TSA1002_04 [STMICROELECTRONICS]

10-BIT, 50MSPS, 50mW A/D CONVERTER; 10位, 50MSPS , 50mW的A / D转换器
TSA1002_04
型号: TSA1002_04
厂家: ST    ST
描述:

10-BIT, 50MSPS, 50mW A/D CONVERTER
10位, 50MSPS , 50mW的A / D转换器

转换器
文件: 总20页 (文件大小:239K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSA1002  
10-BIT, 50MSPS, 50mW A/D CONVERTER  
NOT FOR NEW DESIGN  
m 10-bit A/D converter in deep submicron  
ORDER CODE  
CMOS technology  
m Single supply voltage: 2.5V  
m Input range: 2Vpp differential  
m 50Msps sampling frequency  
m Ultra low power consumption: 50mW @  
50Msps  
m ENOB=9.6 @ 40Msps, Fin=24MHz  
m SFDR typically up to 72dB @ 50Msps,  
Fin=5MHz  
Temperature  
Part Number  
Package  
Conditioning  
Marking  
Range  
TSA1002CF  
TSA1002CFT  
TSA1002IF  
0 C to +70 C  
0 C to +70 C  
-40 C to +85 C  
-40 C to +85 C  
TQFP48  
TQFP48  
TQFP48  
TQFP48  
Tray  
SA1002C  
SA1002C  
SA1002I  
SA1002I  
Tape & Reel  
Tray  
TSA1002IFT  
EVAL1002/AA  
Tape & Reel  
Evaluation board  
m Built-in reference voltage with external bias  
capability  
PIN CONNECTIONS (top view)  
m Pinout compatibility with TSA0801, TSA1001  
and TSA1201  
DESCRIPTION  
index  
37  
corner  
48 47 46 45 44 2 41 40 39 38  
The TSA1002 is a 10-bit, 50Msps sampling  
frequency Analog to Digital converter using a  
CMOS technology combining high performances  
and very low power consumption.  
The TSA1002 is based on a pipeline structure and  
digital error correction to provide excellent static  
linearity and guarantee 9.6 effective bits at  
Fs=40Msps, and Fin=24MHz.  
NC  
36  
35  
IPOL  
1
NC  
NC  
VREFP  
2
3
34  
VREFM  
AGND  
4
5
33 D0 (LSB)  
32  
D1  
VN  
31  
D2  
6
7
ND  
30  
29  
28  
D3  
D4  
D5  
D6  
D7  
D8  
VINB  
AGND  
INCM  
TSA1002  
8
9
A voltage reference is integrated in the circuit to  
simplify the design and minimize external  
components. It is nevertheless possible to use the  
circuit with an external reference.  
27  
26  
AGND 10  
AVCC  
AVCC  
11  
12  
25  
13 14 15 16 17 18 19 20 21 22 23 24  
Especially designed for high speed, low power  
applications, the TSA1002 only dissipates 50mW  
at 50Msps. A tri-state capabty, available on the  
output buffers, enables taddress several slave  
ADCs by a unique ster.  
The output data can be coded into two different  
formats. A Data Ready signal is raised as the data  
is valid othe output and can be used for  
synchrnization purposes.  
PACKAGE  
7 x 7 mm TQFP48  
The TSA1002 is available in commercial (0 to  
0 C) and extended (-40 to +85 C) temperature  
range, in a small 48 pins TQFP package.  
APPLICATIONS  
m Medical imaging and ultrasound  
m Portable instrumentation  
m Cable Modem Receivers  
m High resolution fax and scanners  
m High speed DSP interface  
April 2004  
1/20  
TSA1002  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Values  
0 to 3.3  
0 to 3.3  
Unit  
V
1)  
AVCC  
DVCC  
Analog Supply voltage  
1)  
V
Digital Supply voltage  
1)  
VCCB  
IDout  
Tstg  
0 to 3.3  
-100 to 100  
+150  
V
mA  
C
Digital buffer Supply voltage  
Digital output current  
Storage temperature  
Electrical Static Discharge  
- HBM  
ESD  
2
1.5  
A
KV  
KV  
- CDM-JEDEC Standard  
2)  
Latch-up  
Class  
1) All voltages values, except differential voltage, are with respect to network ground terminal. The magnitude of input and output voltages  
must never exceed -0.3V or VCC+0V  
2) Corporate ST Microelectronics procedure number 0018695  
OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
AVCC Analog Supply voltage  
DVCC Digital Supply voltage  
VCCB Digital buffer Supply voltage  
2.25  
2.25  
2.25  
0.5  
2.5  
2.5  
2.5  
1
2.7  
2.7  
2.7  
1.8  
V
V
V
V
1)  
VREFP  
VREFM  
Forced top reference voltage  
1)  
0
0
0.5  
1.1  
V
V
Forced bottom reference voltage  
INCM Forced input common mode voltage  
0.2  
0.5  
1)Condition VRefP-VRefM>0.3V  
BLOCK DIAGRAM  
VREFP  
+2.5V  
GNDA  
VIN  
Reference  
circuit  
stage  
INCM  
stage  
2
stage  
n
IPOL  
1
VINB  
VREFM  
DFSB  
OEB  
Sequencer-phase shifting  
Digital data correction  
CLK  
Timing  
DR  
DO  
TO  
Buffers  
D9  
OR  
GND  
2/20  
TSA1002  
PIN CONNECTIONS (top view)  
index  
corner  
37  
48 47 46 45 44 43 42 41 40 39 38  
NC  
NC  
NC  
36  
35  
IPOL  
1
VREFP  
2
3
34  
33  
32  
VREFM  
AGND  
4
5
D0 (LSB)  
D1  
VIN  
31  
30  
29  
28  
6
7
D2  
D3  
D4  
D5  
D6  
D7  
D8  
AGND  
VINB  
AGND  
INCM  
TSA1002  
8
9
27  
26  
10  
11  
12  
AGND  
AVCC  
AVCC  
25  
13 14 15 16 17 18 19 20 21 22 23 24  
PIN DESCRIPTION  
Pin No  
Name  
Description  
Observation  
Pin No  
Name  
Description  
Digital output  
Observation  
1
2
IPOL  
Analog bias current input  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
VREFP Top voltage reference  
1V  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
3
VREFM Bottom voltage reference  
0V  
4
AGND  
VIN  
Analog ground  
0V  
5
Analog input  
1Vpp  
0V  
6
AGND  
VINB  
Analog ground  
7
Inverted analog input  
Analog ground  
1Vpp  
0V  
8
AGND  
INCM  
AGND  
AVCC  
AVCC  
DVCC  
DVCC  
DGND  
CLK  
9
Input common mode  
Analog ground  
0.5V  
0V  
D0(LSB) Least Significant Bit output CMOS output (2.5V)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
NC  
NC  
Non connected  
Non connected  
Non connected  
Non connected  
Data Ready output  
Analog power supply  
Analog power supply  
Digital power supply  
Digital power supply  
Digital ground  
2.5V  
2.5V  
2.5V  
2.5V  
0V  
NC  
NC  
DR  
CMOS output (2.5V)  
VCCB  
GNDB  
VCCB  
NC  
Digital Buffer power supply 2.5V  
Digital Buffer ground 0V  
Clock input  
2.5V compatible CMOS input  
0V  
DGND  
NC  
Digital ground  
Digital Buffer power supply 2.5V  
Non connected  
Non connected  
DGND  
GNDB  
GNDB  
VCCB  
OR  
Digital ground  
0V  
0V  
0V  
NC  
Non connected  
Digital buffer ground  
Digital buffer ground  
OEB  
DFSB  
AVCC  
AVCC  
AGND  
Output Enable input  
Data Format Select input  
Analog power supply  
Analog power supply  
Analog ground  
2.5V compatible CMOS input  
2.5V compatible CMOS input  
Digital buffer power supply 2.5V  
Out Of Range output CMOS output (2.5V)  
CMOS output (2.5V)  
2.5V  
2.5V  
0V  
D9(MSB) Most Significant Bit output  
3/20  
TSA1002  
ELECTRICAL CHARACTERISTICS  
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFM= 0V  
Tamb = 25 C (unless otherwise specified)  
TIMING CHARACTERISTICS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
FS  
DC  
Sampling Frequency  
Clock Duty Cycle  
0.5  
40  
9
50  
60  
Msps  
%
50  
10  
10  
TC1  
TC2  
Clock pulse width (high)  
Clock pulse width (low)  
ns  
9
ns  
Data Output Delay (Fall of Clock 10pF load capacitance  
to Data Valid)  
Tod  
Tpd  
Ton  
5
5.5  
1
ns  
cycles  
ns  
Data Pipeline delay  
Falling edge of OEB to digital  
output valid data  
Rising edge of OEB to digital  
output tri-state  
Toff  
1
ns  
TIMING DIAGRAM  
N+3  
N+6  
N+7  
N+2  
N-1  
N+1  
N+8  
N
CLK  
Tpd + Tod  
OEB  
Ton  
N+1  
Toff  
Tod  
DATA  
OUT  
N-7  
N-3  
N-5  
N-4  
N-1  
N-2  
N-6  
N+2  
DR  
HZ state  
4/20  
TSA1002  
CONDITIONS  
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFM= 0V  
Tamb = 25 C (unless otherwise specified)  
ANALOG INPUTS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
VIN-VINB Full scale reference voltage  
2.0  
13  
Vpp  
kΩ  
Req  
Cin  
Equivalent input resistance  
Input capacitance  
5.0  
pF  
BW  
Analog Input Bandwidth  
Vin@ Full scale, FS=50Msps  
1000  
60  
MHz  
MHz  
1)  
ERB  
Effective Resolution Bandwidth  
1) See parameters definition for more information  
REFERENCE VOLTAGE  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
0.91  
0.88  
1.20  
1.18  
50  
1.03  
1.14  
1.16  
1.35  
1.36  
100  
V
V
V
V
VREFP Top internal reference voltage  
1)  
Tmin= -40 C to Tmax= 85 C  
1.27  
Vpol  
Analog bias voltage  
1)  
Tmin= -40 C to Tmax= 85 C  
Normal operating mode  
Shutdown mode  
Ipol  
Ipol  
Analog bias current  
Analog bias current  
70  
0
µA  
µA  
V
0.47  
0.46  
0.57  
0.68  
0.66  
VINCM Input common mode voltage  
1)  
V
Tmin= -40 C to Tmax= 85 C  
1) Not fully tested over the temperature range. Guaranteed by sampling.  
5/20  
TSA1002  
CONDITIONS  
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V  
Tamb = 25 C (unless otherwise specified)  
POWER CONSUMPTION  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
1)  
15.6  
18  
mA  
ICCA  
Analog Supply current  
2)  
2)  
2)  
21  
2
mA  
mA  
mA  
mA  
mA  
Tmin= -40 C to Tmax= 85 C  
1)  
1.3  
2.5  
ICCD  
Digital Supply Current  
2
Tmin= -40 C to Tmax= 85 C  
1)  
5
ICCB  
ICCBZ  
Pd  
Digital Buffer Supply Current  
5
Tmin= -40 C to Tmax= 85 C  
1)  
Digital Buffer Supply Current in  
High Impedance Mode  
40  
48  
100  
µA  
1)  
60  
62  
mW  
mW  
Power consumption in normal  
operation mode  
2)  
Tmin= -40 C to Tmax= 85 C  
1)  
Power consumption in High  
Impedance mode  
PdZ  
43  
80  
48  
mW  
C/W  
Junction-ambient thermal resis-  
tor (TQFP48)  
Rthja  
1) Rpol= 18KΩ. Equivalent load: Rload= 470and Cload= 6pF  
2) Not fully tested over the temperature range. Guaranteed by sampling.  
DIGITAL INPUTS AND OUTPUTS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Digital inputs  
VIL  
Logic "0" voltage  
Logic "1" voltage  
0.8  
V
V
VIH  
2.0  
Digital Outputs  
VOL  
VOH  
IOZ  
Logic "0" voltage  
Logic "1" voltage  
Iol=10µA  
Ioh=-10µA  
0.4  
V
V
2.4  
High Impedance leakage current OEB set to VIH  
Output Load Capacitance  
-1.5  
1.5  
15  
µA  
pF  
C
L
ACCURACY  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Fin= 2MHz, VIN@+1dBFS  
OE  
DNL  
INL  
Offset Error  
-40  
-0.7  
-0.8  
-2  
40  
mV  
LSB  
LSB  
Differential Non Linearity  
Integral Non Linearity  
±0.2  
±0.3  
+0.7  
+0.8  
Fin= 2MHz, VIN@+1dBFS  
Fin= 2MHz, VIN@+1dBFS  
Monotonicity and no missing  
codes  
-
Guaranteed  
6/20  
TSA1002  
CONDITIONS  
AVCC = DVCC = 2.5V, Fs= 40Msps Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V  
Tamb = 25 C (unless otherwise specified)  
DYNAMIC CHARACTERISTICS  
Symbol  
Parameter  
Test conditions  
Fin= 5MHz  
Min  
Typ  
Max  
Unit  
-79.2  
-77  
-65.5  
-68.5  
-63.4  
1)  
2)  
1)  
2)  
1)  
2)  
dBc  
Fin= 10MHz  
Fin= 24MHz  
-69  
SFDR Spurious Free Dynamic Range  
Fin= 5MHz  
-61.5  
-62.8  
-58.5  
dBc  
dB  
Fin= 10MHz  
Fin= 24MHz  
Fin= 5MHz  
58.5  
58.3  
57.4  
59.5  
59.4  
59.0  
Fin= 10MHz  
Fin= 24MHz  
SNR  
Signal to Noise Ratio  
Fin= 5MHz  
57.9  
57.1  
55.9  
dB  
Fin= 10MHz  
Fin= 24MHz  
Fin= 5MHz  
-77.8  
-76  
-63.5  
-67.4  
-62.5  
dB  
Fin= 10MHz  
Fin= 24MHz  
-68.1  
THD  
Total Harmonic Distortion  
Fin= 5MHz  
-62.3  
-60.7  
-57.6  
dB  
Fin= 10MHz  
Fin= 24MHz  
Fin= 5MHz  
58.5  
58.2  
57.0  
59.4  
59.3  
58.5  
1)  
dB  
Fin= 10MHz  
Fin= 24MHz  
Signal to Noise and Distortion  
Ratio  
SINAD  
Fin= 5MHz  
57.8  
56.9  
55.3  
2)  
dB  
Fin= 10MHz  
Fin= 24MHz  
Fin= 5MHz  
9.6  
9.5  
9.3  
9.76  
9.71  
9.60  
1)  
bits  
bits  
Fin= 10MHz  
Fin= 24MHz  
ENOB Effective Number of Bits  
Fin= 5MHz  
9.4  
9.3  
9
2)  
Fin= 10MHz  
Fin= 24MHz  
1) Rpol= 18KΩ. Equivalent load: Rload= 470and Cload= 6pF  
2) Tmin= -40 C to Tmax= 85 C. Not fully tested over the temperature range. Guaranteed by sampling.  
7/20  
TSA1002  
DEFINITIONS OF SPECIFIED PARAMETERS  
STATIC PARAMETERS  
Signal to Noise Ratio (SNR)  
The ratio of the rms value of the fundamental  
component to the rms sum of all other spectral  
components in the Nyquist band (f /2) excluding  
DC, fundamental and the first five harmonics.  
SNR is reported in dB.  
s
Static measurements are performed through  
method of histograms on a 2MHz input signal,  
sampled at 40Msps, which is high enough to fully  
characterize the test frequency response. The  
input level is +1dBFS to saturate the signal.  
Signal to Noise and Distortion Ratio (SINAD)  
Similar ratio as for SNR but including the harmonic  
distortion components in the noise figure (not DC  
signal). It is expressed in dB.  
From the SINAD, the Effective Number of Bits  
(ENOB) can easily be deduced using the formula:  
Differential Non Linearity (DNL)  
The average deviation of any output code width  
from the ideal code width of 1 LSB.  
SINAD= 6.02 × ENOB + 1.76 dB.  
When the applied signal is not Full Scale (FS), but  
Integral Non linearity (INL)  
has an A amplitude, the SINAD expression  
becomes:  
An ideal converter presents a transfer function as  
being the straight line from the starting code to the  
ending code. The INL is the deviation for each  
transition from this ideal curve.  
0
SINAD =SINAD  
+ 20 log (2A /FS)  
0
2Ao  
Full Scale  
SINAD =6.02 × ENOB + 1.76 dB + 20 log (2A /  
2Ao  
0
FS)  
The ENOB is expressed in bits.  
DYNAMIC PARAMETERS  
Dynamic measurements are performed by  
spectral analysis, applied to an input sine wave of  
various frequencies and sampled at 40Msps.  
Analog Input Bandwidth  
The maximum analog input frequency at which the  
spectral response of a full power signal is reduced  
by 3dB. Higher values can be achieved with  
smaller input levels.  
The input level is -1dBFS to measure the linear  
behavior of the converter. All the parameters are  
given without correction for the full scale ampli-  
tude performance except the calculated ENOB  
parameter.  
Effective Resolution Bandwidth (ERB)  
The band of input signal frequencies that the ADC  
is intended to convert without loosing linearity i.e.  
the maximum analog input frequency at which the  
SINAD is decreased by 3dB or the ENOB by 1/2  
bit.  
Spurious Free Dynamic Range (SFDR)  
The ratio between the power of the worst spurious  
signal (not always an harmonic) and the amplitude  
of fundamental tone (signal power) over the full  
Nyquist band. It is expressed in dBc.  
Pipeline delay  
Delay between the initial sample of the analog  
input and the availability of the corresponding  
digital data output, on the output bus. Also called  
data latency. It is expressed as a number of clock  
cycles.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the first five harmonic  
distortion components to the rms value of the  
fundamental line. It is expressed in dB.  
8/20  
TSA1002  
Static parameter: Integral Non Linearity  
Fs=50MSPS; Fin=1MHz; Icc=20mA; N=131072pts  
0 .8  
0 .6  
0 .4  
0 .2  
0
-0 .2  
-0 .4  
-0 .6  
-0 .8  
0
2 00  
4 0 0  
60 0  
8 00  
1 0 00  
O u tp u t C o d e  
Static parameter: Differential Non Linearity  
Fs=50MSPS;Fin=1MHz;Icc=20mA;N=131072pts  
0 .5  
0 .4  
0 .3  
0 .2  
0 .1  
0
-0 .1  
-0 .2  
-0 .3  
-0 .4  
-0 .5  
0
2 0 0  
4 0 0  
6 0 0  
8 0 0  
1 0 0 0  
O u tp u t C o d e  
Linearity vs. Fs  
Distortion vs. Fs  
Fin=5MHz; Rpol adjustment  
Fin=5MHz; Rpol adjustment  
-30  
-40  
-50  
-60  
100  
10  
9
90  
ENOB  
80  
70  
8
THD  
-70  
-80  
7
SNR  
60  
SFDR  
6
-90  
SINAD  
50  
40  
30  
-100  
-110  
-120  
5
4
25  
35  
45  
55  
25  
35  
45  
55  
Fs (MHz)  
Fs (MHz)  
9/20  
TSA1002  
Linearity vs. Fs  
Distortion vs. Fs  
Fin=15MHz; Rpol adjustment  
Fin=15MHz; Rpol adjustment  
100  
10  
9
-30  
-40  
-50  
90  
ENOB  
80  
70  
THD  
8
-60  
-70  
7
SNR  
SINAD  
SFDR  
-80  
60  
50  
-90  
6
-100  
-110  
-120  
5
40  
30  
4
25  
35  
45  
55  
25  
35  
45  
55  
Fs (MHz)  
Fs (MHz)  
Linearity vs. Fin  
Distortion vs. Fin  
Fs=50MSPS; Icca=20mA  
Fs=50MSPS; Icca=20mA  
80  
10  
-30  
-40  
-50  
-60  
9.5  
9
75  
ENOB  
70  
8.5  
8
65  
THD  
SNR  
SINAD  
60  
7.5  
7
-70  
-80  
55  
50  
45  
40  
SFDR  
6.5  
6
-90  
5.5  
5
-100  
0
20  
40  
60  
0
20  
40  
60  
Fin (MHz)  
Fin (MHz)  
Linearity vs.Temperature  
Distortion vs. Temperature  
Fs=50MSPS; Icca=20mA; Fin=5MHz  
Fs=50MSPS; Icca=20mA; Fin=5MHz;  
90  
85  
70  
10  
9.8  
9.6  
9.4  
9.2  
9
8.8  
8.6  
8.4  
8.2  
8
ENOB  
65  
80  
SFDR  
75  
SNR  
60  
70  
THD  
65  
55  
SINAD  
60  
55  
50  
45  
50  
45  
-40  
10  
60  
-40  
10  
60  
Temperature ( C)  
Temperature ( C)  
10/20  
TSA1002  
Linearity vs. AVcc  
Distortion vs. AVcc  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
-50  
-55  
-60  
-65  
64  
63  
62  
10  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9
61  
SFDR  
-70  
ENOB  
60  
-75  
THD  
-80  
SNR  
59  
58  
57  
56  
-85  
-90  
SINAD  
-95  
-100  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
AVCC (V)  
AVCC (V)  
Linearity vs. DVcc  
Distortion vs. DVcc  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
64  
62  
10  
-40  
-50  
-60  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
SNR  
60  
58  
ENOB  
SFDR  
-70  
56  
-80  
THD  
54  
SINAD  
-90  
52  
50  
-100  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
DVCC (V)  
DVCC (V)  
Linearity vs. VccB  
Distortion vs. VccB  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
70  
68  
66  
10  
-40  
-50  
-60  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
9.2  
9.1  
9
ENOB  
64  
62  
-70  
-80  
THD  
SNR  
60  
58  
56  
54  
SFDR  
SINAD  
-90  
-100  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
VCCB (V)  
VCCB (V)  
11/20  
TSA1002 APPLICATION NOTE  
DETAILED INFORMATION  
couple for each stage. The corrected data are  
outputted through the digital buffers.  
Input signal is sampled on the rising edge of the  
clock while digital outputs are delivered on the  
falling edge of the Data Ready signal.  
The advantages of such a converter reside in the  
combination of pipeline architecture and the most  
advanced technologies. The highest dynamic  
performances are achieved while consumption  
remains at the lowest level.  
The TSA1002 is a high speed analog to digital  
converter based on a pipeline architecture and the  
latest deep submicron CMOS process to achieve  
the best performances in terms of linearity and  
power consumption.  
The pipeline structure consists of 9 internal  
conversion stages in which the analog signal is  
fed and sequentially converted into digital data.  
Some functionalities have been added in order to  
simplify as much as possible the application  
board. These operational modes are described in  
the following table.  
The TSA1002 is pin to pin compatible with the  
8bits/40Msps TSA0801, the 10bits/25Msps  
TSA1001 and the 12bits/50Msps TSA1201. This  
ensures a conformity within the product family and  
above all, an easy upgrade of the application.  
Each 8 first stages consists of an Analog to Digital  
converter, a Digital to Analog converter, a Sample  
and Hold and a gain of 2 amplifier. A 1.5bit  
conversion resolution is achieved in each stage.  
The latest stage simply is a comparator. Each  
resulting LSB-MSB couple is then time shifted to  
recover from the conversion delay. Digital data  
correction completes the processing by  
recovering from the redundancy of the (LSB-MSB)  
OPERATIONAL MODES DESCRIPTION  
Inputs  
Outputs  
Analog input differential level  
DFSB  
OEB  
OR  
DR  
Most Significant Bit (MSB)  
(VIN-VINB)  
>
RANGE  
H
H
H
L
L
L
L
L
L
L
H
H
H
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
HZ  
D9  
-RANGE  
RANGE>  
(VIN-VINB)  
-RANGE  
>
(VIN-VINB)  
>-RANGE  
RANGE  
D9  
(VIN-VINB)  
L
D9  
>
H
Complemented D9  
Complemented D9  
Complemented D9  
HZ  
>
(VIN-VINB)  
X
(VIN-VINB)  
>-RANGE  
L
H
RANGE>  
L
L
X
HZ  
Data Format Select (DFSB)  
When OEB is set to low level again, the data is  
then valid on the output with a very short Ton  
delay.  
The timing diagram page 4 summarizes this  
operating cycle.  
When set to low level (VIL), the digital input DFSB  
provides a twoís complement digital output MSB.  
This can be of interest when performing some  
further signal processing.  
When set to high level (VIH), DFSB provides a  
standard binary output coding.  
Out of Range (OR)  
This function is implemented on the output stage  
in order to set up an "Out of Range" flag whenever  
the digital data is over the full scale range.  
Typically, there is a detection of all the data being  
at í0í or all the data being at í1í. This ends up with  
an output signal OR which is in low level state  
(VOL) when the data stay within the range, or in  
high level state (VOH) when the data are out of the  
range.  
Output Enable (OEB)  
When set to low level (VIL), all digital outputs  
remain active and are in low impedance state.  
When set to high level (VIH), all digital outputs  
buffers are in high impedance state. This results in  
lower consumption while the converter goes on  
sampling.  
12/20  
TSA1002  
Data Ready (DR)  
The VREFP, VREFM voltages set the analog  
dynamic at the input of the converter that has a full  
scale amplitude of 2*(VREFP-VREFM).  
The Data Ready output is an image of the clock  
being synchronized on the output data (D0 to D9).  
This is a very helpful signal that simplifies the  
synchronization of the measurement equipment or  
the controlling DSP.  
As digital output, DR goes in high impedance state  
when OEB is asserted to High level as described  
in the timing diagram page 4.  
In case of analog dynamic lower than 2Vpp, the  
best linearity and distortion performance is  
achieved while increasing the VREFM voltage  
instead of lowering the VREFP one.  
The INCM is the mid voltage of the analog input  
signal.  
It is possible to use an external reference voltage  
device for specific applications requiring even  
REFERENCES AND COMMON MODE  
CONNECTION  
better  
linearity,  
accuracy  
or  
enhanced  
temperature behavior.  
VREFM must be always connected externally.  
Using the STMicroelectronics TS821 or  
TS4041-1.2 Vref leads to optimum performances  
when configured as shown on Figure 2.  
Internal reference and common mode  
In the default configuration, the ADC operates with  
its own reference and common mode voltages  
generated by its internal bandgap. VREFM pin is  
connected externally to the Analog Ground while  
VREFP (respectively INCM) is set to its internal  
voltage of 1.03V (respectively 0.57V). It is  
recommended to decouple the VREFP in order to  
minimize low and high frequency noise (refer to  
Figure 1)  
Figure 2 : External reference setting  
1kΩ  
330pF 10nF 4.7uF  
VCCA VREFP  
VIN  
TS821  
TS4041  
TSA1002  
Figure 1 : Internal reference and common mode  
setting  
VINB  
external  
reference  
VREFM  
1.03V  
330pF 10nF 4.7uF  
VREFP  
VIN  
TSA1002  
0.57V  
INCM  
At 15Msps sampling frequency, 1MHz input  
frequency and -1dBFS amplitude signal,  
performances can be improved up to 2dB on  
SFDR and 0.3dB on SINAD. At 50Msps sampling  
frequency, 1MHz input frequency and -1dBFS  
amplitude signal, performances can be improved  
up to 1dBc on SFDR and 0.6dB on SINAD.  
330pF 10nF 4.7uF  
VINB  
VREFM  
External reference and common mode  
This can be very helpful for example for  
multichannel application to keep a good matching  
among the sampling frequency range.  
Each of the voltages VREFM, VREFP and INCM  
can be fixed externally to better fit to the  
application needs (Refer to Table íOPERATING  
CONDITIONSí p2 for min and max values).  
13/20  
TSA1002  
DRIVING THE ANALOG INPUT  
Differential inputs  
Figure 4 represents the biasing of a differential  
input signal in AC-coupled differential input  
configuration. Both inputs VIN and VINB are  
centered around the common mode voltage, that  
can be let internal or fixed externally.  
The TSA1002 has been designed to obtain  
optimum performances when being differentially  
driven. An RF transformer is a good way to  
achieve such performances.  
Figure 5 shows a DC-coupled configuration with  
forced INCM to the DC analog input (mid-voltage)  
while VREFM is connected to ground and VREFP  
is let internal (1V); we achieve a 2Vpp differential  
amplitude.  
Figure 3 describes the schematics. The input  
signal is fed to the primary of the transformer,  
while the secondary drives both ADC inputs.  
Figure 3 : Differential input configuration with  
transformer  
Figure 5 : DC-coupled 2Vpp differential analog  
input  
ADT1-1  
Analog source  
1:1  
analog  
analog  
AC+DC  
VREFP  
VIN  
VIN  
DC  
DC  
TSA1002  
VINB  
50Ω  
100pF  
TSA1002  
VINB  
INCM  
VREFM  
INCM  
330pF  
10nF  
4.7uF  
10nF  
330pF  
4.7uF  
VREFP-VREFM = 1 V  
The common mode voltage of the ADC (INCM) is  
connected to the center-tap of the secondary of  
the transformer in order to bias the input signal  
around this common voltage, internally set to  
0.57V. The INCM is decoupled to maintain a low  
noise level on this node. Our evaluation board is  
mounted with a 1:1 ADT1-1WT transformer from  
Single-ended input configuration  
The single-ended input configuration of the  
TSA1002 requires particular biasing and driving.  
The structure being fully differential, care has to  
be taken in order to properly bias the inputs in sin-  
gle ended mode. Figure 6 summarizes the link  
from the differential configuration to the sin-  
gle-ended one; a wrong configuration is also pre-  
sented.  
Minicircuits. You might also use  
a higher  
impedance ratio (1:2 or 1:4) to reduce the driving  
requirement on the analog signal source. For  
example, with internal references, each analog  
input can drive a 1Vpp amplitude input signal, so  
the resultant differential amplitude is 2Vpp.  
- With differential driving, both inputs are centered  
around the INCM voltage.  
- The transition to single-ended configuration  
implies to connect the unused input (VINB for  
instance) to the DC component of the single input  
(Vin) and also to the input common mode in order  
to be well balanced. The mid-code is achieved at  
the crossing between VIN and VINB, therefore  
inputs are conveniently biased.  
Figure 4 : AC-coupled differential input  
VIN  
10nF  
50Ω  
100kΩ  
TSA1002  
33pF  
INCM  
common  
- Unlikely other structures of converters in which  
the unused input can be grounded; in our case it  
will end with unbalanced inputs and saturation of  
the internal amplifiers leading to a non respect of  
the output codes.  
mode  
100kΩ  
VINB  
10nF  
50Ω  
14/20  
TSA1002  
Figure 6 : Input dynamic range for the various configurations  
Differential configuration  
Single-ended configuration:  
balanced inputs  
Single-ended configuration:  
unbalanced inputs  
+FS: code 1023  
+FS + offset: code > 1023  
VIN - VINB  
+FS: code 1023  
VIN - VINB  
VIN - VINB  
VIN  
VINB  
VIN  
0: code 511  
VINB  
INCM  
INCM  
INCM  
VIN  
0: code 511  
-FS: code 0  
-FS + offset: code > 0  
-FS: code 0  
Ao + ac  
Ao + ac  
Ao + ac  
Ao + ac  
VIN  
VIN  
VIN  
VINB  
VINB  
VINB  
INCM  
INCM  
INCM  
Ao  
Ao  
Ao  
Wrong configuration!  
The applications requiring single-ended inputs  
can be configured like reported on Figure 7 for an  
AC-coupled input or on Figure 8 and 9 for a  
DC-coupled input.  
Figure 8 : DC-coupled 2Vpp analog input  
Analog  
AC+DC  
VREFP  
VIN  
DC  
TSA1002  
In the case of AC-coupled analog input, the  
analog inputs Vin and Vinb are biased to the same  
voltage that is the common mode voltage of the  
circuit (INCM). The INCM and reference voltages  
may remain at their internal level but can also be  
fixed externally.  
VINB  
VREFM  
INCM  
330pF  
10nF  
4.7uF  
VREFP-VREFM = 1 V  
Figure 7 : AC-coupled Single-ended input  
Figure 9 : DC-coupled 1Vpp analog input  
Signal source  
Analog  
AC+DC  
10nF  
VIN  
VIN  
DC  
100kΩ  
100kΩ  
50Ω  
33pF  
TSA1002  
TSA1002  
VINB  
INCM  
VINB  
VREFM  
INCM  
common  
mode  
0.5V power supply  
In the case of DC-coupled analog input with 1V  
DC signal, the DC component of the analog input  
set the common mode voltage. As an example fig-  
ure 8, INCM is set to the 1V DC analog input while  
VREFM is connected to ground and VREFP let in-  
ternal; we achieve a 2Vpp differential amplitude.  
330pF  
10nF  
4.7uF  
VREFP-VREFM = 0.5 V  
Dynamic characteristics, while not being as  
remarkable as for differential configuration, are  
still of very good quality. Measurements done at  
50Msps, 2MHz input frequency, -1dBFS input  
level sum up these performances. An SFDR of  
-64.5dBc, a SNR of 57.8dB and an ENOB Full  
Scale of 9.3bits are achieved.  
Figure 9 describes a configuration for a 1Vpp  
analog signal with a 0.5V DC input. In this case,  
while VREFP is kept internally at 1V, VREFM is  
connected to VINB and INCM externally to 0.5V;  
the dynamic is then 1Vpp (VREFP-VREFM=0.5V).  
15/20  
TSA1002  
Power consumption  
Distortion vs. Duty cycle  
Fs=50MSPS; consumption optimized; Fin=1MHz  
The internal architecture of the TSA1002 enables  
to optimize the power consumption according to  
the sampling frequency of the application. For this  
purpose, a resistor is placed between IPOL and  
the analog Ground pins. The figure 10 sums up  
the relevant data.  
The TSA1002 will combine highest performances  
and lowest consumption at 50Msps when Rpol is  
in the range of 12kto 20k.  
-30  
70  
-40  
60  
-50  
-60  
50  
THD  
-70  
40  
SFDR  
-80  
At lower sampling frequency, this value of resistor  
may be changed and the consumption will  
decrease as well.  
-90  
-100  
-110  
-120  
30  
20  
10  
IccA  
Figure 10 : Analog Current consumption vs. Fs  
According value of Rpol polarization resistance  
30  
40  
50  
60  
70  
Duty Cycle (%)  
60  
50  
40  
30  
20  
10  
0
20  
18  
16  
14  
12  
10  
8
RPOL  
Linearity vs. Duty cycle  
Fs=50MSPS; Icca=20mA; Fin=10MHz  
80  
10  
9.5  
9
ENOB  
75  
6
ICCA  
70  
65  
4
2
8.5  
8
SNR  
0
60  
25  
35  
45  
55  
65  
75  
55  
7.5  
7
SINAD  
Fs (MHz)  
50  
45  
40  
35  
30  
6.5  
6
Linearity, distortion performance towards  
Clock Duty Cycle variation  
5.5  
5
40  
45  
50  
55  
60  
The TSA1002 has an outstanding behaviour  
towards clock duty cycle variation and it may be  
also reinforced with adjustment of analog current  
consumption.  
Duty Cycle (%)  
Distortion vs. Duty cycle  
Fs=50MSPS; Icca=20mA; Fin=10MHz  
Linearity vs. Duty cycle  
Fs=50MSPS; consumption optimized; Fin=1MHz  
0
-10  
-20  
-30  
-40  
80  
70  
60  
50  
40  
30  
20  
10  
0
10  
9
ENOB  
SNR  
SINAD  
8
7
-50  
THD  
-60  
6
IccA  
-70  
SFDR  
5
-80  
-90  
4
-100  
3
40  
45  
50  
55  
60  
30  
40  
50  
60  
70  
Duty Cycle (%)  
Duty Cycle (%)  
16/20  
TSA1002  
Clock input  
- Proper termination of all inputs and outputs is  
needed; with output termination resistors, the  
amplifier load will be only resistive and the stability  
of the amplifier will be improved. All leads must be  
wide and as short as possible especially for the  
analog input in order to decrease parasitic  
capacitance and inductance.  
The quality of your converter is very dependant on  
your clock input accuracy, in terms of aperture  
jitter; the use of low jitter crystal controlled  
oscillator is recommended.  
The clock power supplies must be separated from  
the ADC output ones to avoid digital noise  
modulation at the output.  
- To keep the capacitive loading as low as  
possible at digital outputs, short lead lengths of  
routing are essential to minimize currents when  
the output changes. To minimize this output  
capacitance, buffers or latches close to the output  
pins will relax this constraint.  
It is recommended to keep the circuit clocked, to  
avoid random states, before applying the supply  
voltages.  
Layout precautions  
- Choose component sizes as small as possible  
(SMD).  
To use the ADC circuits in the best manner at high  
frequencies, some precautions have to be taken  
for power supplies:  
EVAL1002 evaluation board  
- First of all, the implementation of 4 separate  
proper supplies and ground planes (analog,  
digital, internal and external buffer ones) on the  
PCB is recommended for high speed circuit  
applications to provide low inductance and low  
resistance common return.  
The characterization of the board has been made  
with a fully ADC devoted test bench as shown on  
Figure 11. The analog signal must be filtered to be  
very pure.  
The dataready signal is the acquisition clock of the  
logic analyzer.  
The separation of the analog signal from the  
digital part is essential to prevent noise from  
coupling onto the input signal.  
The ADC digital outputs are latched by the  
74LCX573 octal buffers.  
- Power supply bypass capacitors must be placed  
as close as possible to the IC pins in order to  
improve high frequency bypassing and reduce  
harmonic distortion.  
All characterization measurement has been made  
with an input amplitude of +0.2dB for static  
parameters and -0.5dB for dynamic parameters.  
Figure 11 : Analog to Digital Converter characterization bench  
HP8644  
Data  
ADC  
evaluation  
board  
Vin  
Sine Wave  
Generator  
Logic  
Analyzer  
PC  
Clk  
Clk  
Pulse  
HP8133  
HP8644  
Generator  
Sine Wave  
Generator  
17/20  
TSA1002  
Figure 12: TSA1002 Evaluation board schematic  
+
+
+
+
18/20  
TSA1002  
Figure 13: Printed circuit of evaluation board  
Printed circuit board - List of components  
P art  
Design Footprint  
ator  
P art  
Type  
D esign Foo tprint  
ator  
P art  
D esign F ootprint  
ato r  
P art  
D esign Footprint  
ato r  
Type  
10 uF  
10 uF  
10 uF  
10 uF  
Type  
Type  
C 2 4  
C 2 3  
C 4 1  
C 2 9  
12 10  
12 10  
12 10  
12 10  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
603  
ID C 32  
330pF C 33  
330pF C 20  
330pF C 8  
330pF C 2  
330pF C 5  
330pF C 11  
330pF C 30  
330pF C 17  
330pF C 14  
603  
603  
603  
603  
603  
603  
603  
603  
603  
C A P  
C A P  
C A P  
C A P  
805  
805  
805  
805  
805  
805  
805  
470nF  
470nF  
470nF  
470nF  
C 7  
805  
A VC C  
C LJ/ SM B  
A GN D  
D FSB  
J12  
J4  
FIC H E2M M  
SM B / H  
C 16  
C 19  
C 3  
805  
805  
J19  
J9  
FIC H E2M M  
FIC H E2M M  
FIC H E2M M  
FIC H E2M M  
FIC H E2M M  
FIC H E2M M  
FIC H E2M M  
FIC H E2M M  
FIC H E2M M  
AD T  
805  
10 0 pF C 1  
47K  
47K  
47K  
47K  
47K  
47K  
47K  
47K  
47K  
47K  
47K  
R 12  
R 14  
R 11  
R aj1  
R 10  
R 19  
R 13  
R 15  
R 16  
R 17  
R 18  
R 3  
603  
D GN D  
D VC C  
GndB1  
GndB2  
J20  
J15  
J22  
J21  
10 nF  
10 nF  
10 nF  
10 nF  
10 nF  
10 nF  
10 nF  
10 nF  
10 nF  
10 nF  
10 nF  
C 12  
C 3 9  
C 15  
C 4 0  
C 2 7  
C 4  
603  
603  
VR5  
603  
M es com mode J8  
47uF  
47uF  
47uF  
47uF  
C 36  
C 34  
C 35  
C 42  
603  
OEB  
J10  
603  
R egl co m mode J7  
C 2 1  
C 3 1  
C 6  
603  
T2-A T1-1WT  
T2-A T1-1WT  
VccB 1  
T2  
T1  
J18  
J17  
J1  
603  
AD T  
470nF C 22  
470nF C 32  
470nF C 37  
470nF C 38  
470nF C 13  
470nF C 28  
470nF C 10  
603  
FIC H E2M M  
FIC H E2M M  
SM B / H  
C 9  
603  
VD D B UFF3V  
Vin  
C 18  
R2  
50  
50  
603  
1K  
R 1  
603  
VrefM  
J5  
FIC H E2M M  
FIC H E2M M  
TQFP 48  
32P IN J6  
74LC X573 U3  
74LC X573 U2  
T SSOP 20  
T SSOP 20  
SIP 2  
VrefP  
J2  
330pF C25  
330pF C26  
603  
603  
TSA 1002  
U1  
CON 2  
J16  
19/20  
TSA1002  
PACKAGE MECHANICAL DATA  
48 PINS - PLASTIC PACKAGE  
A
A2  
A1  
e
48  
37  
0,10 mm  
.004 inch  
SEATING PLANE  
1
36  
25  
12  
c
13  
24  
D3  
D1  
D
0,25 mm  
.010 inch  
GAGE PLANE  
K
Millimeters  
Typ.  
Inches  
Typ.  
Dim.  
Min.  
Max.  
Min.  
Max.  
A
1.60  
0.15  
1.45  
0.27  
0.20  
0.063  
0.006  
0.057  
0.011  
0.008  
A1  
A2  
B
0.05  
1.35  
0.17  
0.09  
0.002  
0.053  
0.007  
0.004  
1.40  
0.22  
0.055  
0.009  
C
D
9.00  
7.00  
5.50  
0.50  
9.00  
7.00  
5.50  
0.60  
1.00  
0.354  
0.276  
0.216  
0.0197  
0.354  
0.276  
0.216  
0.024  
0.039  
D1  
D3  
e
E
E1  
E3  
L
0.45  
0.75  
0.018  
0.030  
L1  
K
0 (min.), 7 (max.)  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
© The ST logo is a registered trademark of STMicroelectronics  
© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia  
Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States  
© http://www.st.com  
20/20  

相关型号:

TSA1005

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER
STMICROELECTR

TSA1005-20IF

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER
STMICROELECTR

TSA1005-20IFT

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER
STMICROELECTR

TSA1005-40IF

Analog to Digital Converter
ETC

TSA1005-40IFT

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER
STMICROELECTR

TSA1005I-40IF

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER
STMICROELECTR

TSA100A

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA100C

Trans Voltage Suppressor Diode, 400W, Bidirectional, 1 Element, Silicon, DO-214AA,
SURGE

TSA1015

PNP SILICON TRANSISTOR
ETC

TSA1036

General Purpose PNP Transistor
TSC

TSA1036CX

General Purpose PNP Transistor
TSC

TSA1036CXRF

General Purpose PNP Transistor
TSC