6
2
V5H  
7
1
2.2V  
5
STV9326  
- I5  
1V  
4
Figure 3: Measurement of V3L and V5L  
+Vs  
I3 or I5  
(a)  
6
2
7
1
(b)  
3
5
1V  
STV9326  
V3L  
V5L  
2.2V  
4
(a): V5L measurement  
(b): V3L measurement  
4/14  
STV9326  
Application Hints  
4
Application Hints  
The yoke can be coupled either in AC or DC.  
4.1  
DC-coupled Application  
When DC coupled (see Figure 4), the display vertical position can be adjusted with input bias. On  
the other hand, 2 supply sources (VS and -VEE) are required.  
A Stand-by state will be reached by switching OFF the positive supply alone. In this state, where  
both inputs are the same voltage as pin 2 or higher, the output will sink negligible current from the  
deviation coil.  
Figure 4: DC-coupled Application  
+Vs  
Output  
Voltage  
CF (47 to 100µF)  
3
470µF  
Vref  
0.1µF  
2
6
Output  
Current  
Flyback  
Generator  
Ip  
Power  
Amplifier  
Vertical Position  
Adjustment  
7
+
5
1
-
Thermal  
Safety  
Yoke  
Ly  
R3  
1.5  
Rd(*)  
VM  
Vm  
4
-VEE  
0.1µF  
470µF  
R2  
R1  
Ly  
50µs  
Ly  
20µs  
(*) recommended:  
------------- < R d < -------------  
4.1.1 Application Hints  
For calculations, treat the IC as an op-amp, where the feedback loop maintains V1 = V7.  
5/14  
Application Hints  
4.1.1.1 Centering  
STV9326  
Display will be centered (null mean current in yoke) when voltage on pin 7 is (R1 is negligible):  
V
V
R
M
m
2
R
V
×
7
2
R
2
3
4.1.1.2 Peak Current  
(V  
V
)
R
M
m
2
I
---------------------------- × ------------------  
P
2
R xR  
1
3
Example: for Vm = 2 V, VM = 5 V and IP = 1 A  
Choose R1 in the1 range, for instance R1=1 Ω  
R
R
2 × I × R  
P
2
3
1
2
3
From equation of peak current:  
V
V
M
m
Then choose R2 or R3. For instance, if R2 = 10 k, then R3 = 15 kΩ  
Finally, the bias voltage on pin 7 should be:  
V
+ V  
7
2
M
m
1
R
1
2.5  
V
= ------------------------ × ----------------- = --- × -------= 1.4V  
7
2
3
1 + -------  
R
2
4.1.2 Ripple Rejection  
When both ramp signal and bias are provided by the same driver IC, you can gain natural rejection  
of any ripple caused by a voltage drop in the ground (see Figure 5), if you manage to apply the  
same fraction of ripple voltage to both booster inputs. For that purpose, arrange an intermediate  
point in the bias resistor bridge, such that (R8 / R7) = (R3 / R2), and connect the bias filtering  
capacitor between the intermediate point and the local driver ground. Of course, R7 should be  
connected to the booster reference point, which is the ground side of R1.  
Figure 5: Ripple Rejection  
3
2
6
Flyback  
Generator  
Reference  
Voltage  
Power  
Amplifier  
7
+
R
R
8
9
5
R
7
1
-
Thermal  
Safety  
Yoke  
Ly  
Rd  
4
Ramp  
Signal  
R
3
R
2
R
1
Driver  
Ground  
Source of Ripple  
6/14  
STV9326  
Application Hints  
4.2  
AC-Coupled Applications  
In AC-coupled applications (See Figure 6), only one supply (VS) is needed. The vertical position of  
the scanning cannot be adjusted with input bias (for that purpose, usually some current is injected  
or sunk with a resistor in the low side of the yoke).  
Figure 6: AC-coupled Application  
+Vs  
Output  
Voltage  
CF (47 to 100µF)  
3
470µF  
0.1µF  
2
6
Output  
Current  
Flyback  
Generator  
Ip  
Power  
Amplifier  
7
1
+
5
-
Yoke  
Ly  
Thermal  
Safety  
R3  
1.5Ω  
Rd(*)  
VM  
Vm  
4
R5  
R4  
Cs  
CL  
R2  
Ly  
50µs  
Ly  
20µs  
(*) recommended:  
------------- < R d < -------------  
R1  
4.2.1 Application Hints  
Gain is defined as in the previous case:  
V
V
R
M
m
2
I
×
p
2
R × R  
1 3  
Choose R1 then either R2 or R3. For good output centering, V7 must fulfill the following equation:  
+ V  
V
V
S
M
m
-------  
V
V
------------------------  
V
7
7
2
2
7
---------------------= -------------------------------------- + -------  
R + R  
4
R
R
5
3
2
or  
V
V
+ V  
1
R
2
S
M
m
1
-------  
R
1
V
×
+ ------- +  
=
------------------------------ + ------------------------  
---------------------  
R + R  
7
2(R + R ) 2 × R  
4
5
3
3
4
5
7/14  
Application Hints  
STV9326  
CS performs an integration of the parabolic signal on CL, therefore the amount of S correction is set  
by the combination of CL and Cs.  
4.3  
Application with Differential-output Drivers  
Certain driver ICs provide the ramp signal in differential form, as two current sources i+ and iwith  
opposite variations.  
Figure 7: Using a Differential-output Driver  
+Vs  
Output  
Voltage  
C (47 to 100µF)  
F
470µF  
0.1µF  
3
2
6
Output  
Current  
Differential output  
driver IC  
Flyback  
Generator  
I
p
Power  
Amplifier  
i
p
+
7
+
i
cm  
5
R
7
1
-
Thermal  
Safety  
Yoke  
Ly  
1.5  
Rd(*)  
-i  
p
-
i
cm  
4
-V  
EE  
0.1µF  
470µF  
R
2
R
1
Ly  
50µs  
Ly  
20µs  
(*) recommended:  
------------- < Rd < -------------  
Let us set some definitions:  
icm is the common-mode current:  
1
2
i
= --(i + i )  
+ -  
cm  
at peak of signal, i+ = icm + ip and i= icm - ip, therefore the peak differential signal is ip - (-  
ip) = 2 ip, and the peak-peak differential signal, 4ip.  
The application is described in Figure 7 with DC yoke coupling. The calculations still rely on the fact  
that V1 remains equal to V7.  
8/14  
STV9326  
Application Hints  
4.3.1 Centring  
When idle, both driver outputs provide icm and the yoke current should be null (R1 is negligible),  
hence:  
i
R = i  
R  
therefore R = R  
cm  
7
cm  
2
7
2
4.3.2 Peak Current  
Scanning current should be IP when positive and negative driver outputs provide respectively  
icm - ip and icm + ip, therefore  
I
2R  
and since R7 = R2:  
(i  
i) ⋅ R = I R + (i  
+ i) ⋅ R  
p
i
7
cm  
7
p
1
cm  
2
---- = -----------  
R
1
Choose R1 in the 1range, the value of R2 = R7 follows. Remember that i is one-quarter of driver  
peak-peak differential signal! Also check that the voltages on the driver outputs remain inside  
allowed range.  
Example: for icm = 0.4mA, i = 0.2mA (corresponding to 0.8mA of peak-peak differential  
current), Ip = 1A  
Choose R1 = 0.75, it follows R2 = R7 = 1.875k.  
4.3.3 Ripple Rejection  
Make sure to connect R7 directly to the ground side of R1.  
4.3.4 Secondary Breakdown Diagrams  
Figure 8: Output Transistor Safe Operating Area (SOA) for Secondary Breakdown  
The diagram has been arbitrarily limited to max I0 (2 A).  
9/14  
Mounting Instructions  
STV9326  
Figure 9: Secondary Breakdown Temperature Derating Curve (ISB = Secondary Breakdown Current)  
5
Mounting Instructions  
The power dissipated in the circuit is removed by adding an external heatsink. With the  
HEPTAWATTpackage, the heatsink is simply attached with a screw or a compression spring  
(clip).  
A layer of silicon grease inserted between heatsink and package optimizes thermal contact. In DC-  
coupled applications we recommend to use a silicone tape between the device tab and the heatsink  
to electrically isolate the tab.  
Figure 10: Mounting Examples  
10/14  
STV9326  
Pin Configuration  
6
Pin Configuration  
Figure 11: Pins 1 and 7  
2
7
1
Figure 12: Pin 3 & Pins 5 and 6  
6
2
2
5
3
4
11/14  
Package Mechanical Data  
STV9326  
7
Package Mechanical Data  
Figure 13: 7-pin Heptawatt Package  
L
E
L1  
M1  
A
M
D
C
D1  
H2  
L2  
L3  
F
L5  
E1  
E
V4  
L9  
H3  
G
G1 G2  
Dia.  
F
L10  
L4  
H2  
L11  
L7  
L6  
Table 1: Heptawatt Package  
Max.  
mm  
inches  
Typ.  
Dim.  
Min.  
Typ.  
Min.  
Max.  
A
C
4.8  
0.189  
0.054  
0.110  
0.053  
0.022  
0.038  
0.031  
0.105  
0.205  
0.307  
0.409  
0.409  
0.673  
1.37  
D
2.40  
1.20  
0.35  
0.70  
0.60  
2.34  
4.88  
7.42  
2.80  
1.35  
0.55  
0.97  
0.80  
2.74  
5.28  
7.82  
10.40  
10.40  
17.10  
0.094  
0.047  
0.014  
0.028  
0.024  
0.095  
0.193  
0.295  
D1  
E
E1  
F
G
2.54  
5.08  
7.62  
0.100  
0.200  
0.300  
G1  
G2  
H2  
H3  
L
10.05  
16.70  
0.396  
0.657  
16.90  
0.668  
12/14  
STV9326  
Package Mechanical Data  
Table 1: Heptawatt Package (Continued)  
mm  
inches  
Dim.  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
L1  
L2  
14.92  
21.54  
22.52  
0.587  
0.848  
0.891  
21.24  
22.27  
21.84  
22.77  
1.29  
0.386  
0.877  
0.860  
0.896  
0.051  
0.118  
0.622  
0.260  
L3  
L4  
L5  
2.60  
15.10  
6.00  
2.80  
15.50  
6.35  
3.00  
0.102  
0.594  
0.110  
0.610  
0.250  
0.008  
L6  
15.80  
6.60  
L7  
0.0236  
L9  
0.20  
L10  
L11  
M
2.10  
4.30  
2.55  
4.83  
2.70  
4.80  
3.05  
5.33  
0.082  
0.169  
0.100  
0.190  
0.106  
0.190  
0.120  
0.210  
2.80  
5.08  
0.110  
0.200  
M1  
V4  
Dia.  
40 (Typ.)  
3.65  
3.85  
0.144  
0.152  
13/14  
Revision History  
STV9326  
8
Revision History  
Table 2: Summary of Modifications  
Description  
Version  
Date  
1.0  
1.1  
December 2003  
June 2004  
First Issue.  
Datasheet status changed to “datasheet”.  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its  
use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously  
supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without  
express written approval of STMicroelectronics.  
The ST logo is a registered trademark of STMicroelectronics  
All other names are the property of their respective owners  
© 2004 STMicroelectronics - All rights reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy  
- Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
www.st.com  
14/14  

相关型号:

STV937

新型场输出集成电路
ETC

STV9378

VERTICAL DEFLECTION BOOSTER
STMICROELECTR

STV9378F

VERTICAL DEFLECTION BOOSTER
STMICROELECTR

STV9379

VERTICAL DEFLECTION BOOSTER
STMICROELECTR

STV9379A

VERTICAL DEFLECTION BOOSTER
STMICROELECTR

STV9379A_03

VERTICAL DEFLECTION BOOSTER
STMICROELECTR

STV9379F

VERTICAL DEFLECTION BOOSTER
STMICROELECTR

STV9379FA

VERTICAL DEFLECTION BOOSTER
STMICROELECTR

STV9380

CLASS-D VERTICAL DEFLECTION AMPLIFIER FOR TV AND MONITOR APPLICATION
STMICROELECTR

STV9380/S

CLASS-D VERTICAL DEFLECTION AMPLIFIER FOR TV AND MONITOR APPLICATION
ETC

STV9380A

Class-D Vertical Deflection Amplifier for 2.5 Amp TV and Monitor Applications
STMICROELECTR

STV9381

CLASS-D VERTICAL DEFLECTION AMPLIFIER FOR TV AND MONITOR APPLICATION
STMICROELECTR