TSA1002CFT [STMICROELECTRONICS]

10-BIT, 50MSPS, 50mW A/D CONVERTER; 10位, 50MSPS , 50mW的A / D转换器
TSA1002CFT
型号: TSA1002CFT
厂家: ST    ST
描述:

10-BIT, 50MSPS, 50mW A/D CONVERTER
10位, 50MSPS , 50mW的A / D转换器

转换器 模数转换器
文件: 总19页 (文件大小:241K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TSA1002  
10-BIT, 50MSPS, 50mW A/D CONVERTER  
10-bit A/D converter in deep submicron  
ORDER CODE  
CMOS technology  
Single supply voltage: 2.5V  
Input range: 2Vpp differential  
50Msps sampling frequency  
Ultra low power consumption: 50mW @  
50Msps  
Temperature  
Part Number  
Package  
Conditioning  
Marking  
Range  
TSA1002CF  
TSA1002CFT  
TSA1002IF  
0°C to +70°C  
0°C to +70°C  
-40°C to +85°C  
-40°C to +85°C  
TQFP48  
TQFP48  
TQFP48  
TQFP48  
Tray  
SA1002C  
SA1002C  
SA1002I  
SA1002I  
Tape & Reel  
Tray  
ENOB=9.4 @ Fs=50Msps, Fin=15MHz  
SFDR typically up to 72dB @ Fs=50Msps,  
Fin=5MHz  
TSA1002IFT  
EVAL1002/AA  
Tape & Reel  
Evaluation board  
Built-in reference voltage with external bias  
capability  
PIN CONNECTIONS (top view)  
STMicroelectronics 8, 10, 12 and 14-bits ADC  
pinout compatibility  
DESCRIPTION  
The TSA1002 is a 10-bit, 50Msps sampling  
frequency Analog to Digital converter using a  
CMOS technology combining high performances  
and very low power consumption.  
The TSA1002 is based on a pipeline structure and  
digital error correction to provide excellent static  
linearity and guarantee 9.4 effective bits at  
Fs=50Msps, and Fin=15MHz.  
A voltage reference is integrated in the circuit to  
simplify the design and minimize external  
components. It is nevertheless possible to use the  
circuit with an external reference.  
index  
corner  
37  
48 47 46 45 44 43 42 41 40 39 38  
NC  
NC  
NC  
36  
35  
IPOL  
1
VREFP  
2
3
34  
VREFM  
AGND  
4
5
33 D0 (LSB)  
32  
D1  
VIN  
31  
30  
29  
28  
6
7
D2  
D3  
D4  
D5  
D6  
D7  
D8  
AGND  
VINB  
AGND  
INCM  
TSA1002  
8
9
27  
26  
AGND 10  
AVCC  
AVCC  
11  
12  
25  
13 14 15 16 17 18 19 20 21 22 23 24  
Especially designed for high speed, low power  
applications, the TSA1002 only dissipates 50mW  
at 50Msps. A tri-state capability, available on the  
output buffers, enables to address several slave  
ADCs by a unique master.  
The output data can be coded into two different  
formats. A Data Ready signal is raised as the data  
is valid on the output and can be used for  
synchronization purposes.  
The TSA1002 is available in commercial (0 to  
+70°C) and extended (-40 to +85°C) temperature  
range, in a small 48 pins TQFP package.  
PACKAGE  
7 × 7 mm TQFP48  
APPLICATIONS  
Medical imaging and ultrasound  
Portable instrumentation  
Cable Modem Receivers  
High resolution fax and scanners  
High speed DSP interface  
October 2000  
1/19  
TSA1002  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Values  
0 to 3.3  
0 to 3.3  
Unit  
V
1)  
AVCC  
DVCC  
Analog Supply voltage  
1)  
V
Digital Supply voltage  
1)  
VCCB  
IDout  
Tstg  
0 to 3.3  
-100 to 100  
+150  
V
Digital buffer Supply voltage  
Digital output current  
Storage temperature  
Electrical Static Discharge  
- HBM  
mA  
°C  
ESD  
2
KV  
- CDM-JEDEC Standard  
1.5  
1) All voltages values, except differential voltage, are with respect to network ground terminal. The magnitude of input and output voltages  
must never exceed -0.3V or VCC+0V  
OPERATING CONDITIONS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
AVCC Analog Supply voltage  
2.25  
2.25  
2.25  
1.16  
0
2.5  
2.5  
2.5  
-
2.7  
2.7  
V
V
V
V
DVCC Digital Supply voltage  
VCCB Digital buffer Supply voltage  
VREFP Forced top reference voltage  
VREFM Forced bottom reference voltage  
2.7  
AVCC  
0.5  
0
BLOCK DIAGRAM  
VREFP  
+2.5V  
GNDA  
VIN  
Reference  
circuit  
stage  
2
stage  
1
stage  
n
INCM  
VINB  
IPOL  
VREFM  
DFSB  
OEB  
Sequencer-phase shifting  
Digital data correction  
CLK  
Timing  
DR  
DO  
TO  
Buffers  
D9  
OR  
GND  
2/19  
TSA1002  
PIN CONNECTIONS (top view)  
index  
corner  
37  
48 47 46 45 44 43 42 41 40 39 38  
NC  
NC  
NC  
36  
35  
IPOL  
1
VREFP  
2
3
34  
VREFM  
AGND  
4
5
33 D0 (LSB)  
32  
VIN  
D1  
31  
30  
29  
28  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
6
7
AGND  
VINB  
AGND  
INCM  
TSA1002  
8
9
27  
26  
AGND 10  
AVCC  
AVCC  
11  
12  
25  
13 14 15 16 17 18 19 20 21 22 23 24  
PIN DESCRIPTION  
Pin No  
Name  
Description  
Analog bias current input  
Observation  
Pin No  
Name  
Description  
Digital output  
Observation  
1
2
IPOL  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
CMOS output (2.5V)  
VREFP Top voltage reference  
1V  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
3
VREFM Bottom voltage reference  
0V  
4
AGND  
VIN  
Analog ground  
0V  
5
Analog input  
1Vpp  
0V  
6
AGND  
VINB  
Analog ground  
7
Inverted analog input  
Analog ground  
1Vpp  
0V  
8
AGND  
INCM  
AGND  
AVCC  
AVCC  
DVCC  
DVCC  
DGND  
CLK  
9
Input common mode  
Analog ground  
0.5V  
0V  
D0(LSB) Least Significant Bit output CMOS output (2.5V)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
NC  
NC  
Non connected  
Non connected  
Non connected  
Non connected  
Data Ready output  
Analog power supply  
Analog power supply  
Digital power supply  
Digital power supply  
Digital ground  
2.5V  
2.5V  
2.5V  
2.5V  
0V  
NC  
NC  
DR  
CMOS output (2.5V)  
VCCB  
GNDB  
VCCB  
NC  
Digital Buffer power supply 2.5V  
Digital Buffer ground 0V  
Clock input  
2.5V compatible CMOS input  
0V  
DGND  
NC  
Digital ground  
Digital Buffer power supply 2.5V  
Non connected  
Non connected  
DGND  
GNDB  
GNDB  
VCCB  
OR  
Digital ground  
0V  
NC  
Non connected  
Digital buffer ground  
Digital buffer ground  
Digital buffer power supply  
Out Of Range output  
0V  
OEB  
DFSB  
AVCC  
AVCC  
AGND  
Output Enable input  
Data Format Select input  
Analog power supply  
Analog power supply  
Analog ground  
2.5V compatible CMOS input  
0V  
2.5V compatible CMOS input  
2.5V  
2.5V  
2.5V  
0V  
CMOS output (2.5V)  
CMOS output (2.5V)  
D9(MSB) Most Significant Bit output  
3/19  
TSA1002  
ELECTRICAL CHARACTERISTICS  
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFM= 0V  
Tamb = 25°C (unless otherwise specified)  
TIMING CHARACTERISTICS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
FS  
DC  
Sampling Frequency  
Clock Duty Cycle  
0.5  
45  
9
50  
55  
Msps  
%
50  
10  
10  
TC1  
TC2  
Clock pulse width (high)  
Clock pulse width (low)  
ns  
9
ns  
Data Output Delay (Fall of Clock 10pF load capacitance  
to Data Valid)  
Tod  
Tpd  
Ton  
5
6.5  
1
ns  
cycles  
ns  
Data Pipeline delay  
Falling edge of OEB to digital  
output valid data  
Rising edge of OEB to digital  
output tri-state  
Toff  
1
ns  
TIMING DIAGRAM  
N+4  
N+5  
N+3  
N+6  
N+7  
N+2  
N-1  
N+1  
N+8  
N
CLK  
6.5 clk cycles  
OEB  
Ton  
Toff  
Tod  
DATA  
OUT  
N-8  
N-4  
N
N-6  
N-5  
N-2  
N-3  
N-7  
N+1  
DR  
HZ state  
4/19  
TSA1002  
CONDITIONS  
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFM= 0V  
Tamb = 25°C (unless otherwise specified)  
ANALOG INPUTS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
VIN-VINB Full scale reference voltage  
2.0  
7.0  
100  
Vpp  
pF  
Cin  
BW  
Input capacitance  
Analog Input Bandwidth  
Vin@ Full scale, FS=50Msps  
MHz  
1)  
ERB  
60  
MHz  
Effective Resolution Bandwidth  
1) See parameters definition for more information  
REFERENCE VOLTAGE  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
0.91  
0.88  
1.20  
1.18  
50  
1.03  
1.14  
1.16  
1.35  
1.36  
100  
V
V
V
V
VREFP Top internal reference voltage  
1)  
Tmin= -40°C to Tmax= 85°C  
1.27  
Vpol  
Analog bias voltage  
1)  
Tmin= -40°C to Tmax= 85°C  
Normal operating mode  
Shutdown mode  
Ipol  
Ipol  
Analog bias current  
Analog bias current  
70  
0
µA  
µA  
V
0.47  
0.46  
0.57  
0.68  
0.66  
VINCM Input common mode voltage  
1)  
V
Tmin= -40°C to Tmax= 85°C  
1) Not fully tested over the temperature range. Guaranted by sampling.  
5/19  
TSA1002  
CONDITIONS  
AVCC = DVCC = VCCB = 2.5V, Fs= 40Msps,Fin= 1MHz, Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V  
Tamb = 25°C (unless otherwise specified)  
POWER CONSUMPTION  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
1)  
15.6  
18  
mA  
ICCA  
Analog Supply current  
2)  
2)  
2)  
21  
2
mA  
mA  
mA  
mA  
mA  
Tmin= -40°C to Tmax= 85°C  
1)  
1.3  
2.5  
ICCD  
Digital Supply Current  
2
Tmin= -40°C to Tmax= 85°C  
1)  
5
ICCB  
ICCBZ  
Pd  
Digital Buffer Supply Current  
5
Tmin= -40°C to Tmax= 85°C  
1)  
Digital Buffer Supply Current in  
High Impedance Mode  
40  
48  
100  
µA  
1)  
60  
62  
mW  
mW  
Power consumption in normal  
operation mode  
2)  
Tmin= -40°C to Tmax= 85°C  
1)  
Power consumption in High  
Impedance mode  
PdZ  
43  
80  
48  
mW  
Junction-ambient thermal resis-  
tor (TQFP48)  
Rthja  
°C/W  
1) Rpol= 18KΩ. Equivalent load: Rload= 470and Cload= 6pF  
2) Not fully tested over the temperature range. Guaranted by sampling.  
DIGITAL INPUTS AND OUTPUTS  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Digital inputs  
VIL  
Logic "0" voltage  
Logic "1" voltage  
0.8  
V
V
VIH  
2.0  
Digital Outputs  
VOL  
VOH  
IOZ  
Logic "0" voltage  
Logic "1" voltage  
Iol=10µA  
Ioh=-10µA  
0.4  
V
V
2.4  
High Impedance leakage current OEB set to VIH  
Output Load Capacitance  
-1.5  
1.5  
15  
µA  
pF  
C
L
ACCURACY  
Symbol  
Parameter  
Test conditions  
Min  
Typ  
Max  
Unit  
Fin= 2MHz, VIN@+1dBFS  
OE  
DNL  
INL  
Offset Error  
-5  
±0.2  
±0.2  
±0.3  
+5  
%
Differential Non Linearity  
Integral Non Linearity  
-0.7  
-0.8  
+0.7  
+0.8  
LSB  
LSB  
Fin= 2MHz, VIN@+1dBFS  
Fin= 2MHz, VIN@+1dBFS  
Monotonicity and no missing  
codes  
-
Guaranted  
6/19  
TSA1002  
CONDITIONS  
AVCC = DVCC = 2.5V, Fs= 40Msps Vin@ -1.0dBFS, VREFP=1V, VREFM= 0V  
Tamb = 25°C (unless otherwise specified)  
DYNAMIC CHARACTERISTICS  
Symbol  
Parameter  
Test conditions  
Fin= 5MHz  
Min  
Typ  
Max  
Unit  
65.5  
68.5  
63.4  
79.2  
77  
1)  
2)  
1)  
2)  
1)  
2)  
dBc  
Fin= 10MHz  
Fin= 24MHz  
69  
SFDR Spurious Free Dynamic Range  
Fin= 5MHz  
60  
60  
60  
dBc  
dB  
Fin= 10MHz  
Fin= 24MHz  
Fin= 5MHz  
58.5  
58.3  
57.4  
59.5  
59.4  
59.0  
Fin= 10MHz  
Fin= 24MHz  
SNR  
Signal to Noise Ratio  
Fin= 5MHz  
48  
48  
48  
dB  
Fin= 10MHz  
Fin= 24MHz  
Fin= 5MHz  
63.5  
67.4  
62.5  
77.8  
76  
dB  
Fin= 10MHz  
Fin= 24MHz  
68.1  
THD  
Total Harmonic Distortion  
Fin= 5MHz  
57  
55  
57  
dB  
Fin= 10MHz  
Fin= 24MHz  
Fin= 5MHz  
58.5  
58.2  
57.0  
59.4  
59.3  
58.5  
1)  
dB  
Fin= 10MHz  
Fin= 24MHz  
Signal to Noise and Distortion-  
Ratio  
SINAD  
Fin= 5MHz  
48  
48  
48  
2)  
dB  
Fin= 10MHz  
Fin= 24MHz  
Fin= 5MHz  
9.6  
9.5  
9.3  
9.76  
9.71  
9.60  
1)  
bits  
bits  
Fin= 10MHz  
Fin= 24MHz  
ENOB Effective Number of Bits  
Fin= 5MHz  
7.9  
7.9  
7.9  
2)  
Fin= 10MHz  
Fin= 24MHz  
1) Rpol= 18KΩ. Equivalent load: Rload= 470and Cload= 6pF  
2) Tmin= -40°C to Tmax= 85°C. Not fully tested over the temperature range. Guaranted by sampling.  
7/19  
TSA1002  
DEFINITIONS OF SPECIFIED PARAMETERS  
STATIC PARAMETERS  
Signal to Noise Ratio (SNR)  
The ratio of the rms value of the fundamental  
component to the rms sum of all other spectral  
components in the Nyquist band (f /2) excluding  
DC, fundamental and the first five harmonics.  
SNR is reported in dB.  
s
Static measurements are performed through  
method of histograms on a 2MHz input signal,  
sampled at 40Msps, which is high enough to fully  
characterize the test frequency response. The  
input level is +1dBFS to saturate the signal.  
Signal to Noise and Distorsion Ratio (SINAD)  
Similar ratio as for SNR but including the harmonic  
distortion components in the noise figure (not DC  
signal). It is expressed in dB.  
Differential Non Linearity (DNL)  
From the SINAD, the Effective Number of Bits  
(ENOB) can easily be deduced using the formula:  
SINAD= 6.02 × ENOB + 1.76 dB.  
The average deviation of any output code width  
from the ideal code width of 1LSB.  
When the applied signal is not Full Scale (FS), but  
Integral Non linearity (INL)  
has an A amplitude, the SINAD expression  
0
becomes:  
An ideal converter presents a transfer function as  
being the straight line from the starting code to the  
ending code. The INL is the deviation for each  
transition from this ideal curve.  
SINAD= 6.02 × ENOB + 1.76 dB + 20 log (2A /FS)  
The ENOB is expressed in bits.  
0
Analog Input Bandwidth  
The maximum analog input frequency at which the  
spectral response of a full power signal is reduced  
by 3dB. Higher values can be achieved with  
smaller input levels.  
DYNAMIC PARAMETERS  
Dynamic measurements are performed by  
spectral analysis, applied to an input sinewave of  
various frequencies and sampled at 40Msps.  
Effective Resolution Bandwidth (ERB)  
The band of input signal frequencies that the ADC  
is intended to convert without loosing linearity i.e.  
the maximum analog input frequency at which the  
SINAD is decreased by 3dB or the ENOB by 1/2  
bit.  
Spurious Free Dynamic Range (SFDR)  
The ratio between the amplitude of fundamental  
tone (signal power) and the power of the worst  
spurious signal (not always an harmonic) over the  
full Nyquist band. It is expressed in dBc.  
Pipeline delay  
Delay between time when the analog input is  
initially sampled and time when the corresponding  
digital data output is valid on the output bus. Also  
called data latency. It is expressed as a number of  
clock cycles.  
Total Harmonic Distortion (THD)  
The ratio of the rms sum of the first five harmonic  
distortion components to the rms value of the  
fundamental line. It is expressed in dB.  
8/19  
TSA1002  
EQUIVALENT CIRCUITS  
Figure 1 : Analog Input Circuit  
Figure 3 : Input buffers  
VCC buf=2.5V  
AVCC=2.5V  
VIN  
355.5 Ω  
278.5 208.2 Ω  
DFS  
(or VINB)  
7 pF  
PAD  
CAPACITANCE  
7 pF  
Req # 33 Ω  
k
PAD  
CAPACITANCE  
(if Fs=50 MHz)  
AGND=0V  
common mode  
GND buff=0V  
Figure 2 : Input clock circuit  
Figure 4 : Tri-state output buffers  
VCC buf=2.5V  
DVCC=2.5V  
OE  
CLK  
GND buff=0V  
DATA  
OUT  
2 mA  
VCC buf =2.5V  
OUTPUT  
BUFFER  
7 pF  
PAD  
CAPACITANCE  
PAD CAPACITANCE  
7pF  
GNDbuff=0V  
DGND=0V  
9/19  
TSA1002  
Static parameter: Integral Non Linearity  
Fs=50MSPS; Fin=1MHz; Icc=20mA; N=131072pts  
0 .8  
0 .6  
0 .4  
0 .2  
0
-0 .2  
-0 .4  
-0 .6  
-0 .8  
0
2 00  
4 0 0  
60 0  
8 00  
1 0 00  
O u tp u t C o d e  
Static parameter: Differential Non Linearity  
Fs=50MSPS; Fin=1MHz; Icc=20mA; N=131072pts  
0 .5  
0 .4  
0 .3  
0 .2  
0 .1  
0
-0 .1  
-0 .2  
-0 .3  
-0 .4  
-0 .5  
0
2 0 0  
4 0 0  
6 0 0  
8 0 0  
1 0 0 0  
O u tp u t C o d e  
Linearity vs. AVcc  
Distortion vs. AVcc  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
-69  
-71  
60  
10  
59.5  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
9.3  
SNR  
SFDR  
59  
-73  
58.5  
-75  
SINAD  
58  
57.5  
57  
THD  
-77  
-79  
-81  
-83  
-85  
56.5  
56  
ENOB  
55.5  
55  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
AVCC (V)  
AVCC (V)  
10/19  
TSA1002  
Linearity vs. DVcc  
Distortion vs. DVcc  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
-65  
-67  
-69  
-71  
59.1  
9.6  
SNR  
59.05  
59  
9.595  
9.59  
9.585  
9.58  
9.575  
9.57  
SFDR  
-73  
ENOB  
58.95  
58.9  
58.85  
58.8  
-75  
-77  
THD  
SINAD  
-79  
-81  
-83  
-85  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
DVCC (V)  
DVCC (V)  
Linearity vs. VccB  
Distortion vs. VccB  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
Fs=50MSPS; Icca=20mA; Fin=1MHz  
59.5  
10  
-72  
-73  
-74  
9.9  
9.8  
9.7  
9.6  
9.5  
9.4  
SNR  
59  
58.5  
58  
THD  
-75  
SINAD  
-76  
-77  
ENOB  
-78  
SFDR  
57.5  
57  
-79  
-80  
2.25  
2.35  
2.45  
2.55  
2.65  
2.25  
2.35  
2.45  
2.55  
2.65  
VCCB (V)  
VCCB (V)  
Linearity vs. Fs  
Distortion vs. Fs  
Icca=20mA; Fin=5MHz  
Icca=20mA; Fin=5MHz  
10  
9.5  
9
-50  
-55  
-60  
ENOB  
66  
SNR  
61  
THD  
-65  
-70  
SINAD  
56  
8.5  
8
-75  
SFDR  
-80  
51  
46  
-85  
-90  
7.5  
25  
35  
45  
55  
65  
75  
25  
35  
45  
55  
65  
75  
Fs (MHz)  
Fs (MHz)  
11/19  
TSA1002  
Linearity vs. Fs  
Distortion vs. Fs  
Icca=20mA; Fin=15MHz  
Icca=20mA; Fin=15MHz  
10  
9.5  
9
-50  
-55  
-60  
ENOB  
66  
THD  
-65  
SNR  
61  
-70  
SINAD  
56  
8.5  
8
SFDR  
-75  
-80  
-85  
-90  
51  
46  
7.5  
25  
35  
45  
55  
65  
75  
25  
35  
45  
55  
65  
75  
Fs (MHz)  
Fs (MHz)  
Linearity vs. Fin  
Distortion vs. Fin  
Fs=50MSPS; Icca=20mA  
Fs=50MSPS; Icca=20mA  
-50  
-55  
-60  
64  
62  
60  
58  
56  
54  
9.6  
ENOB  
9.1  
8.6  
8.1  
7.6  
THD  
-65  
-70  
-75  
-80  
-85  
SNR  
SFDR  
SINAD  
0
20  
40  
60  
0
20  
40  
60  
Fin (MHz)  
Fin (MHz)  
Linearity vs.Temperature  
Distortion vs. Temperature  
Fs=50MSPS; Icca=20mA; Fin=5MHz  
Fs=50MSPS; Icca=20mA; Fin=5MHz;  
80  
10  
64  
9.8  
9.6  
9.4  
9.2  
9
8.8  
8.6  
8.4  
8.2  
8
ENOB  
62  
75  
SFDR  
60  
58  
56  
54  
52  
50  
SNR  
70  
THD  
65  
60  
55  
SINAD  
-50  
0
50  
100  
-50  
0
50  
100  
Temperature (°C)  
Temperature (°C)  
12/19  
TSA1002 APPLICATION NOTE  
DETAILED INFORMATION  
couple for each stage. The corrected data are  
outputed through the digital buffers.  
Signal input is sampled on the rising edge of the  
clock while digital outputs are delivered on the  
falling edge of the Data Ready signal.  
The advantages of such a converter reside in the  
combination of pipeline architecture and the most  
advanced technologies. The highest dynamic  
performances are achieved while consumption  
remains at the lowest level.  
The TSA1002 is a High Speed analog to digital  
converter based on a pipeline architecture and the  
latest deep submicron CMOS process to achieve  
the best performances in terms of linearity and  
power consumption.  
The pipeline structure consists of 9 internal  
conversion stages in which the analog signal is  
fed and sequencially converted into digital data.  
Some functionalities have been added in order to  
simplify as much as possible the application  
board. These operational modes are described in  
the following table.  
The TSA1002 is pin to pin compatible with the  
8bits/40Msps TSA0801, the 10bits/25Msps  
TSA1001 and the 12bits/50Msps TSA1201. This  
ensures a conformity within the product family and  
above all, an easy upgrade of the application.  
Each 8 first stages consists of an Analog to Digital  
converter, a Digital to Analog converter, a Sample  
and Hold and a gain of 2 amplifier. A 1.5bit  
conversion resolution is achieved in each stage.  
The latest stage simply is a comparator. Each  
resulting LSB-MSB couple is then time shifted to  
recover from the conversion delay. Digital data  
correction completes the processing by  
recovering from the redundancy of the (LSB-MSB)  
OPERATIONAL MODES DESCRIPTION  
Inputs  
Outputs  
Analog input differential level  
DFSB  
OEB  
OR  
DR  
Most Significant Bit (MSB)  
(VIN-VINB)  
>
RANGE  
H
H
H
L
L
L
L
L
L
L
H
H
H
CLK  
CLK  
CLK  
CLK  
CLK  
CLK  
HZ  
D9  
-RANGE  
RANGE>  
(VIN-VINB)  
-RANGE  
>
(VIN-VINB)  
>-RANGE  
RANGE  
D9  
(VIN-VINB)  
L
D9  
>
H
Complemented D9  
Complemented D9  
Complemented D9  
HZ  
>
(VIN-VINB)  
X
(VIN-VINB)  
>-RANGE  
L
H
RANGE>  
L
L
X
HZ  
Data Format Select (DFSB)  
lower consumption while the converter goes on  
sampling.  
When set to low level (VIL), the digital input DFSB  
provides a two’s complement digital output MSB.  
This can be of interest when performing some  
further signal processing.  
When OEB is set to low level again, , the data is  
then valid on the output with a very short Ton  
delay.  
When set to high level (VIH), DFSB provides a  
standard binary output coding.  
The timing diagram summarizes this operating  
cycle.  
Output Enable (OEB)  
Out of Range (OR)  
When set to low level (VIL), all digital outputs  
remain active and are in low impedance state.  
When set to high level (VIH), all digital outputs  
buffers are in high impedance state. This results in  
This function is implemented on the output stage  
in order to set up an "Out of Range" flag whenever  
the digital data is over the full scale range.  
13/19  
TSA1002  
Typically, there is a detection of all the data being  
at ’0’ or all the data being at ’1’. This ends up with  
an output signal OR which is in low level state  
(VOL) when the data stay within the range, or in  
high level state (VOH) when the data are out of the  
range.  
Single-ended input configuration  
Some applications may require a single-ended  
input which is easily achieved with the  
configuration reported on Figure 6.  
In this case, it is recommended to use an  
AC-coupled analog input and connect the other  
analog input to the common mode voltage of the  
circuit (INCM) so as to properly bias the ADC. The  
INCM may remain at the same internal level  
(0.56V) thus driving only a 1Vpp input amplitude,  
or it must be increased to 0.9V to drive a 2Vpp  
input amplitude. You will get higher performances  
using a 2Vpp signal.  
Data Ready (DR)  
The Data Ready output is an image of the clock  
being synchronized on the output data (D0 to D9).  
This is a very helpful signal that simplifies the  
synchronization of the measurement equipment or  
the controlling DSP.  
As digital output, DR goes in high impedance state  
when OEB is asserted to High level as described  
in the timing diagram.  
Figure 6 : Single-ended input configuration  
Signal source  
100nF  
VIN  
DRIVING THE ANALOG INPUT  
Differential inputs  
TSA1002  
VINB  
50Ω  
INCM  
The TSA1002 has been designed to obtain  
optimum performances when being differentially  
driven. An RF transformer is a good way to  
achieve such performances.  
330pF  
10nF  
470nF  
0.9V  
Figure 5 describes the schematics. The input  
signal is fed to the primary of the transformer,  
while the secondary drives both ADC inputs. The  
common mode voltage of the ADC (INCM) is  
connected to the center-tap of the secondary of  
the transformer in order to bias the input signal  
around this common voltage, internally set to  
0.56V. The INCM is decoupled to maintain a low  
noise level on this node. Our evaluation board is  
mounted with a 1:1 ADT1-1 transformer from  
Dynamic characteristics, while not being as  
remarkable as for differential configuration, are  
still of very good quality. Measurements done at  
50Msps, 2MHz input frequency, -1dBFS input  
level sum up these performances. An SFDR of  
-64.5dBc, a SNR of 57.8dB and an ENOB Full  
Scale of 9.3bits are achieved.  
REFERENCE CONNECTION  
Minicircuits. You might also use  
impedance ratio (1:2 or 1:4) to reduce the driving  
requirement on the analog signal source.  
a higher  
Internal reference  
In the standard configuration, the ADC is biased  
with the internal reference voltage. VREFM pin is  
connected to Analog Ground while VREFP is  
internally set to a voltage of 1.03V. It is  
recommended to decouple the VREFP in order to  
minimize low and high frequency noise. Refer to  
Figure 7 for the schematics.  
Each analog input can drive a 1Vpp amplitude  
input signal, so the resultant differential amplitude  
is 2Vpp.  
Figure 5 : Differential input configuration  
Figure 7 : Internal reference setting  
ADT1-1  
Analog source  
1:1  
VIN  
1.03V  
TSA1002  
50Ω  
470nF  
10nF  
330pF  
100pF  
VREFP  
VINB  
VIN  
INCM  
TSA1002  
VINB  
330pF  
10nF  
470nF  
VREFM  
14/19  
TSA1002  
External reference  
The TSA1002 will combine highest performances  
and lowest consumption at 50Msps when Rpol is  
in the range of 12kto 20k.  
At lower sampling frequency, this value of resistor  
may be changed and the consumption will  
decrease as well.  
It is possible to use an external reference voltage  
instead of the internal one for specific applications  
requiring even better linearity or enhanced  
temperature behaviour. In this case, the amplitude  
of the external voltage must be at least equal to  
The figure 9 sums up the relevant data.  
the  
internal  
one  
(1.03V).  
Using  
the  
STMicroelectronics Vref TS821 leads to optimum  
performances when configured as shown on  
Figure 8.  
Figure 9 : Analog Current consumption vs. Fs  
According value of Rpol polarization resistance  
Figure 8 : External reference setting  
60  
50  
40  
30  
20  
10  
0
20  
18  
16  
14  
12  
10  
8
RPOL  
1k  
470nF  
10nF  
330pF  
VCCA VREFP  
VIN  
TSA1002  
TS821  
6
VINB  
external  
reference  
ICCA  
4
VREFM  
2
0
25  
35  
45  
55  
65  
75  
Fs (MHz)  
At 15Msps sampling frequency, 1MHz input  
frequency and -1dBFS amplitude signal,  
performances can be improved of up to 2dBc on  
SFDR and 0.3dB on SINAD. At 50Msps sampling  
frequency, 1MHz input frequency and -1dBFS  
amplitude signal, performances can be improved  
of up to 1dBc on SFDR and 0.6dB on SINAD.  
This can be very helpful for example for  
multichannel application to keep a good matching  
among the sampling frequency range.  
Layout precautions  
To use the ADC circuits in the best manner at high  
frequencies, some precautions have to be taken  
for power supplies:  
- First of all, the implementation of 4 separate  
proper supplies and ground planes (analog,  
digital, internal and external buffer ones) on the  
PCB is mandatory for high speed circuit  
applications to provide low inductance and low  
resistance common return.  
Clock input  
The quality of your converter is very dependant on  
your clock input accuracy, in terms of aperture  
jitter; the use of low jitter crystal controlled  
oscillator is recommended.  
The separation of the analog signal from the  
digital part is essential to prevent noise from  
coupling onto the input signal.  
- Power supply bypass capacitors must be placed  
as close as possible to the IC pins in order to  
improve high frequency bypassing and reduce  
harmonic distortion.  
The duty cycle must be between 45% and 55%.  
The clock power supplies must be separated from  
the ADC output ones to avoid digital noise  
modulation at the output.  
- Proper termination of all inputs and outputs must  
be incorporated with output termination resistors;  
then the amplifier load will be only resistive and  
the stability of the amplifier will be improved. All  
leads must be wide and as short as possible  
especially for the analog input in order to decrease  
parasitic capacitance and inductance.  
- To keep the capacitive loading as low as  
possible at digital outputs, short lead lengths of  
routing are essential to minimize currents when  
the output changes. To minimize this output  
It is recommended to always keep the circuit  
clocked, even at the lowest specified sampling  
frequency of 0.5Msps, before applying the supply  
voltages.  
Power consumption  
The internal architecture of the TSA1002 enables  
to optimize the power consumption according to  
the sampling frequency of the application. For this  
purpose, a resistor is placed between IPOL and  
the analog Ground pins.  
15/19  
TSA1002  
capacitance, buffers or latches close to the output  
pins will relax this constraint.  
The dataready signal is the acquisition clock of the  
logic analyzer.  
- Choose component sizes as small as possible  
(SMD).  
The ADC digital outputs are latched by the octal  
buffers 74LCX573.  
EVAL1002 evaluation board  
All characterization measurements have been  
made with:  
The characterization of the board has been made  
with a fully ADC devoted test bench as shown on  
Figure 10. The analog signal must be filtered to be  
very pure.  
SFSR=+0.2dB  
for  
static  
parameters.-  
SFSR=-0.5dB for dynamic parameters.  
Figure 10 : Analog to Digital Converter characterization bench  
Power  
HP8644B  
data  
ADC  
evaluation  
board  
Vin  
Sine wave  
Generator  
Logic  
Analyzer  
dataready  
ck  
TLA704  
Pulse  
Generator  
HP8133A  
HP8644B  
Sine Wave  
Generator  
16/19  
TSA1002  
Figure 11 : TSA1002 Evaluation board schematic  
2
1
+
2
1
1
2
D 0  
D R  
3
D 1  
O R  
3 7  
3 8  
2 4  
2 3  
2 2  
2 1  
2 0  
1 9  
1 8  
1 7  
1 6  
1 5  
1 4  
1 3  
+
+
2
1
F F  
F
C C V 5 B . 2 U  
G N D B  
C C V 5 B . 2 U  
F F  
F
F
C C V 5 B . 2 U  
3 9  
4 0  
4 1  
4 2  
4 3  
4 4  
4 5  
4 6  
4 7  
4 8  
U F  
U F  
U F  
G N D B  
G N D B  
D G N D  
N C  
D G N D  
C L  
D G N D  
D V C  
D V C  
F F  
N C  
N C  
O E  
F S D B  
A V C  
2
1
4
3
1
B
K
2
6
C
C
2
1
A V C  
A G N D  
C
C
1
2
+
1
2
17/19  
TSA1002  
Figure 12 : Printed circuit of evaluation board.  
Printed circuit board - List of components  
P a rt  
D e s ig n F o o tp rin t  
a t o r  
P a rt  
T yp e  
D e s ig n F o o t prin t  
a t o r  
P a rt  
D e s ign F o o tp rint  
a t o r  
P a rt  
D e s ign F o o t prin t  
a t o r  
T yp e  
10 u F  
10 u F  
10 u F  
10 u F  
T ype  
T yp e  
C 2 4  
C 2 3  
C 4 1  
C 2 9  
12 10  
12 10  
12 10  
12 10  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
ID C 3 2  
3 3 0 p F C 3 3  
3 3 0 p F C 2 0  
3 3 0 p F C 8  
3 3 0 p F C 2  
3 3 0 p F C 5  
3 3 0 p F C 11  
3 3 0 p F C 3 0  
3 3 0 p F C 17  
3 3 0 p F C 14  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
6 0 3  
C A P  
C A P  
C A P  
C A P  
8 0 5  
8 0 5  
8 0 5  
8 0 5  
8 0 5  
8 0 5  
8 0 5  
47 0n F  
47 0n F  
47 0n F  
47 0n F  
C 7  
8 05  
A VC C  
C LJ / S M B  
A GN D  
D F S B  
J 12  
J 4  
F IC H E 2M M  
S M B / H  
C 16  
C 19  
C 3  
8 05  
8 05  
J 19  
J 9  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
F IC H E 2M M  
A D T  
8 05  
10 0 p F C 1  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
47 K  
R 12  
R 14  
R 11  
R a j1  
R 10  
R 19  
R 13  
R 15  
R 16  
R 17  
R 18  
R 3  
6 03  
D GN D  
D VC C  
G ndB 1  
G ndB 2  
J 2 0  
J 15  
J 2 2  
J 2 1  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
10 n F  
C 12  
C 3 9  
C 15  
C 4 0  
C 2 7  
C 4  
6 03  
6 03  
VR 5  
6 03  
M e s c o m m o d e J 8  
47u F  
47u F  
47u F  
47u F  
C 36  
C 34  
C 35  
C 42  
6 03  
O E B  
J 10  
6 03  
R e gl c o m m o de J 7  
C 2 1  
C 3 1  
C 6  
6 03  
T 2-A T 1-1WT  
T 2-A T 1-1WT  
Vc c B 1  
T 2  
T 1  
J 18  
J 17  
J 1  
6 03  
A D T  
4 7 0 n F C 2 2  
4 7 0 n F C 3 2  
4 7 0 n F C 3 7  
4 7 0 n F C 3 8  
4 7 0 n F C 13  
4 7 0 n F C 2 8  
4 7 0 n F C 10  
6 03  
F IC H E 2M M  
F IC H E 2M M  
S M B / H  
C 9  
6 03  
VD D B UF F 3V  
Vin  
C 18  
R 2  
50  
50  
6 03  
1K  
R 1  
6 03  
Vre fM  
J 5  
F IC H E 2M M  
F IC H E 2M M  
T QF P 48  
3 2 P IN J 6  
74 LC X5 73 U3  
74 LC X5 73 U2  
T S S OP 2 0  
T S S OP 2 0  
S IP 2  
Vre fP  
J 2  
3 30p F C 25  
3 30p F C 26  
6 0 3  
6 0 3  
T S A 100 2  
U1  
C O N 2  
J 16  
18/19  
TSA1002  
PACKAGE MECHANICAL DATA  
48 PINS - PLASTIC PACKAGE  
A
A2  
A1  
e
48  
37  
0,10 mm  
.004 inch  
SEATING PLANE  
1
36  
25  
12  
c
13  
24  
D3  
D1  
D
0,25 mm  
.010 inch  
GAGE PLANE  
K
Millimeters  
Typ.  
Inches  
Typ.  
Dim.  
Min.  
Max.  
Min.  
Max.  
A
1.60  
0.15  
1.45  
0.27  
0.20  
0.063  
0.006  
0.057  
0.011  
0.008  
A1  
A2  
B
0.05  
1.35  
0.17  
0.09  
0.002  
0.053  
0.007  
0.004  
1.40  
0.22  
0.055  
0.009  
C
D
9.00  
7.00  
5.50  
0.50  
9.00  
7.00  
5.50  
0.60  
1.00  
0.354  
0.276  
0.216  
0.0197  
0.354  
0.276  
0.216  
0.024  
0.039  
D1  
D3  
e
E
E1  
E3  
L
0.45  
0.75  
0.018  
0.030  
L1  
K
0° (min.), 7° (max.)  
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the  
consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from  
its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications  
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information  
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or  
systems without express written approval of STMicroelectronics.  
© The ST logo is a registered trademark of STMicroelectronics  
© 2000 STMicroelectronics - Printed in Italy - All Rights Reserved  
STMicroelectronics GROUP OF COMPANIES  
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco  
Singapore - Spain - Sweden - Switzerland - United Kingdom  
© http://www.st.com  
19/19  

相关型号:

TSA1002IF

10-BIT, 50MSPS, 50mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1002IFT

10-BIT, 50MSPS, 50mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1002_04

10-BIT, 50MSPS, 50mW A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1005

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1005-20IF

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1005-20IFT

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1005-40IF

Analog to Digital Converter

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC

TSA1005-40IFT

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA1005I-40IF

DUAL-CHANNEL, 10-BIT, 20/40MSPS A/D CONVERTER

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
STMICROELECTR

TSA100A

Trans Voltage Suppressor Diode, 400W, Unidirectional, 1 Element, Silicon, DO-214AA,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SURGE

TSA100C

Trans Voltage Suppressor Diode, 400W, Bidirectional, 1 Element, Silicon, DO-214AA,

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
SURGE

TSA1015

PNP SILICON TRANSISTOR

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
ETC