TSA1001 [STMICROELECTRONICS]

10-BIT, 25MSPS, 35mW A/D CONVERTER; 10位, 25MSPS , 35MW A / D转换器
TSA1001
型号: TSA1001
厂家: ST    ST
描述:

10-BIT, 25MSPS, 35mW A/D CONVERTER
10位, 25MSPS , 35MW A / D转换器

转换器
文件: 总19页 (文件大小:167K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSA1001  
10-BIT, 25MSPS, 35mW A/D CONVERTER  
10-bit A/D converter in deep submicron  
ORDER CODE  
CMOS technology  
Ultra low power consumption: 35mW @  
Temperature  
Range  
Part Number  
Package  
Conditioning  
Marking  
25Msps (10mW @ 5Msps)  
Single supply voltage: 2.5V  
Input range: 2Vpp differential  
25Msps sampling frequency  
ENOB=9.7 @ Nyquist  
TSA1001CF  
TSA1001CFT  
TSA1001IF  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
TQFP48  
TQFP48  
TQFP48  
TQFP48  
Tray  
SA1001C  
SA1001C  
SA1001I  
SA1001I  
Tape & Reel  
Tray  
TSA1001IFT  
EVAL1001/AA  
Tape & Reel  
Evaluation board  
SFDR typically up to 72dB @ Nyquist  
Built-in reference voltage with external bias  
capability  
PIN CONNECTIONS (top view)  
STMicroelectronics 8, 10, 12 and 14-bits ADC  
pinout compatibility  
DESCRIPTION  
index  
37  
corner  
48 47 46 45 44 43 42 41 40 39 38  
The TSA1001 is a 10-bit, 25Msps sampling fre-  
quency Analog to Digital converter using a CMOS  
technology combining high performances and  
very low power consumption.  
The TSA1001 is based on a pipeline structure and  
digital error correction to provide excellent static  
linearity and go beyond 9.8 effective bits at  
Fs=25Msps, and Fin=10MHz.  
NC  
NC  
NC  
36  
35  
1
IPOL  
VREFP  
2
3
34  
33  
32  
VREFM  
AGND  
4
5
D0 (LSB)  
D1  
VIN  
31  
30  
29  
28  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
6
7
AGND  
VINB  
AGND  
INCM  
TSA1001  
8
9
Especially designed for portable applications, the  
TSA1001 only dissipates 35mW at 25Msps. When  
running at lower sampling frequencies, even lower  
consumption can be achieved.  
10  
11  
12  
27  
26  
AGND  
AVCC  
AVCC  
25  
13 14 15 16 17 18 19 20 21 22 23 24  
A voltage reference is integrated in the circuit to  
simplify the design and minimize external compo-  
nents. It is nevertheless possible to use the circuit  
with an external reference.  
The output data can be coded into two different  
formats. A Data Ready signal is raised as the data  
is valid on the output and can be used for synchro-  
nization purposes.  
PACKAGE  
The TSA1001 is available in commercial (0 to  
+70°C) and extended (-40 to +85°C) temperature  
range, in a small 48 pins TQFP package.  
7 × 7 mm TQFP48  
APPLICATIONS  
Portable instrumentation  
Video processing  
Medical imaging and ultrasound  
High resolution fax and scanners  
Digital communications  
October 2000  
1/19  
TSA1001  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Values  
0 to 3.3  
0 to 3.3  
0 to 3.3  
Unit  
V
1)  
AVCC  
DVCC  
VCCB  
Analog Supply voltage  
1)  
V
Digital Supply voltage  
1)  
V
Digital buffer Supply voltage  
Digital output current  
Storage temperature  
Electrical Static Discharge:  
- HBM  
IDout  
Tstg  
-100 to 100  
+150  
mA  
°C  
ESD  
KV  
2
- CDM-JEDEC Standard  
1.5  
1). All voltages values, except differential voltage, are with respect to network ground terminal. The magnitude of input and output voltages  
must never exceed -0.3V or VCC+0V  
OPERATING CONDITIONS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
AVCC Analog Supply voltage  
2.25  
2.25  
2.25  
1.16  
0
2.5  
2.5  
2.5  
-
2.7  
2.7  
V
V
V
V
V
DVCC Digital Supply voltage  
VCCB Digital buffer Supply voltage  
VREFP Forced top voltage reference  
VREFM Forced bottom reference voltage  
2.7  
AVCC  
0.5  
0
BLOCK DIAGRAM  
VREFP  
+2.5V  
GNDA  
VIN  
Reference  
circuit  
stage  
INCM  
stage  
2
stage  
n
IPOL  
1
VINB  
VREFM  
DFSB  
OEB  
Sequencer-phase shifting  
Digital data correction  
CLK  
Timing  
DR  
DO  
TO  
Buffers  
D9  
OR  
GND  
2/19  
TSA1001  
PIN CONNECTIONS (top view)  
index  
corner  
37  
48 47 46 45 44 43 42 41 40 39 38  
NC  
NC  
NC  
36  
35  
IPOL  
1
VREFP  
2
3
34  
33  
32  
VREFM  
AGND  
4
5
D0 (LSB)  
D1  
VIN  
31  
30  
29  
6
7
D2  
D3  
D4  
D5  
D6  
D7  
D8  
AGND  
VINB  
AGND  
INCM  
TSA1001  
8
28  
27  
26  
9
10  
11  
12  
AGND  
AVCC  
AVCC  
25  
13 14 15 16 17 18 19 20 21 22 23 24  
PIN DESCRIPTION  
Pin No  
Name  
Description  
Observation  
Pin No  
Name  
Description  
Digital output  
Observation  
1
2
IPOL  
Analog bias current input  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
VREFP Top voltage reference  
1V  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
3
VREFM Bottom voltage reference  
0V  
4
AGND  
VIN  
Analog ground  
0V  
5
Analog input  
1Vpp  
0V  
6
AGND  
VINB  
Analog ground  
7
Inverted analog input  
Analog ground  
1Vpp  
0V  
8
AGND  
INCM  
AGND  
AVCC  
AVCC  
DVCC  
DVCC  
DGND  
CLK  
9
Input common mode  
Analog ground  
0.5V  
0V  
D0(LSB) Least Significant Bit output CMOS output (2.5V)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
NC  
NC  
Non connected  
Non connected  
Non connected  
Non connected  
Data Ready output  
Analog power supply  
Analog power supply  
Digital power supply  
Digital power supply  
Digital ground  
2.5V  
2.5V  
2.5V  
2.5V  
0V  
NC  
NC  
DR  
CMOS output (2.5V)  
VCCB  
GNDB  
VCCB  
NC  
Digital Buffer power supply 2.5V  
Digital Buffer ground 0V  
Clock input  
2.5V compatible CMOS input  
0V  
DGND  
NC  
Digital ground  
Digital Buffer power supply 2.5V  
Non connected  
Non connected  
DGND  
GNDB  
GNDB  
VCCB  
OR  
Digital ground  
0V  
NC  
Non connected  
Digital buffer ground  
Digital buffer ground  
Digital buffer power supply  
Out Of Range output  
0V  
OEB  
DFSB  
AVCC  
AVCC  
AGND  
Output Enable input  
Data Format Select input  
Analog power supply  
Analog power supply  
Analog ground  
2.5V compatible CMOS input  
0V  
2.5V compatible CMOS input  
2.5V  
2.5V  
2.5V  
0V  
CMOS output (2.5V)  
CMOS output (2.5V)  
D9(MSB) Most Significant Bit output  
3/19  
TSA1001  
ELECTRICAL CHARACTERISTICS  
AVCC = DVCC = VCCB = 2.5V, Fs= 25Msps, Fin=1MHz, Vin@ -1.0dBFS, VREFM = 0V  
Tamb = 25°C (unless otherwise specified)  
TIMING CHARACTERISTICS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
FS  
DC  
Sampling Frequency  
Clock Duty Cycle  
0.5  
45  
18  
18  
25  
55  
MHz  
%
50  
20  
20  
TC1  
TC2  
Clock pulse width (high)  
Clock pulse width (low)  
ns  
ns  
Data Output Delay (Fall of Clock 10pF load capacitance  
to Data Valid)  
Tod  
Tpd  
Ton  
5
6.5  
1
ns  
cycles  
ns  
Data Pipeline delay  
Falling edge of OEB to digital  
output valid data  
Rising edge of OEB to digital  
output tri-state  
Toff  
1
ns  
TIMING DIAGRAM  
N+4  
N+5  
N+3  
N+6  
N+7  
N+2  
N-1  
N+1  
N+8  
N
CLK  
6.5 clk cycles  
OEB  
Ton  
Toff  
N-3  
Tod  
DATA  
OUT  
N-8  
N-4  
N
N-6  
N-5  
N-2  
N-7  
N+1  
DR  
HZ state  
4/19  
TSA1001  
CONDITIONS:  
AVCC = DVCC = VCCB = 2.5V, Fs= 25Msps, Fin= 1MHz, Vin@ -1.0dBFS, VREFM= 0V  
Tamb = 25°C (unless otherwise specified)  
ANALOG INPUTS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
VIN-VINB Full scale reference voltage  
2.0  
7.  
Vpp  
pF  
Cin  
BW  
Input capacitance  
Analog Input Bandwitdh  
Vin@Full Scale, FS=25Msps  
100  
MHz  
1)  
ERB  
60  
MHz  
Effective Resolution Bandwidth  
1). See parameters definition for more information  
REFERENCE VOLTAGE  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
0.91  
0.90  
1.20  
1.19  
25  
1.03  
1.15  
1.16  
1.35  
1.36  
70  
V
V
V
V
VREFP Top internal reference voltage  
1)  
Tmin= -40°C to Tmax= 85°C  
1.27  
Vpol  
Analog bias voltage  
1)  
Tmin= -40°C to Tmax= 85°C  
Ipol  
Ipol  
Analog bias current  
Analog bias current  
Normal operating mode  
Shutdown mode  
50  
0
µA  
µA  
V
0.48  
0.48  
0.57  
0.65  
0.66  
VINCM Input common mode voltage  
1)  
V
Tmin= -40°C to Tmax= 85°C  
1). Not fully tested over the temperature range. Guaranted by sampling.  
5/19  
TSA1001  
CONDITIONS:  
AVCC = DVCC = VCCB = 2.5V, Fs= 25Msps, Fin= 1MHz, Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V  
Tamb = 25°C (unless otherwise specified)  
POWER CONSUMPTION  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
1)  
11.8  
14  
14  
2
mA  
mA  
mA  
mA  
ICCA  
Analog Supply current  
2)  
Tmin= -40°C to Tmax= 85°C  
1)  
1
ICCD  
Digital Supply Current  
2)  
2
Tmin= -40°C to Tmax= 85°C  
1)  
1.4  
5
5
mA  
mA  
ICCB  
ICCBZ  
Pd  
Digital Buffer Supply Current  
2)  
Tmin= -40°C to Tmax= 85°C  
1)  
Digital Buffer Supply Current in  
High Impedance Mode  
40  
35  
100  
µA  
1)  
47  
47  
mW  
mW  
Power consumption in normal  
operation mode  
2)  
Tmin= -40°C to Tmax= 85°C  
1)  
Power consumption in High  
Impedance mode  
PdZ  
Rthja  
Rthjc  
32  
80  
18  
37  
mW  
°C/W  
°C/W  
Junction-ambient thermal resis-  
tor (TQFP48)  
Junction-case thermal resistor  
(TQFP48)  
1). Rpol= 25KΩ. Equivalent load: Rload= 470and Cload= 6pF  
2). Not fully tested over the temperature range. Guaranted by sampling.  
DIGITAL INPUTS AND OUTPUTS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Digital inputs  
VIL  
Logic "0" voltage  
Logic "1" voltage  
0.8  
V
V
VIH  
2.0  
Digital Outputs  
VOL  
VOH  
IOZ  
C
Logic "0" voltage  
Logic "1" voltage  
Iol=10µA  
Ioh=10µA  
0.4  
V
V
2.4  
High Impedance leakage current OEB set to VIH  
Output Load Capacitance  
-1.5  
1.5  
15  
µA  
pF  
L
ACCURACY  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
OE  
DNL  
INL  
Offset Error  
-5  
±0.1  
±0.3  
±0.3  
+5  
%
Differential Non Linearity  
Integral Non Linearity  
-0.7  
-0.8  
+0.7  
+0.8  
LSB  
LSB  
Monotonicity and no missing  
codes  
-
Guaranted  
6/19  
TSA1001  
CONDITIONS:  
AVCC = DVCC = 2.5V, Fs= 25Msps Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V  
Tamb = 25°C (unless otherwise specified)  
DYNAMIC CHARACTERISTICS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
1)  
66  
66  
80.5  
76  
Fin= 5MHz  
dBc  
Fin= 10MHz  
SFDR Spurious Free Dynamic Range  
2)  
66  
66  
Fin= 5MHz  
dBc  
dB  
Fin= 10MHz  
1)  
58  
58  
59.3  
59.3  
Fin= 5MHz  
Fin= 10MHz  
SNR  
THD  
Signal to Noise Ratio  
2)  
1)  
2)  
1)  
2)  
1)  
2)  
58  
58  
Fin= 5MHz  
dB  
Fin= 10MHz  
63  
63  
79.5  
75  
Fin= 5MHz  
dB  
Fin= 10MHz  
Total Harmonic Distortion  
62  
62  
Fin= 5MHz  
dB  
Fin= 10MHz  
58  
58  
59.0  
59.0  
Fin= 5MHz  
dB  
Fin= 10MHz  
Signal to Noise and Distortion-  
Ratio  
SINAD  
58  
58  
Fin= 5MHz  
dB  
Fin= 10MHz  
9.5  
9.5  
9.70  
9.70  
Fin= 5MHz  
bits  
bits  
Fin= 10MHz  
ENOB Effective Number of Bits  
9.5  
9.5  
Fin= 5MHz  
Fin= 10MHz  
1). Rpol= 25KΩ. Equivalent load: Rload= 470and Cload= 6pF  
2). Tmin= -40°C to Tmax= 85°C. Not fully tested over the temperature range. Guaranted by sampling.  
7/19  
TSA1001  
DEFINITIONS OF SPECIFIED PARAMETERS  
STATIC PARAMETERS  
Signal to Noise Ratio (SNR)  
The ratio of the rms value of the fundamental  
component to the rms sum of all other spectral  
components in the Nyquist band (f /2) excluding  
DC, fundamental and the first five harmonics.  
SNR is reported in dB.  
s
Static measurements are performed through  
method of histograms on a 2MHz input signal,  
sampled at 25Msps, which is high enough to fully  
characterize the test frequency response. The in-  
put level is +1dBFS to saturate the signal.  
Signal to Noise and Distorsion Ratio (SINAD)  
Similar ratio as for SNR but including the harmonic  
distortion components in the noise figure (not DC  
signal). It is expressed in dB.  
Differential Non Linearity (DNL)  
From the SINAD, the Effective Number of Bits  
(ENOB) can easily be deduced using the formula:  
SINAD= 6.02 × ENOB + 1.76 dB.  
The average deviation of any output code width  
from the ideal code width of 1LSB.  
When the applied signal is not Full Scale (FS), but  
Integral Non linearity (INL)  
has an A amplitude, the SINAD expression  
0
becomes:  
An ideal converter presents a transfer function as  
being the straight line from the starting code to the  
ending code. The INL is the deviation for each  
transition from this ideal curve.  
SINAD= 6.02 × ENOB + 1.76 dB + 20 log (2A /FS)  
0
The ENOB is expressed in bits.  
Analog Input Bandwidth  
The maximum analog input frequency at which the  
spectral response of a full power signal is reduced  
by 3dB. Higher values can be achieved with  
smaller input levels.  
DYNAMIC PARAMETERS  
Dynamic measurements are performed by  
spectral analysis, applied to an input sinewave of  
various frequencies and sampled at 25Msps.  
Effective Resolution Bandwidth (ERB)  
The band of input signal frequencies that the ADC  
is intended to convert without loosing linearity i.e.  
the maximum analog input frequency at which the  
SINAD is decreased by 3dB or the ENOB by 1/2  
bit.  
Spurious Free Dynamic Range (SFDR)  
The ratio between the amplitude of fundamental  
tone (signal power) and the power of the worst  
spurious signal (not always an harmonic) over the  
full Nyquist band. It is expressed in dBc.  
Pipeline delay  
Delay between time when the analog input is  
initially sampled and time when the corresponding  
digital data output is valid on the output bus. Also  
called data latency. It is expressed as a number of  
clock cycles.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the first five harmonic  
distortion components to the rms value of the  
fundamental line. It is expressed in dB.  
8/19  
TSA1001  
EQUIVALENT CIRCUITS  
Figure 1 : Analog Input Circuit  
Figure 3 : Input buffers  
VCC buf=2.5V  
AVCC=2.5V  
VIN  
355.5 Ω  
278.5 208.2 Ω  
DFS  
(or VINB)  
7 pF  
7 pF  
PAD  
CAPACITANCE  
PAD  
CAPACITANCE  
AGND=0V  
GND buff=0V  
common mode  
Figure 4 : Tri-state output buffers  
Figure 2 : Input clock circuit  
VCC buf=2.5V  
DVCC=2.5V  
OE  
CLK  
GND buff=0V  
DATA  
OUT  
2 mA  
VCC buf =2.5V  
OUTPUT  
BUFFER  
7 pF  
PAD  
CAPACITANCE  
PAD CAPACITANCE  
7pF  
GNDbuff=0V  
DGND=0V  
9/19  
TSA1001  
Static parameter: Integral Non Linearity  
Fs=25MSPS; Fin=1MHz; Icca=11mA; N=131072pts  
0 .4  
0 .3  
0 .2  
0 .1  
0
-0 .1  
-0 .2  
-0 .3  
-0 .4  
-0 .5  
0
2 0 0  
4 0 0  
6 0 0  
8 0 0  
1 0 0 0  
O u tp u t C o d e  
Static parameter: Differential Non Linearity  
Fs=25MSPS; Fin=1MHz; Icca=11mA; N=131072 pts  
0 .3  
0 .2  
0 .1  
0
-0 .1  
-0 .2  
-0 .3  
0
2 0 0  
4 0 0  
6 0 0  
8 0 0  
1 0 0 0  
O u tp u t C o d e  
Linearity vs. AVcc  
Fs=25MSPS; Icca=11mA; Fin=1MHz  
Distortion vs. AVcc  
Fs=25MSPS; Icca=11mA; Fin=1MHz  
-67  
-69  
-71  
61  
10  
9.95  
9.9  
60.5  
SNR  
THD  
60  
-73  
-75  
-77  
-79  
-81  
-83  
-85  
9.85  
9.8  
SINAD  
59.5  
9.75  
9.7  
SFDR  
2.45  
59  
ENOB  
58.5  
9.65  
9.6  
58  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.55  
2.65  
AVCC (V)  
AVCC (V)  
10/19  
TSA1001  
Linearity vs. DVcc  
Fs=25MSPS; Icca=11mA; Fin=1MHz  
Distortion vs. DVcc  
Fs=25MSPS; Icca=11mA; Fin=1MHz  
-70  
-71  
-72  
-73  
61  
10  
60.5  
SNR  
9.95  
9.9  
60  
THD  
-74  
-75  
-76  
-77  
-78  
-79  
-80  
SINAD  
59.5  
9.85  
9.8  
59  
58.5  
58  
ENOB  
SFDR  
9.75  
9.7  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
DVCC (V)  
DVCC (V)  
Linearity vs. VccB  
Fs=25MSPS; Icca=11mA; Fin=1MHz  
Distortion vs. VccB  
Fs=25MSPS; Icca=11mA; Fin=1MHz  
61  
10  
-71  
9.95  
9.9  
60.5  
SNR  
-73  
THD  
60  
-75  
-77  
9.85  
9.8  
SINAD  
59.5  
SFDR  
-79  
9.75  
9.7  
59  
58.5  
58  
ENOB  
-81  
-83  
-85  
9.65  
9.6  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
VCCB (V)  
VCCB (V)  
Linearity vs. Fs  
Icca=11mA; Fin=1MHz  
Distortion vs. Fs  
Icca=11mA; Fin=1MHz  
10  
9.5  
9
-50  
-55  
-60  
-65  
-70  
ENOB  
64  
62  
60  
58  
56  
54  
52  
50  
SNR  
8.5  
8
THD  
SINAD  
-75  
7.5  
7
-80  
SFDR  
-85  
5
15  
25  
35  
45  
5
15  
25  
35  
45  
Fs (MHz)  
Fs (MHz)  
11/19  
TSA1001  
Linearity vs. Fs  
Icca=11mA; Fin=15MHz  
Distortion vs. Fs  
Icca=11mA; Fin=15MHz  
10  
9.5  
9
-50  
-55  
-60  
-65  
64  
62  
60  
58  
56  
54  
52  
50  
ENOB  
SNR  
THD  
-70  
-75  
-80  
-85  
-90  
8.5  
8
SINAD  
SFDR  
7.5  
7
5
15  
25  
35  
45  
5
15  
25  
35  
45  
Fs (MHz)  
Fs (MHz)  
Linearity vs. Fin  
Fs=25MSPS; Icca=11mA  
Distortion vs. Fin  
Fs=25MSPS; Icca=11mA  
70  
68  
66  
64  
62  
60  
10  
-40  
-45  
-50  
-55  
-60  
-65  
-70  
-75  
-80  
-85  
-90  
9.8  
9.6  
9.4  
9.2  
9
ENOB  
THD  
SNR  
8.8  
8.6  
8.4  
8.2  
8
SFDR  
58  
SINAD  
56  
54  
0
20  
40  
60  
0
10  
20  
30  
40  
50  
60  
70  
Fin (MHz)  
Fin (MHz)  
Linearity vs.Temperature  
Fs=25MSPS; Icca=11mA; Fin=5MHz  
Distortion vs. Temperature  
Fs=25MSPS; Icca=11mA; Fin=5MHz;  
80  
78  
76  
60  
59.8  
59.6  
10  
9.95  
9.9  
59.4  
SNR  
9.85  
9.8  
59.2  
59  
THD  
74  
58.8  
58.6  
58.4  
58.2  
58  
SINAD  
9.75  
9.7  
72  
SFDR  
70  
68  
9.65  
9.6  
ENOB  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature (°C)  
Temperature (°C)  
12/19  
TSA1001 APPLICATION NOTE  
DETAILED INFORMATION  
stage. The corrected data are outputed through  
the digital buffers.  
Signal input is sampled on the rising edge of the  
clock while digital outputs are delivered on the fall-  
ing edge of the Data Ready signal.  
The advantages of such a converter reside in the  
combination of pipeline architecture and the most  
advanced technologies. The highest dynamic per-  
formances are achieved while consumption re-  
mains at the lowest level.  
The TSA1001 is a High Speed analog to digital  
converter based on a pipeline architecture and the  
latest deep submicron CMOS process to achieve  
the best performances in terms of linearity and  
power consumption.  
The pipeline structure consists of 9 internal con-  
version stages in which the analog signal is fed  
and sequencially converted into digital data.  
Some functionalities have been added in order to  
simplify as much as possible the application  
board. These operational modes are described in  
the following table.  
The TSA1001 is pin to pin compatible with the  
8bits/40Msps TSA0801, the 10bits/50Msps  
TSA1002 and the 12bits/50Msps TSA1201. This  
ensures a conformity within the product family and  
above all, an easy upgrade of the application.  
Each 8 first stages consists of an Analog to Digital  
converter, a Digital to Analog converter, a Sample  
and Hold and a gain of 2 amplifier. A 1.5bit conver-  
sion resolution is achieved in each stage. The lat-  
est stage simply is a comparator. Each resulting  
LSB-MSB couple is then time shifted to recover  
from the conversion delay. Digital data correction  
completes the processing by recovering from the  
redundancy of the (LSB-MSB) couple for each  
OPERATIONAL MODES DESCRIPTION  
Inputs  
Outputs  
Analog input differential level  
DFSB OEB OR  
DR  
Most Significant Bit (MSB)  
(VIN-VINB)  
-RANGE  
>
>
RANGE  
H
H
H
L
L
L
L
L
L
L
H
H
H
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
HZ  
D9  
(VIN-VINB)  
D9  
RANGE> (VIN-VINB) >-RANGE  
L
D9  
(VIN-VINB)  
-RANGE  
>
>
RANGE  
H
Complemented D9  
Complemented D9  
Complemented D9  
HZ  
(VIN-VINB)  
L
H
RANGE> (VIN-VINB) >-RANGE  
X
L
L
X
HZ  
Data Format Select (DFSB)  
lower consumption while the converter goes on  
sampling.  
When set to low level (VIL), the digital input DFSB  
provides a two’s complement digital output MSB.  
This can be of interest when performing some fur-  
ther signal processing.  
When OEB is set to low level again, , the data is  
then valid on the output with a very short Ton de-  
lay.  
The timing diagram summarizes this operating cy-  
cle.  
When set to high level (VIH), DFSB provides a  
standard binary output coding.  
Out of Range (OR)  
This function is implemented on the output stage  
in order to set up an "Out of Range" flag whenever  
the digital data are over the full scale range.  
Typically, there is a detection of all the data being  
at ’0’ or all the data being at ’1’. This ends up with  
an output signal OR which is in low level state  
Output Enable (OEB)  
When set to low level (VIL), all digital outputs re-  
main active and are in low impedance state.  
When set to high level (VIH), all digital outputs  
buffers are in high impedance state. This results in  
13/19  
TSA1001  
(VOL) when the data stay within the range, or in  
high level state (VOH) when the data is out of the  
range.  
In this case, it is recommended to use an  
AC-coupled analog input and connect the other  
analog input to the common mode voltage of the  
circuit (INCM) so as to properly bias the ADC. The  
INCM may remain at the same internal level  
(0.56V) thus driving only a 1Vpp input amplitude,  
or it must be increased to 0.9V to drive a 2Vpp  
input amplitude. You will get higher performances  
using a 2Vpp signal.  
Data Ready (DR)  
The Data Ready output is an image of the clock  
being synchronized on the output data (D0 to D9).  
This is a very helpful signal that simplifies the syn-  
chronization of the measurement equipment or  
the controlling DSP.  
Figure 6 : Single-ended input configuration  
As digital output, DR goes in high impedance state  
when OEB is asserted to High level as described  
in the timing diagram.  
Signal source  
100nF  
DRIVING THE ANALOG INPUT  
VIN  
TSA1001  
50Ω  
Differential inputs  
VINB  
INCM  
The TSA1001 has been designed to obtain opti-  
mum performances when being differentially driv-  
en. An RF transformer is a good way to achieve  
such performances.  
330pF  
10nF  
470nF  
0.9V  
Figure 5 describes the schematics. The input sig-  
nal is fed to the primary of the transformer, while  
the secondary drives both ADC inputs. The com-  
mon mode voltage of the ADC (INCM) is connect-  
ed to the center-tap of the secondary of the trans-  
former in order to bias the input signal around this  
common voltage, internally set to 0.56V. The  
INCM is decoupled to maintain a low noise level  
on this node. Our evaluation board is mounted  
with a 1:1 ADT1-1 transformer from Minicircuits.  
You might also use a higher impedance ratio (1:2  
or 1:4) to reduce the driving requirement on the  
analog signal source.  
Dynamic characteristics, while not being as re-  
markable as for differential configuration, are still  
of very good quality. Measurements done at  
25Msps, 1MHz input frequency, -1dBFS input lev-  
el sum up these performances. An SFDR of  
-69.5dBc, an SNR of 59.5dB and an ENOB Full  
Scale of 9.7bits are achieved.  
REFERENCE CONNECTION  
Each analog input can drive a 1Vpp amplitude in-  
put signal, so the resultant differential amplitude is  
2Vpp.  
Internal reference  
In the standard configuration, the ADC is biased  
with the internal reference voltage. VREFM pin is  
connected to Analog Ground while VREFP is  
internally set to a voltage of 1.03V. It is  
recommended to decouple the VREFP in order to  
minimize low and high frequency noise. Refer to  
Figure 7 for the schematics.  
Figure 5 : Differential input configuration  
ADT1-1  
Analog source  
1:1  
VIN  
Figure 7 : Internal reference setting  
TSA1001  
50Ω  
100pF  
VINB  
INCM  
1.03V  
470nF  
10nF  
330pF  
330pF  
10nF  
VREFP  
470nF  
VIN  
TSA1001  
VINB  
VREFM  
Single-ended input configuration  
Some applications may require a single-ended in-  
put which is easily achieved with the configuration  
reported on Figure 6.  
14/19  
TSA1001  
External reference  
purpose, a resistor is placed between IPOL and  
the analog Ground pins.  
The TSA1001 will combine highest performances  
and lowest consumption at 25Msps when Rpol is  
equal to 25k.  
At lower sampling frequency range (< 10Msps),  
this value of resistor may be adjusted in order to  
decrease the analog current without any  
degradation of dynamic performances.  
As an example, 10mW total power consumption is  
achieved at 5 Msps with Rpol equal to 390k.  
The table below sums up the relevant data.  
It is possible to use an external reference voltage  
instead of the internal one for specific applications  
requiring even better linearity or enhanced  
temperature behaviour. In this case, the amplitude  
of the external voltage must be at least equal to  
the  
internal  
one  
(1.03V).  
Using  
the  
STMicroelectronics Vref TS821 leads to optimum  
performances when configured as shown on  
Figure 8.  
Figure 8 : External reference setting  
Total power consumption optimization  
depending on Rpol value  
1kΩ  
Fs (Msps)  
5
15  
40  
25  
25  
25  
35  
470nF  
10nF  
330pF  
390  
10  
VCCA VREFP  
VIN  
Rpol (kΩ)  
Optimized  
power (mW)  
TS821  
TSA1001  
external  
VINB  
VREFM  
reference  
Layout precautions  
To use the ADC circuits in the best manner at high  
frequencies, some precautions have to be taken  
for power supplies:  
- First of all, the implementation of 4 separate  
proper supplies and ground planes (analog,  
digital, internal and external buffer ones) on the  
PCB is mandatory for high speed circuit  
applications to provide low inductance and low  
resistance common return.  
The separation of the analog signal from the  
digital part is essential to prevent noise from  
coupling onto the input signal.  
- Power supply bypass capacitors must be placed  
as close as possible to the IC pins in order to  
improve high frequency bypassing and reduce  
harmonic distortion.  
- Proper termination of all inputs and outputs must  
be incorporated with output termination resistors;  
then the amplifier load will be only resistive and  
the stability of the amplifier will be improved. All  
leads must be wide and as short as possible  
especially for the analog input in order to decrease  
parasitic capacitance and inductance.  
At 15Msps sampling frequency, 1MHz input fre-  
quency and -1dBFS amplitude signal, perfor-  
mances can be improved of up to 2dBc on SFDR  
and 0.3dB on SINAD. At 25Msps sampling fre-  
quency, 1MHz input frequency and -1dBFS ampli-  
tude signal, performances can be improved of up  
to 1dBc on SFDR and 0.5dB on SINAD.  
This can be very helpful for example for multichan-  
nel application to keep a good matching among  
the sampling frequency range.  
Clock input  
The quality of your converter is very dependant on  
your clock input accuracy, in terms of aperture jit-  
ter; the use of low jitter crystal controlled oscillator  
is recommended.  
The duty cycle must be between 45% and 55%.  
The clock power supplies must be separated from  
the ADC output ones to avoid digital noise modu-  
lation at the output.  
It is recommended to always keep the circuit  
clocked, even at the lowest specified sampling  
frequency of 0.5Msps, before applying the supply  
voltages.  
- To keep the capacitive loading as low as  
possible at digital outputs, short lead lengths of  
routing are essential to minimize currents when  
the output changes. To minimize this output  
capacitance, buffers or latches close to the output  
pins will relax this constraint.  
Power consumption optimization  
The internal architecture of the TSA1001 enables  
to optimize the power consumption according to  
the sampling frequency of the application. For this  
- Choose component sizes as small as possible  
(SMD).  
15/19  
TSA1001  
EVAL1002 evaluation board  
The dataready signal is the acquisition clock of the  
logic analyzer.  
The ADC digital outputs are latched by the octal  
buffers 74LCX573.  
All characterization measurements have been  
made with: SFSR=+0.2dB for static parameters.-  
SFSR=-0.5dB for dynamic parameters.  
The characterization of the board has been made  
with a fully ADC devoted test bench as shown on  
Figure 10. The analog signal must be filtered to be  
very pure.  
Figure 9 : Analog to Digital Converter characterization bench  
Power  
HP8644B  
data  
ADC  
Vin  
Sine wave  
evaluation  
Generator  
Logic  
Analyzer  
board  
dataready  
ck  
TLA704  
Pulse  
Generator  
HP8133A  
HP8644B  
Sine Wave  
Generator  
16/19  
TSA1001  
Figure 10 : TSA1001 Evaluation board schematic  
2
1
+
2
1
1
2
D 0  
D R  
3
D 1  
O R  
3 7  
3 8  
3 9  
2 4  
2 3  
2 2  
2 1  
2 0  
1 9  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
+
+
2
1
F F  
C C V 5 B . U 2  
U F G N D B  
C C V 5 B . U 2  
F F  
C C V 5 B . U 2  
U F G N D B  
U F G N D B  
D G N D  
F
F
F
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
F F  
N C  
N C  
O E  
F S D  
2
1
N C  
D G N D  
C L  
D G N D  
D V C  
D V C  
4
3
1
B
B
A V C  
A V C  
A G N D  
K
2
6
C
C
2
1
C
C
1
2
+
1
2
17/19  
TSA1001  
Figure 11 : Printed circuit board - Top side silkscreen  
Printed circuit board - List of components  
P a rt  
D e s ig n F o o tp rin t  
a t o r  
P a rt  
T yp e  
D e s ig n F o o t prin t  
a t o r  
P a rt  
D e s ign F o o tp rint  
a t o r  
P a rt  
D e s ign F o o t prin t  
a t o r  
T yp e  
10 u F  
10 u F  
10 u F  
10 u F  
T ype  
T yp e  
C 2 4  
C 2 3  
C 4 1  
C 2 9  
12 10  
12 10  
12 10  
12 10  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
ID C 3 2  
3 3 0 p F C 3 3  
3 3 0 p F C 2 0  
3 3 0 p F C 8  
3 3 0 p F C 2  
3 3 0 p F C 5  
3 3 0 p F C 11  
3 3 0 p F C 3 0  
3 3 0 p F C 17  
3 3 0 p F C 14  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
C A P  
C A P  
C A P  
C A P  
8 0 5  
8 0 5  
8 0 5  
8 0 5  
8 0 5  
8 0 5  
8 0 5  
47 0n F  
47 0n F  
47 0n F  
47 0n F  
C 7  
8 05  
A VC C  
C LJ / S M B  
A GN D  
D F S B  
J 12  
J 4  
F IC H E 2M M  
S M B / H  
C 16  
C 19  
C 3  
8 05  
8 05  
J 19  
J 9  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
A D T  
8 05  
10 0 p F C 1  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
R 12  
R 14  
R 11  
R a j1  
R 10  
R 19  
R 13  
R 15  
R 16  
R 17  
R 18  
R 3  
6 03  
D GN D  
D VC C  
G ndB 1  
G ndB 2  
J 2 0  
J 15  
J 2 2  
J 2 1  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
C 12  
C 3 9  
C 15  
C 4 0  
C 2 7  
C 4  
6 03  
6 03  
VR 5  
6 03  
M e s c o m m o d e J 8  
47u F  
47u F  
47u F  
47u F  
C 36  
C 34  
C 35  
C 42  
6 03  
O E B  
J 10  
6 03  
R e gl c o m m o de J 7  
C 2 1  
C 3 1  
C 6  
6 03  
T 2-A T 1-1WT  
T 2-A T 1-1WT  
Vc c B 1  
T 2  
T 1  
J 18  
J 17  
J 1  
6 03  
A D T  
4 7 0 n F C 2 2  
4 7 0 n F C 3 2  
4 7 0 n F C 3 7  
4 7 0 n F C 3 8  
4 7 0 n F C 13  
4 7 0 n F C 2 8  
4 7 0 n F C 10  
6 03  
F IC H E 2M M  
F IC H E 2M M  
S M B / H  
C 9  
6 03  
VD D B UF F 3V  
Vin  
C 18  
R 2  
50  
50  
6 03  
1K  
R 1  
6 03  
Vre fM  
J 5  
F IC H E 2M M  
F IC H E 2M M  
T QF P 48  
3 2 P IN J 6  
74 LC X5 73 U3  
74 LC X5 73 U2  
T S S OP 2 0  
T S S OP 2 0  
S IP 2  
Vre fP  
J 2  
3 30p F C 25  
3 30p F C 26  
6 0 3  
6 0 3  
T S A 100 1  
U1  
C O N 2  
J 16  
18/19  
TSA1001  
PACKAGE MECHANICAL DATA  
48 PINS - PLASTIC PACKAGE  
A
A2  
A1  
e
48  
37  
0,10 mm  
.004 inch  
SEATING PLANE  
1
36  
25  
12  
c
13  
24  
D3  
D1  
D
0,25 mm  
.010 inch  
GAGE PLANE  
K
Millimeters  
Typ.  
Inches  
Dim.  
Min.  
Max.  
Min.  
Typ.  
Max.  
A
1.60  
0.15  
1.45  
0.27  
0.20  
0.063  
0.006  
0.057  
0.011  
0.008  
A1  
A2  
B
0.05  
1.35  
0.17  
0.09  
0.002  
0.053  
0.007  
0.004  
1.40  
0.22  
0.055  
0.009  
C
D
9.00  
7.00  
5.50  
0.50  
9.00  
7.00  
5.50  
0.60  
1.00  
0.354  
0.276  
0.216  
0.0197  
0.354  
0.276  
0.216  
0.024  
0.039  
D1  
D3  
e
E
E1  
E3  
L
0.45  
0.75  
0.018  
0.030  
L1  
K
0° (min.), 7° (max.)  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
© The ST logo is a registered trademark of STMicroelectronics  
© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco  
Singapore - Spain - Sweden - Switzerland - United Kingdom  
© http://www.st.com  
19/19  

相关型号:

TSA1001CF

10-BIT, 25MSPS, 35mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1001CFT

10-BIT, 25MSPS, 35mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1001IF

10-BIT, 25MSPS, 35mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1001IFT

10-BIT, 25MSPS, 35mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1002

10-BIT, 50MSPS, 50mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1002CF

10-BIT, 50MSPS, 50mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1002CFT

10-BIT, 50MSPS, 50mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1002IF

10-BIT, 50MSPS, 50mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1002IFT

10-BIT, 50MSPS, 50mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1002_04

10-BIT, 50MSPS, 50mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1005

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1005-20IF

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR